
Gradual Product Replacement, Intangible-Asset Prices and 
Schumpeterian Growth  

 
by  
 

Elias Dinopoulos and Douglas Waldo 
 

Department of Economics 
University of Florida 
Gainesville, Fl 32611 

 
 

March 2005 
 
 

Abstract 
 

The paper develops a general-equilibrium model of scale-invariant Schumpeterian (R&D-based) 
growth. New higher-quality products are discovered through stochastic and sequential R&D 
races in each industry. The market share of an R&D race winner increases gradually and is 
governed by an exponential deterministic process. The introduction of gradual (as opposed to 
instantaneous) product replacement sheds more light on the effects of the rate of technology 
diffusion on long-run growth and on long-run dynamics of intangible asset prices.  An economy 
with faster product diffusion rates experiences higher long-run innovation rates, faster 
transitional growth, and is populated by younger firms. As the typical firm becomes older, the 
earnings yield (i.e., the inverse of the price earnings (P/E) ratio) increases and expected earnings 
growth declines. Younger firms have lower earnings, lower market shares, but higher P/E ratios 
and higher expected earnings growth associated with their higher potential market growth.  
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1. Introduction 
 
 Models of Schumpeterian (R&D-based) growth have routinely assumed that each newly 
discovered product captures its potential market instantaneously.1 The assumption of 
instantaneous product replacement, which is made for analytical convenience and simplicity of 
exposition in variety-accumulation and quality-improvement models or economic growth, does 
not enjoy empirical support: The transmission of new technology and its adoption is a gradual 
and lengthy process. A trip to any Blockbuster store, where the space allocated to DVD movies 
is gradually expanding at the expense of the space for VHS videos constitutes one of numerous 
examples of gradual (as opposed to instantaneous) product replacement process.2  One 
implication of instantaneous product adoption is that long-run (per-capita) asset prices of 
technology leaders are independent of the firm’s age and constant over time. For example, in 
quality-ladder Schumpeterian growth models the instant a new technology leader is born, all 
potential customers buy the new product and the flow of  monopoly profits grows at a constant 
growth rate which is equal to the rate of growth of population. When a new leader emerges the 
incumbent’s market share goes to zero instantaneously. There is no difference between young 
and old firms. 
 The main innovation of the present paper is to analyze the effects of gradual product 
replacement on Schumpeterian growth and on intangible asset prices. The focus on intangible 
asset prices is motivated by the relative lack of understanding how total productivity growth and 
general equilibrium forces shape the behavior of financial markets and the market valuation of 
intangible assets.  The second half of the 1990s is a case in point. During the period 1995-1999 
the U.S. economy experienced 4.8 percent annual output growth.3 Financial markets enjoyed 
unprecedented growth during the second half of the 1990s.  At the microeconomic level, several 
popular books described the characteristics of high-technology markets and offered rules that 
would identify the winners of technological competition.4  At the macroeconomic level, the 
evolution of asset prices raised concerns regarding the long-run sustainability of economic 
growth and the rationality of consumers and investors. Alan Greenspan, the chairman of the 
Federal Reserve Board, expressed these concerns in December of 1996: “How do we know when 

                                                 
1 Schumpeterian growth is a type of growth generated through the endogenous introduction of new products and/or 
processes which is based on Schumpeter’s (1942) description of endogenous technological progress. See Jones 
(1995) Aghion and Howitt (1998), Segerstrom (1998), Young (1998), Dinopoulos and Thompson (1998) among 
many others for models of Schumpeterian growth.  Jones (1999) and more recently Dinopoulos and Sener (2004) 
provide overviews of recent developments in Schumpeterian growth theory. 
2 Klepper and Simmons (1997) report long-diffusion periods for a variety of new product and process innovations: 
For example it took more than 10 years before the balloon cord technology of making tires achieved a 90 percent 
market share and more than 18 years before the fabric tire technology was replaced by the balloon-cord and high-
pressure cord technologies. 
3 See Oliner and Sichel (2000, Table 1). 
4 See Kelly (1998), Varian and Shapiro (1998) and Moore et al (1999) among others. For instance, according to 
Moore at al. (1999) if one had invested $10,000 in Cisco Systems in 1990, the investment would have been worth 
over $3.5 million by 1999. And a $10,000 investment in Yahoo in 1996 would have been worth more than $300,000 
three years later. The book describes the dynamics of high-tech markets and offers rules of thumb to investors to 
identify “gorilla candidates”, that is companies that would dominate their markets and earn exceptional monopoly 
profits for an extended period of time. 
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irrational exuberance has unduly escalated asset values?…And how do we factor that assessment 
into monetary policy?” 5  Indeed, based on the belief that assets were overvalued, the Federal 
Reserve Bank engaged in a policy of gradually raising interest rates in an attempt to slowly let 
the air out of the bubble.  
   The above-mentioned developments raise several novel questions: What is the 
relationship between sustainable (i.e., long-run) economic growth and the market valuation of 
technology leaders? What are the general-equilibrium forces that determine the evolution of 
high-tech markets? How do stock market values depend on economic factors such as population 
growth, total factor productivity growth, the expected lifetime of a typical firm, and the rate of 
technological diffusion?   
 A small but growing body of literature has examined the role of technology in shaping 
the evolution of asset prices and has provided valuable insights on some of the above-mentioned 
questions. Hall (2001) has estimated the quantity of intangible capital from the market value of 
businesses emphasizing the role of cash-flow and intangible assets in explaining the evolution of 
the stock market.  Hobijin and Jovanovic (2001) have analyzed the effects of information 
technology on stock prices using a vintage-capital model. Helpman and Trajtenberg (1998a, 
1998b) and Petsas (2003) among others have examined the impact of gradual diffusion of 
general purpose technologies on economic growth and cycles.6  Laitner and Stolyarov (2003, 
2004) have developed models of physical and intangible capital to examine the evolution of 
Tobin’s q and the measurement of total factor productivity. These studies have examined the role 
of gradual technology diffusion on the aggregate stock-market performance.  
 The present paper complements the above-mentioned studies by developing a dynamic 
general equilibrium model of an economy populated by technology leaders and experiencing 
sustained Schumpeterian (R&D-based) growth. The model is used to analyze the long-run 
behavior of intangible assets under the assumption that there is a gradual (as opposed to 
instantaneous) adoption of new higher-quality products within each high technology market. The 
economy is populated by identical rational consumers and firms. The former engage in utility 
maximization over an infinite time horizon. The latter maximize expected discounted profits. In the model,  
new higher-quality products are discovered through sequential R&D races. The firm that 
discovers the state-of-the-art quality product becomes the new leader and replaces the product 
produced by an incumbent monopolist. We focus on balanced-growth equilibrium dynamics for 
tractability purposes and also assume that all markets are efficient. Consequently, at each instant 
in time asset prices do not reflect informational asymmetries, heterogeneous tastes or speculative 
bubbles.7  Therefore our results should be interpreted as long-run relations between economic 
fundamentals and the behavior of intangible asset prices. 
 Following one of the main insights of Moore et al. (1999, chapter 2), we assume that the 
winner of an R&D race replaces the incumbent firm gradually. The market share of the leader 
increases gradually and is governed by an exogenous and deterministic dynamic process that 

                                                 
5 Shiller (2000) provides more details on the concept of irrational exuberance. 
6 Helpman and Tranjteberg (1998a, 1998b) introduce gradual diffusion of a general purpose technology by assuming 
that its adoption depends on the production of complementary inputs. The model is used to generate cycles in per-
capita output growth and the stock-market valuation of innovating firms.  Petsas (2003) analyzes the stock-market 
growth effects of a gradual adoption of a general purpose technology.  In his model, unlike the present one, the 
general purpose technology is adopted across a continuum of structurally identical industries. 
7 Economies populated by rational consumers engaged in maximizing behavior over an infinite horizon, as in the 
present model, cannot generate financial speculative bubbles. See Blanchard and Fischer (1989, chapter 5) for more 
details on this issue in the contest of the neoclassical growth model. 
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mimics the exponential cumulative distribution function. In contrast, other Schumpeterian 
growth models have routinely assumed an instantaneous product-replacement mechanism. We 
abstract from market-structure considerations, which are described in detail in Moore et al 
(1999), in order to increase the tractability of the model. Therefore, the model does not deal with 
the question of which early participant in a high-tech market is more likely to dominate. We 
model the selection process as a stochastic R&D race, with the winner of a race destined to 
dominate its market, earn temporary monopoly profits, and eventually be replaced by the winner 
of the next R&D race. 
 The introduction of a gradual product replacement mechanism in a standard model of 
Schumpeterian growth allows us to shed more light on the long-run dynamics of intangible asset 
prices. These prices incorporate simultaneously the marginal cost of creating the intangible 
assets and the expected discounted earnings of the technology leader. The model has a unique 
balanced growth equilibrium in which all per-capita variables grow at constant rates. In the 
steady-state equilibrium, firms maximize expected discounted profits, rational consumers 
maximize their discounted lifetime utility and all markets clear instantaneously. Economies with 
faster product diffusion rates experience higher innovation rates and growth, and are populated 
by younger firms. The total rate of return on an intangible asset is constant in the steady-state 
equilibrium and equals the earnings yield rate (which is the inverse of the price earnings –P/E – 
ratio) plus the expected rate of capital gains. The latter is equal to the growth rate of the market, 
measured by the rate of growth of population, plus the rate of growth of the firm’s market share. 
Unlike models of Schumpeterian growth with instantaneous product replacement, the present 
model gives rise to nontrivial dynamics for asset prices in the steady state. More specifically, as 
the age of the quality leader increases, the dividend yield increases and capital gains decrease. 
Therefore, younger firms have lower earnings, lower market shares, but higher P/E ratios and 
higher expected capital gains associated with their potential market growth.   
 The paper is organized as follows. Section 2 describes the behavior of consumers and 
firms.  Section 3 describes the role of the economy’s stock market and its valuation of monopoly 
profits. Section 4 completes the description of the model by focusing on the labor market. 
Section 5 derives the steady-state equilibrium of the economy and section 6 analyzes the steady-
state dynamics of asset prices. Finally section 7 offers a summary of the main results and 
suggestions for further research. 
 
2. The Model 
 
2.1 Consumers  
 
 The economy is populated by identical households located on a unit interval.  Each 
household is modeled as a dynastic family whose size grows at an exogenous growth rate gN > 0. 
The representative family maximizes the following expected utility over an infinite time horizon 
 

  (1) ( )

0

log ( )Ng tU e u t dρ
∞

− −= ∫ t

 
where ρ is the constant subjective discount rate, gN > 0 is the constant growth rate of population, 
and subutility log u(t) is defined as follows:  
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1

0

log ( ) log ( , , )j

j

u t Z j t dλ ω ω
⎡ ⎤

= ⎢
⎣ ⎦
∑∫ ⎥  (2) 

 
 Parameter λ > 1 is the quality improvement between two consecutive final consumption 
goods and measures the size of innovations; Z(j,ω,t) denotes the per-capita quantity consumed of 
a good that has experienced j innovations (quality improvements)  in industry ω ∈ (0,1) at time t. 
Each consumer maximizes (2) subject to a static budget constraint.8 The solution to this static 
problem yields 
 

 ( )( )
( )

c tZ t
p t

=  (3) 

 
where p(t) is the price level of a particular good and c(t) is the per-capita consumption 
expenditure at time t. The aggregate demand for a typical good is given by  
 

 ( ) ( )( )
( )

c t N tQ t
p t

=  (4) 

 
where N(t) is the level of the economy’s population at time t. Substituting (3) into (2) and the 
resulting expression into (1), one can solve the intertemporal consumer optimization problem. 
The solution yields the familiar differential equation 
 

 ( )/ ( ) ( )c t c t r t ρ
•

= −  (5) 
 
where r(t) is the market interest rate. 
 
2.2 Producers 
 
 There is a continuum of structurally identical industries producing final consumption goods. 
Each industry ω∈ (0,1) is characterized by two activities: manufacturing of final goods and R&D 
investment to discover higher quality products. The latter are discovered through endogenous, 
stochastic and industry-specific sequential R&D races.  Each activity utilizes only labor, which is 
the only factor of production. Denote with N(t) the endowment of labor at time t. We assume that 

N(t) grows at constant rate of growth . At each instant in time there are three 
distinct types of firms in a typical industry: a quality leader producing the state-of-the-art quality 
product, say j; followers producing a product j – 1 with quality one step below the leader’s 
product; and challengers who engage in R&D to discover the next state-of-the-art quality product 
j + 1.  

( ) / ( )Ng N t N t
•

=

                                                 
8  See Segerstrom (1998) and Dinopoulos and Segerstrom (1999) for more details on the consumer’s maximization 
problem. 
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 Since all industries are assumed to be structurally identical, one can omit argument ω from 
functions and variables in order to simplify the notation. Challenger i, who invests Ri(t) resources 
in R&D discovers the next higher-quality product with probability Ii(t)dt, where dt is an 
infinitesimal interval of time and Ii(t) is given by  
 

 ( )( )
( )

i
i

R tI t
X t

= . (6) 

 
 The X(t) term in (6) captures the difficulty of R&D and will be explained shortly. We assume 
that the returns to R&D investment are independently distributed across firms, industries, and 
over time. As a result, the probability that one firm (challenger) will discover the next quality 
product is given by  
 

 ( )( ) ( )
( )i

i

R tI t I t
X t

= =∑  (7) 

 
 where ( ) ( )i

i

R t R= ∑ t  is the aggregate R&D investment in a typical industry.  Equation (7) 

defines the intensity of the Poisson process that governs the arrival of innovation in a typical 
industry. Since time is continuous, the probability of two products discovered instantaneously is 
zero. Following the standard practice of quality-ladders growth models, we will refer to I(t) as 
the rate of innovation. This specification implies instantaneous constant returns to R&D at the 
aggregate level.    
 The scale-effects property is removed by following the approach proposed in Jones (1995), 
Segerstrom (1998) and Dinopoulos and Segerstrom (1999). We assume that R&D starts off being 
equally difficult in all industries ( ,0) 1X ω =  for all (0,1)ω∈  and the level of R&D difficulty 
evolves according to 
 

 ( , ) ( , )
( , )

X t I t
X t
ω μ ω
ω

•

=  (8) 

 
where 0μ >  is a constant. Equation (8) implies that the level of aggregate R&D difficulty is an 
increasing function of cumulative R&D investment and the level of “knowledge” in a particular 
industry. It also implies –as we will establish later- that the long-run rate of innovation and per 
capita growth is proportional to the constant rate of population growth and therefore policies do 
not have a permanent growth effect.9  

                                                 
9 Jones (1999) and Dinopoulos and Thompson (1999) and Dinopoulos and Sener (2004) provide more details for the 
implications of the scale-effects property for early R&D-based growth models and describe recent attempts to 
develop models of growth without scale effects.   In a previous version of the paper we analyzed a different 
specification of  (8) which states that the level of R&D difficulty is proportional to the level of population, i.e.,  

( , ) ( )X t kN tω =  and results in permanent growth effects. The main results of the analysis are not affected by the 
choice of either specification, although the one adopted in the present paper allows us to derive closed form steady-
state solutions.  

 6



 Denote with Qα  and Rα  the constant unit-labor requirements for producing manufacturing 
output and R&D services in a typical industry. Total costs for these activities are therefore 

Qw Q(t) α  and Rw R(t) α  respectively, where  is the wage of labor. Denote with j the state-of-

the-art quality step (i.e., the quality level is 

w
jλ ) produced by a quality leader in a typical industry 

and with τ  the time of discovery of product j. We assume that when a new technology j is 
discovered the old j - 1 technology becomes common knowledge. Hence the technology of 
producing all products with quality lower than j is public knowledge. This means that all 
followers in this industry produce the j – 1 product, charge a price equal to unit labor costs (due 
to free entry), and have zero profits.  
 The profit flow of the quality leader can be written as    
 

 ( ) ( )( , ) ( ( ) ) ( , )
( )Q

c t N tt p t w s t
p t

π τ α= − τ  (9) 

 
where  is the price charged and ( )p t ( , )s t τ  is the market share of the leader at time t. Argument  
τ  denotes the time of the technological leader’s birth. In other words, at time t the leader’s age is 
t τ− ; each leader charges a price ; she/he faces unit manufacturing costs ( )p t Qwα ; and enjoys a 
market share ( , )s t τ  of total output demanded ( ) ( ) ( ) / ( )Q t c t N t p t= .  
 
2.3 Gradual Product Replacement 
 
 The rest of the literature assumes that at the time of discovery, τ , the leader’s market share 
jumps from zero to unity instantaneously. This assumption is justified by the notion that 
consumers are fully informed about the quality of the new good and that they switch 
instantaneously to the product with the lowest quality adjusted price. In other words, if a quality 
leader offers the slightly lower price than qwλα  consumers migrate immediately to the newly 
introduced product and the old product becomes obsolete.  Here we depart from this unrealistic 
assumption by supposing that ( , )s t τ  evolves gradually over time. In other words, we assume 
that there is a fraction of consumers in the economy who cannot immediately recognize the 
quality of the newly introduced product, but they do so gradually as its market share increases.  
We would like to mimic an S-curve diffusion process, provide tractability, and generalize the 
Schumpeterian approach to economic growth. In order to meet our goals, we choose to model the 
evolution of ( , )s t τ as follows:  At each instant in time there are two types of products in each 
industry: the state-of-the-art-quality product and generic ones that can be produced by all other 
firms.  
 Following the rest of the Schumpeterian growth literature, we assume that every newly 
discovered good is protected by a perfectly enforceable patent which expires when the next 
higher-quality product is discovered.  We assume that the technology of how to produce all 
generic products, whose patents have expired, is public knowledge and perfect competition 
prevails in their production. This unrealistic assumption is made for tractability considerations.10  

                                                 
10  Dinopoulos and Segerstrom (1999), Grossman and Lai (2004) and Dinopoulos at al. (2005) among others have 
used the assumption that the technology of products with expired patents is common knowledge and perfect 
competition prevails in their production. 
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As a result, the only generic produced (by the old quality leader or other followers) will be the 
one-quality-step-behind product j - 1. This assumption prevents the old quality leader from 
earning positive economic profits by exploiting those consumers who are not fully informed 
about the quality-adjusted price of the newly introduced product.11  
  When the state-of-the art quality product is introduced in the market, the product 
instantaneously captures a small market share s0 > 0, and consumers start migrating gradually 
from the generic product to the state-of-the-art quality product.  In the presence of population 
growth,  is the number of consumers born between  and t . When a 
challenger discovers a new product, he charges a limit price which equals the size of the quality 
improvement times the marginal cost of the follower (i.e., 

[ ( ) / ]dN N t t dt= ∂ ∂ t dt+

( ) Qp t waλ= ). In principle, fully 
informed consumers are indifferent between the two products and the typical assumption used in 
the literature is that all consumers ( )dN N t+  switch instantaneously to the state-of-the art 
quality product. We replace this assumption by the following process: At the time of discovery, 
the new quality leader producing product j engages in limit pricing and its market share jumps 
instantaneously to s0 > 0. This initial market share is the same in all industries and does not vary 
over time.  It will be treated as a parameter. One could think of 0 ( , )s s τ τ=  as the exogenous 
fraction of fully informed consumers in the economy who based their product-choice decision on 
quality adjusted prices.  The market share of generic product j – 1 becomes 01 1 ( ,s s )τ τ− = − , and 
the demand for  product j – 2 jumps down to zero. Over time, the market share of each quality 
leader ( , )s t τ  increases gradually until the discovery of the next higher quality product, and the 
market share of the lower-quality (generic) product 1 ( , )s t τ−  declines. New consumers, dN , are 
uniformly distributed between the two products. We assume that ( , )s t dNτ   buy the new product 
and (1 ( , ))s t dNτ−  consumers buy the generic product.     
 We assume that the leader’s market share evolves over time according to the following 
exponential deterministic process 
 
 
 ( )

0( , ) 1 (1 ) ts t s e δ ττ − −= − −  (10) 
 
where 0( , )s sτ τ =  is the initial market share and 0δ >  is a parameter that captures the speed of 
product adoption. Notice that as  the market share approaches unity. Earlier quality-
ladders growth models assumed that 

t →∞
δ →∞  which implies instantaneous product replacement.  

 A few remarks about the proposed product replacement mechanism are in order. Equation 
(10) represents a very rough approximation of the S-curve diffusion process. It partitions the 
diffusion process in two parts: The business literature on technology adoption assumes that a 
small segment of the market consists of early adopters who are well informed about the quality 
of the new product and quickly switch to the newest products which have the lowest quality-
adjusted price.12  We assume that this segment of population adopts the new product 

                                                 
11  We would like to thank an anonymous referee for helping us clarify this point. 
12  Implicit in the business literature is the idea that these early adopters get extra utility from being first. See Moore 
et al. (1999) for a description of the technology adoption model and its implications for the valuation of high-tech 
leaders.  This extra utility is not a feature of our model. Indeed in our model (and all other models of Schumpeterian 
growth) consumers are indifferent toward adopting the new technology because the new quality leader engages in 
limit pricing and charges a price that exactly captures the extra utility from the new innovation. After the initial 
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instantaneously. The assumption of instantaneous product adoption by early adopters is captured 
in (10) by the initial market share .  Starting at the initial market share, equation 0s (10) states that 
the market share of the leader is a concave function of time and therefore it captures the concave 
portion of an S-curve.13 In other words, the consumer migration process is exogenous by 
assumption, and therefore it can not be affected (with the exception of its expected length) by 
other parameters. This strong assumption renders the analysis tractable and allows us to derive 
closed-form general- equilibrium solutions. One could make the diffusion process endogenous 
by assuming that the diffusion parameter is a decreasing function of the product’s price (i.e., 

0 / pδ λδ= , where 0δ  is a positive constant): The higher is the product’s price relative to the 
quality increment, the slower is the rate of market-share growth. This specification introduces a 
profit-maximizing price/age profile that is increasing in the firm’s age. Young firms with low 
market shares would charge a lower price and enjoy lower price-cost margin in an effort to 
accelerate the growth of their market; and older firms experience lower market share growth and 
higher prices. However this extension would substantially decrease the tractability of the 
model.14

  Equation (10) implies that   
 

 ( , ) (1 ( , ))s t s tτ δ
•

= − τ

                                                                                                                                                            

. (11) 
 
That is, the rate at which market share increases depends only on the potential (untapped) market 
share. It also implies the leader’s customers, m = s(t,τ)N(t), grow at the rate   
 

 
jump in market share, the rest of the consumers migrate to the new product gradually based on word of mouth, 
advertising, network-based externalities, or replacement dynamics of durable goods. The factors that determine the 
gradual migration process are not modeled in the present paper in order to maintain the model’s analytical 
tractability. 
13 In other words, one can think of equation (10) as a truncated S-curve diffusion process in which the segment from 
time zero to the inflection point occurs simultaneously.  This specification provides an alternative to the traditional 
way of modeling adoption of technology through a logistic (S-curve) deterministic function. Klepper and Simmons 
(1997, Table 7) provide annual observations for market shares associated with the adoption of balloon-cord and 
straight-side-rim technologies in automobile tire market. We used a non-linear regression analysis to estimate and 
compare an exponential diffusion process (described by (10) ) to a logistic diffusion process.  In the case of balloon 
cord tires the estimated coefficients are s0 = -0.032 (standard error: 0.028) and δ = 0.226 (standard error: 0.010 ). 
The regression yielded an R squared of 0.98 and a DW statistic of 1.91 The logistic diffusion model yielded an s0 = 
0.12, a diffusion coefficient δ = 0.50 an R squared of 0.97 and a DW statistic of 0.69.  Consequently, in the case of  
balloon cord tires the exponential diffusion model did slightly better than the logistic diffusion model.  In the 
straight side rims case the opposite was true. 
14 In addition to its tractability, the proposed diffusion process can also be justified as follows: Assume that within 
each dynastic family the adoption of the new quality product occurs instantaneously (there is instantaneous 
transmission of information). Suppose that a fraction  of population consists of informed families. Each dynastic 
family in the remaining population adopts the new product with an exogenous instantaneous probability

0s
dtδ . Then 

equation (10) is the cumulative exponential distribution which shows the probability that a family adopts the new 
product in the time period (t )τ− . The assumption that there is a continuum of identical dynastic families allow us to 
invoke the law of large numbers and claim that the fraction of population adopting the new product evolves 
deterministically over time and its evolution is governed by an exponential function given by (10).   
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 / 1 1
( , )N

m sN t g
m sN s t

δ
τ

•

⎛ ⎞∂ ∂
= = + ⎜

⎝ ⎠
− ⎟  (12) 

 
At the time of discovery t, the leader starts with a low market share, s0, and enjoys a high 
percentage growth of sales that converges to the rate of population growth as . As long as 

 is less than unity, the growth rate of sales exceeds the rate of population growth. 
1s →

s
 
3. Stock-Market Valuation of Intangible Asset Prices 
 
 There is a stock market in the economy that channels consumer savings to firms engaged in 
R&D. At each instant in time each challenger issues a flow of shares promising to pay the flow 
of monopoly profits if the firm wins the R&D race and zero otherwise. Therefore, at each instant 
in time there are two types of stocks in this economy. Stocks issued by quality leaders producing 
the state-of-the-art quality product in each industry and stocks issued by challengers engaged in 
R&D to replace the incumbent firm in each industry. The stock market value of the industry 
leader, V(t,τ ), is the price of the leader’s intangible assets and is based on a comparison between 
the riskless rate of return and the expected return of holding the stock of a technology leader. 
Since the financial risk is industry specific and there is a continuum of industries, consumers can 
hold a completely diversified portfolio of stocks and earn the riskless rate of return, which is 
equal to the market interest rate r(t).  In equilibrium, shareholders need to be indifferent between 
the two.  
 
 ( , ) (1 ( ) ) ( , ) ( ) ( , ) ( ) ( , )t dt I t dt dV t I t V t dt r t V t dtπ τ τ τ+ − − = τ  (13) 
 
where π(t,τ) is the flow of monopoly profits defined in (9) and I(t) is the intensity of the Poisson 
process that governs the arrival of innovations in each industry.   
 A stockholder holding the quality leader’s stock over an infinitesimal interval dt receives 
dividends equal to the firm’s current profits. With probability 1- I(t)dt, no challenger discovers 
the next higher quality product, the incumbent retains leadership and stockholders receive capital 
gains. With probability I(t)dt, a new leader emerges and the stock of the incumbent becomes 
worthless. The expected returns from holding the incumbent’s stock must equal the return on 
bonds of equivalent value. Dividing by dt, and taking the limit as dt approaches zero yields    
 

 
( , )( , )

( ) ( ) ( , ) / ( , )

tV t
r t I t V t V t

π ττ
τ τ

•=
+ −

 (14) 

 

where ( , ) ( , ) 1 ( , ) 1
( , ) ( , ) ( , )

V t dV t V t
V t dt V t t V t

τ τ τ
τ τ τ

•

∂
= =

∂
.  Equation (14) states that the market valuation 

of intangible assets equals the expected flow of monopoly profits discounted appropriately. The 
discount factor equals the market interest rate plus the probability of default minus the growth 
rate of these intangible assets, which reflects the market growth rate.  
 Equation (14) is the main channel through which the parameters of the model affect the 
evolution of intangible asset prices. This equation arises in all quality ladder models of 
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Schumpeterian growth and one can ask whether or not (14) is empirically relevant. Yardani and 
Quintana (2002) report a strong correlation between the ratio of expected operating earnings to 
the price index for the S&P 500 companies, using 12 month ahead consensus earnings estimates, 
which corresponds to the ratio π(t,τ) / V(t, τ)  using our notation, and the 10-year Treasury bond 
yield (i.e., r(t)). The average spread between the two is 29 basis points for the period 1974- July 
2002. This strong correlation was used by the US Federal Reserve Bank to assess the extent of 
overvaluation of stock prices in 1997.  Yardani and Quintana refer to equation π(t,τ) / V(t, τ ) = 
r(t) as the “Fed’s Stock Valuation Model”. According to these authors equation (14) corresponds 
closely to a new improved version of the Fed’s Stock Valuation Model because it incorporates 
the risk of default and accounts for earnings growth.  The authors use information on earnings 
forecasts, long-term Treasury yields, corporate bond yields, and growth of earnings forecasts to 
estimate the right-hand-side of equation (14)  and calculate the “fair value” of an intangible 
asset.15   
 The empirical relevance of (14) does not mean that all predictions of the model enjoy 
empirical support. Rather the above discussion and evidence serve as a motivation to proceed 
with the analysis. Notice that all variables in (14) are endogenous and are related to the model’s 
parameters (i.e., economic fundamentals) in a complex fashion. We proceed by solving the 
dynamic general-equilibrium model in order to unravel the long-run relationship between the 
economic fundamentals and the behavior of intangible-asset prices. The long-run behavior of 
intangible assets will hopefully shed light to the question of whether asset prices have 
“escalated” due to “irrational exuberance”, or whether the economic fundamentals are consistent 
with relatively high asset prices. 
 Maximizing the flow of profits π(t,τ) with respect to price and taking into account that goods 
are perfect substitutes adjusted for quality, one obtains the standard limit-price equilibrium 
condition 
 
 Qp wλ α=  (15) 
 
In other words, Betrand competition between the technology leader and the followers generates a 
price for the state-of-the-art quality product which is λ  times the marginal costs of the generic 
producers Qwα . The latter charge a price equal to Qwα , earn zero economic profits and have  
stock market values of zero. 
 Each challenger maximizes the expected discounted profits of engaging in R&D: 
 
 ( , ) ( ) ( )j R jV t t I t dt w R t dtα−   
 
where V(t,t) is the stock market valuation of monopoly profits at the time of discovery (i.e., the 
market value of a start up company manufacturing the state-of-the-art quality product with a 
market share s0), Ij(t)dt is the instantaneous probability of discovering the next higher-quality 
product given by  (6), and wαRRj(t)dt is the total labor costs of producing Rj(t) R&D services.  

                                                 
15 According to Yardani and Quitana (2002) the simple version of (14) has worked well historically because the 
long-term growth component in the denominator of (14) has been offset on average by the risk variable in the 
corporate bond market! 
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We  assume that there is free-entry into each R&D race, which implies that the market value of a 
start up company  is given by  0 ( )V t
 
 0 ( ) ( , ) ( )RV t V t t w X tα≡ = . (16) 
 
4. Resource Conditions  
 
 We assume that workers can move instantaneously between activities within each industry 
and across industries. Since prices and wages are flexible the aggregate demand for labor equals 
its supply at each instant in time and full employment of labor prevails.  In other words, at each 
instant in time, the given labor force, N(t), is split between three uses: manufacturing by quality 
leaders, manufacturing by followers, and R & D for quality improvements. The economy’s full 
employment condition for labor is  
 

 
1 1

0 0

1 ( ) ( ) ( ) ( )( ) ( , ) (1 ( , )) ( )R
c t N t c t N tN t s t d s t d R t d

w wω ω

1

0
ωτ ω τ ω α

λ
⎛ ⎞= + − +⎜ ⎟
⎝ ⎠ ∫ ∫ ω∫  (17) 

 
where the limit–pricing condition (15) has been used. 
  Consider the demand for labor by a quality leader in industryω.  This firm hires 

( ) ( , )Qa Q t s t ωτ  workers, where Q(t) is the industry demand for output (see (4)), ( , )s t ωτ is its 
market share and αQ is the unit-labor requirement in manufacturing.  Substituting Q(t) from (4), 
using the limit-pricing condition(15), and integrating across all industries yields the first term on 
the right-hand-side (RHS) of (17).  The second term on the RHS is the demand for 
manufacturing labor employed by the quality followers. It is derived in the same way as the first 
term with two modifications. These firms enjoy a market share equal to 1 - s(t,τω) and charge a 
price p =αQw.  The third term on the RHS of (17) equals the aggregate demand for workers 
engaged in R&D, where Rω(t) is the amount of R&D services in industry ω and αQ is the 
constant unit-labor requirement in R&D.  Equation (17) completes the description of the model’s 
equations. 
 
5.  Steady-State Equilibrium 
 
 The model has a unique steady-state equilibrium in which several variables of interest are 
constant over time or grow at constant rates. In what follows, it is convenient to analyze the 
steady state behavior of four variables: 0 ( , ) / ( )v V t t N t≡ is the per-capita stock-market value of a 
quality leader with market share , x =  x(t)/N(t) is the per-capita difficulty of R&D, c is per 
capita consumption, and I is the aggregate innovation rate which is the intensity of the Poisson 
process that governs the arrival of innovations in each industry. We also choose the wage of 
labor as a numeraire: w = 1. In the steady-state equilibrium, both I and c are constant over time 
and therefore 

0s

(5) implies r(t)=ρ. The solution to equation (14) is then   
 

 ( ) ( )( )
0

( 1) ( ) ( )( , ) 1 (1 ) v I v t

t

c v N vV t s e e dvδ τ ρλτ
λ

∞
− − − + −−⎧ ⎫⎡ ⎤ ⎡ ⎤= − −⎨ ⎣ ⎦⎢ ⎥⎣ ⎦⎩ ⎭∫ ⎬ , (18)  
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Performing the integration, evaluating the above expression at t = τ, and dividing by N(t) yields   
 

 0
0

(1 )1 1 1( , ) / ( )
( )

s sv V t t N t c c δ ϕλ λ 0

λ ϕ δ ϕ λ ϕ δ ϕ
⎧ ⎫⎧ − ⎫ +− −⎛ ⎞ ⎛ ⎞= = − =⎨ ⎬ ⎨⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭

⎬ , (19)  

 
where ϕ = ρ + I - gN  is the effective discount rate.  
 Expression (19) gives the per-capita value of a manufacturing start up in terms of discounted 
current and expected future earnings. Rewriting the R&D condition (16) and using (6) yields 
another expression that relates  to the per-capita marginal costs of R&D. 0v
 
 0 ( , ) / ( ) Rv V t t N t xα= =  (20) 
 
The full-employment of labor condition can be written as  
 

 
1 1

0 0

( )( ) ( , ) ( ) (1 ( , )) ( )R
cN tN t s t d cN t s t d R tω ωτ ω τ ω α
λ

⎛ ⎞= + −⎜ ⎟
⎝ ⎠ ∫ ∫ + .  

 
This condition is equivalent to  
 

 11 1
( )R
( )R tc s c

N t
α

λ
⎛ ⎞= + − +⎜ ⎟
⎝ ⎠

,  

 
where 0 01 (1 ) /( ) ( ) /( )s s I I s Iδ δ δ= − − + = + + I denotes the average steady-state market share. 

In other words, 
1

0
0 0

( , ) [1 (1 ) ]z Izs s t d s Ie dδ
ωτ ω

∞
− −= = − −∫ ∫ z . 

  Substitute R(t) = X(t)I(t) (see equation (7)) and the expression for s  into the full-
employment condition to obtain  
 

 011 1 R
s I c I
I

δλ α
λ δ

⎡ + ⎤− ⎛ ⎞⎛ ⎞= − +⎜ ⎟⎜ ⎟⎢ +⎝ ⎠⎝ ⎠⎣ ⎦
x⎥ . (21) 

 
 
This equation is the resource condition and provides another equation in v0, I, x, and c. These 
four endogenous variables are determined by the system of four equations (8), (19), (20), and 
(21).   
  The unique steady-state equilibrium is associated with constant growth in each 
consumer’s utility over time. Because goods are perfect substitutes, each consumer is indifferent 
between consuming the state-of-the-art quality product and the product offered by followers. 
Therefore one can substitute for consumer demand c(t)/λ into static utility (2) and obtain the 
following expression for consumer’s instantaneous utility at time t 
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 log ( ) log ( ) log logu t c t Itλ λ= − +  (22) 
 
Differentiating this expression with respect to time and noticing that per-capita consumption 
expenditure is constant in the steady-state equilibrium yields the standard expression for long-run 
growth  

 ( ) ln
( )u

u tg I
u t

λ
•

≡ = . (23) 

 
 According to (23), long-run Schumpeterian growth is the product of two terms, the rate of 
innovation I and the logarithm of the size of quality increments. This is a standard result in 
quality-ladders models of economic growth. Every time an innovation occurs, the instantaneous 
utility jumps by lnλ .  During a time interval dt, the expected number of innovations in a 
particular industry is given by the intensity of the Poisson process I(t). Therefore if the economy 
had only one industry, the instantaneous expected growth of instantaneous utility would be given 
by the right-hand-side of (23).  Since there is a continuum of structurally identical industries in 
the economy, the law of large numbers implies that the aggregate growth rate is deterministic 
and given by the above expression.  
 Next consider the determination of the long-run rate of innovation. From (8), the steady-state 
value of x = X/N is given by   
 

 N
x X N I g
x X N

μ
• • •

= − = − . (24) 

  

Since x is constant in the steady-state equilibrium, 0x
•

=   and equation (24) implies 
 

 NgI
μ

= . (25) 

 
Equation (25) states that the long-run rate of innovation and growth is proportional to the 
exogenous rate of population growth and inversely proportional to the technological parameter 
that determines the marginal contribution of the rate of innovation to the growth rate of R&D 
difficulty. Both of these parameters are invariant to standard policy changes, and therefore long-
run growth is in effect exogenous.  
 Substituting (25) into the definition of ϕ  yields an exogenous effective discount rate 
 

 N
N

g gϕ ρ
μ

= + −  (26) 

 
The system of equations (19), (20), and (21) can be written as   
 

 0
0

1
( )

sv δ ϕλ
λ ϕ δ ϕ

c⎧ ⎫+−⎛ ⎞= ⎨ ⎬⎜ ⎟ +⎝ ⎠⎩ ⎭
 (27)  
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0 Rv xα=  (28) 

 

 

0 ( / )11 1
( / )

N N
R

N

s g gc x
g

δ μλ α
λ δ μ μ

⎡ ⎤⎛ ⎞+ ⎛ ⎞−⎛ ⎞= − +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
 (29) 

 
his system is linear in the endogenous variables and can yield the following closed-form 

p v0
*,  

T
solutions for the per-capita steady-state values of the stock value of a manufacturing start u
R&D difficulty x* and  consumption expenditure c*.  
 

*
0

1v
A

=  (30) 

 * 1

R

x
a A

=  (31) 

 *

0

1
1

( )

c
sA δ ϕλ

λ ϕ δ ϕ

=
⎛ +−⎛ ⎞

⎜ ⎟⎜ +⎝ ⎠⎝ ⎠

⎞
⎟

, (32) 

  
here A depends on virtually all parameters of the model and is given by 

 

w
 

0

0

( / ) ( )
1 ( / )

N N

N

s g gA
g s

δ μλ ϕ δ ϕ
λ δ μ δ ϕ

⎧ ⎫⎛ ⎞ ⎛+ +⎪ ⎪= − +⎨ ⎬⎜ ⎟ ⎜− + +⎪ ⎪⎝ ⎠ ⎝⎩ ⎭ μ
⎞
⎟
⎠

. (33) 

 

arameter A is always positive because the first term in curly brackets exceeds unity and the 
es 

roposition 1: There exists a unique steady-state equilibrium with the following characteristics: 

b. us, bounded, 

 
ny policy that affects the steady-state value of per-capita R&D difficulty x results in 

eter 
on,  

N
Conse

 
P
second term is less than unity. The following proposition summarizes the steady-state properti
of the model. 
 
 
P

a. The rate of innovation I, per-capita difficulty of R&D x, per-capita market value of a 
manufacturing start-up v0, per-capita consumption expenditure c, wage of labor w, 
and per-capita R&D investment R(t)/N(t) are all constant over time. 
The steady-state scale-invariant Schumpeterian growth gU is exogeno
constant over time, and directly proportional to the growth rate of population gN . 

A
transitional (temporary) changes in the innovation rate I. For instance, consider a param
change that increases the steady-state value of x, say an increase in the magnitude of innovati
λ. Equation (24) implies that, during the transition, the rate of growth of x will be positive (i.e., 

0x
•

> ) and this can happen only if I(t) temporarily exceeds it long-run value g  /μ . 
quently, the rate of innovation has to rise temporarily. A similar reasoning implies that a 

permanent decline in x is associated with a temporary decline in the rate of innovation. Of 
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course, the effect of changes in x on transitional Schumpeterian growth depend not only on
changes in the rate of innovation I but also on changes in the growth rate of per-capita 
consumption expenditure c (see equation 

 

out 
ion 

roposition 2: The long-run per-capita R&D difficulty x, and the transitional rate of innovation 

a. increase in the size of innovations λ, in the initial market share s0, and in the rate of 

b. e discount rate ρ, and in the R&D unit-labor requirement αR 
 

roposition 3: The long-run price of intangible asset associated with a manufacturing start up 

a. increases  in the size of innovations λ, in the initial market share s0, and in the rate of 

b. ve discount rate ρ, and is independent of the  R&D unit-labor 

 
ropositions 2 and 3 reveal the general equilibrium links among intangible-asset prices, total 

sset 

 ρ) 

tangible-Asset-Price Dynamics. 

The steady-state equilibrium has several novel properties. In each industry new products 

 

 

ial markets play a pivotal role in this economy: They channel consumer savings 

 with 

(22)). These changes cannot be examined with
analyzing the transitional dynamics of the model which are complicated (due to the introduct
of gradual product replacement) and beyond the scope of this paper. Differentiating equations 
(30), (31) and taking into account (33) yields the following propositions: 
 
 
P
I(t): 

technology adoption δ; 
decrease in the subjectiv

 
P
v0:  

technology adoption δ; 
decreases in the subjecti
requirement αR. 

P
factor productivity growth, and the degree of new product diffusion. Economies with faster  
product-replacement rates (i.e., higher δ  and/or higher s0 ) enjoy higher long-run per-capita a
prices and higher transitional innovation rates. The same holds for economies experiencing 
larger innovations (higher λ). Economies with higher subjective discount rates (higher r(t) =
that discount the future more end up with lower per-capita intangible-asset prices.  
  
6. Long-run In
 
 
are discovered through R&D races, old products are replaced gradually by higher quality ones, 
and firms are born and die. Temporary monopoly profits fuel innovation in a highly uncertain 
environment. The arrival of innovations in each industry is governed by a Poisson process with
intensity equal to the rate of innovation. The duration of temporary monopoly power associated 
with each newly discovered product is random and exponentially distributed. R&D resources and
manufacturing output measured in units of labor increase exponentially over time at the rate of 
population growth although the rate of growth of per-capita utility remains constant over time. 
Consequently the model captures the essence of Schumpeter’s (1942) process of creative 
destruction.  
 Financ
into firms engaged in R&D investment, diversify industry-specific risk associated with the 
introduction of new products and determine intangible-asset prices. The latter are associated
the valuation of monopoly profits earned by firms producing the state-of-the-art quality product 
in each industry and distributed back to stockholders as dividends. Like other Schumpeterian 
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growth models, all agents have rational expectations, each consumer maximizes her discounte
lifetime utility, firms maximize expected discounted profits, all prices are flexible and all 
markets clear instantaneously.  However, unlike other Schumpeterian growth models, the 
introduction of a gradual (as opposed to an instantaneous) product replacement mechanism
rise to nontrivial long-run dynamics for intangible asset prices. We explore these properties by 
focusing on the steady-state valuation of monopoly profits (i.e., intangible asset prices) and on 
the price earnings (P/E) ratio.  In order to facilitate the economic intuition or the results, we 
would like to introduce additional notation. Denote with T t

d 

 gives 

τ= −  the age of a typical quality 
leader; and using equation (10), denote with 0 0( , , ) (1 T)s T s e δζ δ =  the potential increase in 
market share of a quality leader, whose age is
 Performing the integration of equation 

−−
 T. 

) and substituting (32) yields a general-

 

(18
equilibrium expression for the steady-state value of an intangible asset: 
 

1

( 1) 1 ( )( , ) * ( )

1 ( ) 1 (0) (

TV T t c N t

T
A

λ ζ
λ ϕ δ ϕ

ζ ζ
ϕ δ ϕ ϕ δ ϕ

−

⎡ ⎤−
= −⎢ ⎥+⎣ ⎦

⎡ ⎤ ⎡ ⎤
= − −⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

)N t
, (34) 

 
here parameter A is given by equation (33) and depends on virtually all exogenous parameters w

of the model. It is obvious that the steady-state value of a typical intangible asset increases over 
time as the size of the economy (measured by the level of population) expands; and the per-
capita value of an intangible asset ( ( ) ( , ) / ( )v T V T t N t= ) is an increasing and concave function
the asset’s age T. In addition, an inc tude of innovations 

 of 
rease in the magni λ  decreases the value 

of A and shifts the age profile of a typical asset upward. The dependence of the age profile on 
other parameters of interest is ambiguous. 
 
 Next we want to analyze the long-run properties of a popular ratio used routinely by 

nanci ) by fi al analysts, the price-earnings (P/E) ratio of an intangible asset.  Dividing equation (34
the earnings of a quality leader [ ]* ( 1)(1 ( )) * ( ) /T c N tπ λ ζ λ= − −   and using (10) yields a general-
equilibrium expression for the P
 

/E ratio of a typical firm:  

 [ ]

1 (
( )

1 ( )

T
P
E T

ϕ ζ
δ ϕ

ϕ ζ

)⎡ ⎤
−⎢ ⎥+⎣ ⎦=

−
. (35)  

 

Consider now the shape of the age profile of the P/E ratio, and its dependence on the 
 of 

 
 
other parameters of the model. The expression in the numerator of (35) is a weighted average
current and expected future market share. Earnings, in the denominator, depend on current 
market share only. Notice that as the age of the firm T increases both of these terms increase, but 
the current market share in the denominator increases faster because /( ) 1ϕ δ ϕ+ <   . 
Consequently the P/E ratio of a manufacturing start up is high and de
overtime. The upper limit of the P/E ratio is obtained by evaluating 

clines monotonically 
   (35) at T = 0  and yields
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(P/E)(0) = [δ + s0 ϕ]/[ s0(δ + ϕ )ϕ] . As the firm’s age approaches infinity its P/E ratio 
approaches (P/E) (∞) = 1/ϕ, the inverse of the effective discount rate. Moreover, the potential 
increase in market share is a monotonic and decreasing function of time and this means that 
younger firms will have higher P/E ratios than older firms.  Differentiating equation (35)  rev
the dependence of the P/E age profile on the model’s parameters. These properties are 
summarized in the following proposition:  
 

eals 

roposition 4: The long-run price-earnings (P/E) ratio:  
ed function of a firm’s age T. 

 in the 

c. /E on the rate of growth of population gN  and the diffusion 

 
he age profile of the P/E ratio inherits the properties of the potential increase in market share 

s 

 

P
a. is a  monotonic, decreasing, convex and bound
b. For any given T, the P/E ratio decreases in the subjective discount rate ρ and

initial market share s0; 
The dependence of the P
parameter δ is ambiguous.. 

T
which is a decreasing and convex function of time. For any given T, a higher discount rate mean
price decreases, hence the P/E ratio decreases. For any given T, a higher initial market share 
means a smaller potential increase in market share, hence the P/E ratio declines. The economic 
intuition for part (c) of proposition 4 requires more discussion. The P/E ratio is discounted future
earnings divided by current earnings. Hence an increase in the effective discount rate ϕ  
decreases the P/E age profile by reducing discounted future earnings. However, an inc a
the rate of growth of population has an ambiguous effect on the effective discount rate: On the 
one hand, a higher population growth rate generates the traditional “market growth effect”, that 
is a faster increase in the rate of market expansion, measured by the population level, reduces the
effective discount rate;  on the other hand, since the long-run risk of default /NI g

re se in 

 
μ=  is 

proportional to the rate of population growth, an increase in gN increases the fau
is the “creative destruction” effect and increases the effective discount rate. Iff 1

risk of de lt, that 
μ < , then the 

creative destruction effect dominates and a higher level of population growth de ses the P/E
age profile. The economic intuition for the ambiguous effect of the market-share growth 
parameter 

crea  

δ  on the P/E ratio is that an increase in δ  decreases the potential increase in m
share but increases the speed at which that remaining market share is acquired. An increase in 

arket 
δ  

reduces the potential increase in market share ( ; )Tζ δ  in the same way as an increase in the 
asset’s age, and therefore it generates a downward shift in the P/E age profile for a given we

/( )
ight 

ϕ δ ϕ+ . However, an increase in δ  reduces the weight attached to the potential market share 
merator of equation  in the nu

r interpretation of the P/E ratio is aided by looking at the composition of stock 
eturns d 

 

(35) which reflects the speed at which the remaining market share 
is acquired and generates an upward shift in the age profile rendering the overall effect 
ambiguous.   
 Furthe
r  over time. Differentiating equation (34) with respect to time, substituting into (14), an
using the definitions of the flow of profits and V(t,T) = v(T)N(t), one can derive the following 
no-market arbitrage expression which holds in the steady-state equilibrium:  
 

1
( 1) [1 ( )] ( ) 1

( ) [1 ( )]N
T g I

v T T
λ ζ δ ϕδ ρ
λ ϕ ζ

−
⎡ ⎤− − +

+ + − −⎢ ⎥−⎣ ⎦
= , (36)  
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he first term in the left-hand-side of equation (36) is the per-dollar divide

offered by a quality leader at time t, which equals the inverse of the intangible asset’s P/E ratio.16 
he next three terms reflect expected capital gains due to population growth, expected capital 

 

 

um. In the 

d 

nt 
 the 

The present paper developed a dynamic-general equilibrium model of Schumpeterian 
cts and with gradual (as opposed to instantaneous) product 

placement. Gradual product replacement is modeled by assuming that a firm that discovers the 

 market 

es, per-
diture, and have an impact on temporary acceleration of the rate of 

ng 

                                                

T nd π(t, T)/V(t, T),  

T
gains due to increased market share, and expected capital losses due to the possible loss of 
leadership to challengers. The right- hand-side of equation (36) is the personal discount rate, 
which equals the market interest rate. Equation (36) states that the expected rate of return to a 
stock issued by a quality leader is equal to the personal discount rate at each instant in time (see 
discussion associated with equations (13) and (15)). As the age of a typical quality leader 
increases the per-dollar dividend increases, but the per dollar expected capital gains declines by
the same amount to ensure that the no market arbitrage condition holds at each instance in time. 
Similar considerations apply to the price sales ratio of a typical quality leader.  
 In models of Schumpeterian growth with instantaneous product replacement the left-hand
side of equation (36) is independent of the age of a quality leader. In those models, the dividend 
rate and the capital-gains rate are constant over time in the steady-state equilibri
present model, however, these terms vary with the age of the quality leader although their sum is 
constant over time. More specifically, a quality leader starts with a small market share, a small 
rate of profits, and a small dividend rate. This firm will enjoy a high rate of capital gains an
high P/E ratio. In other words, new firms with low present market shares and high potential 
market share have all the characteristics of firms populating the new economy. Over time, the 
quality leader enjoys a higher market share and a higher flow of profits, the dividend compone
of the expected rate of return increases, and the P/E ratio declines. Equation (36) implies that
capital-gains component decreases over time to ensure that the total expected rate of return 
remains the same. In other words, loosely speaking, the stock-market value of a quality leader 
starts in a “growth and equity” category and ends up in the “growth and income” category where 
the firm is bigger, older, has a relatively low P/E ratio, and its dividend rate is the largest 
component of its expected return.  
 
7. Concluding Remarks 
 
 
growth without scale effe
re
state-of-the-art quality product starts with an exogenous market share that grows gradually 
overtime following an exponential deterministic process. The gradual evolution of the
share introduces nontrivial asset price dynamics that are absent from previous models of 
Schumpeterian growth.  
 The parameters of the gradual product replacement mechanism-the initial market share 
and the rate of market-share acquisition- affect the long-run values of intangible asset pric
capita consumption expen
innovation and growth.   Intangible assets are associated with the flow of temporary monopoly 
profits generated by the endogenous introduction of higher-quality products. In addition, unlike 
other growth models, the present one generates interesting long-run age profiles of price-earni
and price-sales ratios, dividend rates and intangible-asset appreciation rates. The total expected 
rate of return associated with an intangible asset is constant over time and equals the personal 

 
16 The per-dollar dividend equals the earnings yield in the present model. 
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discount rate. This rate of return can be decomposed into the dividend rate (which equals the 
inverse of the P/E ratio in the present model) and the expected capital gains rate (which reflects 
the expected capital gains due to population growth, the expected capital gains due to increased
market share, and the expected capital losses due to the possible loss of leadership to 
challengers). Young firms start with high P/E ratios, low dividend rates, low market shares, and 
high expected rates of appreciation. Over time, as the market share of a quality leader increases, 
its P/E ratio falls, its dividend rate rises, and the capital gains component of its total ra
declines.  In other words, the introduction of a gradual product replacement mechanism allows 
the standard quality-ladders growth model to capture some of the basic features of the “new” 
economy. 
 Of course, the model’s properties and predictions depend on several restrictive 
assumptions, which simplified the analysis at the expense of empirical validity.  Introducing 
gradual ado

 

te of return 

ption of a general purpose technology would make the model a more realistic, but 
pital 

d 
f 
 

ork 
us consumers and firms,  S-curve diffusion dynamics, industrial shake 

s 

                                                

would not allow the existence of steady-state equilibrium.17  Introduction of physical ca
accumulation would permit to study the differences between tangible and intangible prices an
the evolution of Tobin’s q ratio. This type of inquiry would complement the prominent work o
Laitner and Stolyarov (2003, 2004). Using alternative specifications for the evolution of R&D
difficulty over time would create a richer and more complex picture of the relationship between 
long-run growth and intangible asset prices. The model could also be enriched by incorporating 
the role of venture capital and entrepreneurship following the pioneering work of King and 
Levine (1993a, 1993b).  
 Finally, the assumption of an exogenous initial market share and an exogenous rate of 
diffusion mask several fascinating aspects related to the evolution of market structure: Netw
externalities, heterogeneo
outs, R&D strategies associated with first-mover advantages, incumbent firm’s responses to 
market-share erosion, and asymmetric information considerations are important elements that 
could in principle be incorporated into the model and increase its empirical relevance. However, 
we suspect that these important additions will increase the complexity and tractability of the 
model and might obscure the intuition of some findings. These issues represent fruitful avenue
of future research.  
  

 
17   Petsas (2003) has developed a model of scale-invariant Schumpeterian growth with gradual diffusion of a 
general-purpose technology across a continuum of industries.   

 20



References 
 
Aghion, P. and P. Howitt, (1998), Endogenous Growth Theory, MIT Press 
 
Baily, M. (2002), “The New Economy: Post Mortem or Second Wind”, Journal of Economic 

Perspectives, 16, 2, Spring, 3-22. 
 
Blanchard, O. and S. Fischer, (1989), Lectures in Macroeconomics, Cambridge, MIT Press. 
 
Cambell, J. and R. Shiller, (1998), “Valuation Ratios and the Long-Run Stock Market Outlook”, 

Journal of Portfolio Management, 24, 11-26. 
 
Dinopoulos, E., A. Gungoraydinoglu, and C. Syropoulos, (2005), “Patent Protection and Global 

Schumpeterian Growth”, University of Florida, mimeo. An electronic version of the paper 
can be obtained from http://bear.cba.ufl.edu/dinopoulos/research.html . 

 
Dinopoulos, E. and P. Segerstrom, (1999), “A Schumpeterian Model of Protection and Relative 

Wages”, American Economic Review, 89, June, 450-473. 
 
Dinopoulos, E. and F. Sener, (2004), “New Developments in Schumpeterian Growth Theory”,  

in H. Hanusch and A. Pyka (eds), Elgar Companion to Neo-Schumpeterian Economics, 
Edward Elgar, Cheltenham. An electronic version of the paper can be obtained from 
http://bear.cba.ufl.edu/dinopoulos/research.html . 

 
Dinopoulos, E. and P. Thompson, (1998), “Schumpeterian Growth Without Scale Effects”, 

Journal of Economic Growth, 3, December, 313-335. 
 
Dinopoulos, E. and P. Thompson, (1999), “Scale Effects in Neo-Schumpeterian Models of 

Economic Growth”, Journal of Evolutionary Economics, 9, 157-186. 
 
Dudley W. and J. Hatzius, (2001), “U.S. Investment Boom Goes Bust”, Global Economics Paper 

No. 62, Goldman Sachs. 
 
Hall, R. (2001), “Struggling to Understand the Stock Market”, American Economic Review 

(Papers and Proceedings), May, 1-11. 
 
Helpman E. and Tranjtenberg M. (1998a), “A Time to Sow and a Time to Reap: Growth Based 

on General Purpose Technologies”, in Helpman E. (Ed) General Purpose Technologies and 
Economic Growth. The MIT Press, Cambridge, MA 

 
Helpman E. and Trajtenberg M. (1998b), “Diffusion of General Purpose Technologies”, in 

Helpman E. (Ed) General Purpose Technologies and Economic Growth. The MIT Press, 
Cambridge, MA 

 
Hobijin B. and Jovanovic B. (2001), “The Information-Technology Revolution and the Stock 

Market: Evidence”, American Economic Review 91, 1203-1220. 

 21

http://bear.cba.ufl.edu/dinopoulos/research.html
http://bear.cba.ufl.edu/dinopoulos/research.html


 
Grossman G. and E. Lai, (2004), “International Protection of Intellectual Property”, American 

Economic Review 94, 5, 1635-1653. 
 
Jones, C., (1995), “R&D-Based Models of Economic Growth”, Journal of Political Economy, 

103, 759-784. 
 
Jones, C., (1999), “Growth: With or Without Scale Effects?”, American Economic Review 

(Papers and Proceedings), May, 141-144. 
 
Jorgerson, D., (2001), “Information Technology and the U.S. Economy”, American Economic 

Review, March, 1-32. 
 
Kelly, K., (1998), New Rules for the New Economy, Penguin Books. 
 
King, R. and R. Levine, (1993a), “Finance, Entrepreneurship and Growth: Theory and 

Evidence”, Journal of Monetary Economics, 32(3), 513-542. 
 
King, R. and R. Levine, (1993b), “Finance and Growth: Schumpeter Might Be Right”, Quarterly 

Journal of Economics, v108(3), 717-737. 
 
Klepper, S. and K. Simmons, (1997), “Technological Extinctions of Industrial Firms: An Inquiry 

into their Nature and Causes”, Industrial and Corporate Change, 6, 2, 379-460. 
 
Laitner, J. and Stolyarov, D, (2003), Technological Change and the Stock Market”, American 

Economic Review, 93(4), 1240-1267. 
 
Laitner, J. and Stolyarov, D, (2004), “Aggregate Returns to Scale and Embodied Technological 

Change: Theory and Measurement Using Stock Market Data”, Journal of Monetary 
Economics, 51(1) 191 – 203.  

 
Moore, G., Johnson, P., and Kippola, T., (1999), The Gorilla Game: Picking Winners in High 

Technology, Harper Business, New York. 
   
Oliner, S. and D. Sichel, (2000), “The Resurgence of Growth in the Late 1990s: Is Information 

Technology the Story?”, The Journal of Economic Perspectives, 14, Fall, 3-22. 
 
Schumpeter, J., (1942), Capitalism, Socialism and Democracy, Harper and Row, New York. 
 
Segerstrom, P. (1998), “Endogenous Growth Without Scale Effects”, American Economic 

Review, December, 88, 1290-1310. 
 
Shapiro, C. and H. Varian, (1998), Information Rules: A Strategic Guide to the Network 

Economy, Harvard Business School Press 
 

 22



Shen, P., (2000), “The P/E Ratio and Stock Market Performance”, Federal Reserve of Kansas 
City Economic Review, 85, 23-37. 

 
Shiller, R. (2000), Irrational Exuberance , Princeton: Princeton University Press. 
 
Petsas, I., (2003), “The Dynamic Effects of General Purpose Technologies on Schumpeterian 

Growth”, Journal of Evolutionary Economics 13(5), 577-606. 
 
Yardani, E. and A. Quintana, (2002), “Asset Valuation and Allocation Models” Prudential 

Financial, mimeo 
 
Young, A., (1998), “Growth Without Scale Effects”, Journal of Political Economy, 106, 41-63. 

 23


	2. The Model 
	2.2 Producers 
	2.3 Gradual Product Replacement 


