
GradNorm: Gradient Normalization for Adaptive

Loss Balancing in Deep Multitask Networks

Zhao Chen 1 Vijay Badrinarayanan 1 Chen-Yu Lee 1 Andrew Rabinovich 1

Abstract

Deep multitask networks, in which one neural net-

work produces multiple predictive outputs, can

offer better speed and performance than their

single-task counterparts but are challenging to

train properly. We present a gradient normaliza-

tion (GradNorm) algorithm that automatically bal-

ances training in deep multitask models by dynam-

ically tuning gradient magnitudes. We show that

for various network architectures, for both regres-

sion and classification tasks, and on both synthetic

and real datasets, GradNorm improves accuracy

and reduces overfitting across multiple tasks when

compared to single-task networks, static baselines,

and other adaptive multitask loss balancing tech-

niques. GradNorm also matches or surpasses the

performance of exhaustive grid search methods,

despite only involving a single asymmetry hy-

perparameter α. Thus, what was once a tedious

search process that incurred exponentially more

compute for each task added can now be accom-

plished within a few training runs, irrespective of

the number of tasks. Ultimately, we will demon-

strate that gradient manipulation affords us great

control over the training dynamics of multitask

networks and may be one of the keys to unlocking

the potential of multitask learning.

1. Introduction

Single-task learning in computer vision has enjoyed much

success in deep learning, with many single-task models now

performing at or beyond human accuracies for a wide array

of tasks. However, an ultimate visual system for full scene

understanding must be able to perform many diverse percep-

tual tasks simultaneously and efficiently, especially within

the limited compute environments of embedded systems

1Magic Leap, Inc. Correspondence to: Zhao Chen
<zchen@magicleap.com>.

Proceedings of the 35
th International Conference on Machine

Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

such as smartphones, wearable devices, and robots/drones.

Such a system can be enabled by multitask learning, where

one model shares weights across multiple tasks and makes

multiple inferences in one forward pass. Such networks

are not only scalable, but the shared features within these

networks can induce more robust regularization and boost

performance as a result. In the ideal limit, we can thus

have the best of both worlds with multitask networks: more

efficiency and higher performance.

In general, multitask networks are difficult to train; different

tasks need to be properly balanced so network parameters

converge to robust shared features that are useful across all

tasks. Methods in multitask learning thus far have largely

tried to find this balance by manipulating the forward pass

of the network (e.g. through constructing explicit statisti-

cal relationships between features (Long & Wang, 2015)

or optimizing multitask network architectures (Misra et al.,

2016), etc.), but such methods ignore a key insight: task

imbalances impede proper training because they manifest

as imbalances between backpropagated gradients. A task

that is too dominant during training, for example, will neces-

sarily express that dominance by inducing gradients which

have relatively large magnitudes. We aim to mitigate such is-

sues at their root by directly modifying gradient magnitudes

through tuning of the multitask loss function.

In practice, the multitask loss function is often assumed to

be linear in the single task losses Li, L =
∑

i wiLi, where

the sum runs over all T tasks. In our case, we propose an

adaptive method, and so wi can vary at each training step

t: wi = wi(t). This linear form of the loss function is

convenient for implementing gradient balancing, as wi very

directly and linearly couples to the backpropagated gradient

magnitudes from each task. The challenge is then to find the

best value for each wi at each training step t that balances

the contribution of each task for optimal model training.

To optimize the weights wi(t) for gradient balancing, we

propose a simple algorithm that penalizes the network when

backpropagated gradients from any task are too large or too

small. The correct balance is struck when tasks are train-

ing at similar rates; if task i is training relatively quickly,

then its weight wi(t) should decrease relative to other task

weights wj(t)|j 6=i to allow other tasks more influence on

GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

training. Our algorithm is similar to batch normalization

(Ioffe & Szegedy, 2015) with two main differences: (1) we

normalize across tasks instead of across data batches, and

(2) we use rate balancing as a desired objective to inform

our normalization. We will show that such gradient normal-

ization (hereafter referred to as GradNorm) boosts network

performance while significantly curtailing overfitting.

Our main contributions to multitask learning are as follows:

1. An efficient algorithm for multitask loss balancing

which directly tunes gradient magnitudes.

2. A method which matches or surpasses the performance

of very expensive exhaustive grid search procedures,

but which only requires tuning a single hyperparameter.

3. A demonstration that direct gradient interaction pro-

vides a powerful way of controlling multitask learning.

2. Related Work

Multitask learning was introduced well before the advent of

deep learning (Caruana, 1998; Bakker & Heskes, 2003), but

the robust learned features within deep networks and their

excellent single-task performance have spurned renewed

interest. Although our primary application area is computer

vision, multitask learning has applications in multiple other

fields, from natural language processing (Collobert & We-

ston, 2008; Hashimoto et al., 2016; Søgaard & Goldberg,

2016) to speech synthesis (Seltzer & Droppo, 2013; Wu

et al., 2015), from very domain-specific applications such

as traffic prediction (Huang et al., 2014) to very general

cross-domain work (Bilen & Vedaldi, 2017). Multitask

learning has also been explored in the context of curriculum

learning (Graves et al., 2017), where subsets of tasks are

subsequently trained based on local rewards; we here ex-

plore the opposite approach, where tasks are jointly trained

based on global rewards such as total loss decrease.

Multitask learning is very well-suited to the field of com-

puter vision, where making multiple robust predictions is

crucial for complete scene understanding. Deep networks

have been used to solve various subsets of multiple vision

tasks, from 3-task networks (Eigen & Fergus, 2015; Te-

ichmann et al., 2016) to much larger subsets as in Uber-

Net (Kokkinos, 2016). Often, single computer vision prob-

lems can even be framed as multitask problems, such as in

Mask R-CNN for instance segmentation (He et al., 2017) or

YOLO-9000 for object detection (Redmon & Farhadi, 2016).

Particularly of note is the rich and significant body of work

on finding explicit ways to exploit task relationships within

a multitask model. Clustering methods have shown success

beyond deep models (Jacob et al., 2009; Kang et al., 2011),

while constructs such as deep relationship networks (Long

& Wang, 2015) and cross-stich networks (Misra et al., 2016)

give deep networks the capacity to search for meaningful

relationships between tasks and to learn which features to

share between them. Work in (Warde-Farley et al., 2014)

and (Lu et al., 2016) use groupings amongst labels to search

through possible architectures for learning. Perhaps the

most relevant to the current work, (Kendall et al., 2017) uses

a joint likelihood formulation to derive task weights based

on the intrinsic uncertainty in each task.

3. The GradNorm Algorithm

3.1. Definitions and Preliminaries

For a multitask loss function L(t) =
∑

wi(t)Li(t), we aim

to learn the functions wi(t) with the following goals: (1)

to place gradient norms for different tasks on a common

scale through which we can reason about their relative mag-

nitudes, and (2) to dynamically adjust gradient norms so

different tasks train at similar rates. To this end, we first de-

fine the relevant quantities, first with respect to the gradients

we will be manipulating.

• W : The subset of the full network weights W ⊂ W
where we actually apply GradNorm. W is generally

chosen as the last shared layer of weights to save on

compute costs1.

• G
(i)
W (t) = ||∇Wwi(t)Li(t)||2: the L2 norm of the

gradient of the weighted single-task loss wi(t)Li(t)
with respect to the chosen weights W .

• GW (t) = Etask[G
(i)
W (t)]: the average gradient norm

across all tasks at training time t.

We also define various training rates for each task i:

• L̃i(t) = Li(t)/Li(0): the loss ratio for task i at time

t. L̃i(t) is a measure of the inverse training rate of

task i (i.e. lower values of L̃i(t) correspond to a faster

training rate for task i)2.

• ri(t) = L̃i(t)/Etask[L̃i(t)]: the relative inverse train-

ing rate of task i.

With the above definitions in place, we now complete our

description of the GradNorm algorithm.

3.2. Balancing Gradients with GradNorm

As stated in Section 3.1, GradNorm should establish a com-

mon scale for gradient magnitudes, and also should balance

1In our experiments this choice of W causes GradNorm to
increase training time by only ∼ 5% on NYUv2.

2Networks in this paper all had stable initializations and Li(0)
could be used directly. When Li(0) is sharply dependent on ini-
tialization, we can use a theoretical initial loss instead. E.g. for Li

the CE loss across C classes, we can use Li(0) = log(C).

GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Figure 1. Gradient Normalization. Imbalanced gradient norms across tasks (left) result in suboptimal training within a multitask network.

We implement GradNorm through computing a novel gradient loss Lgrad (right) which tunes the loss weights wi to fix such imbalances in

gradient norms. We illustrate here a simplified case where such balancing results in equalized gradient norms, but in general there may be

tasks that require relatively high or low gradient magnitudes for optimal training (discussed further in Section 3).

training rates of different tasks. The common scale for gra-

dients is most naturally the average gradient norm, GW (t),
which establishes a baseline at each timestep t by which we

can determine relative gradient sizes. The relative inverse

training rate of task i, ri(t), can be used to rate balance

our gradients. Concretely, the higher the value of ri(t), the

higher the gradient magnitudes should be for task i in order

to encourage the task to train more quickly. Therefore, our

desired gradient norm for each task i is simply:

G
(i)
W (t) 7→ GW (t)× [ri(t)]

α, (1)

where α is an additional hyperparameter. α sets the strength

of the restoring force which pulls tasks back to a common

training rate. In cases where tasks are very different in

their complexity, leading to dramatically different learning

dynamics between tasks, a higher value of α should be used

to enforce stronger training rate balancing. When tasks are

more symmetric (e.g. the synthetic examples in Section 4),

a lower value of α is appropriate. Note that α = 0 will

always try to pin the norms of backpropagated gradients

from each task to be equal at W . See Section 5.4 for more

details on the effects of tuning α.

Equation 1 gives a target for each task i’s gradient norms,

and we update our loss weights wi(t) to move gradient

norms towards this target for each task. GradNorm is then

implemented as an L1 loss function Lgrad between the actual

and target gradient norms at each timestep for each task,

summed over all tasks:

Lgrad(t;wi(t)) =
∑

i

∣

∣

∣

∣

G
(i)
W (t)−GW (t)× [ri(t)]

α

∣

∣

∣

∣

1

(2)

where the summation runs through all T tasks. When dif-

ferentiating this loss Lgrad, we treat the target gradient norm

GW (t)× [ri(t)]
α as a fixed constant to prevent loss weights

wi(t) from spuriously drifting towards zero. Lgrad is then

differentiated only with respect to the wi, as the wi(t) di-

rectly control gradient magnitudes per task. The computed

gradients ∇wi
Lgrad are then applied via standard update

rules to update each wi (as shown in Figure 1). The full

GradNorm algorithm is summarized in Algorithm 1. Note

that after every update step, we also renormalize the weights

wi(t) so that
∑

i wi(t) = T in order to decouple gradient

normalization from the global learning rate.

4. A Toy Example

To illustrate GradNorm on a simple, interpretable system,

we construct a common scenario for multitask networks:

training tasks which have similar loss functions but different

loss scales. In such situations, if we naı̈vely pick wi(t) = 1

GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Algorithm 1 Training with GradNorm

Initialize wi(0) = 1 ∀i
Initialize network weights W
Pick value for α > 0 and pick the weights W (usually the

final layer of weights which are shared between tasks)

for t = 0 to max train steps do

Input batch xi to compute Li(t) ∀i and

L(t) =
∑

i wi(t)Li(t) [standard forward pass]

Compute G
(i)
W (t) and ri(t) ∀i

Compute GW (t) by averaging the G
(i)
W (t)

Compute Lgrad =
∑

i|G
(i)
W (t)−GW (t)× [ri(t)]

α|1
Compute GradNorm gradients ∇wi

Lgrad, keeping

targets GW (t)× [ri(t)]
α constant

Compute standard gradients ∇WL(t)
Update wi(t) 7→ wi(t+ 1) using ∇wi

Lgrad

Update W(t) 7→ W(t+ 1) using ∇WL(t) [standard

backward pass]

Renormalize wi(t+ 1) so that
∑

i wi(t+ 1) = T
end for

for all loss weights wi(t), the network training will be dom-

inated by tasks with larger loss scales that backpropagate

larger gradients. We will demonstrate that GradNorm over-

comes this issue.

Consider T regression tasks trained using standard squared

loss onto the functions

fi(x) = σi tanh((B + ǫi)x), (3)

where tanh(·) acts element-wise. Inputs are dimension 250

and outputs dimension 100, while B and ǫi are constant

matrices with their elements generated IID from N (0, 10)
and N (0, 3.5), respectively. Each task therefore shares in-

formation in B but also contains task-specific information

ǫi. The σi are the key parameters within this problem;

they are fixed scalars which set the scales of the outputs

fi. A higher scale for fi induces a higher expected value

of squared loss for that task. Such tasks are harder to learn

due to the higher variances in their response values, but they

also backpropagate larger gradients. This scenario generally

leads to suboptimal training dynamics when the higher σi

tasks dominate the training across all tasks.

To train our toy models, we use a 4-layer fully-connected

ReLU-activated network with 100 neurons per layer as a

common trunk. A final affine transformation layer gives T
final predictions (corresponding to T different tasks). To

ensure valid analysis, we only compare models initialized

to the same random values and fed data generated from the

same fixed random seed. The asymmetry α is set low to 0.12

for these experiments, as the output functions fi are all of

the same functional form and thus we expect the asymmetry

between tasks to be minimal.

In these toy problems, we measure the task-normalized test-

time loss to judge test-time performance, which is the sum

of the test loss ratios for each task,
∑

i Li(t)/Li(0). We do

this because a simple sum of losses is an inadequate per-

formance metric for multitask networks when different loss

scales exist; higher loss scale tasks will factor dispropor-

tionately highly in the loss. There unfortunately exists no

general single scalar which gives a meaningful measure of

multitask performance in all scenarios, but our toy problem

was specifically designed with tasks which are statistically

identical except for their loss scales σi. There is therefore

a clear measure of overall network performance, which is

the sum of losses normalized by each task’s variance σ2
i -

equivalent (up to a scaling factor) to the sum of loss ratios.

For T = 2, we choose the values (σ0, σ1) = (1.0, 100.0)
and show the results of training in the top panels of Figure 2.

If we train with equal weights wi = 1, task 1 suppresses task

0 from learning due to task 1’s higher loss scale. However,

gradient normalization increases w0(t) to counteract the

larger gradients coming from T1, and the improved task

balance results in better test-time performance.

The possible benefits of gradient normalization become even

clearer when the number of tasks increases. For T = 10,

we sample the σi from a wide normal distribution and plot

the results in the bottom panels of Figure 2. GradNorm

significantly improves test time performance over naı̈vely

weighting each task the same. Similarly to the T = 2 case,

for T = 10 the wi(t) grow larger for smaller σi tasks.

For both T = 2 and T = 10, GradNorm is more stable

and outperforms the uncertainty weighting proposed by

(Kendall et al., 2017). Uncertainty weighting, which en-

forces that wi(t) ∼ 1/Li(t), tends to grow the weights

wi(t) too large and too quickly as the loss for each task

drops. Although such networks train quickly at the onset,

the training soon deteriorates. This issue is largely caused by

the fact that uncertainty weighting allows wi(t) to change

without constraint (compared to GradNorm which ensures
∑

wi(t) = T always), which pushes the global learning

rate up rapidly as the network trains.

The traces for each wi(t) during a single GradNorm run are

observed to be stable and convergent. In Section 5.3 we will

see how the time-averaged weights Et[wi(t)] lie close to the

optimal static weights, suggesting GradNorm can greatly

simplify the tedious grid search procedure.

5. Application to a Large Real-World Dataset

We use two variants of NYUv2 (Nathan Silberman & Fer-

gus, 2012) as our main datasets. Please refer to the Supple-

mentary Materials for additional results on a 9-task facial

landmark dataset found in (Zhang et al., 2014). The standard

NYUv2 dataset carries depth, surface normals, and semantic

GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Figure 2. Gradient Normalization on a toy 2-task (top) and 10-task (bottom) system. Diagrams of the network structure with loss

scales are on the left, traces of wi(t) during training in the middle, and task-normalized test loss curves on the right. α = 0.12 for all runs.

segmentation labels (clustered into 13 distinct classes) for a

variety of indoor scenes in different room types (bathrooms,

living rooms, studies, etc.). NYUv2 is relatively small (795

training, 654 test images), but contains both regression and

classification labels, making it a good choice to test the

robustness of GradNorm across various tasks.

We augment the standard NYUv2 depth dataset with flips

and additional frames from each video, resulting in 90,000

images complete with pixel-wise depth, surface normals,

and room keypoint labels (segmentation labels are, unfortu-

nately, not available for these additional frames). Keypoint

labels are professionally annotated by humans, while sur-

face normals are generated algorithmically. The full dataset

is then split by scene for a 90/10 train/test split. See Figure

6 for examples. We will generally refer to these two datasets

as NYUv2+seg and NYUv2+kpts, respectively.

All inputs are downsampled to 320 x 320 pixels and outputs

to 80 x 80 pixels. We use these resolutions following (Lee

et al., 2017), which represents the state-of-the-art in room

keypoint prediction and from which we also derive our

VGG-style model architecture. These resolutions also allow

us to keep models relatively slim while not compromising

semantic complexity in the ground truth output maps.

5.1. Model and General Training Characteristics

We try two different models: (1) a SegNet (Badrinarayanan

et al., 2015; Lee et al., 2017) network with a symmetric

VGG16 (Simonyan & Zisserman, 2014) encoder/decoder,

and (2) an FCN (Long et al., 2015) network with a modified

ResNet-50 (He et al., 2016) encoder and shallow ResNet de-

coder. The VGG SegNet reuses maxpool indices to perform

upsampling, while the ResNet FCN learns all upsampling

filters. The ResNet architecture is further thinned (both in

its filters and activations) to contrast with the heavier, more

complex VGG SegNet: stride-2 layers are moved earlier

and all 2048-filter layers are replaced by 1024-filter layers.

Ultimately, the VGG SegNet has 29M parameters versus

15M for the thin ResNet. All model parameters are shared

amongst all tasks until the final layer. Although we will

focus on the VGG SegNet in our more in-depth analysis,

by designing and testing on two extremely different net-

work topologies we will further demonstrate GradNorm’s

robustness to the choice of base architecture.

We use standard pixel-wise loss functions for each task:

cross entropy for segmentation, squared loss for depth, and

cosine similarity for normals. As in (Lee et al., 2017), for

room layout we generate Gaussian heatmaps for each of

48 room keypoint types and predict these heatmaps with

a pixel-wise squared loss. Note that all regression tasks

are quadratic losses (our surface normal prediction uses a

cosine loss which is quadratic to leading order), allowing us

to use ri(t) for each task i as a direct proxy for each task’s

relative inverse training rate.

All runs are trained at a batch size of 24 across 4 Titan

X GTX 12GB GPUs and run at 30fps on a single GPU at

inference. All NYUv2 runs begin with a learning rate of 2e-

5. NYUv2+kpts runs last 80000 steps with a learning rate

GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Table 1. Test error, NYUv2+seg for GradNorm and various base-

lines. Lower values are better. Best performance for each task is

bolded, with second-best underlined.

Model and Depth Seg. Normals
Weighting RMS Err. Err. Err.

Method (m) (100-IoU) (1-|cos|)
VGG Backbone

Depth Only 1.038 - -
Seg. Only - 70.0 -

Normals Only - - 0.169
Equal Weights 0.944 70.1 0.192

GradNorm Static 0.939 67.5 0.171
GradNorm α = 1.5 0.925 67.8 0.174

decay of 0.2 every 25000 steps. NYUv2+seg runs last 20000

steps with a learning rate decay of 0.2 every 6000 steps.

Updating wi(t) is performed at a learning rate of 0.025 for

both GradNorm and the uncertainty weighting ((Kendall

et al., 2017)) baseline. All optimizers are Adam, although

we find that GradNorm is insensitive to the optimizer chosen.

We implement GradNorm using TensorFlow v1.2.1.

5.2. Main Results on NYUv2

In Table 1 we display the performance of GradNorm on

the NYUv2+seg dataset. We see that GradNorm α = 1.5
improves the performance of all three tasks with respect

to the equal-weights baseline (where wi(t) = 1 for all t,i),
and either surpasses or matches (within statistical noise)

the best performance of single networks for each task.

The GradNorm Static network uses static weights derived

from a GradNorm network by calculating the time-averaged

weights Et[wi(t)] for each task during a GradNorm training

run, and retraining a network with weights fixed to those

values. GradNorm thus can also be used to extract good

values for static weights. We pursue this idea further in

Section 5.3 and show that these weights lie very close to the

optimal weights extracted from exhaustive grid search.

To show how GradNorm can perform in the presence of a

larger dataset, we also perform extensive experiments on

the NYUv2+kpts dataset, which is augmented to a factor

of 50x more data. The results are shown in Table 2. As

with the NYUv2+seg runs, GradNorm networks outperform

other multitask methods, and either matches (within noise)

or surpasses the performance of single-task networks.

Figure 3 shows test and training loss curves for GradNorm

(α = 1.5) and baselines on the larger NYUv2+kpts dataset

for our VGG SegNet models. GradNorm improves test-time

depth error by ∼ 5%, despite converging to a much higher

training loss. GradNorm achieves this by aggressively rate

balancing the network (enforced by a high asymmetry α =
1.5), and ultimately suppresses the depth weight wdepth(t) to

lower than 0.10 (see Section 5.4 for more details). The same

Figure 3. Test and training loss curves for all tasks in

NYUv2+kpts, VGG16 backbone. GradNorm versus an equal

weights baseline and uncertainty weighting (Kendall et al., 2017).

trend exists for keypoint regression, and is a clear signal of

network regularization. In contrast, uncertainty weighting

(Kendall et al., 2017) always moves test and training error in

the same direction, and thus is not a good regularizer. Only

results for the VGG SegNet are shown here, but the Thin

ResNet FCN produces consistent results.

5.3. Gradient Normalization Finds Optimal

Grid-Search Weights in One Pass

For our VGG SegNet, we train 100 networks from scratch

with random task weights on NYUv2+kpts. Weights are

sampled from a uniform distribution and renormalized to

sum to T = 3. For computational efficiency, we only train

for 15000 iterations out of the normal 80000, and then

compare the performance of that network to our GradNorm

GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Table 2. Test error, NYUv2+kpts for GradNorm and various base-

lines. Lower values are better. Best performance for each task is

bolded, with second-best underlined.

Model and Depth Kpt. Normals
Weighting RMS Err. Err. Err.

Method (m) (%) (1-|cos|)
ResNet Backbone

Depth Only 0.725 - -
Kpt Only - 7.90 -

Normals Only - - 0.155
Equal Weights 0.697 7.80 0.172

(Kendall et al., 2017) 0.702 7.96 0.182
GradNorm Static 0.695 7.63 0.156

GradNorm α = 1.5 0.663 7.32 0.155

VGG Backbone
Depth Only 0.689 - -

Keypoint Only - 8.39 -
Normals Only - - 0.142
Equal Weights 0.658 8.39 0.155

(Kendall et al., 2017) 0.649 8.00 0.158
GradNorm Static 0.638 7.69 0.137

GradNorm α = 1.5 0.629 7.73 0.139

Figure 4. Gridsearch performance for random task weights

vs GradNorm, NYUv2+kpts. Average change in performance

across three tasks for a static multitask network with weights wstatic
i ,

plotted against the L2 distance between w
static
i and a set of static

weights derived from a GradNorm network, Et[wi(t)]. A refer-

ence line at zero performance change is provided for convenience.

All comparisons are made at 15000 steps of training.

α = 1.5 VGG SegNet network at the same 15000 steps.

The results are shown in Figure 4.

Even after 100 networks trained, grid search still falls short

of our GradNorm network. Even more remarkably, there is

a strong, negative correlation between network performance

and task weight distance to our time-averaged GradNorm

weights Et[wi(t)]. At an L2 distance of ∼ 3, grid search

networks on average have almost double the errors per task

compared to our GradNorm network. GradNorm has there-

fore found the optimal grid search weights in one single

training run.

Figure 5. Weights wi(t) during training, NYUv2+kpts. Traces

of how the task weights wi(t) change during training for two

different values of α. A larger value of α pushes weights farther

apart, leading to less symmetry between tasks.

5.4. Effects of tuning the asymmetry α

The only hyperparameter in our algorithm is the asymmetry

α. The optimal value of α for NYUv2 lies near α = 1.5,

while in the highly symmetric toy example in Section 4 we

used α = 0.12. This observation reinforces our characteri-

zation of α as an asymmetry parameter.

Tuning α leads to performance gains, but we found that

for NYUv2, almost any value of 0 < α < 3 will improve

network performance over an equal weights baseline (see

Supplementary for details). Figure 5 shows that higher val-

ues of α tend to push the weights wi(t) further apart, which

more aggressively reduces the influence of tasks which over-

fit or learn too quickly (in our case, depth). Remarkably, at

α = 1.75 (not shown) wdepth(t) is suppressed to below 0.02

at no detriment to network performance on the depth task.

5.5. Qualitative Results

Figure 6 shows visualizations of the VGG SegNet outputs

on test set images along with the ground truth, for both the

NYUv2+seg and NYUv2+kpts datasets. Ground truth labels

are juxtaposed with outputs from the equal weights network,

3 single networks, and our best GradNorm network. Some

GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Figure 6. Visualizations at inference time. NYUv2+kpts outputs are shown on the left, while NYUv2+seg outputs are shown on the

right. Visualizations shown were generated from random test set images. Some improvements are incremental, but red frames are drawn

around predictions that are visually more clearly improved by GradNorm. For NYUv2+kpts outputs GradNorm shows improvement

over the equal weights network in normals prediction and over single networks in keypoint prediction. For NYUv2+seg there is an

improvement over single networks in depth and segmentation accuracy. These are consistent with the numbers reported in Tables 1 and 2.

improvements are incremental, but GradNorm produces

superior visual results in tasks for which there are significant

quantitative improvements in Tables 1 and 2.

6. Conclusions

We introduced GradNorm, an efficient algorithm for tun-

ing loss weights in a multi-task learning setting based on

balancing the training rates of different tasks. We demon-

strated on both synthetic and real datasets that GradNorm

improves multitask test-time performance in a variety of

scenarios, and can accommodate various levels of asymme-

try amongst the different tasks through the hyperparameter

α. Our empirical results indicate that GradNorm offers su-

perior performance over state-of-the-art multitask adaptive

weighting methods and can match or surpass the perfor-

mance of exhaustive grid search while being significantly

less time-intensive.

Looking ahead, algorithms such as GradNorm may have

applications beyond multitask learning. We hope to extend

the GradNorm approach to work with class-balancing and

sequence-to-sequence models, all situations where problems

with conflicting gradient signals can degrade model perfor-

mance. We thus believe that our work not only provides a

robust new algorithm for multitask learning, but also rein-

forces the powerful idea that gradient tuning is fundamental

for training large, effective models on complex tasks.

GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

References

Badrinarayanan, V., Kendall, A., and Cipolla, R. Segnet:

A deep convolutional encoder-decoder architecture for

image segmentation. arXiv preprint arXiv:1511.00561,

2015.

Bakker, B. and Heskes, T. Task clustering and gating for

bayesian multitask learning. Journal of Machine Learn-

ing Research, 4(May):83–99, 2003.

Bilen, H. and Vedaldi, A. Universal representations: The

missing link between faces, text, planktons, and cat

breeds. arXiv preprint arXiv:1701.07275, 2017.

Caruana, R. Multitask learning. In Learning to learn, pp.

95–133. Springer, 1998.

Collobert, R. and Weston, J. A unified architecture for natu-

ral language processing: Deep neural networks with mul-

titask learning. In Proceedings of the 25th international

conference on Machine learning, pp. 160–167. ACM,

2008.

Eigen, D. and Fergus, R. Predicting depth, surface normals

and semantic labels with a common multi-scale convolu-

tional architecture. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pp. 2650–2658,

2015.

Graves, A., Bellemare, M. G., Menick, J., Munos, R., and

Kavukcuoglu, K. Automated curriculum learning for

neural networks. arXiv preprint arXiv:1704.03003, 2017.

Hashimoto, K., Xiong, C., Tsuruoka, Y., and Socher, R. A

joint many-task model: Growing a neural network for

multiple nlp tasks. arXiv preprint arXiv:1611.01587,

2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp. 770–778, 2016.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. Mask

r-cnn. arXiv preprint arXiv:1703.06870, 2017.

Huang, W., Song, G., Hong, H., and Xie, K. Deep archi-

tecture for traffic flow prediction: deep belief networks

with multitask learning. IEEE Transactions on Intelligent

Transportation Systems, 15(5):2191–2201, 2014.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

In International Conference on Machine Learning, pp.

448–456, 2015.

Jacob, L., Vert, J.-p., and Bach, F. R. Clustered multi-task

learning: A convex formulation. In Advances in neural

information processing systems, pp. 745–752, 2009.

Kang, Z., Grauman, K., and Sha, F. Learning with whom

to share in multi-task feature learning. In Proceedings of

the 28th International Conference on Machine Learning

(ICML-11), pp. 521–528, 2011.

Kendall, A., Gal, Y., and Cipolla, R. Multi-task learning

using uncertainty to weigh losses for scene geometry and

semantics. arXiv preprint arXiv:1705.07115, 2017.

Kokkinos, I. Ubernet: Training a universal convolutional

neural network for low-, mid-, and high-level vision using

diverse datasets and limited memory. arXiv preprint

arXiv:1609.02132, 2016.

Lee, C.-Y., Badrinarayanan, V., Malisiewicz, T., and Rabi-

novich, A. Roomnet: End-to-end room layout estimation.

arXiv preprint arXiv:1703.06241, 2017.

Long, J., Shelhamer, E., and Darrell, T. Fully convolutional

networks for semantic segmentation. In Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 3431–3440, 2015.

Long, M. and Wang, J. Learning multiple tasks with deep

relationship networks. arXiv preprint arXiv:1506.02117,

2015.

Lu, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., and Feris,

R. Fully-adaptive feature sharing in multi-task networks

with applications in person attribute classification. arXiv

preprint arXiv:1611.05377, 2016.

Misra, I., Shrivastava, A., Gupta, A., and Hebert, M. Cross-

stitch networks for multi-task learning. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 3994–4003, 2016.

Nathan Silberman, Derek Hoiem, P. K. and Fergus, R. In-

door segmentation and support inference from rgbd im-

ages. In ECCV, 2012.

Redmon, J. and Farhadi, A. Yolo9000: better, faster,

stronger. arXiv preprint arXiv:1612.08242, 2016.

Seltzer, M. L. and Droppo, J. Multi-task learning in deep

neural networks for improved phoneme recognition. In

Acoustics, Speech and Signal Processing (ICASSP), 2013

IEEE International Conference on, pp. 6965–6969. IEEE,

2013.

Simonyan, K. and Zisserman, A. Very deep convolu-

tional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

Søgaard, A. and Goldberg, Y. Deep multi-task learning with

low level tasks supervised at lower layers. In Proceed-

ings of the 54th Annual Meeting of the Association for

Computational Linguistics, volume 2, pp. 231–235, 2016.

GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks

Teichmann, M., Weber, M., Zoellner, M., Cipolla, R.,

and Urtasun, R. Multinet: Real-time joint seman-

tic reasoning for autonomous driving. arXiv preprint

arXiv:1612.07695, 2016.

Warde-Farley, D., Rabinovich, A., and Anguelov, D. Self-

informed neural network structure learning. arXiv

preprint arXiv:1412.6563, 2014.

Wu, Z., Valentini-Botinhao, C., Watts, O., and King, S.

Deep neural networks employing multi-task learning

and stacked bottleneck features for speech synthesis. In

Acoustics, Speech and Signal Processing (ICASSP), 2015

IEEE International Conference on, pp. 4460–4464. IEEE,

2015.

Zhang, Z., Luo, P., Loy, C. C., and Tang, X. Facial land-

mark detection by deep multi-task learning. In European

Conference on Computer Vision, pp. 94–108. Springer,

2014.

