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Gradual Distributed Real-Coded Genetic Algorithms
Francisco Herrera and Manuel Lozano

Abstract—A major problem in the use of genetic algorithms
is premature convergence, a premature stagnation of the search
caused by the lack of diversity in the population. One approach
for dealing with this problem is the distributed genetic algorithm
model. Its basic idea is to keep, in parallel, several subpopulations
that are processed by genetic algorithms, with each one being
independent of the others. Furthermore, a migration mechanism
produces a chromosome exchange between the subpopulations.
Making distinctions between the subpopulations by applying
genetic algorithms with different configurations, we obtain the
so-called heterogeneous distributed genetic algorithms. These
algorithms represent a promising way for introducing a correct
exploration/exploitation balance in order to avoid premature
convergence and reach approximate final solutions.

This paper presents the gradual distributed real-coded genetic
algorithms, a type of heterogeneous distributed real-coded genetic
algorithms that apply a different crossover operator to each sub-
population. The importance of this operator on the genetic algo-
rithm’s performance allowed us to differentiate between the sub-
populations in this fashion. Using crossover operators presented
for real-coded genetic algorithms, we implement three instances of
gradual distributed real-coded genetic algorithms. Experimental
results show that the proposals consistently outperform sequential
real-coded genetic algorithms and homogeneous distributed real-
coded genetic algorithms, which are equivalent to them and other
mechanisms presented in the literature. These proposals offer two
important advantages at the same time: better reliability and ac-
curacy.

Index Terms—Crossover operator, distributed genetic al-
gorithms, multiresolution, premature convergence, selective
pressure.

I. INTRODUCTION

T HE BEHAVIOR of genetic algorithms (GA’s) is strongly
determined by the balance between exploiting what al-

ready works best and exploring possibilities that might even-
tually evolve into something even better. The loss of critical al-
leles due to selection pressure, selection noise, schemata dis-
ruption due to a crossover operator, and poor parameter set-
tings may make this exploration/exploitation balance dispropor-
tionate, and produce a lack ofdiversity in the population [39],
[43], [53]. Under these circumstances, the search is likely to be
trapped in a region that does not contain the global optimum.
This problem, calledpremature convergence,has long been rec-
ognized as a serious failure mode for GA’s [20], [23].

Diversity preservation methods based onspatial separation
have been proposed in order to avoid premature convergence
[13], [14], [44], [49]–[51], [62]. One of the most important rep-
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resentatives are thedistributedGA’s (DGA’s). Their premise
lies in partitioning the population into several subpopulations,
each one of them being processed by a GA, independently of the
others. Furthermore, amigration mechanism produces a chro-
mosome exchange between the subpopulations. DGA’s attempt
to overcome premature convergence by preserving diversity due
to the semi-isolation of the subpopulations. Another important
advantage is that they may be implemented easily on parallel
hardware. This concept was offered as early as [8].

Making distinctions between the subpopulations of a DGA
through the application of GA’s with different configurations
(control parameters, genetic operators, codings, etc.), we ob-
tain the so-calledheterogeneousDGA’s [2], [17], [51], [62].
They are suitable tools for producingparallel multiresolution
in the search space associated with the elements that differen-
tiate the GA’s applied to the subpopulations. This means that the
search occurs in multiple exploration and exploitation levels. In
this way, a distributed search and an effective local tuning may
be obtained simultaneously, which may allow premature con-
vergence to be avoided and approximate final solutions to be
reached.

The availability of crossover operators forreal-codedGA’s
(RCGA’s) [34] that generate different exploration or exploita-
tion degrees makes the design of heterogeneous distributed
RCGA’s based on this operator feasible [33]. This paper
presents a proposal of such algorithms, thegradual distributed
RCGA’s (GD–RCGA’s). They apply a different crossover
operator to each subpopulation. These operators are differenti-
ated according to their associated exploration and exploitation
properties and the degree thereof. The effect achieved is a
parallel multiresolution with regard to the crossover operator’s
action. This seems very adequate for introducing reliability and
accuracy into the search process. Furthermore, subpopulations
are adequately connected for exploiting this multiresolution in
a gradualway.

II. CROSSOVEROPERATORS FORREAL-CODED GA’s

Let us assume that and
( , ) are two real-coded chro-
mosomes that have been selected for crossover. Most crossover
operators presented for RCGA’s generate the genes for the off-
spring via some form of combination of the genes in the parents

and [34].
In short, the action interval of the genesand ,

may be divided into three intervals, , , and ,
that bound three regions to which the resultant genes of some
combination of and may belong. Fig. 1 shows this graph-
ically.

These intervals may be classified as exploration or exploita-
tion zones, as is shown in Fig. 1. The interval with both genes
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Fig. 1. Action interval forx andy .

being the extremes is an exploitation zone in the sense that any
gene generated by crossover in this interval fulfills

, . The two intervals that remain on
both sides are exploration zones in the sense that this property is
not fulfilled. Therefore, exploration and/or exploitation degrees
may be assigned to any crossover operator for RCGA’s with re-
gard to the way in which these intervals are considered for gen-
erating genes. Since the use of exploitative crossover operators
does not guarantee the generation of offspring being better than
their parents, it seems reasonable to apply them accompanied
by exploratory ones [29], [32].

We use the following crossover operators for RCGA’s:fuzzy
connectives-based crossovers(FCB crossovers) [32],BLX-
[9], [21], and an extended version of thefuzzy recombination
presented in [66]. All of these operators allow different explo-
ration or exploitation degrees to be generated. In the following
subsections, we comment on their main features.

A. Fuzzy Connectives-Based Crossover Operators

To describe the FCB-crossover operators, we follow two
steps: 1) define functions for the combination of genes (Section
II-A-1), and 2) use these functions to define crossover operators
between two chromosomes (Section II-A-2).

1) Functions for the Combination of Genes:With regard to
the intervals shown in Fig. 1, in [32], three monotone and non-
decreasing functions are proposed:, , and , defined from

into , and which fulfill

and

Each of these functions allows us to combine two genes,
giving results belonging to each one of the aforementioned
intervals. Therefore, each function will have different explo-
ration or exploitation properties, depending on the range being
covered by it.

Fuzzy connectives,norms, conorms, and averaging func-
tions [48] were used to obtain , , and functions. These
functions are defined from [0, 1] [0, 1] into [0, 1] and fulfill:
1) norms are less than the minimum, 2)conorms are greater
than the maximum, and 3) averaging functions are between the
minimum and maximum. was associated to anorm to
a conorm , and to an averaging operator. In order to do
so, a transformation of the genes to be combined is needed from
the interval into [0, 1], and later, the result into . Four
families of fuzzy connectives were used for obtaining , and

functions, which are shown in Table I. These fuzzy connec-
tives accomplish the following property:

2) -, -, and -Crossover Operators:Now, if ,
, we may generate the offspring as

This crossover operator applies the same, , or func-
tion for all of the genes in the chromosomes to be crossed. For
this reason, they were called crossover, crossover, and
crossover, respectively. Four families of FCB-crossover opera-
tors may be obtained using the families of fuzzy connectives in
Table I. Each one is termed the same as the related fuzzy con-
nective family.

These crossover operators have different properties: the
- and -crossover operators show exploration, and the
-crossover operators show exploitation. According to the

associated property of the families of fuzzy connectives in
Table I, the degree in which each crossover operator shows its
related property depends on the fuzzy connective on which it
is based. On the one hand, the Einstein- and -crossover
operators show the maximum exploration, whereas the logical
ones represent the minimum exploration. On the other, the
logical -crossover operator shows the maximum level of
exploitation since it uses the maximum level of information
from both genes, i.e., it is not biased toward either of them. The
effects of these crossover operators, along with their associated
exploration or exploitation degrees, may be observed in Fig. 2.

B. BLX- Crossover Operator

BLX- generates an offspring where
is a randomly (uniformly) chosen number from the interval

, , where ,
, and . Fig. 3 shows its

operation.
In the absence of selection pressure, all values will

demonstrate a tendency for the population to converge toward
values in the center of their ranges, producing low diversity
levels in the population, and inducing a possible premature con-
vergence toward nonoptimal solutions. Only when is a
balanced relationship reached between convergence (exploita-
tion) and divergence (exploration), the probability that a gene
will lie in the exploitation interval is then equal to the proba-
bility that it will lie in an exploration interval [21].

C. Extended Fuzzy Recombination Operator

Here, we extend thefuzzy recombinationoperator presented
in [66] (the resultant operator will be calledextended fuzzy re-
combination). In this operator, the probability that theth gene
in the offspring has the value is given by the distribution

, where , , and are triangular
probability distributions having the following features (
is assumed), where , and

. Fig. 4 shows two examples of applying this crossover
operator.
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TABLE I
FAMILIES OF FUZZY CONNECTIVES

Fig. 2. FCB-crossover operators.

Dist.
Min.
Value

Modal
Value

Max.
Value

If , the probability of generating genes belonging to
the exploitation interval is higher than that of generating
genes in the exploration intervals and , as shown
in Fig. 4(a). Alternatively, when , the opposite effect
occurs. Fig. 4(b) shows this.

The three crossover operators presented above may be or-
dered with regard to the way randomness is used for generating
the genes of the offspring: 1) FCB crossovers are deterministic,
i.e., given two parents, the resultant offspring will always be the
same; 2) BLX- includes a random component, i.e., it is non-
deterministic; and 3) extended fuzzy recombination is nondeter-
ministic as well; however, it uses triangular probability distribu-
tions, whereas BLX- uses uniform distributions. In this way, it
may be considered as a hybrid between the FCB crossovers and
BLX- . For example, for , it looks like a hybrid between
the logical crossover and BLX-0.0, and for , among
the logical crossover, the logical crossover, and BLX-0.5.

Another important property of these crossover operators is
that they fit their action range, depending on the diversity of the
population using specific information held by the parents [21],
[32].

III. GRADUAL DISTRIBUTED REAL-CODED

GENETIC ALGORITHMS

In this section, we propose the GD–RCGA’s. They are het-
erogeneous distributed RCGA’s that apply a different crossover
operator to each subpopulation. Fig. 5 outlines their basic struc-
ture.

They are based on a hypercube topology with three dimen-
sions. There are two important sides to be differentiated.

Fig. 3. BLX-� crossover operator.

Fig. 4. Extended fuzzy recombination.

Fig. 5. Structure of a GD–RCGA.

• The front side is devoted to exploration. It is made up
of four subpopulations , to which exploratory
crossover operators are applied. The exploration degree
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increases clockwise, starting at the lowest, and ending
at the highest .

• Therear sideis for exploitation. It is composed of subpop-
ulations that undergo exploitative crossover
operators. The exploitation degree increases clockwise,
starting at the lowest , and finishing at the highest .

With this structure, a parallel multiresolution is obtained
using the crossover operator, which allows a diversified search
(reliability), and an effective local tuning (accuracy) to be
achieved simultaneously. Furthermore, subpopulations are
adequately connected for exploiting the multiresolution in a
gradual way since the migrations between subpopulations
belonging to different categories may induce the refinement or
the expansion of the best zones emerging.

• Refinement:This may be induced if migrations are pro-
duced from an exploratory subpopulation toward an ex-
ploitative one, i.e., from to , or between two ex-
ploratory subpopulations from a higher degree to a lower
one, i.e., from to , or between two exploitative
subpopulations from a lower degree to a higher one, i.e.,
from to .

• Expansion:In the case of migrations in the opposite direc-
tion, the chromosomes included may be reference points
for generating diversity (with different degrees) on zones
showing promising properties.

These two effects may improve, even more, the proper relia-
bility and accuracy achieved through multiresolution.

Topology is an important factor in the performance of the
DGA’s because it determines the speed at which a good solu-
tion spreads to other subpopulations. If the topology has a dense
connectivity, or a short diameter, or both, good solutions will
spread quickly to all of the subpopulations [10]. The short di-
ameter of the cubic topology is suitable for favoring refinement
and expansion since genetic material will be quickly exchanged
between subpopulations with a wide spectrum of properties, as
well as degrees of exploration and exploitation.

Since GD–RCGA’s are implemented easily on parallel
hardware, they may solve the fundamental conflict among
accuracy, reliability, and computation time, which appears
when searching for the global optimum in complex problems,
especially for problems with many local optima [55]. This con-
flict was previously tackled by means of heterogeneous DGA’s
(see subsection E in the Appendix) and other different methods.
For example, in [55], GA’s are hybridized with hill-climbing
methods such as the quasi-Newton and Nelder–Mead’s sim-
plex. A similar solution is presented in [51], where local search
procedures are integrated to DGA’s. In [46], a very different
model is presented: each subpopulation of a DGA receives
information regarding the progress of other subpopulations, and
checks its own relative progress. If this is lower, new genetic
material is typically introduced by completely reinitializing the
subpopulation.

Although GD–RCGA’s have arisen as effective and efficient
models for dealing with complex problems, they may suffer two
problems:conquestandnoneffect. In Section III-A, we describe
these problems, and in Sections III-B and III-C, we propose an
adequate migration schema and selection mechanism for over-

coming these problems, and for establishing correct coordina-
tion between refinement and expansion.

A. The Conquest and Noneffect Problems

One of the drawbacks of DGA’s is that the insertion of a new
individual from another subpopulation may not be effective. The
new individual may be grossly incompatible with that subpopu-
lation, and therefore either be ignored or dominate the subpop-
ulation [40]. This will probably occur when the subpopulations
are at different levels of evolution. The arrival of highly evolved
migrants from a strong population will result in a higher rate
of selection than for local, less-evolved individuals. Thus, the
sending population’s solution is often imposed on that of the re-
ceiver. Conversely, migrants arriving from a less-evolved pop-
ulation are not selected for reproduction, and are wasted [45].
The first problem is called theconquest problem[45]. Here, the
second one will be called anoneffect problem.

The conquest and noneffect problems may appear in a
GD–RCGA because the different subpopulations are likely
to converge at different rates, and therefore they may differ
markedly. The exploitative subpopulations will converge
faster than the exploratory ones. Furthermore, the convergence
speed will be different on each side since the subpopulations
show different exploration or exploitation degrees. In this
way, an individual from an exploitative subpopulation ()
that is copied into an exploratory one () is immediately
selected more often. If the differential is sufficiently great, or
if both the incoming subpopulation and the surrounding area
have converged sufficiently, the new individuals are almost
always selected. Alternatively, if an individual belonging to
an exploratory subpopulation with low fitness is inserted into
an exploitative one, it has little chance of being selected for
crossover, and is replaced without the population benefiting in
any way.

The harmful effects of these problems may be increased due
to the short diameter of the cubic topology. Good solutions will
spread rapidly to all of the subpopulations, and may quickly take
over the population [10].

The use of anelitist strategy[15] by the subpopulations is
another important factor that may have some influence on rapid
convergence. It involves making sure that the best performing
chromosome always survives intact from one generation to
the next. This is necessary since it is possible that the best
chromosome may disappear due to crossover or mutation.
The elitist strategy has arisen as a very suitable element for
improving the behavior of DGA’s [26], [40]. However, in
the case of GD–RCGA’s, it may have a dangerous effect.
The continuous presence of good elements in the exploitative
subpopulations will produce an early convergence toward such
elements. The small sizes of these subpopulations contributes
to the appearance of this problem. These strong elements will
reach the exploratory subpopulations, and may produce the
conquest problem. Thus, the elitist strategy should be treated
with care by the GD–RCGA’s.

Next, we describe the migration schema and the selection
mechanism chosen for the GD–RCGA’s in order to avoid all of
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the problems presented above, and to allow the refinement and
expansion to be carried through to a suitable conclusion.

B. Migration Schema

DGA behavior is strongly determined by the migration mech-
anism’s action [10], [24]. In most implementations of this mech-
anism, copies of the individuals who are subject to migration are
sent to one or more neighboring subpopulations. Krögeret al.
[37] call this immigration. Additionally, they investigatedemi-
gration, in which individuals leave their subpopulation, and mi-
grate to exactly one of the neighboring subpopulations. Exper-
imental results indicated that the migration strategy of emigra-
tion works best.

We propose an emigration model where migrants are sent
only toward immediate neighbors along a dimension of the hy-
percube, and each subsequent migration takes place along a dif-
ferent dimension of the hypercube. Particularly, the best ele-
ment of each subpopulation is sent toward the corresponding
subpopulation every five generations, as shown in Fig. 6. The
sequence of application is from left to right, i.e., first, the refine-
ment migrations, second, the refinement/expansion migrations,
third, the expansion migrations, and then, the sequence starts
again. The place of an emigrant is taken by an immigrant.

In this way, the best elements (emigrants) do not affect the
same subpopulation for a long time, which would probably
occur using the elitist strategy, and therefore the conquest is
more difficult for them. Furthermore, these good elements may
undergo refinement or expansion after being included in the
destination subpopulations.

Finally, we point out that with this migration schema, a global
elitist strategy persists since the best element of all subpopula-
tions is never lost, although it is moved from one subpopulation
to another.

C. Selection Mechanism

The selection mechanism is an important responsibility for
the diversity of the population. It may maintain or eliminate di-
versity, depending on its currentselective pressure,which rep-
resents the degree to which the selection mechanism favors the
better individuals. The higher the selection pressure, the greater
likelihood that the better individuals are favored, contributing
with a large number of copies to the next generation. A larger
number of copies for some individuals means fewer copies for
the rest of the population. When many individuals do not receive
any copies, the result is the loss of diversity. On the other hand,
if the selective pressure is low, similar chances to survive are
provided, even for worse individuals, and so diversity is main-
tained.

The crossover operators for RCGA’s (Section II) adjust the
intervals for the generation of genes, depending on the current
population diversity. As we have mentioned, this diversity is
limited by the selective pressure of the selection mechanism. In
order to iron out the conquest and noneffect problems in the sub-
populations of the GD–RCGA’s, a suitable combination should
be established between the degree of exploration or exploitation
of the crossover operators and the degree of selective pressure

Fig. 6. Three types of migration in a GD–RCGA.

of the selection mechanism. In this subsection, we carry out this
task.

A selection mechanism that seems particularly interesting for
GD–RCGA’s islinear ranking selection[5] since the selective
pressure produced by it may be easily adjusted by means of
varying an associated control parameter. In Section III-C-1, we
describe this selection mechanism, and in Section III-C-2, we
assign a different selective pressure degree to every subpopula-
tion of the GD–RCGA’s.

Finally, we should point out that other authors have built
mechanisms for improving the GA that are based on the interac-
tions between the crossover operator and the selection mecha-
nism. In [19], for example, a GA called CHC is proposed which
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combines a disruptive crossover operator with a conservative se-
lection strategy (which keeps the best elements appearing so
far). In [30], a fuzzy logic controller is used for tuning the popu-
lation diversity in a suitable way, which complements the role of
the selection mechanism, i.e., either maintaining or eliminating
diversity, with the role of the crossover operator, i.e., either cre-
ating (exploring) or using (exploiting) diversity.

1) Linear Ranking Selection:In linear ranking selection, the
chromosomes are sorted in order of raw fitness, and then the
selection probability of each chromosome is computed ac-
cording to its rank [with ] by using
the following nonincreasing assignment function:

where is the population size and specifies the
expected number of copies for the worst chromosome (the best
one has expected copies). The selective pres-
sure of linear ranking selection is determined by . If is
low, high pressure is achieved, whereas if it is high, the pressure
is low.

With this selection mechanism, every individual receives an
expected number of copies that depends on its rank, independent
of the magnitude of its fitness. This may help prevent premature
convergence by preventing super migrants from taking over the
subpopulations within a few generations (conquest problem),
and avoid having inferior migrants fail to have a chance to take
part in the next generations (noneffect problem).

Linear ranking will go withstochastic universal sampling
[6]. This procedure guarantees that the number of copies of any
chromosome is bounded by the floor and ceiling of its expected
number of copies.

2) Assignment of Selective Pressure Degrees:We have as-
signed to the subpopulations of GD–RCGA’s the values
shown in Table II.

Table II shows that the more exploratory ansubpopulation
is, the higher the selective pressure it will undergo. Accordingly,
we may comment on the following aspects.

• The most exploratory subpopulations will follow the idea
stated in [19], i.e., to put together a disruptive crossover
operator and a conservative selection strategy. The main
goal of this strategy is to “filter” the high diversity by
means of a high selective pressure.

• Although selective pressure is high in these subpopula-
tions, they do not run the risk of being conquered because
the constant generation of diversity prevents any type of
convergence.

• The less exploratory subpopulations lose selective pres-
sure, and so possible conquerors do not have many advan-
tages against their resident chromosomes.

Alternatively, Table II shows that the more exploitative an
subpopulation is, the less selective pressure it will undergo. This
allows emigrants sent from exploratory subpopulations to have
a chance of surviving in higher exploitative subpopulations, and
the noneffect problem is eradicated.

Now, we need to reflect about an important question. From
the description in this subsection, it seems that each subpopu-

TABLE II
� VALUES FOREACH SUBPOPULATION

lation is “balanced” by combining exploratory crossovers with
high-intensity selection or exploitative crossovers with low-in-
tensity selection. Then,what happens to the gradualism? since
it seems that the heterogeneous nature of GD–RCGA’s cancels
out. This means that the effects produced inand would
be the same, and, when migration occurs, it is likely that they
are at about the same stage in the search. However, this does
not happen. With the distribution proposed for the values
and the crossover configuration chosen, a wide spectrum of dif-
ferent combinations of the possible crossover operator’s effects
is obtained (generation or use of diversity) and the ones in the
selection mechanism (the maintenance or elimination of diver-
sity). In this way, in ( ), diversity is created by
exploratory crossover operators, and it is filtered by high-inten-
sity selection, whereas in ( ), diversity is kept by
low-intensity selection, and it used by exploitative crossover op-
erators. Therefore, the stages ofand in the search will be
different. Furthermore, since these facts will occur even at dif-
ferent degrees, the heterogeneous nature (with its implicit grad-
ualism) of GD–RCGA’s does not cancel out.

IV. EXPERIMENTS

Minimization experiments on the test suite, described in
Section IV-A, were carried out in order to determine the
performance of three GD–RCGA’s based on the crossover
operators presented in Section II. In Section IV-B, we describe
the performance measures used. In Section IV-C, we propose
the GD–RCGA based on FCB-crossover operators, and we
compare its results with the ones of equivalent sequential ver-
sions and other implementations of homogeneous distributed
RCGA’s; in Section IV-D, the same is done for the GD–RCGA
based on BLX- ; and in Section IV-E, for the one based on
extended fuzzy recombination. Then, in Section IV-F, we study,
from an empirical point of view, the gradualism associated
with GD–RCGA’s and the effectiveness of the refinement
and expansion. On the basis of this study, in Section IV-G,
we propose a restart operator for GD–RCGA’s. Finally in
Section IV-H, we compare the best GD–RCGA’s found in the
previous subsections with other mechanisms proposed in the
GA literature for avoiding the premature convergence problem.

A. Test Suite

The test suite that we have used for the experiments consists
of six test functions and three real-world problems. They are
described in Sections IV-A-1 and IV-A-2, respectively.

1) Test Functions:We have considered six frequently used
test functions: thespheremodel ( ) [15], [59], generalized
Rosenbrock’sfunction ( ) [15], Schwefel’s problem 1.2
( ) [59], generalized Rastrigin’sfunction ( ) [3], [64],
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Fig. 7. Test functions.

Griewangk’sfunction ( ) [28], andexpansion of ( )
[69]. Fig. 7 shows their formulation. The dimension of the
search space is 10 for and 25 for the remaining test
functions.

• is a continuous, strictly convex, and unimodal func-
tion.

• is a continuous and unimodal function, with the
optimum located in a steep parabolic valley with a flat
bottom. This feature will probably cause slow progress in
many algorithms since they must continually change their
search direction to reach the optimum. This function has
been considered by some authors to be a real challenge
for any continuous function optimization program [57].
A great part of its difficulty lies in the fact that there are
nonlinear interactions between the variables, i.e., it is
nonseparable[68].

• is a continuous and unimodal function. Its difficulty
concerns the fact that searching along the coordinate axes
only gives a poor rate of convergence since the gradient
of is not oriented along the axes. It presents similar
difficulties to , but its valley is much narrower.

• is a scalable, continuous, and multimodal function,
which is made from by modulating it with

.
• is a continuous and multimodal function. This func-

tion is difficult to optimize because it is nonseparable [51],
and the search algorithm has to climb a hill to reach the
next valley. Nevertheless, one undesirable property exhib-
ited is that it becomes easier as the dimensionality is in-
creased [68].

• is a function that has nonlinear interactions between
two variables. Its expanded version is built in such a
way that it induces nonlinear interaction across multiple
variables. It is nonseparable as well.

A GA does not need too much diversity to reach the global
optimum of since there is only one optimum which could
be easily accessed. Alternatively, for multimodal functions

( , and ), the diversity is fundamental for finding
a way to lead toward the global optimum. Also, in the case of

and , diversity can help to find solutions close to the
parabolic valley, and so avoid slow progress.

2) Real-World Problems:We have chosen the following
three real-world problems which, in order to be solved, are
translated to optimization problems of parameters with vari-
ables on continuous domains:systems of linear equations[22],
frequency modulation sounds parameter identification problem
[65], andpolynomial fitting problem[60]. They are described
below.

a) Systems of linear equations:The problem may be
stated as solving for the elements of a vector, given the
matrix and vector in the expression . The
evaluation function used for these experiments is

Clearly, the best value for this objective function is
. Interparameter linkage (i.e., nonlinearity) is

easily controlled in systems of linear equations, their nonlin-
earity does not deteriorate as increasing numbers of parameters
are used, and they have proven to be quite difficult.

We have considered a ten-parameter problem instance. Its
matrices are the following:
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b) Frequency modulation sounds parameter identification
problem: The problem is to specify six parameters, ,

of the frequency modulation sound model
represented by

with . The fitness function is defined as the
summation of square errors between the evolved data and the
model data as follows:

where the model data are given by the following equation:

Each parameter is in the range−6.4–6.35. This problem is
a highly complex multimodal one having strong epistasis, with
minimum value .

c) Polynomial fitting problem:This problem lies in
finding the coefficients of the following polynomial in:

is integer

such that

for and

and

where is a Chebyshev polynomial of degree.
The solution to the polynomial fitting problem consists of

the coefficients of . This polynomial oscillates between
−1 and 1 when its argument is between−1 and 1. Outside
this region, the polynomial rises steeply in the direction of high
positive ordinate values. This problem has its roots in elec-
tronic filter design, and challenges an optimization procedure
by forcing it to find parameter values with grossly different
magnitudes, something very common in technical systems. The
Chebyshev polynomial employed here is

It is a nine-parameter problem. The pseudocode algorithm
shown below was used in order to transform the constraints of
this problem into an objective function to be minimized, called

. We consider that is the solution to be
evaluated and .

Choose p0; p2; � � � ; p100 from [ −1, 1];

R = 0;

For i = 0; � � � ; 100 do

If (�1 > PC(pi) or PC(pi) > 1)

then R  R + (1� PC(pi))
2;

If (PC(1:2) � T8(1:2) < 0)

then R  R + (PC(1:2)� T8(1:2))
2;

If (PC(�1:2)� T8(�1:2) < 0)

then R  R + (PC(�1:2)� T8(�1:2))
2;

Return R;

Each parameter (coefficient) is in the range−512–512. The
objective function value of the optimum is .

B. Performance Measures

The performance measures listed below have been used in
order to study the behavior of GD–RCGA’s, and allow their
comparison with other genetic algorithms to be made. All of
the algorithms have been executed 30 times, each one with 5000
generations.

• performance: average of the best fitness function found
at the end of each run.

• performance: standard deviation.
• performance: best of the fitness values averaged as

performance. If the global optimum has been reached
sometimes, this performance will represent the percentage
of runs in which this happens.

• performance: average of the finalon-linemeasure [15],
average of the fitness of all of the elements appearing
throughout the GA’s execution. On line is considered here
as a population diversity measure.

Moreover, a test(at 0.05 level of significance) was applied
in order to ascertain if differences in theperformance for the
GD–RCGA’s are significant when compared to the one for the
other algorithms in the respective table. The direction of any
significant differences is denoted either by

• a plus sign (+) for an improvement in performance, or
• a minus sign (−) for a reduction, or
• an approximate sign (∼) for nonsignificant differences.

The places in the tables of results (Tables IV, VI, VIII–X)
where these signs do not appear correspond to the performance
values for GD–RCGA’s.

C. GD–RCGA Based on FCB-Crossover Operators

A GD–RCGA based on FCB-crossover operators (Sec-
tion II-A) was implemented with the crossover configuration
shown in Table III. It was called GD–FCB. These assignments
between subpopulations and FCB-crossover operators allow
GD–FCB to produce the gradual effects shown in Fig. 5, thanks
to the properties of these operators (which may be observed in
Fig. 2).

All GD–RCGA’s proposed in this paper use 20 individuals
per subpopulation [7]. The mutation operator applied is nonuni-
form mutation [47]. This operator has been used widely, re-
porting good results [34], [52]. The probability of updating a
chromosome by mutation () is 0.125, and the crossover prob-
ability ( ) is 0.6.

Along with GD–FCB, we have executed algorithms be-
longing to two families of sequential RCGA’s, R-S2 and R-S4,
and to one family of homogeneous distributed RCGA’s, D-S4.

• The algorithms in the R-S2 family are R-S2-Log, -Ham,
-Alg, and -Ein. They apply the corresponding type of
FCB-crossover operators following strategy pre-
sented in [32]. For each pair of chromosomes from the
total population that undergoes crossover, four offspring
are generated, the result of applying two exploratory
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TABLE III
CROSSOVERCONFIGURATION FORGD–FCB

crossover operators and two exploitative ones to them.
The two most promising offspring of the four replace
their parents in the population. The population size for
these algorithms is set at 80, instead of 160 (total size
of the GD-RCGA’s) since they need four evaluations for
each crossover event.

• The R-S4 family is composed of R-S4-Log, -Ham, -Alg,
and -Ein. These algorithms use the FCB-crossover oper-
ators using the strategy proposed in [32]. For each
pair of chromosomes from a total of , four
offspring are generated, the result of applying two ex-
ploratory crossover operators, an exploitative one, and an
operator with “relaxed” exploitation, which puts together
the two properties. All four offspring will form part of the
population in such a way that two of them substitute their
parents, and the other two substitute two chromosomes be-
longing to the remaining 1/2 of the population that should
undergo crossover. The population size is set at 160.

• The algorithms in D-S4, D-S4-Log, -Ham, -Alg, and
-Ein are homogeneously distributed versions of the corre-
sponding ones in R-S4. They use a cubic topology with a
subpopulation size of 20 individuals, and the migration
scheme is the same as the one for GD–RCGA’s. These
algorithms are good reference points for comparing the
effectiveness of the GD–RCGA structure since elements
generated using a wide spectrum of crossover operators
are included in the subpopulations at the same time, just
as GD-RCGA’s do.

Linear ranking ( ), stochastic universal sampling,
and an elitist strategy were assumed for RCGA’s and homoge-
neous distributed RCGA’s. and are the same as the ones
for the GD–RCGA’s.

1) Results: Table IV shows the results obtained. In general,
GD–FCB returns better and results than R-S2-Ham,
R-S2-Alg, and R-S2-Ein (see-test results). Furthermore, the

measure is much greater. This means that the diversity level
of GD–FCB, produced by its exploratory side, was higher, but
also that the convergence, introduced by its exploitative side,
was effective. Thus, reliability and accuracy were improved
simultaneously. Alternatively, R-S2-Log provides better solu-
tions than GD–FCB for most test functions, except for
and . It has a similar performance in real-world problems.
R-S2-Log shows a very good convergence level (see the low
measure) due to: 1) the strategy is very exploitative since
it chooses the two best elements from a total of four [32], and 2)
the use of the logical FCB crossovers increases this effect since
they do not produce any diversity. However, this fact induces a
negative effect on and since they are complex, and
high diversity levels are needed in order to obtain reliability
for them. In these cases, the diversity of GD–FCB helped to

achieve better results than R-S2-Log. In particular, it achieved
very good and results for : 9 and 3 -5, respectively.

GD–FCB do better than algorithms in R-S4. These algorithms
show a high level of exploration (see the highmeasure). This
is due to the fact that they are based on the strategy, as
was indicated in [32]. Convergence may not be carried out in
a suitable way. GD–FCB generates too much diversity as well
(compare the measure of this algorithm with the one for the
algorithms in R-S4); however, its exploitative side allows good
convergence to be produced, and so the best elements are found.

Comparison of the GD–FCB algorithm and the D-S4 family
allows the behavior of the former to be studied in detail. We
observe that the measure associated with GD–FCB shows
average values. This is reasonable since it comprises the main
properties of all algorithms in D-S4. Also, it may be seen that,
in general, its and results are better than the ones for the
algorithms in D-S4.

To sum up, we may underline that GD–FCB has allowed re-
liability and accuracy to be improved simultaneously.

• The exploratory side has produced suitable diversity levels
for finding promising regions in the search space, which
becomes very useful for the case of the complex functions.

• The exploitative side has generated a suitable local tuning
for reaching good final approximations.

D. GD–RCGA Based on BLX-Crossover Operator

With regard to the properties of BLX-(Section II-B), we
have built a GD–RCGA based on this operator, called GD–BLX,
with the values for each subpopulation shown in Table V. With
these assignments, GD–BLX may produce the gradual effects
shown in Fig. 5.

GD–BLX is compared with two algorithms: a sequential one,
R–BLX, and a homogeneous distributed RCGA, D–BLX. Both
are based on the BLX-crossover with . This value is
chosen from [34], where experiments with several values of
are tried, being the most effective one. The results for the three
algorithms are found in Table VI.

In general, GD–BLX obtains the best and results for
all functions, except for and . The results for
are very approximate, which shows that the exploitation of
GD–BLX is highly effective. Exploration is useful as well,
as indicated by the good result for the complex , for the
multimodal , and (the global optimum of
and was found in 100 and 60% of the runs, respectively),
and for the real-world problem (with a 66.7% percentage
in reaching the global optimum).

E. GD–RCGA Based on Extended Fuzzy Recombination

We have implemented a GD–RCGA using the extended
fuzzy recombination operator (Section II-C), called GD–EFR.
In order to produce the adequate gradual effects (Fig. 5), we
have assigned to each subpopulation thevalues shown in
Table VII.

We run a sequential RCGA, called R–EFR, that uses the fuzzy
recombination operator proposed in [66] with . This
value seemed a good choice for a large class of functions. The
operator is equivalent to extended fuzzy recombination with
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TABLE IV
RESULTS FORR-S2, R-S4, D-S4,AND GD–FCB

TABLE V
� VALUES FORGD–BLX

. A distributed version of this algorithm was also executed,
which was called D–EFR. Table VIII contains the results.

For most problems, GD–EFR improves theand results of
the other two algorithms. Only for and do the -test
results indicate that GD-EFR has a similarperformance to
R–EFR and D–EFR, and for , a worse one than R–EFR.
However, it should be emphasized that, for two of these prob-
lems, and , GD–EFR found the global optimum in
53.3 and 43.3% of the runs, respectively, whereas none of the re-
maining algorithms reached the global optimum of these prob-

lems. These results show the profitable effects of the gradual
multiresolution, refinement, and expansion in GD–EFR.

Finally, comparing the results of GD–EFR and GD–BLX
with the ones of the another GD–RCGA proposed, GD–FCB,
we may observe that they outperform it for most functions.
Furthermore, we may consider that these algorithms achieve
a robust operation, in the sense that they obtain a significant
performance for each one of the test functions, which have
different difficulties. Hence, BLX- and extended fuzzy
recombination arise as suitable crossover operators for building
GD–RCGA’s.

F. Study of the Gradualism, Refinement, and Expansion in
GD–RCGA’s

In this section, first we study the effects of the gradualism
in GD–RCGA’s, investigating the way in which the subpopula-
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TABLE VI
RESULTS FORR-BLX, D-BLX, AND GD–BLX

TABLE VII
d VALUES FORGD–EFR

tions evolve during the run (Section IV-F-1), then we attempt to
detect the effectiveness of the refinement and expansion, finding
which subpopulations generated the best elements over time
(Section IV-F-2).

1) Gradualism: Here, we investigate the way in which the
subpopulations of GD–RCGA’s evolve during the run. In par-
ticular, we are interested in observing whether the evolution in
the subpopulations is similar (i.e., one of them dominated the
others) or whether each subpopulation follows a different search
line.

Figs. 8 and 9 were introduced in order to do this. Fig. 8 out-
lines the averages of the objective function of three subpopula-
tions of GD–EFR ( , and ) during the first 1000 gener-
ations on . Fig. 9 shows the same for the case of D–EFR
(homogeneous DGA based on the extended fuzzy recombina-
tion with ). We may observe that there is a notable dif-
ference between the evolution in the subpopulations of D–EFR
and GD–EFR. The subpopulations of D–EFR show similar evo-
lution levels. They seem very influenced by each other, which
probably occurs since they suffer the conquest problem, leading
all subpopulations to have the same search biases. Alternatively,
the subpopulations of GD–EFR have different evolution levels.
The gradualism associated with GD–RCGA’s has allowed this
effect to be produced, avoiding the conquest problem.

2) Effectiveness of the Refinement and Expan-
sion: Although GD–EFR shows signs of gradualism, we have
to check whether this one, along with migrations, causes the
subpopulations to produce better elements, i.e., we need to
study if the refinement and expansion are really effective.

Fig. 10 was included for this purpose. It shows the subpop-
ulations of GD–EFR that generate the best elements during the
first 2500 generations on . For each generation where a best
element is found, a mark is printed in the subpopulation where
this occurs. We see that most subpopulations contribute during
continuous periods of time with the best elements. This is made

Fig. 8. GD–EFR forf .

Fig. 9. D–EFR forf .

in a parallel way with the other subpopulations.They collabo-
rate with each other for generating the best elements by means
of the refinement and expansion of the elements brought by the
migrations from other subpopulations. This situation may be
compared with the one in Fig. 13, which shows the same in-
formation for the case of GD–EFR without migrations. Here,
the generation of the best elements is produced in the same
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TABLE VIII
RESULTS FORR-EFR, D-EFR,AND GD-EFR

Fig. 10. GD–EFR forf .

subpopulations over large periods of time. No best elements are
created by refining or expanding elements coming from other
subpopulations.

Finally, we should consider the situation in Fig. 11, which
is for the case of D–EFR on . The continuity of gener-
ating the best elements is missing in each subpopulation. The
best elements are produced in the subpopulations in an isolated
way. Since the evolution in the subpopulations of D–EFR is
altered frequently by the migrations with the other subpopula-
tions, there is not a continuous line of generation of the best el-
ements. Migrations are not effective; they do not help to create
better elements, but break possible defined search lines.

We finish this section by studying the performance of re-
finement and expansion in the different subpopulations when
GD–RCGA’s are applied on problems with different features.
In order to do this, we included Fig. 12, which has the same in-
formation as Fig. 10, but for the case of GD–EFR on .
and are very different: is an easy multimodal function,
whereas is a complex unimodal one. Comparing these two
figures, we may observe that the most fruitful subpopulations
(the ones generating the best elements) for are different
from the ones for .

Fig. 11. D–EFR forf .

• For , the subpopulations applying exploratory
crossover operators are the most effective.
For this multimodal function, the generation of diversity
and its filtering (through a high selective pressure) is
useful for finding a way to lead toward the global op-
timum.

• For , the most prolific subpopulations are , and
. A medium selective pressure and crossover operators

with low exploitation properties are adequate for obtaining
better values for this function each time. The role of other
subpopulations with exploratory crossover operators, such
as and , is significant as well. For this unimodal
function the diversity is not the most determining factor;
however, it may help to find good elements because this
function is highly complex.

These results show the way in which GD–RCGA’s may act
suitably on functions with different features. This is possible
since they dispose of a wide spectrum of different combinations
of crossover operator’s exploration/exploitation properties and
selective pressure degrees.
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Fig. 12. GD–EFR forf .

Fig. 13. GD–EFR without migrations forf .

G. A Restart Operator for GD–RCGA’s

In the previous subsection, we have seen that an effect pro-
duced by an effective operation of refinement and expansion is
that most subpopulations contribute during continuous periods
of time with the best elements in a parallel way. This may pro-
vide some clues about possible situations where refinement and
expansion do poorly. In particular, a situation in which the gen-
eration of the best elements is located only in one subpopulation
during a long time, accompanied by insignificant improvements
on the best element, may be an indication of a nonprofitable
working of refinement and expansion in the search region being
currently handled. Under these circumstances, the resources of
the GD–RCGA would be better utilized in restarting the search
in a new area with a new population.

In this way, we propose to include the followingrestart op-
erator into GD–RCGA’s: if the best elements are being gen-
erated in the same subpopulation over the last 50 generations
and , with and being the
fitness of the best chromosome before and after this time in-
terval, respectively (which represents a low improvement on the
best element), then the subpopulations will be reinitialized using

randomly generated individuals. Furthermore, since the nonuni-
form mutation operator works depending on the current gener-
ation and the total number of generations, both parameters
are replaced by and , respectively.

Experiments were carried out for studying the behavior of
GD–RCGA’s with this restart operator. Table IX shows the re-
sults of the two best GD–RCGA’s, GD–BLX, and GD–EFR,
and the ones of their versions with the restart operator, called
GD–BLXr and GD–EFRr.

Looking over the results, we may report the following con-
siderations.

• The -test highlights improvements on theperformance
when using the restart operator on the most complex
functions, , and . Furthermore, in the case
of and , the percentage of runs reaching the
global optimum increased as well. Since these functions
are very complex, GD–RCGA’s have a higher probability
of being trapped in regions that do not contain the global
optimum, finding it difficult to escape from them. How-
ever, the restart operator might help GD–RCGA’s to do
this, giving more opportunities to obtain better elements.

• The performance on the remaining functions (all of the
unimodal ones, , and , and the noncom-
plex multimodal , and ) was found to be insen-
sitive to the incorporation of the restart operator (see the
-test results). This indicates that the conditions for reini-

tializing the subpopulations were almost never fulfilled,
which means that the operation of the refinement and ex-
pansion on these functions has been effective along each
run.

In summary, the participation of the restart operator allowed
the reliability of GD–RCGA’s to be improved on complex func-
tions. An important conclusion derived from this fact is that
the conditions proposed for firing the restart operator really de-
scribe stationary states for GD–RCGA’s, which lead to a sig-
nificant drop in their performance. With the restart operator,
GD–RCGA’s may recover from these states. Finally, other au-
thors have proposed restart operators for DGA’s [46].

H. Comparison of the GD–RCGA’s with Other Mechanisms
for Dealing with Premature Convergence

In this subsection, we compare the performance of the two
best GD–RCGA’s, GD–BLXand GD–EFR, with other mech-
anisms proposed in the literature for monitoring the population
diversity in order to avoid the premature convergence problem.
These are the following:ECO–GA model[14], CHC algorithm
[19], deterministic crowding[42], anddisruptive selection[38].

In Sections IV-H-1–IV-H-4, we review these techniques,
respectively, and in Section IV-H-5, we compare them with
GD–BLX and GD–EFR.

1) ECO–GA: ECO–GA employs a two-dimensional grid
having its opposite edges connected together so that each grid
element has eight adjacent elements. To begin, the grid is
initialized randomly, one population member per node. At each
iteration, a grid element is selected at random, and defines
a nine-element subpopulation around it. Two chromosomes are
selected probabilistically from this subpopulation according to
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TABLE IX
RESULTS FORGD–BLX AND GD–EFR

their relative fitness. These two individuals undergo crossover
and mutation, producing two offspring. After calculating the
fitness of the offspring, each one is introduced into the grid by
selecting a grid node at random from the nine-grid member
environment. Each offspring competes with the individual
currently occupying the chosen grid node. This represents an
additional selection stage, in which the survival probability of
each competitor is proportional to its relative fitness.

Two ECO–GA’s were implemented, called ECO–BLX and
ECO–EFR, which use BLX- ( ) and extended fuzzy
recombination ( ), respectively. They apply the nonuni-
form mutation operator, depending on the number of objective
function evaluations. A 16 16 grid was considered.

2) The CHC Algorithm:During each generation, the CHC
algorithm uses a parent population of sizeto generate an
intermediate population of individuals, which are randomly
paired and used to generatepotential offspring. Then, a sur-
vival competition is held, where the bestchromosomes from
the parent and offspring populations are selected to form the
next generation.

CHC also employs heterogeneous recombination as a method
of incest prevention. In order to do this, the real values of the two
individuals’ parameters are encoded into bit strings using binary
reflected Gray coding, and the Hamming distance between the
parents is measured. Only those string pairs which differ from
each other by some number of bits (mating threshold) are mated.
The initial threshold is set at , where is the length of the
string ( in the experiments). When no offspring are
inserted into the new population, the threshold is reduced by 1.

No mutation is applied during the recombination phase. In-
stead, when the population converges or the search stops making
progress (i.e., the difference threshold has dropped to zero, and
no new offspring are being generated which are better than any

members of the parent population), the population is reinitial-
ized. The restart population consists of random individuals, ex-
cept for one instance of the best individual found so far [22].

Two instances of the CHC algorithm, CHC–BLX, and
CHC–EFR, were built using BLX- ( ) and extended
fuzzy recombination ( ), respectively. The population
size is 50 chromosomes.

3) Deterministic Crowding: Crowdingmethods attempt to
preserve the population diversity during the replacement pro-
cedure as follows: new individuals are more likely to replace
existing individuals in the parent population that are similar to
themselves based on genotypic similarity. They have been used
for locating, and preserve multiple local optimum in multimodal
functions.

An effective crowding method isdeterministic crowding.
It works by randomly pairing all population elements in each
generation. Each pair of parents ( ) undergoes crossover
in combination with mutation to yield two offspring ( )
which compete against the parents for inclusion in the popula-
tion through the following method of competition:

If [d(Pi; Oi) + d(Pj ; Oj)] � [d(Pi; Oj) + d(Pj ; Oi)] then

If f(Oi) is better than f(Pi) then replace Pi

with Oi.

If f(Oj) is better than f(Pj) then replace Pj

with Oj .

Else

If f(Oi) is better than f(Pj) then replace Pj

with Oi.

If f(Oj) is better than f(Pi) then replace Pi

with Oj .
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TABLE X
RESULTS OF THECOMPARISON

Two RCGA’s were implemented, R–DC–BLX and
R–DC–EFR, which apply deterministic crowding as a re-
placement strategy, and whose remaining features are the same
as the ones of R–BLX (Section IV-D) and R–EFR (Section
IV-E), respectively.

4) Disruptive Selection Mechanism:Unlike conventional
selection mechanisms,disruptiveselection devotes more trials
to both better and worse solutions than it does to moderate
solutions. This is carried out by modifying the objective
function of each chromosome as follows:

where is the average value of the objective function of the
individuals in the population.

We have included the disruptive selection in the R–BLX and
R–EFR algorithms for making use of two RCGA’s based on this
mechanism, R–DS–BLX and R–DS–EFR.

5) Comparison: All of these algorithms were executed
30 times. 500 000 evaluations of the objective function were

allowed in each time for the CHC and ECO–GA algorithms.
This number is similar to the number of evaluations performed
by GD–RCGA’s during 5000 generations. The remaining
algorithms were executed during 5000 generations. Table
X shows the results obtained. The results of GD–BLXand
GD–EFR were included again.

a) RCGA’s Using Disruptive Selection and Determin-
istic Crowding: R–DS–BLX, R–DS–EFR, and R–DC–BLX,
R–DC–EFR returned low and results. These mechanisms
lead to a high diversity level during the GA execution, slowing
the convergence too much (themeasures of R–DS–BLX and
R–DS–EFR are greater than the ones of the remaining algo-
rithms). Only for the complex was this useful; R–DC–EFR
has returned good and results for this function.

b) ECO–GA Algorithms:ECO–BLX and ECO–EFR
do better than the previous algorithms. In these algorithms,
the exploitation is achieved by means of the local interactions
between adjacent chromosomes, whereas the exploration is
possible thanks to the spatial separation of the chromosomes
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through the grid (subsection B in the Appendix). The balance
between these properties has allowed goodand values to
be returned for the unimodal and for the multimodal .
However, it was not suitable for dealing with the remaining
functions. An additional profitable feature of the ECO–GA
algorithms is that they may be easily implemented on parallel
hardware. In fact, they belong to a class ofparallel GA’s called
cellular GA’s (subsection A in the Appendix).

c) CHC Algorithms: The good results offered by
CHC–BLX and CHC–EFR indicate that the CHC algorithm
is an effective optimizer. In general, these algorithms improve
the results of the algorithms based on the other techniques
reviewed. They obtain very good and results for most
functions, in particular, for , and .
The CHC algorithm has been tested in other GA works against
different GA approaches, giving better results, especially on
hard problems [19], [35], [68]. Thus, it has arisen as a reference
point in the GA literature.

d) GD–RCGA’s: At this point, we consider the results for
GD–RCGA’s in comparison with the ones for the other algo-
rithms. The -test indicates that GD–RCGA’s improve the per-
formance of ECO–GA’s and RCGA’s based on deterministic
crowding and disruptive selection. With regard to the results of
the CHC algorithms, we may observe the following

• GD–BLX improves the and results (see-test re-
sults) of CHC–BLX for , and . It is out-
performed by CHC–BLX only on . Their results for
the remaining test problems are similar.

• GD–EFRr do better than CHC–EFR on ,
and . It is worse on . Their performance is similar
on the remaining test problems.

• We have observed another notable difference between
GD–RCGA’s and CHC algorithms: the computation time.
For most problems, the CHC algorithms were slower
than the GD–RCGA’s, even though these were executed
in a sequential way. A great part of the slowness of the
CHC algorithms is due to the prevention of incest process
since it requires, during each generation, the encoding of
all chromosomes into binary strings and Hamming
distance calculations. For problems where there are
few evaluations per generation (i.e., crossover operator
applications), this slows the process too much. However,
the computational times of GD–BLXand GD–EFR are
similar to the ones of their corresponding homogeneous
DGA’s, D–BLX, and D–EFR. The increased complexity
of the GD–RCGA’s (different , and values) does
not imply an increased computational time.

Finally, we should point out that GD–BLXand GD–EFR
found the global optimum of in 80% of the runs. None of
the remaining algorithms reached this optimum.

All of these results allow us to conclude that GD–RCGA’s
solve the conflict among accuracy, reliability, and computation
time in a suitable way for obtaining a significant performance
on test problems with different difficulties, outperforming other
mechanisms presented for dealing with the premature conver-
gence problem.

V. CONCLUSION

This paper presented GD–RCGA’s, heterogeneous dis-
tributed RCGA’s based on a hypercubic topology where
the subpopulations of the front side use different crossover
operators with exploration, and the ones from the rear side
use crossover operators with exploitation. The exploration or
exploitation degrees of the crossover operators applied to the
subpopulations that belong to the same side are gradual, thus
obtaining a parallel multiresolution with regard to the crossover
operator. The main goal of the gradualism in the GD–RCGA’s
is to produce a refinement of the best solutions and an ex-
pansion of the most promising zones, in a parallel way. An
emigration model was selected along with the assignment of
different selective pressures for each subpopulation in order to
overcome the conquest and noneffect problems, and tune the
GD–RCGA behavior properly.

Three instances of GD–RCGA were implemented, using de-
terministic crossover operators, the FCB-crossover operators, a
random one, BLX- , and a hybrid one (between random and de-
terministic), namely the extended version of that fuzzy recom-
bination. The results of the experiments carried out with these
GD–RCGA’s have shown the following.

• GD–RCGA’s achieve a suitable balance between the gen-
eration of diversity (for inducing reliability) and the local
tuning (for introducing accuracy) so that premature con-
vergence is avoided without sacrificing the obtaining of
good approximations. This allows GD–RCGA’s to im-
prove the performance of other GA approaches appearing
in the GA literature for avoiding premature convergence.
The good performance of GD–RCGA’s is possible due to
the gradualism and the effects of the refinement and ex-
pansion.

• Reliability of GD–RCGA’s may be improved using a
restart operator that helps them to overcome stationary
states in which refinement and expansion may not pro-
duce improvements.

• Since GD–RCGA’s are easily implemented on parallel
hardware, accuracy and reliability may be reached in an
efficient computation time, thus solving the fundamental
conflict existing among these three factors when complex
problems are tackled.

• BLX- and extended fuzzy recombination have arisen
as very suitable crossover operators for building
GD–RCGA’s.

Finally, we should point out that GD–RCGA extensions may
be followed in three ways: 1) use dynamic crossover opera-
tors, such as thedynamicFCB crossovers [29] and thedynamic
heuristicFCB crossovers [31], for producing dynamic levels of
refinement and expansion throughout the GA run; 2) use hyper-
cube topologies with a larger subpopulation number in order to
include more gradual levels on each side or for combining sides
based on different types of crossover operators; and 3) design
gradual distributed binary-coded GA’s, which may be based
on concepts such as disruption, productivity, and exploration
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power, which were presented for characterizing the crossover
operator for this type of coding [16].

APPENDIX

DISTRIBUTED GENETIC ALGORITHMS

This Appendix is devoted to DGA’s. In Section A, they will
be presented as a class ofparallel GA’s, calledcoarse-grained
parallel GA’s. In Section B, spatial separation, a basic principle
of DGA’s, is justified from a biological point of view through
the shifting balance theory of evolution[70] and thetheory of
punctuated equilibria[18]. In Section C, we describe the basic
structure of DGA’s. In Section D, we review the types of DGA’s
presented previously. Finally, in Section E, we tackle heteroge-
neous DGA’s, reporting on the different approaches presented,
and explaining the position of the GD–RCGA’s relative to these
approaches.

A. Parallel Genetic Algorithms

The availability, over the last few years, of fast and inexpen-
sive parallel hardware has favored research into possible ways
for implementing parallel versions of GA’s. GA’s are good can-
didates for effective parallelization since they are inspired by the
principles of evolution, in parallel, for a population of individ-
uals [17]. In general, three methods were followed for imple-
menting the parallelization of GA’s [1], [10], [17], [25], [40].

1) Global Parallelization: The evaluation of chromosome
fitness, and sometimes the genetic operator application are car-
ried out in a parallel form [4], [27], [54].

2) Coarse-Grained Parallelization:The population is
divided into small subpopulations that are assigned to different
processors. Each subpopulation evolves independently and
simultaneously according to a GA. Periodically, amigration
mechanismexchanges individuals between subpopulations,
allowing new diversity to be injected into converging subpop-
ulations. The exchange generally takes the form of copying
individuals between the populations. Coarse-grained parallel
GA’s are known asdistributedGA’s since they are usually im-
plemented in distributed memory MIMD computers. Versions
of DGA’s appeared in [7], [11], [12], [41], [50], [51], [61]–[63],
[67].

3) Fine-Grained Parallelization:In this model, the popula-
tion is divided into a great number of small subpopulations. Usu-
ally, a unique individual is assigned to each processor. The selec-
tion mechanism and the crossover operator are applied by con-
sidering neighboring chromosomes. For example, every chro-
mosome selects the best neighbor for recombination, and the
resultant individual will replace it. These types of GA’s, known
ascellular GA’s, are usually implemented on massively parallel
computers. Examples of cellular GA’s are to be found in [13],
[14], [44], and [49].

B. Spatial Separation

Both distributed GA’s and cellular GA’s are instances of
models based on spatial separation. One of the main advantages
of these models is the preservation of diversity. This property
caused them to be considered as an important way to research

into mechanisms for dealing with the premature convergence
problem [1], [7], [11], [13], [14], [40], [43], [62], [63].

Many authors [13], [14], [49]–[51] have attempted to jus-
tify spatial separation models, starting from theshifting balance
theory of evolution,developed by Wright [70]. This theory ex-
plains the process of evolution on the genetic composition of
individuals in natural populations. According to this, large pop-
ulations of organisms rarely act as a single well-mixed (pan-
mictic) population, but rather, they consist of semi-isolated sub-
populations,demes,each of which is relatively small in size.
Furthermore, the demes communicate with each other through
migrations of individuals. For Wright, the evolution process has
two phases. During the first one, the allele frequencies drift ran-
domly around a local fitness peak in each deme. One of them
might, by chance, drift into a set of gene frequencies that cor-
responds to a higher peak. Then, the second phase starts; this
deme produces an excess of offspring, due to its high average
fitness, which then emigrate to the other demes, and will tend to
displace them until eventually the whole population has the new
favorable gene combination. Finally, the process starts again.
The relatively small size of the demes allows drift to play an im-
portant role in the evolution of the population, without driving
the whole population toward convergence. Even if drift were to
drive every local deme to fixation, each one of them would be
fixed on a different genotype, thereby maintaining diversity in
the population as a whole.

Another biological theory adopted by people who do work
on spatial separation is thetheory of punctuated equilibria[18].
This theory states that evolution is characterized by long pe-
riods of relative stasis, punctuated by periods of rapid change
associated with speciation events. In [11], it is pointed out that
GA’s also tend toward stasis, or premature convergence, and
that isolated species could be formed by separating the global
population into subpopulations. By injecting an individual from
a different species into a subpopulation after it had converged,
new building blocks would become available; furthermore, im-
migrants would effectively change the fitness landscape within
the subpopulations. In this way, premature convergence may be
avoided. This idea was highlighted in [50] as well: the creative
forces of evolution take place at migration and a few generations
afterwards. Wright’s argument that better peaks are found just
by chance in small subpopulations does not capture the essential
facts of the spatial separation.

C. Basic Structure of Distributed GA’s

Although there are many different types of DGA’s, all of them
are variations on the following basic algorithm.

Distributed Genetic Algorithm

1) Generate at random a population P of

chromosomes.

2) Divide P into SP1; � � � ; SPN subpopula-

tions.

3) Define a neighborhood structure for

SPi; i = 1; � � � ; NS .

4) For SPi; i = 1; � � � ; NS , execute in parallel
the next steps.
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4.1) Apply, during fm generations, the

selection mechanism and the genetic operators.

4.2) Send nm chromosomes to neighboring

subpopulations.

4.3) Receive chromosomes from neighboring

subpopulations.

5) If the stop criterion is not fulfilled,

return to 4).

Some additional issues should be considered.

1) The neighborhood structure,topology,to be used. Hyper-
cubic topologies were frequently considered for building
DGA’s [11], [12], [51], [61]–[63].

2) Themigration rate that controls how many chromo-
somes migrate.

3) Themigration interval , the number of generations be-
tween each migration.

4) Theselection strategyof the genetic material to be copied.
Two methods were widely used. The first one is to se-
lect randomly the element from the current subpopula-
tion. The advantage of this approach is the greater mix
of genes that will result. A second method is to select
the highest performing individual from each subpopula-
tion to be copied to another subpopulation. This would
result in more directed evolution than the first case, as the
migrant individuals would not be tainted by genes from
lower performing individuals. This is not to say that the
former method is worse, for the less directed a population
is, the greater diversity it will contain [56].

5) Thereplacement strategyfor including the chromosomes
to be received. Some approaches are: replace the worst
ones, the most similar to the incoming ones, one randomly
chosen, etc.

6) The choice ofwhether or not to replicate migrating indi-
viduals,i.e., should individuals move to their new home
or should a copy of them be sent there? If one does not
copy individuals, it is possible that a subpopulation could
be set back several generations in evolutionary terms by
the mass emigration of its best performers. Alternatively,
simply copying individuals across could lead to highly fit
individuals dominating several populations [56].

D. Types of Distributed GA’s

In [40], the following three categorizations of DGA’s are re-
ported.

1) Regarding the Migration Method:

• Isolated DGA’s:There are no migrations between subpop-
ulations. These DGA’s are known as well aspartitioned
GA’s [62], [63].

• Synchronous DGA’s:Migrations between subpopulations
are synchronized, i.e., they are produced at the same time
[12], [51], [62].

• Asynchronous DGA’s:Migrations are produced when cer-
tain events appear, related to the activity of each subpopu-
lation. Asynchronous behavior is typically found in nature
since evolution is produced at different states, depending
on the environment [40].

2) Regarding the Connection Schema:

• Static Connection Scheme:The connections between the
subpopulations are established at the beginning of the run,
and they are not modified throughout it.

• Dynamic Connection Scheme:The connection topology
is dynamically changed throughout the run. The recon-
figurations in these connections may occur, depending on
the evolution state of the subpopulations. For example,
in [40], a connection schema called positive-distance
topology was proposed in which an individual is passed
to another subpopulation only if the Hamming distance
between the best individuals in the two subpopulations
is less than 24. An analogous connection schema called
negative-distance topology was presented as well.

Finally, we point out that some authors [10], [36] assumed
another division, based on the connection schema: theisland
model and thestepping-stonemodel. In the first model, indi-
viduals can migrate to any other subpopulation; in the second
model, migration is restricted to neighboring subpopulations.

3) Regarding the Subpopulation Homogeneity:

• Homogeneous DGA’s:Every subpopulation uses the same
genetic operators, control parameter values, fitness func-
tion, coding schema, etc. Most DGA’s proposed in the lit-
erature are homogeneous. Their principal advantage is that
they are easily implemented.

• Heterogeneous DGA’s:The subpopulations are processed
using GA’s with either different control parameter values,
or genetic operators, or coding schema, etc.

E. Heterogeneous Distributed GA’s

Heterogeneous DGA’s have been considered as suitable tools
for avoiding the premature convergence problem, and for max-
imizing the exploration and exploitation on the search space.
Next, we review some of the most interesting heterogeneous
DGA’s presented so far:

1) Adaptation by Competing Subpopulations:In [57], a
heterogeneous DGA model is presented, in which, for each
possible operator configuration, a subpopulation or group is
formed. The total number of all individuals is fixed, whereas
the size of a single subpopulation varies. Each subpopulation
competes with other subpopulations in such a way that it gains
or loses individuals, depending on its “evolution quality” in
relation to the others. A particular instance based on real coding
was proposed with four subpopulations (in this paper, called
ACS). They were distinguished by applying a mutation operator
with different step sizes (proportion or strength in which genes
are mutated), which allows a search with multiresolution to be
achieved.

A similar model is presented in [58]. Here, the population
sizes are fixed, whereas the strategies (mutation rate, crossover
rate, the threshold for the truncation selection, etc.) of the sub-
populations are flexible. After a fixed interval, all strategies are
ranked, and the parameters of each strategy are adapted to the
values of the next best strategy.

2) GA Based on Migration and Artificial Selection:In [53],
a DGA based on binary coding, called GAMAS, was proposed.
GAMAS uses four subpopulations, denoted asspecies I–IV.
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Initially, species II–IV are created. Species II is a subpopula-
tion used for exploration. For this purpose, it uses a high mu-
tation probability ( ). Species IV is a subpopula-
tion used for exploitation. So, its mutation probability is low
( ). Species III is an exploration and exploitation
subpopulation; the mutation probability falls between the other
two ( ). GAMAS selects the best individuals from
species II–IV, and introduces them into species I whenever those
are better than the elements in this subpopulation. The mission
of species I is to preserve the best chromosomes appearing in the
other species. At predetermined generations, its chromosomes
are reintroduced into species IV by replacing all of the current
elements in this species.

3) Heterogeneous DGA’s Based on Different Codings:In
[40], a heterogeneous DGA, called theinjection islandGA
(iiGA), is built. In iiGA, each subpopulation stores search space
solutions coded with different resolutions. Subpopulations in-
ject their best individual into higher resolution subpopulations
for fine-grained modification. This allows search to occur in
multiple codings, each focusing on different areas of the search
space. An important advantage is that the search space in
subpopulations with lower resolution is proportionally smaller;
in this way, fit solutions are found quickly, and then, they are
injected into higher resolution subpopulations for refinement.

4) Position of the Gradual Distributed RCGA’s:GAMAS
assigns exploration and exploitation properties to the subpop-
ulations by applying different mutation probability values to
them. In ACS and iiGA, this feature appears generalized to the
concept of parallel multiresolution (to assign exploration and
exploitation at different degrees). In ACS, this is made by using
different step sizes, whereas in iiGA, it is done by means of dif-
ferent codings.

GD–RCGA’s include a parallel multiresolution through the
crossover operator, which seems reasonable due to the impor-
tance of this operator on the GA performance. But, they also
attempt to exploit multiresolution in a gradual way, in order
to offer the refinement and expansion of promising regions in
the search space. In this way, they extend the idea in iiGA of
producing fine-grained modification when subpopulations in-
ject individuals into higher resolution subpopulations.
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