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Gradual Distributed Real-Coded Genetic Algorithms

Francisco Herrera and Manuel Lozano

Abstract—A major problem in the use of genetic algorithms resentatives are thaistributed GA's (DGA'S). Their premise
is premature convergence, a premature stagnation of the search |ies in partitioning the population into several subpopulations,
caused by the lack of diversity in the population. One approach g ach gne of them being processed by a GA, independently of the
for dealing with this problem is the distributed genetic algorithm th Furth iarati hani ’ d h
model. Its basic idea is to keep, in parallel, several subpopulations others. Furthermore, migration mechanism Pro uces ? chro-
that are processed by genetic algorithms, with each one being Mosome exchange between the subpopulations. DGA's attempt
independent of the others. Furthermore, a migration mechanism to overcome premature convergence by preserving diversity due
produces a chromosome exchange between the subpopulationsto the semi-isolation of the subpopulations. Another important
Making distinctions between the subpopulations by applying 4qyantage is that they may be implemented easily on parallel

genetic algorithms with different configurations, we obtain the hard Thi t ffered | g
so-called heterogeneous distributed genetic algorithms. Theseardware. This concept was offered as early as [8].

algorithms represent a promising way for introducing a correct Making distinctions between the subpopulations of a DGA
exploration/exploitation balance in order to avoid premature through the application of GA's with different configurations
convergence and reach approximate final solutions. ~ (control parameters, genetic operators, codings, etc.), we ob-
This paper presents the gradual distributed real-coded genetic tain the so-callecheterogeneou®GA's [2], [17], [51], [62].
algorithms, a type of heterogeneous distributed real-coded genetic h itable tools f duci ”’ | ’It' ! luti
algorithms that apply a different crossover operator to each sub- T ey are suitable tools or. pro uglrpgira el multiresolu |o_n
popu|ati0n. The importance of this Operator on the genetic a|go_ n the SeaI’Ch Space aSSOC|ated W|th the elementS that dlf‘fel’en-
rithm’s performance allowed us to differentiate between the sub- tiate the GA's applied to the subpopulations. This means that the
populations in this fashion. Using crossover operators presented search occurs in multiple exploration and exploitation levels. In
for real-coded genetic algorithms, we implement three instances of this way, a distributed search and an effective local tuning may

gradual distributed real-coded genetic algorithms. Experimental be obtained simult | hich I t
results show that the proposals consistently outperform sequential € oblained simuftaneously, which may allow premature con-

real-coded genetic algorithms and homogeneous distributed real- Vergence to be avoided and approximate final solutions to be
coded genetic algorithms, which are equivalent to them and other reached.
_mechanisms presented in the Iiteratl_Jre. These pro_posals offertwo  The availability of crossover operators faral-codedGA's
important advantages at the same time: better reliability and ac- (RCGA's) [34] that generate different exploration or exploita-
curacy. tion degrees makes the design of heterogeneous distributed
Index Terms—Crossover operator, distributed genetic al- RCGAs based on this operator feasible [33]. This paper
gorithms, multiresolution, premature convergence, selective presents a proposal of such algorithms, gredual distributed
pressure. RCGAs (GD-RCGA's). They apply a different crossover
operator to each subpopulation. These operators are differenti-
|. INTRODUCTION ated according to their associated exploration and exploitation

HE BEHAVIOR of genetic algorithms (GA's) is strongly properties and the degree thereof. The effect achieved is a
determined by the balance between exploiting what arallel multiresolution with regard to the crossover operator’s

ready works best and exploring possibilities that might eVeﬁg:tion. This seems very adequate for introducing reliability and

tually evolve into something even better. The loss of critical geeuracy into the search process. Furthermore, subpopulations

leles due to selection pressure, selection noise, schemata zaﬁg_adequately connected for exploiting this multiresolution in
ruption due to a crossover operator, and poor parameter saeg_radualway.
tings may make this exploration/exploitation balance dispropor-
tionate, and produce a lack diversityin the population [39],
[43], [53]. Under these circumstances, the search is likely to beLet us assume thaX = (z1---2,) andY = (y1 - - yn)
trapped in a region that does not contain the global optimui;, v; € [a;, b;] C R, ¢ = 1---n) are two real-coded chro-
This problem, calleggremature convergenchas long been rec- mosomes that have been selected for crossover. Most crossover
ognized as a serious failure mode for GA's [20], [23]. operators presented for RCGA's generate the genes for the off-
Diversity preservation methods based spatial separation spring via some form of combination of the genes in the parents
have been proposed in order to avoid premature converged€andY [34].
[13], [14], [44], [49]-[51], [62]. One of the most importantrep- In short, the action interval of the genesandy;, [a;, b;],
may be divided into three intervals,, z;], [z;, v:], and[y;, b,
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M functions, which are shown in Table I. These fuzzy connec-
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Exploration plotiat P tives accomplish the following property:
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Fig. 1. Action interval forz, andy, 2) F-, S-, and M-Crossover Operators:Now, if @) € {F,
o ek S, M}, we may generate the offspridg= (21 - - - 2,,) as

being the extremes is an exploitation zone in the sense that any zi = Q(xi; Yi)s i=1---,n.
geney; generated by crossover in this interval fulfittex{ |g; — This crossover operator applies the safes, or M func-

wil, [gi = yil} < |#; — yil- The two intervals that remain onyo, for o)1 of the genes in the chromosomes to be crossed. For

both sides are exploration zones in the sense that this proper%lg reason, they were calldd crossovers crossover, and/

not fulfilled. Therefore, exploration and/or exploitation degree(,srossover, respectively. Four families of FCB-crossover opera-

may be assigned to any crossaver aperator for RCGA's with tors may be obtained using the families of fuzzy connectives in

gard to the way in which these intervals are considered for 9€fple 1. Each one is termed the same as the related fuzzy con-
erating genes. Since the use of exploitative crossover OperaWéﬁtive family;

does not guarantee the generation of offspring being betterthat:rhese crossover operators have different properties: the

their parents, it seems reasonable to apply them accompar}ge_d and S-crossover operators show exploration, and the

byV(\a/prora:ﬁryfolllﬂes_[29], [32]. tors for RCGAR M-crossover operators show exploitation. According to the
€ use the following crossover operators for ZY  associated property of the families of fuzzy connectives in

connectives-based CrossovéECB crossovers) [32]BLX- Table I, the degree in which each crossover operator shows its

[9], [211, ar_ld an extended version of thezzy rec_omblnatlon related property depends on the fuzzy connective on which it
presented in [66]. All of these operators allow different explqé based. On the one hand. the Einst&inand S-crossover

ration or exploitation degrees to pe geperated. In the fOHOWiQ}%erators show the maximum exploration, whereas the logical
subsections, we comment on their main features. ones represent the minimum exploration. On the other, the
) logical M-crossover operator shows the maximum level of

A. Fuzzy Connectives-Based Crossover Operators exploitation since it uses the maximum level of information

To describe the FCB-crossover operators, we follow twisom both genes, i.e., it is not biased toward either of them. The
steps: 1) define functions for the combination of genes (Sectieffects of these crossover operators, along with their associated
[I-A-1), and 2) use these functions to define crossover operat@xploration or exploitation degrees, may be observed in Fig. 2.
between two chromosomes (Section 1I-A-2).

1) Functions for the Combination of Gene¥Vith regard to
the intervals shown in Fig. 1, in [32], three monotone and non- BLX-« generates an offspring = (z;---z,) where z;
decreasing functions are proposéd.S, and/, defined from is a randomly (uniformly) chosen number from the interval

B. BLX« Crossover Operator

[a, b] X [a, b] into [a, B], a, b € R, and which fulfill [min; —I - o, max; +I - a], wheremax; = max{z;, 1},
min; = min{z;, y;}, and/ = max; — min;. Fig. 3 shows its
Ve, d € la, b] operation.

p . p , , In the absence of selection pressure, all values 0.5 will
Fle, ¢) < minie, ¢}, S(e, ¢) 2 max{e, ¢'}, demonstrate a tendency for the population to converge toward
and values in the center of their ranges, producing low diversity
min{c, ¢} <M(c, ¢) < max{c, c'}. levels in the population, and inducing a possible premature con-
vergence toward nonoptimal solutions. Only wher: 0.5 is a

Each of these functions allows us to combine two gendgglanced relationship reached between convergence (exploita-
giving results belonging to each one of the aforemention&@n) and divergence (exploration), the probability that a gene
intervals. Therefore, each function will have different explowill lie in the exploitation interval is then equal to the proba-
ration or exploitation properties, depending on the range beihity that it will lie in an exploration interval [21].
covered by it.

Fuzzy connectiveg, norms,t conorms, and averaging func-
tions [48] were used to obtaif, S, and M functions. These  Here, we extend thkizzy recombinationperator presented
functions are defined from [0, 1} [0, 1] into [0, 1] and fulfill:  in [66] (the resultant operator will be callextended fuzzy re-
1) t norms are less than the minimum,tZ)onorms are greater combination. In this operator, the probability that thth gene
than the maximum, and 3) averaging functions are between thethe offspring has the value; is given by the distribution
minimum and maximum#' was associated totanormT, Sto  p(z) € {¢s,, Pav, &y, }, Wherep,., .., andg,, are triangular
at conorm, andM to an averaging operatdt. In order to do probability distributions having the following features (< ;
s0, a transformation of the genes to be combined is needed friesnassumed), wheré = |y, — z;|, av = (#; + v;)/2, and
the intervala, 5] into [0, 1], and later, the resultinfe, b]. Four d < [0, 1]. Fig. 4 shows two examples of applying this crossover
families of fuzzy connectives were used for obtainiigS, and operator.

C. Extended Fuzzy Recombination Operator
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TABLE |
FAMILIES OF Fuzzy CONNECTIVES

Family T-norm T-conorm Averaging Function. (0 <A <1)
Logical | T (s,y) = win(e, y) Gr(a,y) = max(z,9) | Poi@,y) = (1= Ne + Ay
Hamacher | Ty (z,y) = - Gylx,y) = %y_;—iw Py{z,y) = 3_—ytzlz,‘r;r:;

3]
Algebraic | Ta(z,y) = zy Galz,y) =z +y—xzy | Pa(e,y) =z ¢

Tictel o) — v <y — — )

Einstein Te(z,y) = o=y | Celey) = 55 Pg(x,y) = TR A (T

F-crossovers  M-crossovers S-crossovers
_ o-f I o-f
+€1‘M’t_‘o”_ _E)?iott_aga_ir_ - E)ELIO_IWI_!)OQF I i ; 4{
Ein Alg Ham Log Ham Alg Ein Log Log Ham Alg Ein
| S X 2 b
' n a, X; Y i
a; X, Y b,

Fig. 3. BLX-a crossover operator.
Fig. 2. FCB-crossover operators.

Min. Modal Max.
Dist. Value Value Value
Pz, z, —d- T ; min{z;+d-I, av}
¢ay  min{z;+d-I, av} av max{y; —d-I, av} { { i |
¢y,  max{y,—d-I, av} Yi yi+d- 1 a,; X Yi b i
(=) d<05.

If d < 0.5, the probability of generating genes belonging t
the exploitation intervdle;, y;] is higher than that of generating
genes in the exploration intervdls, «;] and[y;, b;], as shown
in Fig. 4(a). Alternatively, whenl > 0.5, the opposite effect
occurs. Fig. 4(b) shows this. : | | |
The three crossover operators presented above may be a. x . ¥y, b
dered with regard to the way randomness is used for generat ™ ¢ : ! !
the genes of the offspring: 1) FCB crossovers are determinist..,
i.e., giventwo parents, the resultant offspring WiII_alwa_ly_s be tmleg_ 4. Extended fuzzy recombination.
same; 2) BLXe includes a random component, i.e., it is non-
deterministic; and 3) extended fuzzy recombination is nondeter-

(b) d 2 05.

ministic as well; however, it uses triangular probability distribu- (e Rear Sifiref?ffﬂoitaﬁon)_f@
tions, whereas BLXx uses uniform distributions. In this way, it A ¥ -
may be considered as a hybrid between the FCB crossovers and // g >

BLX-«. For example, forl = 0, it looks like a hybrid between CE\/”

the logical/ crossover and BLX-0.0, and fer= 0.5, among Y4 AN
the logical ' crossover, the logicaf crossover, and BLX-0.5. A v
Another important property of these crossover operators is ; .
that they fit their action range, depending on the diversity of the A S \/ )
population using specific information held by the parents [21], /é;\/, R f@
[32]. /> i
P
IIl. GRADUAL DISTRIBUTED REAL-CODED /E\{ e T (E
GENETIC ALGORITHMS \" Front Side (Exploration) “--
In this section, we propose the GD—RCGA's. They are het-
erogeneous distributed RCGA's that apply a different crossovey > Structure of a GD-RCGA.
operator to each subpopulation. Fig. 5 outlines their basic struc-
ture. « The front sideis devoted to exploration. It is made up
They are based on a hypercube topology with three dimen-  of four subpopulation#;, ---, E,, to which exploratory

sions. There are two important sides to be differentiated. crossover operators are applied. The exploration degree
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increases clockwise, starting at the low&st and ending coming these problems, and for establishing correct coordina-
at the highest,. tion between refinement and expansion.
» Therear sideis for exploitation. It is composed of subpop-
ulationsey, ---, ¢4 thqt qndergo exploitative CroSSOVer Tpq Congquest and Noneffect Problems
operators. The exploitation degree increases clockwise,
starting at the lowest;, and finishing at the highest;. One of the drawbacks of DGA's is that the insertion of a new
With this structure, a parallel multiresolution is obtaineéhdividual from another subpopulation may not be effective. The
using the crossover operator, which allows a diversified seancéw individual may be grossly incompatible with that subpopu-
(reliability), and an effective local tuning (accuracy) to bdation, and therefore either be ignored or dominate the subpop-
achieved simultaneously. Furthermore, subpopulations adation [40]. This will probably occur when the subpopulations
adequately connected for exploiting the multiresolution in @re at different levels of evolution. The arrival of highly evolved
gradual way since the migrations between subpopulatiomsigrants from a strong population will result in a higher rate
belonging to different categories may induce the refinement of selection than for local, less-evolved individuals. Thus, the
the expansion of the best zones emerging. sending population’s solution is often imposed on that of the re-
« RefinementThis may be induced if migrations are proCeiver. Conversely, migrants arriving from a less-evolved pop-
duced from an exploratory subpopulation toward an ejlation are not selected for reproduction, and are wasted [45].
ploitative one, i.e., fromE; to ¢;, or between two ex- The first problem is called theonquest problerf45]. Here, the
ploratory subpopulations from a higher degree to a low&gcond one will be calledrzoneffect problem
one, i.e., fromE;,; to E;, or between two exploitative ~ The conquest and noneffect problems may appear in a
subpopulations from a lower degree to a higher one, i.6&D-RCGA because the different subpopulations are likely
frome; to e;yq. to converge at different rates, and therefore they may differ
« Expansionin the case of migrations in the opposite direcnarkedly. The exploitative subpopulations will converge
tion, the chromosomes included may be reference poirister than the exploratory ones. Furthermore, the convergence
for generating diversity (with different degrees) on zonespeed will be different on each side since the subpopulations

showing promising properties. show different exploration or exploitation degrees. In this
These two effects may improve, even more, the proper rell@y, an individual from an exploitative subpopulatios;)(
bility and accuracy achieved through multiresolution. that is copied into an exploratory oné is immediately

Topology is an important factor in the performance of theelected more often. If the differential is sufficiently great, or
DGA'’s because it determines the speed at which a good sofuboth the incoming subpopulation and the surrounding area
tion spreads to other subpopulations. If the topology has a dehéye converged sufficiently, the new individuals are almost
connectivity, or a short diameter, or both, good solutions wi#llways selected. Alternatively, if an individual belonging to
spread quickly to all of the subpopulations [10]. The short dn exploratory subpopulation with low fitness is inserted into
ameter of the cubic topology is suitable for favoring refineme@n exploitative one, it has little chance of being selected for
and expansion since genetic material will be quickly exchangetpssover, and is replaced without the population benefiting in
between subpopulations with a wide spectrum of properties,ay way.
well as degrees of exploration and exploitation. The harmful effects of these problems may be increased due

Since GD-RCGAs are implemented easily on paralléd the short diameter of the cubic topology. Good solutions will
hardware, they may solve the fundamental conflict amorsgread rapidly to all of the subpopulations, and may quickly take
accuracy, reliability, and computation time, which appeagyver the population [10].
when searching for the global optimum in complex problems, The use of arelitist strategy[15] by the subpopulations is
especially for problems with many local optima [55]. This conanother important factor that may have some influence on rapid
flict was previously tackled by means of heterogeneous DGAt®nvergence. It involves making sure that the best performing
(see subsection E in the Appendix) and other different methodiromosome always survives intact from one generation to
For example, in [55], GA's are hybridized with hill-climbingthe next. This is necessary since it is possible that the best
methods such as the quasi-Newton and Nelder—Mead's siobmomosome may disappear due to crossover or mutation.
plex. A similar solution is presented in [51], where local searchhe elitist strategy has arisen as a very suitable element for
procedures are integrated to DGA's. In [46], a very differenimproving the behavior of DGA's [26], [40]. However, in
model is presented: each subpopulation of a DGA receivbe case of GD—-RCGA's, it may have a dangerous effect.
information regarding the progress of other subpopulations, afide continuous presence of good elements in the exploitative
checks its own relative progress. If this is lower, new genetiubpopulations will produce an early convergence toward such
material is typically introduced by completely reinitializing theslements. The small sizes of these subpopulations contributes
subpopulation. to the appearance of this problem. These strong elements will

Although GD—RCGA's have arisen as effective and efficiemeach the exploratory subpopulations, and may produce the
models for dealing with complex problems, they may suffer twoonquest problem. Thus, the elitist strategy should be treated
problemsconquesandnoneffectin Section IllI-A, we describe with care by the GD—RCGA's.
these problems, and in Sections I11-B and 1lI-C, we propose anNext, we describe the migration schema and the selection
adequate migration schema and selection mechanism for ovaechanism chosen for the GD—RCGA's in order to avoid all of
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the problems presented above, and to allow the refinement and REFINEMENT MIGRATIONS
expansion to be carried through to a suitable conclusion. ey . 5 ;\}
p . /

B. Migration Schema - g

DGA behavior is strongly determined by the migration mech- Ey J\E‘/ !
anism’s action [10], [24]. In mostimplementations of this mech- T v
anism, copies of the individuals who are subject to migration are
sent to one or more neighboring subpopulations. Kragex. l A ! |
[37] call thisimmigration Additionally, they investigate@émi- e = — -y &)
gration, in which individuals leave their subpopulation, and mi- A
grate to exactly one of the neighboring subpopulations. Exper- v s
imental results indicated that the migration strategy of emigra- @ — \@2>/

tion works best.

We propose an emigration model where migrants are sent R?F/EXP MIGRATIONS

only toward immediate neighbors along a dimension of the hy- ;e,. )= o e,>
percube, and each subsequent migration takes place along a dif- S - //} '
ferent dimension of the hypercube. Particularly, the best ele- «/ ///
ment of each subpopulation is sent toward the corresponding {Es J= = (\ED

subpopulation every five generations, as shown in Fig. 6. The
sequence of application is from left to right, i.e., first, the refine-
ment migrations, second, the refinement/expansion migrations,

third, the expansion migrations, and then, the sequence starts o -

again. The place of an emigrant is taken by an immigrant. /f;f’ﬁ‘ fﬁ
In this way, the best elements (emigrants) do not affect the // ,///

same subpopulation for a long time, which would probably (B ) E>/

occur using the elitist strategy, and therefore the conguest is \5) 2

more difficult for them. Furthermore, these good elements may EXPANSION MIGRATIONS

undergo refinement or expansion after being included in the e )

destination subpopulations. N o
Finally, we point out that with this migration schema, a global

elitist strategy persists since the best element of all subpopula- @ / S 5

tions is never lost, although it is moved from one subpopulation H \" T

to another. l

C. Selection Mechanism T A l /i

€, = €

The selection mechanism is an important responsibility for }J /\)

the diversity of the population. It may maintain or eliminate di- v L

versity, depending on its curresélective pressurayhich rep- @’ — ,@)

resents the degree to which the selection mechanism favors the

better individuals. The higher the selection pressure, the greater

likelihood that the better individuals are favored, contributingy ¢ Three types of migration in a GD-RCGA.

with a large number of copies to the next generation. A larger

number of copies for some individuals means fewer copies for

the rest of the population. When many individuals do not recei@d the selection mechanism. In this subsection, we carry out this

any copies, the result is the loss of diversity. On the other har@sk-

if the selective pressure is low, similar chances to survive areA selection mechanism that seems particularly interesting for

provided, even for worse individuals, and so diversity is maitGD-RCGA's islinear ranking selectiori5] since the selective

tained. pressure produced by it may be easily adjusted by means of
The crossover operators for RCGA's (Section Il) adjust thearying an associated control parameter. In Section IlI-C-1, we

intervals for the generation of genes, depending on the curreescribe this selection mechanism, and in Section III-C-2, we

population diversity. As we have mentioned, this diversity iassign a different selective pressure degree to every subpopula-

limited by the selective pressure of the selection mechanismtion of the GD—RCGA's.

order to iron out the conquest and noneffect problems in the subFinally, we should point out that other authors have built

populations of the GD—RCGA's, a suitable combination shouldechanisms for improving the GA that are based on the interac-

be established between the degree of exploration or exploitati@ns between the crossover operator and the selection mecha-

of the crossover operators and the degree of selective pressusen. In [19], for example, a GA called CHC is proposed which



48 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 1, APRIL 2000

combines a disruptive crossover operator with a conservative se- TABLE I
lection strategy (which keeps tHé best elements appearing so Tmin VVALUES FOREACH SUBPOPULATION
far). In [30], a fuzzy logic controller is used for tuning the popu-
lation diversity in a suitable way, which complements the role of
the selection mechanism, i.e., either maintaining or eliminating
diversity, with the role of the crossover operator, i.e., either cre-
ating (exploring) or using (exploiting) diversity.

1) Linear Ranking SelectionlIn linear ranking selection, the

chrom_osomes aré sorted in order of raw flltness, and then ‘Hﬁon is “balanced” by combining exploratory crossovers with
selection probability of each chromosoréig is computed ac- high-intensity selection or exploitative crossovers with low-in-

cording to its rankank(C%) [with rank(Ches) = 1] by Using  tensity selection. Thenyhat happens to the gradualignsince

Crossover Exploitation || Crossover Exploration
+ — - - — +
€4 €3 €2 £y E 1 E2 Eg E4
08 0.7 06 0.5 03 02 01 0.0

the following nonincreasing assignment function: it seems that the heterogeneous nature of GD—RCGA's cancels
out. This means that the effects producedtinande; would
ps(C;) = L <77mx — (Mmax — 7min) - M) be the same, and, when migration occurs, it is likely that they
N N -1 are at about the same stage in the search. However, this does

. . . o not happen. With the distribution proposed for thg, values
whereX is the populatlo.n size anglin € [0, 1] specifies the o e crossover configuration chosen, a wide spectrum of dif-
expected number of copies for the worst chromosomg (the besbnt combinations of the possible crossover operator’s effects
one has7max =2 ~ Mmin expect_ed copleg). The selective PS5 obtained (generation or use of diversity) and the ones in the
sure O_f linear rankmg Sel_ectlon IS determ_ln_e_dqbﬁ_(n. If i 15 selection mechanism (the maintenance or elimination of diver-
low, high pressure is achieved, whereas if it is high, the PressWigy |n this way, inE; (i = 1, - - -, 4), diversity is created by

IS lO\.N' . . . o . exploratory crossover operators, and it is filtered by high-inten-
With this selection mechanism, every individual receives asr?tr)'/ selection, whereas i (i = 1, - - -, 4), diversity is kept by
expected number of copies that depends onits rank, indepenqggiitintensity selection, and it used by exploitative crossover op-
of the magnitude of its f|t'ness. This may help prevenF prematUlesors, Therefore, the stagesfgfande; in the search will be
convergence by preventing super migrants from taking over tE'ﬁ!ferent. Furthermore, since these facts will occur even at dif-

subpopulations within a few generations (conquest problengdyq qegrees, the heterogeneous nature (with its implicit grad-
and avoid having inferior migrants fail to have a chance to taiﬁ%lism) of GD—RCGA's does not cancel out

part in the next generations (noneffect problem).

Linear ranking will go withstochastic universal sampling
[6]. This procedure guarantees that the number of copies of any
chromosome is bounded by the floor and ceiling of its expectedMinimization experiments on the test suite, described in
number of copies. Section IV-A, were carried out in order to determine the

2) Assignment of Selective Pressure Degréd& have as- performance of three GD-RCGAs based on the crossover
signed to the subpopulations of GD—RCGA's the,, values operators presented in Section II. In Section IV-B, we describe
shown in Table II. the performance measures used. In Section 1V-C, we propose

Table Il shows that the more exploratory Bnsubpopulation the GD-RCGA based on FCB-crossover operators, and we
is, the higher the selective pressure it will undergo. Accordinglgpmpare its results with the ones of equivalent sequential ver-
we may comment on the following aspects. sions and other implementations of homogeneous distributed

« The most exploratory subpopulations will follow the idedRCGA'S; in Section IV-D, the same is done for the GD-RCGA

stated in [19], i.e., to put together a disruptive crossovBASed on BLXe; and in Section IV-E, for the one based on

operator and a conservative selection strategy. The m&ifended fuzzy recombination. Then, in Section IV-F, we study,
goal of this strategy is to “filter” the high diversity byfrom an empirical point of view, the gradualism associated
means of a high selective pressure. with GD—-RCGA's and the effectiveness of the refinement

« Although selective pressure is high in these subpopul@?d €xpansion. On the basis of this study, in Section IV-G,
tions, they do not run the risk of being conquered becau¥€ Propose a restart operator for GD-RCGAs. Finally in

the constant generation of diversity prevents any type gfction [V-H, we compare the best GD-RCGA's found in the
convergence. previous subsections with other mechanisms proposed in the

« The less exploratory subpopulations lose selective pré3# literature for avoiding the premature convergence problem.

sure, and so possible conquerors do not have many advan- )
tages against their resident chromosomes. A. Test Suite
Alternatively, Table 1l shows that the more exploitativecan  The test suite that we have used for the experiments consists
subpopulation is, the less selective pressure it will undergo. Thissix test functions and three real-world problems. They are
allows emigrants sent from exploratory subpopulations to hagtescribed in Sections 1V-A-1 and I1V-A-2, respectively.
a chance of surviving in higher exploitative subpopulations, and1) Test Functions:We have considered six frequently used
the noneffect problem is eradicated. test functions: thespheremodel (f.,1) [15], [59], generalized
Now, we need to reflect about an important question. FroRosenbrock’sfunction (fros) [15], Schwefel's problem 1.2
the description in this subsection, it seems that each subpoffi.,) [59], generalized Rastrigin’$unction (fr.s) [3], [64],

IV. EXPERIMENTS
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.fSph. . .fRoa
fspr(&) = 30, @} fros(8) = D72 (100 - (i1 — 27)° + (@i — 1)?)
—-5.12 < x; <£5.12 -512< z; <5.12
fSph(x*) =0 fRos(z*) =0
fSch. ) fRaa
fSCh(:i) = ‘1”:1 (Z;=1x1> fRaa(i) =a'n+2?=1 Z'f _a'COS(UJ'iBi)
—65.536 < x; < 65.536 o=10, w=2n
Fsen(x®) =0 -5.12 < z; £5.12
fRas(z*) =0
Fari efio
fGri(ii")= %Z?:l -’L‘l2 - :L:lCOS (—f/’;—) +1 eflo(:if) =f1o(£l!1,$2)+...f10(wi_1,.'1:,')...+f10(z'n,m’1)
d = 4000 fio(z,y) = (2% + ¥*)02% - [sin®(50 - (z® + y*)°1) + 1]
—600.0 < z; <600.0 z,y € (—100, 100]
feri(z®) =10 fefro(z*) =0

Fig. 7. Test functions.

Griewangk’sfunction (fc.;) [28], andexpansion offio (¢fi0) (fras, fari» @ndefio), the diversity is fundamental for finding
[69]. Fig. 7 shows their formulation. The dimension of the way to lead toward the global optimum. Also, in the case of
search space is 10 farfio and 25 for the remaining test fros and fs.y, diversity can help to find solutions close to the

functions. parabolic valley, and so avoid slow progress.
* f.ou is @ continuous, strictly convex, and unimodal func- 2) Real-World Problems:We have chosen the following
tion. three real-world problems which, in order to be solved, are

* fres IS @ continuous and unimodal function, with thdranslated to optimization problems of parameters with vari-
optimum located in a steep parabolic valley with a flakbles on continuous domairsystems of linear equatiofig2],
bottom. This feature will probably cause slow progress ifiequency modulation sounds parameter identification problem
many algorithms since they must continually change thdf5], andpolynomial fitting problen{60]. They are described
search direction to reach the optimum. This function h&glow.
been considered by some authors to be a real challenge @) Systems of linear equation§the problem may be
for any continuous function optimization program [57]stated as solving for the elements of a vectoy given the
A great part of its difficulty lies in the fact that there arematrix A and vectorB in the expressioM - X = B. The
nonlinear interactions between the variables, i.e., it @valuation function used for these experiments is
nonseparablg68]. o

* fsq is @ continuous and unimodal function. Its difficulty
concerns the fact that searching along the coordinate axes Pute(g, oy ) = Z Z (@ij - 25) = b
only gives a poor rate of convergence since the gradient
of fscn is not oriented along the axes. It presents similar cjearly, the best value for this objective function is
difficulties t0 fros, butits valley is much narrower. —— p, ()" — 0. Interparameter linkage (i.e., nonlinearity) is

* fras is a scalable, continuous, and multimodal functiorpasily controlled in systems of linear equations, their nonlin-

=1 j=1

which is made frony;,,, by modulating it witha - cos(w - earity does not deteriorate as increasing numbers of parameters

i). are used, and they have proven to be quite difficult.

* fari is @ continuous and multimodal function. This func- \we have considered a ten-parameter problem instance. Its
tion is difficult to optimize because itis nonseparable [51},atrices are the following:

and the search algorithm has to climb a hill to reach the

next valley. Nevertheless, one undesirable propertyexhib- | 5 4 5 2 9 5 4 2 3 1 1 40

ited is that it becomes easier as the dimensionalityisin- |g 7 1 1 7 2 2 6 6 9 1 50
creased [68]. 318 6 9 7 42 1¢6]|1 47

* fi0 is a function that has nonlinear interactions between | s 3 7 3 7 5 3 9 9 5 1 59
two variables. Its expanded versiof is built in such a 9 5 1 6 3 4 2 3 3 9 1 45

way that it induces nonlinear interaction across multiple | { 2 3 1 7 ¢ 6 3 3 3 117 | 35
variables. It is nonseparable as well. 1 5 7 8 1 4 7 & 4 8 1 53

A GA does not need too much diversity to reachtheglobal | 9 3 8 6 3 4 7 1 8 1 1 50
optimum of f;,1, since there is only one optimum which could 8 2 8 5 3 8 7 2 75 1 55
be easily accessed. Alternatively, for multimodal functions |2 1 2 2 9 8 7 4 4 1 1 40
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b) Frequency modulation sounds parameter identificatioReturn  R;

problem: The problem is to specify six parametefs, w1,

ag, wy, a3, wy of the frequency modulation sound model Each parameter (coefficient) is in the ranggl2-512. The

represented by

y(t) = ay -sin(wy - t-04az -sin(wy - t-0 4+ a3 -sin(ws - t-6)))

objective function value of the optimum xy,.;,(C*) = 0.

B. Performance Measures

with & = (2 - #/100). The fitness function is defined as the The performance measures listed below have been used in
summation of square errors between the evolved data and theer to study the behavior of GD—-RCGA's, and allow their

model data as follows:
100

Prms(ar, w, az, wa, as, wz) = Z (y(t) — yo(t))?
t=0

where the model data are given by the following equation:

yo(t) =1.0 - sin(5.0-¢-6 — 1.5 -sin(4.8 - t- 6 + 2.0
-sin(4.9 -t - 9))).

Each parameter is in the rang6.4—6.35. This problem is

comparison with other genetic algorithms to be made. All of
the algorithms have been executed 30 times, each one with 5000
generations.

» A performance: average of the best fithess function found
at the end of each run.

» SD performance: standard deviation.

» B performance: best of the fithess values averaged as
performance. If the global optimum has been reached
sometimes, this performance will represent the percentage
of runs in which this happens.

a highly complex multimodal one having strong epistasis, with ¢ O performance: average of the firah-linemeasure [15],

minimum valueP;,,,s(z*) = 0.
c) Polynomial fitting problem:This problem lies in

average of the fitness of all of the elements appearing
throughout the GA's execution. On line is considered here

finding the coefficients of the following polynomial izt as a population diversity measure.

Moreover, & test(at 0.05 level of significance) was applied
in order to ascertain if differences in theperformance for the
GD-RCGA's are significant when compared to the one for the
other algorithms in the respective table. The direction of any

significant differences is denoted either by

* a plus sign (+) for an improvement i performance, or

» a minus sign <) for a reduction, or

 an approximate sigrij for nonsignificant differences.

whereTy;(z) is a Chebyshev polynomial of degrge. The places in the tables of results (Tables IV, VI, VIII-X)
The solution to the polynomial fitting problem consists ofyvhere these signs do not appear correspond to the performance

the coefficients off»,(z). This polynomial oscillates betweenyalues for GD—RCGASs.

-1 and 1 when its argumentis between-1 and 1. Outside

this region, the polynomial rises steeply in the direction of high. GD—RCGA Based on FCB-Crossover Operators

positive ordinate values. This problem has its roots in elec-pn GD_RCGA based on FCB-crossover operators (Sec-
tronic filter design, and challenges an optimization procedufgy, II-A) was implemented with the crossover configuration
by forcing it to find parameter values with grossly differenthown in Table 11l It was called GD-FCB. These assignments
magnitudes, something very common in technical systems. Thi&ween subpopulations and FCB-crossover operators allow
Chebyshev polynomial employed here is GD-FCB to produce the gradual effects shown in Fig. 5, thanks
to the properties of these operators (which may be observed in
Fig. 2).

It is a nine-parameter problem. The pseudocode algorithmAll GD-RCGA's proposed in this paper use 20 individuals
shown below was used in order to transform the constraintsfgr subpopulation [7]. The mutation operator applied is nonuni-
this problem into an objective function to be minimized, calletbrm mutation [47]. This operator has been used widely, re-
Pepen. We consider thaf' = (co, -- -, ¢g) is the solution to be porting good results [34], [52]. The probability of updating a
evaluated andc(z) = Ef’:o cj X 29, chromosome by mutatiop) is 0.125, and the crossover prob-

ability (p.) is 0.6.

2k
P(z)=>¢;x2, k> O0isinteger
=0

such that
P(z) e[-1,1],
P(1.2) > Ty(1.2)

forz € [-1, 1], and
and P(—12) > Tgk(—12)

Te(z) =1—32-22 +160 - 2* — 256 - 25 4+ 128 - 2%,

Choose po. p2, - . pioo from [-1, 1J; Along with GD-FCB, we have executed algorithms be-
R =0: longing to two families of sequential RCGA's, R-S2 and R-S4,
For i=0,---,100 do and to one family of homogeneous distributed RCGA's, D-S4.

If (—1 > P(;(]J,j) or P(j,'(p,') > 1)
then R« R+ (1 - Po(p:))
If (Pc(l.?) — Ts(l.Q) < 0)
then R «— R+ (Pc(1.2) — Ts(1.2))%
If (Po(=1.2) — T5(—1.2) < 0)
then R« R4 (Po(—1.2) — Te(—1.2))%;

» The algorithms in the R-S2 family are R-S2-Log, -Ham,
-Alg, and -Ein. They apply the corresponding type of
FCB-crossover operators following strategy/2 pre-
sented in [32]. For each pair of chromosomes from the
total population that undergoes crossover, four offspring
are generated, the result of applying two exploratory
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TABLE 1Ii achieve better results than R-S2-Log. In particular, it achieved
CROSSOVERCONFIGURATION FORGD-FCB very goodA andB results forfros: 9 and 2-5, respectively.
Rear Side | M-crossover Front Side | F- and S-crossover GD-FCB do better than algorithms in R-S4. These algorithms
e [ Hamacher B | Logical show a high level of exploration (see the higimeasure). This
=2 | Algebraic By | Hamacher is due to the fact that they are based on H#¥4 strategy, as
¢ Einstein Ba | Algebraic was indicated in [32]. Convergence may not be carried out in
€a ! Logical E., | Einstein

a suitable way. GD—FCB generates too much diversity as well

(compare the& measure of this algorithm with the one for the
crossover operators and two exploitative ones to themlgorithms in R-S4); however, its exploitative side allows good
The two most promising offspring of the four replaceonvergence to be produced, and so the best elements are found.
their parents in the population. The population size for Comparison of the GD—FCB algorithm and the D-S4 family
these algorithms is set at 80, instead of 160 (total sizélows the behavior of the former to be studied in detail. We
of the GD-RCGA's) since they need four evaluations fopbserve that th€ measure associated with GD—-FCB shows
each crossover event. average values. This is reasonable since it comprises the main

e The R-S4 family is composed of R-S4-Log, -Ham, -Algproperties of all algorithms in D-S4. Also, it may be seen that,

and -Ein. These algorithms use the FCB-crossover opér-general, its4 and B results are better than the ones for the

ators using the strategy74 proposed in [32]. For each algorithms in D-S4.

pair of chromosomes from a total @f2 - p. - N, four To sum up, we may underline that GD—FCB has allowed re-

offspring are generated, the result of applying two exiability and accuracy to be improved simultaneously.

ploratory crossover operators, an exploitative one, and an « The exploratory side has produced suitable diversity levels

operator with “relaxed” exploitation, which puts together  for finding promising regions in the search space, which

the two properties. All four offspring will form part of the becomes very useful for the case of the complex functions.

population in such a way that two of them substitute their « The exploitative side has generated a suitable local tuning

parents, and the other two substitute two chromosomes be-  for reaching good final approximations.

longing to the remaining 1/2 of the population that should

undergo crossover. The population size is setat 160. p GD_RCGA Based on BLX-Crossover Operator

The algorithms in D-S4, D-S4-Log, -Ham, -Alg, and

-Ein are homogeneously distributed versions of the corre—With regard to the properties Of,BLX" (Section 1I-B), we
sponding ones in R-S4. They use a cubic topology withr}fve built a GD—RCGA based on this operator, called GD-BLX,

subpopulation size of 20 individuals, and the migratioW'th thea \_/alues for each subpopulation shown in Table V. With
scheme is the same as the one for GD—RCGA's. The@?se a_SS|g_nments, GD-BLX may produce the gradual effects
algorithms are good reference points for comparing tﬁ@own in Fig. 5.

effectiveness of the GD-RCGA structure since elementsSP-BLX is compared with two algorithms: a sequential one,
generated using a wide spectrum of crossover operat&so-X: and a homogeneous distributed RCGA, D-BLX. Both

are included in the subpopulations at the same time, j @€ Pased on the BLX-crossover with = 0.5. This value is
as GD-RCGA's do. chosen from [34], where experiments with several values of

Linear ranking ., = 0.75), stochastic universal samplin are tried, being the most effective one. The results for the three
9 Umin = .00, P g’algorithms are found in Table VI.

and an elitist strategy were assumed for RCGA's and homodge*

neous distributed RCGA3.. andp,, are the same as the onesa IIIrf]ugc?tri]grzzly (S(S;Eil_fé dg bta;r;z }r:e beﬁ:haen?efufss?;? for
fOI’ the GD—RCGA,S 1 p sle Chieb- Sph

1) Results: Table IV shows the results obtained. In genera re very approximate, which shows that the exploitation of

GD-FCB returns betterd and B results than R-S2-Ham, D.—B!_X is highly effective. Exploration is useful as well,
) as indicated by the good result for the complgx,, for the
R-S2-Alg, and R-S2-Ein (sektest results). Furthermore, the . .
. : . ; mlr|It|m0daI ef10, frRas,» @and fa,; (the global optimum offg s
O measure is much greater. This means that the diversity leve : :
: . . apd fari was found in 100 and 60% of the runs, respectively),
of GD-FCB, produced by its exploratory side, was higher, bu .
i . e - and for thePy,,; real-world problem (with a 66.7% percentage
also that the convergence, introduced by its exploitative sqae
was effective. Thus, reliability and accuracy were improvea
simultaneously. Alternatively, R-S2-Log provides better solu- o
tions than GD—FCB for most test functions, except fag. E. GD-RCGA Based on Extended Fuzzy Recombination
and fsq,. It has a similar performance in real-world problems. We have implemented a GD-RCGA using the extended
R-S2-Log shows a very good convergence level (see th&lowfuzzy recombination operator (Section 1I-C), called GD—-EFR.
measure) due to: 1) th&7'2 strategy is very exploitative sinceln order to produce the adequate gradual effects (Fig. 5), we
it chooses the two best elements from a total of four [32], and Baive assigned to each subpopulation ¢healues shown in
the use of the logical FCB crossovers increases this effect sif@ble VII.
they do not produce any diversity. However, this fact induces aWe run a sequential RCGA, called R—-EFR, that uses the fuzzy
negative effect onfr.s and fsq, since they are complex, andrecombination operator proposed in [66] with= 0.5. This
high diversity levels are needed in order to obtain reliabilityalue seemed a good choice for a large class of functions. The

for them. In these cases, the diversity of GD—FCB helped tperator is equivalent to extended fuzzy recombination sith

‘reaching the global optimum).
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TABLE IV
RESULTS FORR-S2, R-S4, D-S4AND GD-FCB

.fSph fRos .fSch
ALG. A SD B O A SD B O A SD B o
R-52-Log 2e-16 () le-16 | 3e-17 | 6e-1 2el (+; le-1 2el 6e2 lel (+3 6e0 | 3e0 le3
R-S2-Ham 3e-11¢+) | 2e-11 | Ge-12 | 2e0 2el (+; | Ge-1 2el 9e2 Gel (+) | 4el 6e0 7e3
R-52-Alg 3e-11¢4; | 2e-11 | 4e-12 1e0 2el i+ 1 9e-2 2el 8e2 3el (+) 4el le0 5e3
R-S2-Ein 3e-11(+; | 2Ze-11 le-11 1eQ 2el (+) le-1 2ei 8e2 2el (+3 iel 5eQ 3e3
R-S4-Log 2e-10 (4 Te-11 3e-11 leQ 2el () le-1 2el le3 del (+) lel lel 5e3
R-S4-Ham 6e-2 (+) 3e-2 20-2 9el 2el (+; lel 4e0 7e4 2e2 (+; 8el 8el 3e6
R-S4-Alg 2e0 (+3 le() 3e-1 6e2 4e2 (+3 2e2 1e2 2e6 3e3 (+) 1e3 9e2 4eb
R-S4-Ein 2e0 (+) tel) Ge-1 6e2 4e2 (+3 2e2 Tel 2e6 4e3 (+3 2e3 2e3 4eb
D-S4-Log 2e-12(+) | 8e-13 1 5e-13 | 9Ye-1 2el (+) | 3e-1 2el 8e2 3e0 (—) ie0 8e-1 4e3
D-S4-Ham || 6e-4 (+) | 3e4 | le-4 1e2 || 6e0 ¢~y | lel | 6e-2 | 8ed || 3e2(+) | 1e2 | Bel | 3eb
D-S4-Alg le-1 (+) 9e-2 2e-2 3e2 1e2 (+) el 3el 5eb 4e3 (+) 1e3 le3 2e6
D-S4-Ein le-1 i+, Ge-2 2e-2 4e2 1e2 (+) le2 3el 8ebH 4e3 (+) 2e3 le3 2e6
GD-FCB 2e-13 le-13 | de-14 Tel 9e0 lel 3e-5 8ed 4e0 3e0 6e-1 le6
ALG. I fRas I fari i efio
R-S2-Log Be-14(—) | 3e-14 | 6.7% tel 8e-3(—; | le-2 | 3e-14 | 2e0 Be-5(—y | 7e-5 | 7e-6 | bel
R-52-Ham 2el (+) 8el) 6e0 le2 le-2(~y | 2e-2 1e-8 6e0 le-2¢+) | 5e-3 4e-3 2el
R-52-Alg 7e0 (+; 2el) 2e0 el 2e-2(~y | 2e-2 2e-8 5e( le-2¢43 | 6e-3 5e-3 lel
R-S2-Ein lel +) 3el 7el 4el 2e-2(~) | 2e-2 le-8 5e0 le-2(+) | 4e-3 4e-3 lel
R-54-Log 4e0 () 3e0 2e-8 del le-2(~) | 2e-2 | 8e-8 | 4e0 || 2e-2¢+) | 9e-3 | 8e-3 | lel
R-S4-Ham del (4 lel 2el 1e2 ted (4 le-1 1e0 3e2 7e0 (+) 3e0 2e0 le2
R-S4-Alg 5el (4 lel 2el Te2 Tel () 4e( 2¢e0 2e3 4e0 (+) 2e0 Be-1 le2
R-~54-Ein del (+) lel lel Te2 lel (+) 6e0 2e0 2e3 5e0 (+) 3e0 le0 le2
D-S4-Log Te-2 (~) 2e-1 le-10 | 2el le-2i~y | 1e-2 | 5e-10 | 4eQ 3e-3(+) | le-3 | le-3 | lel
D-S4-Ham 2el (+; 4e0 lel 4e2 de-1(+) | le-1 le-1 3e2 2e0 (+) | Te-1 9e-1 le2
D-S4-Alg 3el (+» 7e() 2el 6e2 leO (+) | 2e-1 le0 9e2 6e-1(+) | 8e-1 le-1 1e2
D-S4-Ein 3el (+ Tel 2el 6e2 le0 (+) | de-1 le0 1e3 2e-1(+) | le-1 le-1 1e2
GD-FCB 4e-11 Qe-11 | Ye-12 ¢ 22 2e-2 2e-2 | 4de-11 | 2e2 || 2e-3 2e-3 | 8e-4 | 5el
ALG. H Py H P_fms H Pcheb
R-52-Log 3el i~ 2el le0 2e2 lel (~) | 6e0 ; 4e-16 | 2el 2e2 (~) le2 5el le5
R-52-Ham 3el (~ 3el 2e0 5e2 2el (+) | 4e0 lel 3el 5e2 (+) | 6e2 3e0 | 3e5
R-52-Alg 2el (- lel 2e0 1e2 lel (+) | 8el 4e-2 | 3el le2 (-) | 1le2 2el 2e5
R-S2-Ein lel (- lel Se-l ¢ 4e2 || 2el (4) | 6e0 | 6e-2 | 3el || 1e2(—) | 8el lel | 2e5
R-S4-Log 2el (- lel 2e( He2 2el ¢+ | T7e0 7e-2 4el 2e2 (~) ie2 3el 3eb
R-S4-Ham 6el (+; el lel 2e4 2el (+) 6e0 2e-2 3e2 8e2 (+) 6e2 2e2 3e7
R-S4-Alg 6e2 (+; | 2e2 2e2 | Be3 || 2el 4y | de® | lel | Te2 || ded ¢4y | 4ded | 23 | 2e7
R-S4-Ein 7e2 (+) 3e2 2e2 9e3 2el (+) 6e0 le-1 9e2 3e4 (+) 2e4 4e3 3e7
D-S4-Log 3el - 2el lel He2 iel (~) | 6e0 | le-15 | 3el 2e2 (~) le2 2el 2e5
D-S4-Ham 8el (+3 el lel 2e4 lel (~) 5e0 2e-5 3e2 le3 (+) 7e2 le2 4e7
D-S4-Alg 5e2 (+) Ve 1e2 | led el (4 | 5e0 | 2e-2 | 8e2 || 24 (+) | led 2e¢3 | 3e7
D-54-Ein 6e2 (+) 3e2 Gel led 2el (+) 6e0 2e-3 le3 2e4 (+) 2e4 6e2 3e7
GD-FCB 4el Zel 1 3e0 : 6e3 tei 6e0 Te-16 : 2e2 2e2 2e2 4el le7

TABLE V lems. These results show the profitable effects of the gradual

@ VALUES FORGD-BLX multiresolution, refinement, and expansion in GD—EFR.

Finally, comparing the results of GD—-EFR and GD-BLX
with the ones of the another GD—-RCGA proposed, GD-FCB,
we may observe that they outperform it for most functions.
Furthermore, we may consider that these algorithms achieve
& robust operation, in the sense that they obtain a significant
performance for each one of the test functions, which have
f different difficulties. Hence, BLXx and extended fuzzy
recombination arise as suitable crossover operators for building
GD-RCGAs.

€4 €3 €2 €1 E, E; Es E4
0.1 0.2 03 04 05 06 07 08

0.5. A distributed version of this algorithm was also execute
which was called D—EFR. Table VIII contains the results.
For most problems, GD-EFR improves thendB results o
the other two algorithms. Only faP,;. and Py, do thet-test
results indicate that GD-EFR has a similarperformance to
R-EFR and D-EFR, and fofg.;, a worse one than R-EFR. ) ] o
However, it should be emphasized that, for two of these prof- StudY of,the Gradualism, Refinement, and Expansion in
lems, fari and Py,,,s, GD-EFR found the global optimum in D-RCGA's
53.3 and 43.3% of the runs, respectively, whereas none of the rein this section, first we study the effects of the gradualism
maining algorithms reached the global optimum of these proir GD—RCGA's, investigating the way in which the subpopula-
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TABLE VI
RESULTS FORR-BLX, D-BLX, AND GD-BLX

fsph fRos Fsch
ALG. A SD B 0 A SD B (0] A SD B (o)
R-BLX 9e-T (+3 Ge-7 2e-T lel 3el (+) 3el 2el led 1le3 (+) 3e2 6e2 leb
D-BLX le-14 (1) Te-15 | 5e-15 3e0 2el (+) lel 2el 2e3 2e-3 (+) 2e-3 2e-4 led
GD-BLX 8e-53 4e-52 ; 8e-58 | 9e-1 2el 4e-1 2el 9e2 2e-6 3e-6 7e-8 2e3
ALG. | fRas I fari | efio
R-BLX del i+ ge | 2el 3e2 te-1 (+) le-1 de-1 | del 2e-2 (+) 5e-3 9e-3 3el
D-BLX tel i+ 3el 7e0 9el 20-2(+) 1 2e-2 4e-12 lel le-3 (+) 3e-4 6e-4 2el
GD-BLX Oe0 0e0 100% @ tel 5e-3 7e-3 60% 3e0 6e-36 3e-35 | 5e-48 | 6e0
ALG. | P,ie i Pims I Pcheb
R-BLX BeO (=1 | GeU | le0 | 2e3 || lel (y1 | 4e0 | de-l 1 del || 2e2 (~) | 2e2 2¢0 | le6
D-BLX 9e0 (=1 | 8eU | 8e-l | 9e2 || 6e0(~) | 6eD | le-18 ! 3el || 3e2 (~) | 2e2 20 | 5e5
GD-BLX [ 3el Bel 20 3e2 || 3ed 5e0 | 66.7% | 2el || 2e2 22 | lel | 25
TABLE VII 500 ‘ : ;
d VALUES FORGD-EFR 450 | ed — |
e4 -
, E4 |
eq ez ez er E, E: E; E; 400 ‘r
00 01 02 04106 08 09 10 350 ¢ 1
- |
§  s00
3] i
. . . 5 250 p .
tions evolve during the run (Section IV-F-1), then we attempt to*
detect the effectiveness of the refinement and expansion, findind ~ 2°° [ T
which subpopulations generated the best elements over tin 150 y 1
(Section IV-F-2). 100 b LMLk 1
1) Gradualism: Here, we investigate the way in which the 5o | LTSN ST ;_
subpopulations of GD—RCGA's evolve during the run. In par- ’ T SN
ticular, we are interested in observing whether the evolution ir % 200 400 600 800 1000
the subpopulations is similar (i.e., one of them dominated the Generation
others) or whether each subpopulation follows a different searlg,lg 8. GD-EFR forfr...

line.

Figs. 8 and 9 were introduced in order to do this. Fig. 8 out-
lines the averages of the objective function of three subpopula- s
tions of GD-EFR €3, ¢4, andE,) during the first 1000 gener- 450 o4 —— ]
ations onfg,s. Fig. 9 shows the same for the case of D-EFR
(homogeneous DGA based on the extended fuzzy recombina-
tion with d = 0.5). We may observe that there is a notable dif-
ference between the evolution in the subpopulations of D-EFR 300
and GD-EFR. The subpopulations of D-EFR show similar evo-
lution levels. They seem very influenced by each other, which
probably occurs since they suffer the conquest problem, leading 2°°
all subpopulations to have the same search biases. Alternatively 1z0
the subpopulations of GD—EFR have different evolution levels.

The gradualism associated with GD—RCGA's has allowed this
effect to be produced, avoiding the conquest problem. 50 o 200 200 500 200 1900

2) Effectiveness of the Refinement and Expan- Generation
sion: Although GD-EFR shows signs of gradualism, we have
to check whether this one, along with migrations, causes thg 9 DP-EFR forfi...
subpopulations to produce better elements, i.e., we need to
study if the refinement and expansion are really effective.  in a parallel way with the other subpopulatiofifiey collabo-

Fig. 10 was included for this purpose. It shows the subpogate with each other for generating the best elements by means
ulations of GD—EFR that generate the best elements during tiféhe refinement and expansion of the elements brought by the
first 2500 generations ofk ... For each generation where a begnigrations from other subpopulationghis situation may be
element is found, a mark is printed in the subpopulation whetempared with the one in Fig. 13, which shows the same in-
this occurs. We see that most subpopulations contribute durfiegmation for the case of GD—EFR without migrations. Here,
continuous periods of time with the best elements. This is mathee generation of the best elements is produced in the same
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TABLE VIl
RESuULTS FORR-EFR, D-EFRAND GD-EFR

fSph fRo& fSch
ALG. A SD B (o] A SD B (6] A SD B [8)
R-EFR 6e-14(4) | 3e-14 | 2e-14 1e0 2el (+; 1 Ze-1 Zel 3e3 2e0 (43 1e0 Te-1 3ed
D-EFR le-16 (+) 5e-17 | 6e-17 2e0 2el (+) lel 2el 2e3 2e-4 (+) 2e-4 3e-5 Te3
GD-EFR 2e-47 5e-47 | 8e-5H1 8e-1 2el 6e-1 lel 8e2 4e-6 3e-6 2e-7 2e3
ALG. ] fRas f fari I efio
R-EFR lel (+; 1el 6e0 | 2e2 [ de-1l(—) | 2e-11 le-11 lel 3e-3 (+) 4e-4 2e-3 2el
D-EFR 5e0 (+) 2e0 3.3% Hel 2e-2 (4 2e-2 4e-14 8el 4e-4 (+) 6e-5 3e-4 2Zel
GD-EFR 0el 0el 100% lel 7e-3 8e-3 53.3% | 3e0 9e-35 5e-34 | 6e-47 | 6el
ALG. | P.. I P, | Pcheb
R-EFR lel (=) | Tlel ; de0 | 1e3 | 9e0 i~ | 6e0 | de-17 | del 462 (+) | 4e2 7e0 | 6e5
D-EFR 2el (~) el © leo Te2 4el [~y 6e0 le-19 3el 5e2 (+) 4e2 5e0 4eb
GD-EFR 2el 2el | Ye-] 3e2 Gel 7e0 43.3% | 2Zel 2e2 le2 lel 1e5
E4 Fox e - | £ R F EOMMMRE  rORE X PO WK E4 st - + - KK -
E3 + e e T R A WA S AO KRR E3 * 4 , * > o
E2 + % = P * H E A % XK K B - E2 - e 4 [P * wEE d
E1 ew v PRy EE I S bt E1 = #x - + # = * R F * g
el F wx = * + e K+ ¥ B = -1 el e 0 * + * R oK E A K A
@2 b wxw Wein P - + % - e2 P e « % B
e3 * * * = 93 s+ % . + P -+ ECRE
ed * 4 e4 bes 4w e o= + o+ * * -
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Generation Generation

Fig. 10. GD—-EFR folfs...
Fig. 11. D—-EFR forfgas.

subpopulations over large periods of time. No best elements are
created by refining or expanding elements coming from other , g, frae, the subpopulations applying exploratory
subpopulations. _ o , crossover operatorgy, - --, E; are the most effective.
_ Finally, we should consider the situation in Fig. 11, which o this multimodal function, the generation of diversity
is for the case of D-EFR offiras. The continuity of gener- and its filtering (through a high selective pressure) is
ating the best elements is missing in each subpopulation. The | ,seful for finding a way to lead toward the global op-
best elements are produced in the subpopulations in an isolated i, m.
way. Since the evolution in the subpopulations of D-EFR is , For fsc., the most prolific subpopulations af., ¢;, and
altered frequently by the migrations with the other subpopula- ., " A medium selective pressure and crossover operators
tions, therg is npt a continuous Iln_e of generation of the bestel- :th 1ow exploitation properties are adequate for obtaining
ements. Migrations are not effective; they do not help to create  peyter values for this function each time. The role of other
better elements, but break possible defined search lines. subpopulations with exploratory crossover operators, such
We finish this section by studying the performance of re- as E, and E3, is significant as well. For this unimodal
finement and expansion in the different subpopulations when  ¢,1ction the diversity is not the most determining factor;

GD-RCGA's are applied on problems with different features. however, it may help to find good elements because this
In order to do this, we included Fig. 12, which has the same in-  ¢,nction is highly complex.

formation as Fig. 10, but for the case of GD-EFRfaR,. fras

andfs, are very differentfr.s is an easy multimodal function, These results show the way in which GD—RCGA's may act

whereasfs, is a complex unimodal one. Comparing these twsuitably on functions with different features. This is possible

figures, we may observe that the most fruitful subpopulatiosince they dispose of a wide spectrum of different combinations
(the ones generating the best elements)figy, are different of crossover operator’'s exploration/exploitation properties and
from the ones forfs.y. selective pressure degrees.
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randomly generated individuals. Furthermore, since the nonuni-
E4 } = J— - - n— 1 form mutation operator works depending on the current gener-
ationt and the total number of generatidfis both parameters
are replaced by andT” — ¢, respectively.
g2 L - . v x o w1 Experiments were carried out for studying the behavior of
GD-RCGA's with this restart operator. Table IX shows the re-
sults of the two best GD—RCGA's, GD-BLX, and GD-EFR,
©1 Luxe wmum wowomn  m e o e oom om K N R v aech] and the ones of their versions with the restart operator, called
GD-BLXr and GD-EFR

Looking over the results, we may report the following con-
o3 feem  + x rx - & wn - P_— siderations.

¢ Thet-test highlights improvements on tieperformance

E3 [ seer+ =+ % E * * KRR KR K K *

E1 1 *% #eo & s mcws weokn MR K BN KK K SRR ¥ MK -

e2 faocamcun v E * + R ¥ EE MK KKK HM K 0]

94 ok AR ES i ¥ o4 ® * 4 3
when using the restart operator on the most complex
: : . ' functions, fari, Pste, andP . Furthermore, in the case
0 500 1000 1500 2000 2500 ¢ p fcan, sle h Cheb . hing h
Generation of Pr,s and fa.i, the percentage of runs reaching the

global optimum increased as well. Since these functions
Fig. 12. GD-EFR forfs. are very complex, GD—RCGA's have a higher probability
of being trapped in regions that do not contain the global

' ‘ : ' optimum, finding it difficult to escape from them. How-

£4 b e ————— ever, the restart operator might help GD—-RCGA's to do
this, giving more opportunities to obtain better elements.

E3 p A —— ] ¢ The performance on the remaining functions (all of the

Eo | - i unimodal onesf.,1, fros: and fsc,, and the noncom-
plex multimodal fr.s, andefip) was found to be insen-

Bt - — ] sitive to the incorporation of the restart operator (see the

el b = i t-test results). This indicates that the conditions for reini-
tializing the subpopulations were almost never fulfilled,

CE ] which means that the operation of the refinement and ex-

Y i pansion on these functions has been effective along each
run.

o471 In summary, the participation of the restart operator allowed

; the reliability of GD—RCGA's to be improved on complex func-

0 500 1000 ao00 2000 2500 tjons. An important conclusion derived from this fact is that

the conditions proposed for firing the restart operator really de-

Fig. 13. GD-EFR without migrations fqffi.. scribe stationary states for GD—-RCGA's, which lead to a sig-
nificant drop in their performance. With the restart operator,

G. A Restart Operator for GD-RCGA's GD-RCGA's may recover from these states. Finally, other au-

, . thors have proposed restart operators for DGA's [46].
In the previous subsection, we have seen that an effect pro-

duced b ffecti ti f refi tand i . . .
uced by an etiective operation of refinement an expansmr?S Comparison of the GD—-RCGA'’s with Other Mechanisms

that most subpopulations contribute during continuous perio ) )
Pop 9 b or Dealing with Premature Convergence

of time with the best elements in a parallel way. This may pr
vide some clues about possible situations where refinement anth this subsection, we compare the performance of the two
expansion do poorly. In particular, a situation in which the getvest GD—-RCGA's, GD—BLX and GD-EFR, with other mech-
eration of the best elements is located only in one subpopulatiamsms proposed in the literature for monitoring the population
during a long time, accompanied by insignificant improvementhiversity in order to avoid the premature convergence problem.
on the best element, may be an indication of a nonprofitabléiese are the followingcCO-GA mode]14], CHC algorithm
working of refinement and expansion in the search region beifi®], deterministic crowding4?2], anddisruptive selectiof38].
currently handled. Under these circumstances, the resources dh Sections 1V-H-1-1V-H-4, we review these techniques,
the GD—RCGA would be better utilized in restarting the searchspectively, and in Section IV-H-5, we compare them with
in a new area with a new population. GD-BLX" and GD-EFR.

In this way, we propose to include the followimgstart op- 1) ECO-GA: ECO-GA employs a two-dimensional grid
erator into GD—RCGA'’s: if the best elements are being geriiaving its opposite edges connected together so that each grid
erated in the same subpopulation over the last 50 generatiefeament has eight adjacent elements. To begin, the grid is
and(fy(t,)/ fo(ts)) > 0.99, with f,(¢,) and f,(t,) being the initialized randomly, one population member per node. At each
fitness of the best chromosome before and after this time iteration, a grid element j is selected at random, and defines
terval, respectively (which represents a low improvement on teenine-element subpopulation around it. Two chromosomes are
best element), then the subpopulations will be reinitialized usisglected probabilistically from this subpopulation according to
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TABLE X
RESULTS FORGD-BLX" AND GD-EFR

fSph .fRos fSch
ALG. A SD B 0 A SD B o A SD B o
GD-BLX 8e-53(~) | 1e-52 | 8e-58 | Qe-1 || 2el (~) | de-1 | 2l | 9e2 || 2e-6 (~) | 3e-6 | T7e-8 | 23
GD-BLX" 8e-53 ‘ 4e-52 | 8e-58 | Ye-] 2el 9e0 el 1e3 2e-6 Je-6 Te-8 2e3
ALG. I fRas I fari I efio
GD-BLX 0e0 (~) 0el 100% lel He-3(+) | Te-3 60% | 3e0 6e-36 (~; | 3e-35 { be- 48 | 6e0
GD-BLX" 0e0 0e0 | 100% | 2el || de-4 %e-3 | 96.7% | 5e0 | 9e-39 5e-38 | 3e-47 | 6e0
ALG. I Psie i Pirme I Pcreb
GD-BLX el (+) 3el 2e0 3e2 3e0 i~y + Hel | 66.7% 1| 2el 2e2 (+) 2e2 el 2e5
GD-BLX" 8el 5el) lel 7e2 le0 4e0 | 80% | 2Zel el 3el 9¢0 | 5e5
fSph fRoa fSch
ALG. A SD B () A SD B o A sSD B e}
GD-EFR 20-47(~y | He-47 | 8e-51 | 8e-l el (~) | 6e-1 lel 8e2 || 4e-6 (~) | 3e6 | 2e-7 | 23
GD-EFR" || 2e-47 Se-d7 | 8e-51 | ge-1 || el | 9e-1 | lel | le3 || 3e-5 le-d | 27 | 23
ALG. ” fﬁ.us ‘I, fG""i ﬂ eflO
GD-EFR 0e0 (~) 0e0 | 100% | lel Te-3 (4 | 8e-3 | 53.3% | 3e0 9e-35(~) | Be- 34 | 6e-47 | 6el
GD-EFR" 0e0 0e0 | 100% | lel 0e0 0e0 | 100% | 4e0 | 1e-28 7e-28 | 3e-45 | 6e0
ALG. | P... i Ptms I Pghey
GD-EFR 2el 1+ | 2el | 9e-1 | 3e2 [l 6e0 (+) | 7e0 | 43.3% | 2el [| 22 (4) | le2 lel | 1leb
GD-EFR” || 7el BeU  Be-i  Ge2 || de-l 20 | 80% | 2e1 || Tel 7el | lel | de5

their relative fitness. These two individuals undergo crossoweembers of the parent population), the population is reinitial-
and mutation, producing two offspring. After calculating thézed. The restart population consists of random individuals, ex-
fitness of the offspring, each one is introduced into the grid loept for one instance of the best individual found so far [22].
selecting a grid node at random from the nine-grid memberTwo instances of the CHC algorithm, CHC-BLX, and
environment. Each offspring competes with the individu&HC-EFR, were built using BLX¢ (o« = 0.5) and extended
currently occupying the chosen grid node. This represents famzy recombinationd = 0.5), respectively. The population
additional selection stage, in which the survival probability fize is 50 chromosomes.
each competitor is proportional to its relative fitness. 3) Deterministic Crowding: Crowdingnethods attempt to
Two ECO-GA's were implemented, called ECO-BLX angreserve the population diversity during the replacement pro-
ECO-EFR, which use BLX: (« = 0.5) and extended fuzzy cedure as follows: new individuals are more likely to replace
recombinationd = 0.5), respectively. They apply the nonuni-existing individuals in the parent population that are similar to
form mutation operator, depending on the number of objectitieemselves based on genotypic similarity. They have been used
function evaluations. A 1& 16 grid was considered. forlocating, and preserve multiple local optimum in multimodal
2) The CHC Algorithm:During each generation, the CHCfunctions.

algorithm uses a parent population of si¥eto generate an  An effective crowding method isleterministic crowding
intermediate population a¥ individuals, which are randomly |t works by randomly pairing all population elements in each
paired and used to generatepotential offspring. Then, a sur- generation. Each pair of parents;( P;) undergoes crossover
vival competition is held, where the be§tchromosomes from in combination with mutation to yield two offspring, 0;)

the parent and offspring populations are selected to form @ich compete against the parents for inclusion in the popula-

next generation. tion through the following method of competition:
CHC also employs heterogeneous recombination as a method

of incest prevention. In order to do this, the real values of the two

individuals’ parameters are encoded into bit strings using binary

reflected Gray coding, and the Hamming distance between the [d(P;, O;) + d(P;, O,)] < [d(P;, O;) + d(P;, O;)] then
parents is measured. Only those string pairs which differ fromif  7(0;) is better than f(P) then replace P
each other by some number of bits (mating threshold) are matedth  O,.

The initial threshold is set at /4, whereL is the length of the  If  #(O;) is better than f(P;) then replace P;
string (L. = 30 - » in the experiments). When no offspring arevith  O;.

inserted into the new population, the threshold is reduced byHise

No mutation is applied during the recombination phase. In-If  f(0;) is better than f(P;) then replace P;
stead, when the population converges or the search stops makiity O, .
progress (i.e., the difference threshold has dropped to zero, andl  f(O,) is better than f(P) then replace P

no new offspring are being generated which are better than arith  O;.
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TABLE X
RESULTS OF THECOMPARISON

fSph fRos fSch
ALG. A SD B (0] A SD B O A SD B 0]
ECO-BLX le-31 (+; 2e-31 8e-33 2e() 2el (+; 4e-1 2el Z2e3 6el (+) 5el 1lel 6e3
CHC-BLX 9e-32 (+) | 2e-32 | be-32 4e0 2el (~3 Te-1 2el 2e3 le-1 (~) 3e-1 Te- 12 | 1e3
R-DC-BLX 3e-6 (+) 2e-6 2e-7 9e0 lel (=) 5e0 4e0 8e3 3e3 (+) Te2 2e3 led
R-DS-BLX 2e0 () 1el 1e-1 8el 3e2 () 1e2 | 1e2 9ed 2e3 (+) 4e2 1e3 4e5
GD-BLX" 8e-53 4e-52 | 8e-58 | 9e-1 2el el { lel le3 2e-6 3e-6 Te-8 2e3
ALG. I fRas } fari I efio
ECO-BLX 1e2 (+) lel 8el 3e2 tel (+3 3e-2 9e-1 9e0 5e-9 (~) 2e-8 4e-10 | 8e0
CHC-BLX Oel (~) el 100% Tel 0el i~ 0e0 100% 2e0 le-7 (+) 2e-8 9e- 8 8el
R-DC-BLX 9el (+ lel) 5e0 5el te-2 (4 le-2 le-4 3el 2e-1 () le-1 8e-2 2el
R-DS-BLX sel (4 iel 3el 3e2 6el (+) 3e0 2e0 3e2 lel (+) 3e0 7e0 el
GD-BLX" Oel 0e 100% | 2el 4e-4 2e-3 | 96.7% | 5e0 9e-39 5e-38 | 3e-47 | 6e0
ALG. ” Psle ‘1 mes E PCh,eb
ECO-BLX 3el (4 2el 6e0 3e2 2el (4 2e0 2el Jel ie3d (+) ie3 8el 1eb
CHC-BLX 3e0 () 260 2e-1 2e2 le-11(~) | 6e-12 le-12 2el 1le2 (+) ie2 3e0 leb
R-DC-BLX 4e2 (+) le2 2e2 2e3 8el (+) 5e0 3e-4 3el 3e3 (+) 1e3 4e2 3eb
R-DS-BLX 362 () | 8el | 1e2 led lel (+) | 4ded de-1 | 5e2 | 6e3 (+) | 4e3 23 | 2e7
GD-BLX" 8e0 Hel) ! le0 . Te2 1e0 4e0 80% 2el 6el 3el 9e0 5eb

fSph .fRoa fSch.
ALG. A SD B O A SD B o A SD B (8]
ECO-EFR || 2e-37(+: ; 3e-37 | 3e-39 | 2e0 2el (+) | 8e-1 2¢el | 23 || 9el () | Tel 2¢1 | 6e3
CHC-EFR 8e-32(+) | 2e-32 | 4e-32 4e0 2el (+) 5e-1 2el 3e3 4e-2 (+) le-1 Ge-5 3e3
R-DC-EFR le-5 (+; | Te-6 Ge-T lel lel - 5e0 3e0 led 4e3 (4) Te2 3e3 led
R-DS-EFR ie0 (+) 8e-1 2e-1 Yei 1e2 (+) 2e2 2e2 1e5 3e3 (+) 6e2 le3 Teb
GD-EFR" 2e-47 He-AT7 | Be-5l Be-1 2el Ge-1 lel | le3d 3e-5 le-4 2e-7 2e3
ALG. I FRas 0 Jari I efio
ECO-EFR 6e0 (+ 200 | 2Zed 9el 2e-4 (~ le-3 le-15 | 8el le-10(~) | 6e-10 | 3e-14 | 6e
CHC-EFR 0e0 (~) 0e0 | 100Y% tel 0e0 (~ 0e0 100% | 3e0 le-7 (4) le-8 le- 7 9e
R-DC-EFR 9el (+) 2el 5ell 1 Gel 2e-2 (4} le-2 de-4 3el 4e-1 (+) 2e-1 le-1 2el
R-DS-EFR S5el (+; | lel Zet | Ae2 5e0 () 2e0 2e0 3e2 lel (+) 5e0 6el0 1e2
GD-EFR" 0e0 L0e0 100% E el 0e0 0e0 100% | 4e0 le-28 Te-28 | 3e-45 Ge
ALG. i Psie I Prms I Pcheb
ECO-EFR 9el (+) | Gel tel | 4de2 lel (+) | 7e0 | 2e-11 | 2el 2e3 (+) | 2e3 8el 1e5
CHC-EFR 4eb (— E 3el) de-1 | 3e2 Te-1l(~) | Be-12 le-12 | Zel S5el ¢~ 7el 2e0 2e5
R-DC-EFR 4e2 (+) fel 2e2 2eld 8el (+) 6e0 le-4 3el 4e3 (+) 2e3 6e2 4e5
R-DS-EFR 3e2 i+ le2 Qe el lel () 5e0 4e-2 Te2 8e3 (+) 4e3 le3 3e7
GD-EFR™ 7e0 bel Je-i e de-1 2eC 80% 2el Tel 7el lel 4eb

Two RCGAs were implemented, R-DC-BLX andallowed in each time for the CHC and ECO-GA algorithms.
R-DC-EFR, which apply deterministic crowding as a reFhis number is similar to the number of evaluations performed
placement strategy, and whose remaining features are the stjmeGD-RCGA's during 5000 generations. The remaining
as the ones of R—BLX (Section IV-D) and R-EFR (Sectioalgorithms were executed during 5000 generations. Table
IV-E), respectively. X shows the results obtained. The results of GD-BLatd

4) Disruptive Selection Mechanisnunlike conventional GD-EFR' were included again.
selection mechanismdijsruptiveselection devotes more trials a) RCGA'’s Using Disruptive Selection and Determin-
to both better and worse solutions than it does to moderaséic Crowding: R—-DS-BLX, R-DS-EFR, and R-DC-BLX,
solutions. This is carried out by modifying the objectivdR—DC—EFR returned lowi and B results. These mechanisms

function of each chromosom@ as follows: lead to a high diversity level during the GA execution, slowing
, _ the convergence too much (themeasures of R—-DS-BLX and
(@) =11(C) =7l R-DS-EFR are greater than the ones of the remaining algo-

gthms). Only for the comple¥r.s was this useful; R-DC-EFR
has returned good and B results for this function.
b) ECO-GA Algorithms:ECO-BLX and ECO-EFR
better than the previous algorithms. In these algorithms,

where f is the average value of the objective function of th
individuals in the population.
We have included the disruptive selection in the R—BLX an

R—EFR algorithms for making use of two RCGA's based on th L ) . .
mechanism, R—DS—BLX and R-DS—EFR. the exploitation is achieved by means of the local interactions

5) Comparison: All of these algorithms were executedbetwfae” adjacent chromospmes, whgreas the exploration is
30 times. 500000 evaluations of the objective function weRPSSiPle thanks to the spatial separation of the chromosomes
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through the grid (subsection B in the Appendix). The balance V. CONCLUSION
between these properties has allowed gdoand B values to
be returned for the unimoddl,;, and for the multimodat f1. This paper presented GD-RCGASs, heterogeneous dis-

However, it was not suitable for dealing with the remainingihyted RCGAs based on a hypercubic topology where
functions. An additional profitable feature of the ECO-GAne subpopulations of the front side use different crossover
algorithms is that they may be easily implemented on paraligherators with exploration, and the ones from the rear side
hardware. In fact, they belong to a claspafallel GA's called  se crossover operators with exploitation. The exploration or
cellular GA's (subsection A in the Appendix). exploitation degrees of the crossover operators applied to the
¢) CHC Algorithms: The good results offered by synpopulations that belong to the same side are gradual, thus
CHC-BLX and CHC-EFR indicate that the CHC algorithmyptaining a parallel multiresolution with regard to the crossover
is an effective optimizer. In general, these algorithms impro‘ffberator. The main goal of the gradualism in the GD-RCGA's
the results of the algorithms based on the other techniqygs produce a refinement of the best solutions and an ex-
reviewed. They obtain very good and B results for most pansion of the most promising zones, in a parallel way. An
functions, in particular, forfspn, fras; fGri, Pste; @nd Prms. emigration model was selected along with the assignment of
The CHC algorithm has been tested in other GA works againgiferent selective pressures for each subpopulation in order to

different GA approaches, giving better results, especially @ercome the conquest and noneffect problems, and tune the
hard problems [19], [35], [68]. Thus, it has arisen as a referengg_RCGA behavior properly.

point in the GA Iitefa.ture. o _ Three instances of GD—RCGA were implemented, using de-
d) GD-RCGA's: Atthis point, we consider the results fory ministic crossover operators, the FCB-crossover operators, a

GD-RCGA's in comparison with the ones for the other alggznqom one, BLXa, and a hybrid one (between random and de-
rithms. Thet-test indicates that GD-RCGA's improve the pefteministic), namely the extended version of that fuzzy recom-
formance of ECO-GAs and RCGAs based on deterministigiion The resuits of the experiments carried out with these

crowding and disruptive selection. With regard to the results %fD—RCGA’s have shown the following.
the CHC algorithms, we may observe the following

* GD-BLX" improves thed and B results (seé-test re-
sults) of CHC—BLX for fspn, €f10, and Poyep. It is out-
performed by CHC-BLX only orP,;.. Their results for
the remaining test problems are similar.

* GD-EFR do better than CHC-EFR 0fipn; fRos, fSchs
ande f19. Itis worse onP;.. Their performance is similar
on the remaining test problems.

* We have observed another notable difference between
GD-RCGA's and CHC algorithms: the computation time.
For most problems, the CHC algorithms were slower
than the GD—RCGA's, even though these were executed *
in a sequential way. A great part of the slowness of the
CHC algorithms is due to the prevention of incest process
since it requires, during each generation, the encoding of
all chromosomes into binary strings aig/2 Hamming
distance calculations. For problems where there are
few evaluations per generation (i.e., crossover operator
applications), this slows the process too much. However,
the computational times of GD-BL’Xand GD-EFR are
similar to the ones of their corresponding homogeneous * ; -
DGA's, D-BLX, and D-EFR. The increased complexity as very §U|table crossover operators for building
of the GD—RCGA's (differenty, d, andn;, values) does GD-RCGAs.
not imply an increased computational time. Finally, we should point out that GD—RCGA extensions may

Finally, we should point out that GD-BL'’Xand GD-EFR be followed in three ways: 1) use dynamic crossover opera-

found the global optimum aF,,,; in 80% of the runs. None of tors, such as thdynamicFCB crossovers [29] and tldynamic
the remaining algorithms reached this optimum. heuristicFCB crossovers [31], for producing dynamic levels of
All of these results allow us to conclude that GD—RCGA'sefinement and expansion throughout the GA run; 2) use hyper-
solve the conflict among accuracy, reliability, and computatiazube topologies with a larger subpopulation number in order to
time in a suitable way for obtaining a significant performanc&clude more gradual levels on each side or for combining sides
on test problems with different difficulties, outperforming othebased on different types of crossover operators; and 3) design
mechanisms presented for dealing with the premature convgradual distributed binary-coded GA's, which may be based
gence problem. on concepts such as disruption, productivity, and exploration

» GD-RCGA's achieve a suitable balance between the gen-
eration of diversity (for inducing reliability) and the local
tuning (for introducing accuracy) so that premature con-
vergence is avoided without sacrificing the obtaining of
good approximations. This allows GD—RCGA's to im-
prove the performance of other GA approaches appearing
in the GA literature for avoiding premature convergence.
The good performance of GD—RCGA's is possible due to
the gradualism and the effects of the refinement and ex-
pansion.

Reliability of GD—RCGA's may be improved using a
restart operator that helps them to overcome stationary
states in which refinement and expansion may not pro-
duce improvements.

» Since GD-RCGA's are easily implemented on parallel
hardware, accuracy and reliability may be reached in an
efficient computation time, thus solving the fundamental
conflict existing among these three factors when complex
problems are tackled.

BLX-« and extended fuzzy recombination have arisen
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power, which were presented for characterizing the crossoweto mechanisms for dealing with the premature convergence
operator for this type of coding [16]. problem [1], [7], [11], [13], [14], [40], [43], [62], [63].

Many authors [13], [14], [49]-[51] have attempted to jus-
tify spatial separation models, starting from #éfting balance
theory of evolutiondeveloped by Wright [70]. This theory ex-
plains the process of evolution on the genetic composition of

This Appendix is devoted to DGA's. In Section A, they willindividuals in natural populations. According to this, large pop-
be presented as a classpzfrallel GA's, calledcoarse-grained ulations of organisms rarely act as a single well-mixed (pan-
parallel GA's. In Section B, spatial separation, a basic principlaictic) population, but rather, they consist of semi-isolated sub-
of DGA's, is justified from a biological point of view through populations,demesgach of which is relatively small in size.
the shifting balance theory of evolutidi@O] and thetheory of Furthermore, the demes communicate with each other through
punctuated equilibrig18]. In Section C, we describe the basianigrations of individuals. For Wright, the evolution process has
structure of DGA's. In Section D, we review the types of DGA'$wo phases. During the first one, the allele frequencies drift ran-
presented previously. Finally, in Section E, we tackle heterogdemly around a local fitness peak in each deme. One of them
neous DGA's, reporting on the different approaches presentetght, by chance, drift into a set of gene frequencies that cor-
and explaining the position of the GD-RCGA's relative to thegesponds to a higher peak. Then, the second phase starts; this

APPENDIX
DISTRIBUTED GENETIC ALGORITHMS

approaches. deme produces an excess of offspring, due to its high average
fitness, which then emigrate to the other demes, and will tend to
A. Parallel Genetic Algorithms displace them until eventually the whole population has the new

Th ilabili he last f > qgi favorable gene combination. Finally, the process starts again.
_The availability, over the last few years, of fast and Inexpefy, o relatively small size of the demes allows drift to play an im-
sive parallel hardware has favored research into possible w

for impl " lel . fGAS. GA q tant role in the evolution of the population, without driving
or implementing parallél Versions or ioAs. LAS aré good Cafy, o \ypole population toward convergence. Even if drift were to

didates for effective parallelization since they are inspired by the, every local deme to fixation, each one of them would be
principles of evolution, in parallel, for a population of individ—ﬁxed on a different genotype the’reby maintaining diversity in
uals [17]. In general, three methods were followed for implqhe population as a whole '

menting the paralleli;atipn of GAs [1], [1.01’ [17]. [25], [40]. Another biological theory adopted by people who do work

. 1) Global Parall'ellzat|on: The gvaluatlon of chromosomeon spatial separation is thieeory of punctuated equilibrie 8],
f'.tness' z?md sometimes the genetic operator application are Gz theory states that evolution is characterized by long pe-
ried out in a parallel form [4], [27], [54]. riods of relative stasis, punctuated by periods of rapid change

.2.) Co_arse—Gramed Parall_ellzanon:The p(_)pulatlon S associated with speciation events. In [11], it is pointed out that
divided into small subpopulations that are assigned to dn‘fer% 's also tend toward stasis, or premature convergence, and

Processors. Each subpopulaﬂon evolvgs _mdepgndeptly R4t isolated species could be formed by separating the global
sumultanpously accordlr!g t.o. a GA. Perlodlcallynagratmr! population into subpopulations. By injecting an individual from
mech_amsmexc_hang_es |nd|v_|d_uals b_etween SUb_pOPUIat'Ong’different species into a subpopulation after it had converged,
aIonvmg new diversity to be injected into converging Spro,Fh'ew building blocks would become available; furthermore, im-
_uIaygns. The exchange general!y takes the form of copyi grants would effectively change the fitness landscape within
|ndEV|duaIs betweer) the popula}tlons. Coarse-grained p_aralgﬁ subpopulations. In this way, premature convergence may be
GA's are known aslistributedGA's since they are usually im- . yiqeq This idea was highlighted in [50] as well: the creative
plemen,ted n d'Str'k.JUtEd memory MIMD computers. Vers'onf%rces of evolution take place at migration and a few generations
of DGA's appeared in [7], [11], [12], [41], [50], [51], [61]-{63], afterwards. Wright's argument that better peaks are found just

[67]. by chance in small sub i i
) . o : opulations does not capture the essential
3) Fine-Grained Parallelization:In this model, the popula- fgcts of the spatial sep%rgtion P

tionis divided into a great number of small subpopulations. Usu-
ally, aunique individual is assigned to each processor. The sel&c-
tion mechanism and the crossover operator are applied by con-
sidering neighboring chromosomes. For example, every chro-Although there are many different types of DGA's, all of them
mosome selects the best neighbor for recombination, and &fe variations on the following basic algorithm.

resultant individual will replace it. These types of GA's, known

ascellular GA's, are usually implemented on massively parallel. _ )

computers. Examples of cellular GA's are to be found in [13E'Str'bmed Genetic Algorithm

Basic Structure of Distributed GA’s

[14], [44], and [49]. 1) Generate at random a population P of
chromosomes.
. . 2) Divide P into SP,---, SPy. subpopula-
B. Spatial Separation tion)s Do pop
Both distributed GA's and cellular GA's are instances of 3) Define a neighborhood structure for
models based on spatial separation. One of the main advanta§Bs: = 1, ---, Ns.
of these models is the preservation of diversity. This property4) For SP,i = 1,---, Ns, execute in parallel

caused them to be considered as an important way to reseanehnext steps.
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4.1) Apply, during fm generations, the 2) Regarding the Connection Schema:
selection mechanism and the genetic operators. « Static Connection Schem&he connections between the

4.2) Send n.,, chromosomes to neighboring subpopulations are established at the beginning of the run,
subpopulations. and they are not modified throughout it.

4.3) Receive chromosomes from neighboring « Dynamic Connection Schem&he connection topology
subpopulations. is dynamically changed throughout the run. The recon-

5) If the stop criterion is not fulfilled, figurations in these connections may occur, depending on

return to 4). the evolution state of the subpopulations. For example,

in [40], a connection schema called positive-distance

topology was proposed in which an individual is passed

to another subpopulation only if the Hamming distance

between the best individuals in the two subpopulations

is less than 24. An analogous connection schema called
negative-distance topology was presented as well.

Some additional issues should be considered.

1) The neighborhood structutepology.to be used. Hyper-
cubic topologies were frequently considered for building
DGA's [11], [12], [51], [61]-[63].

2) Themigration raten,, that controls how many chromo-

somes migrate. Finally, we point out that some authors [10], [36] assumed
3) Themigration intervalf,,, the number of generations pe-another division, ba_sed on the connchon_schemalslh_\ed_
tween each migration. model and thestepping-stonenodel. In the first model, indi-

4) Theselection strateggf the genetic material to be copied.viduals can migrate to any other subpopulation; in the second
Two methods were widely used. The first one is to sétodel, migration is restricted to .ne|ghbor|ng sqbpopulatlons.
lect randomly the element from the current subpopula- 3) Regarding the Subpopulation Homogeneity:
tion. The advantage of this approach is the greater mix * Homogeneous DGA'€very subpopulation uses the same
of genes that will result. A second method is to select genetic operators, control parameter values, fitness func-
the highest performing individual from each subpopula-  tion, coding schema, etc. Most DGA's proposed in the lit-
tion to be copied to another subpopulation. This would  erature are homogeneous. Their principal advantage is that
result in more directed evolution than the first case, asthe they are easily implemented.
migrant individuals would not be tainted by genes from < Heterogeneous DGA'She subpopulations are processed
lower performing individuals. This is not to say that the  using GA's with either different control parameter values,
former method is worse, for the less directed a population ~ or genetic operators, or coding schema, etc.
is, the greater diversity it will contain [56].

5) Thereplacement stratedipr including the chromosomesE. Heterogeneous Distributed GA’s

to be received. Sqme apprqache§ are: replace the Worslﬁeterogeneous DGA's have been considered as suitable tools
ones, the most similar to the incoming ones, one randon}l

r avoiding the premature convergence problem, and for max-
chosen, etc.

6) The choice ofvhether or not to replicate migrating indi- imizing the exploration and exploitation on the search space.

. . I ’ Next, we review some of the most interesting heterogeneous
viduals,i.e., should individuals move to their new homeDGA’s presented so far:

or should a copy of them be sent there? If one does not . . .
o o . . 1) Adaptation by Competing Subpopulationis: [57], a
copy individuals, it is possible that a subpopulation Comﬁeterogeneous DGA model is presented, in which, for each

be set back several generations in evolutionary terms . ) . . ;
L . . ssible operator configuration, a subpopulation or group is
the mass emigration of its best performers. Alternativel L L
. AN . formed. The total number of all individuals is fixed, whereas
simply copying individuals across could lead to highly fi

o L . he size of a single subpopulation varies. Each subpopulation
individuals dominating several populations [56]. . ) : o
competes with other subpopulations in such a way that it gains
. . or loses individuals, depending on its “evolution quality” in
D. Types of Distributed GA's relation to the others. A particular instance based on real coding
In [40], the following three categorizations of DGA's are rewas proposed with four subpopulations (in this paper, called
ported. ACS). They were distinguished by applying a mutation operator
1) Regarding the Migration Method: with different step sizes (proportion or strength in which genes
« Isolated DGA'sThere are no migrations between subpomare mutated), which allows a search with multiresolution to be
ulations. These DGA's are known as well partitioned achieved.
GA's [62], [63]. A similar model is presented in [58]. Here, the population
« Synchronous DGA'sMligrations between subpopulationssizes are fixed, whereas the strategies (mutation rate, crossover
are synchronized, i.e., they are produced at the same tinaée, the threshold for the truncation selection, etc.) of the sub-
[12], [51], [62]. populations are flexible. After a fixed interval, all strategies are
» Asynchronous DGA'Vligrations are produced when cer-ranked, and the parameters of each strategy are adapted to the
tain events appear, related to the activity of each subpopalues of the next best strategy.
lation. Asynchronous behavior is typically found in nature 2) GA Based on Migration and Artificial Selectiorin [53],
since evolution is produced at different states, dependiadGA based on binary coding, called GAMAS, was proposed.
on the environment [40]. GAMAS uses four subpopulations, denotedspecies -1V
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Initially, species II-1V are created. Species Il is a subpopula-[5]
tion used for exploration. For this purpose, it uses a high mu-
tation probability f,, = 0.05). Species IV is a subpopula- g
tion used for exploitation. So, its mutation probability is low
(p = 0.003). Species Il is an exploration and exploitation
subpopulation; the mutation probability falls between the other
two (p,, = 0.005). GAMAS selects the best individuals from
species II-1V, and introduces them into species | whenever thosé!
are better than the elements in this subpopulation. The mission
of species | is to preserve the best chromosomes appearing in thej
other species. At predetermined generations, its chromosomes
are reintroduced into species IV by replacing all of the current
elements in this species. [10]

3) Heterogeneous DGA's Based on Different Codings:

[40], a heterogeneous DGA, called tiigection island GA [11]
(iiGA), is built. IniiGA, each subpopulation stores search space
solutions coded with different resolutions. Subpopulations in-
ject their best individual into higher resolution subpopulations{lzl
for fine-grained modification. This allows search to occur in
multiple codings, each focusing on different areas of the search
space. An important advantage is that the search space
subpopulations with lower resolution is proportionally smaller;

in this way, fit solutions are found quickly, and then, they arell4]
injected into higher resolution subpopulations for refinement.

4) Position of the Gradual Distributed RCGA'SSAMAS
assigns exploration and exploitation properties to the subpopt®]
ulations by applying different mutation probability values to [16
them. In ACS and iiGA, this feature appears generalized to the
concept of parallel multiresolution (to assign exploration and
exploitation at different degrees). In ACS, this is made by usiném
different step sizes, whereas in iiGA, it is done by means of dif-
ferent codings.

GD-RCGA's include a parallel multiresolution through the
crossover operator, which seems reasonable due to the impor-
tance of this operator on the GA performance. But, they als&'°]
attempt to exploit multiresolution in a gradual way, in order
to offer the refinement and expansion of promising regions in
the search space. In this way, they extend the idea in iiGA off0l
producing fine-grained modification when subpopulations in-
ject individuals into higher resolution subpopulations.

(18]
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