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Abstract. In this paper we study the mobile removal problem in a cellular PCS network where transmitter powers are con-

strained and controlled by a Distributed Constrained Power Control (DCPC) algorithm. Receivers are subject to non-negligible

noise, and the DCPC attempts to bring each receiver's CIR above a given target. To evaluate feasibility and computational com-

plexity, we assume a paradigm where radio bandwidth is scarce and inter-base station connection is fast. We show that finding

the optimal removal set is an NP-Complete problem, giving rise for heuristic algorithms. We study and compare among three

classes of transmitter removal algorithms. Two classes consist of algorithms which are invoked only when reaching a stable power

vector under DCPC. The third class consist of algorithms which combine transmitter removals with power control. These are

One-by-one Removals, Multiple Removals, and Power Control with Removals Combined. In the class of power control with

removals combined, we also consider a distributed algorithm which uses the same local information as DCPC does. All removal

algorithms are compared with respect to their outage probabilities and their time to converge to a stable state. Comparisons are

made in a hexagonal macro-cellular system, and in two metropolitan micro-cellular systems. The Power Control with Removals

Combined algorithm emerges as practically the best approach with respect to both criteria.

1. Introduction

Future PCS cellular networks will mainly be driven

by high quality channels, high bandwidth utilization,

low power consumption and efficient network manage-

ment. Constrained power control (up-link and down-

link) is one of several major techniques which is being

studied to address these goals.

In PCS, cell sizes are small and transmission power is

limited, exposing the receiver to more severe noise com-

pared to larger cells where higher transmission power is

used. This has been recently incorporated into the model

in [12], where a power constrained control problem in a

cellular network with cochannel interference and recei-

ver noise, has been studied. (A more detailed version of

[12] is found in [13].) The model there, and in this study,

assumes a stationary link gain matrix, which is reason-

able when the power control converges much faster than

the link gain changes. The channel quality is measured

by its Carrier to Interference Ratio (CIR). It is well

known that there is a monotonically increasing relation

between the CIR, and the channel symbol error rate.

Thus, driving the CIR to some CIR target value, is the

same as driving the channel to some capacity target. In

practice, the CIR target is determined by the operator,

based on the error rate that the decoder can tolerate.

As radio bandwidth is a scarce resource, channel allo-

cation schemesmay occasionally over-allocate transmit-

ters to the same channel. The main reason for this is the

fluctuating number of mobiles and their mobility, which

may be hard to predict. This temporary over-allocation

is not necessary something bad, as long as there is a

Dynamic Channel Allocation (DCA) scheme which effi-

ciently copes with this situation. In fact, efficient DCA

will perform frequent re-allocations to achieve high

capacity. Temporarily over-allocating a channel with up

to 20^30%more transmitters than those that can be sup-

ported, may be quite common. A too defensive channel

allocation on the other hand (e.g., conventional fixed

channel allocation), where very few temporary over-

allocations occur, usually leads to low resource utiliza-

tion.

Consequently, in a power control process, when an

over-allocation situation occurs in some channel and not

all transmitters can be supported, some of them have to

be removed from the channel. The removed transmitters

are either transferred to another channel in the same

cell, or to another cell, or being disconnected. Hand-off

actions and disconnections are highly undesirable in cel-

lular networks. Therefore, minimizing the number of

removals, and the time to identify them, is of utmost

importance. This is the problem we focus on in this

paper. Note that in traditional systems with rare mobile

outage, almost any mobile removal algorithm will per-

form equally well. However, for bold channel allocation
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(which requires efficient hand-off), differences among

the algorithmswill bemanifested in practice.

The Distributed Constrained Power Control

(DCPC) scheme in [13] (which is used as a building block

in one of our removal schemes) aims at reducing the

cochannel interference, hence maximizing bandwidth

utilization. It has been shown that, it converges to a

unique power vector, under synchronously and asyn-

chronously power updates. The latter algorithm is

denoted by ADCPC. Also, it has been demonstrated by

numerical examples that asynchronous updates con-

verge faster than synchronous updates. These algo-

rithms have the following properties. For every CIR

target and from every initial power vector, the updated

powers converge to a unique positive power vector,

under which some receivers exactly achieve their CIR

target (i.e., supported transmitters), and the others are

below their CIR target (i.e., non-supported transmitters).

When all transmitters can achieve their CIR target,

then the powers converge to a power vector where all

CIRs equal their target. That is, all the transmitters are

supported at their minimum required transmission

power. Under any event, for any supported transmitter,

DCPC and ADCPC drive its power to the minimum

level where its corresponding receiver has a CIR which

equals the CIR target. For any non-supported transmit-

ter, the algorithm drives its power to the maximum

power level (i.e., a power level which brings the transmit-

ter as close as possible to its CIR target). Observe that

the latter property may lead to extremely oversized non-

supported set of transmitters, as will be shown in the

examples in section 3. Hence, simply removing the non-

supported set is over-doing (see the numerical examples

in section 5), and a good removal algorithm is needed.

Other studies of centralized and distributed power

control schemes are given in [1,2,4,8,10,11,17^22]. A

related problem is mobile admission control, where a

newly arrived mobile has to be admitted to, or rejected

from the system. Clearly, the admission policy deter-

mines the potential number of removals. A defensive

admission policy will result in rare removals, whereas an

offensive one, will require more frequent removals.

Both are appropriate, but offensive ones could better uti-

lize the resources. The mobile admission problem is

addressed in a complementary paper [3], where we derive

a new Soft and Safe admission algorithm, under which

the CIR of the active receivers does not drop below the

target, at anymoment of time. A similar approach to the

admission control problem is also taken in [5].

Previous studies on mobile removals have been con-

fined to noiseless and unconstrained power systems, and

have derived centralized algorithms which assume the

knowledge of the link gains. In a recent paper, [16], a

family of centralized single transmitter removal algo-

rithms has been proposed. Among those, the algorithm

with the smallest outage probability is called SMIRA. It

computes the largest eigenvalue of the gain matrix, ��,

which relates to the maximum achievable CIR, �

according to � � 1=��� ÿ 1�. Thus, it can determine

whether or not all transmitters can be supported. If they

can, then the eigenvector (up to a scaling constant),

serves as the required powers. Otherwise, it removes one

transmitter as follows, and re-iterates without that

transmitter. To remove a transmitter, SMIRA associ-

ates to each transmitter a value which equals the maxi-

mum between its received interference, and its transmitted

interference. The assumed transmission power vector is

the eigenvector. Then, it removes the transmitter with

the largest value. The study in [16] has demonstrated by

numerical examples, that SMIRA outperforms a Step-

wise Removal Algorithm (SRA), which has been earlier

proposed in [21]. The specific SRA to which SMIRA has

been compared, is the following. Each transmitter i is

associated with an index which equals Maxfthe sum of

link gains in row i; the sum of link gains in column ig,

where the rows and the columns are those from the gain

matrix. SRA removes the transmitter with the largest

index. Note that the index in SRA does not incorporate

the transmission powers.

In practice, removal algorithms must be distributed,

and be based mainly on local measurements. Further,

they must efficiently cope with transmitters mobility.

These requirements are not met by the centralized algo-

rithms above. Our objectives in this study, are therefore

the following:

� To show that the removal problem isNP-complete.

� To provide a thorough examination and comparison

among sensible removal algorithms.

� To show how to implement the algorithms (SMIRA

and SRA, included) in a distributedmanner.

� To devise a distributed algorithm which removes

mobiles ``on-the-fly'' during the power control, and

uses the same amount of local information as DCPC

does.

To demonstrate the performance of the ``on-the-fly''

removal algorithm (referred to as Distributed Gradual

Removal DCPC), we compare it to other distributed

algorithms, and to a large class of algorithms which use

more information. (This will put its performance in a

wider perspective.) The comparison is done for a classi-

cal hexagonal macro-cellular system, and for a Manhat-

tan-likemicro-cellular system.

We confine our framework to the model which has

been set in [12]. To evaluate feasibility and computa-

tional complexity, we adopt a paradigm where radio

bandwidth is scarce and base stations are inter-con-

nected by a high-speed wire-line network. Base stations

aremanaging and distributively controlling the PCS net-

work by exchanging and sharing information. Particu-

larly, transmitter control actions are computed by the
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base stations, which then instruct the transmitters on

their actions.

Previous studies have examined only step-wise

removalalgorithms.However, it is conceivable thatother

types of algorithms may work well. One way to classify

them is as follows. Algorithms which are invoked only

whenreachingtoastablepowervectorunderapowercon-

trolscheme(e.g.,DCPC).Thesealgorithmscanbefurther

classified into those that may remove at most one trans-

mitter,One-by-oneRemovals; and those thatmay remove

multiple transmitters, Multiple Removals. After

removal(s), both types resume the power controlwith the

remaining set of transmitters. After reaching again to a

stable power vector, the removal algorithm is re-invoked.

A third and quite attractive class, consists of algorithms

that combine transmitter removals with power control.

That is, Power Control with Removals Combined. Note

that combining resource allocation decisions with power

control is also used for cell-site selection [15,20], and

mobileadmission[5,3].

From our case studies it turns out that, there is a

trade-off between the number of removal steps until all

transmitters are supported, and the outage probability.

That is, one-by-one removals tend to have a lower out-

age probability, but they are clearly slower. It is most

intriguing to investigate if there is a fast algorithm which

also have low outage. Apparently, and we found it quite

surprising, the Power Control with Removals Combined

algorithm is the fastest, and has outage probability

which is very close to that of the optimal removal algo-

rithm in amacro-cellular hexagonal system.

Since the problem will be shown to be NP-complete,

we search for good heuristic algorithms. The quality of

removal decisions which do not rely on fairly good esti-

mators of the link gains, may be limited. Therefore, we

propose a computational paradigm which is feasible in

the near future, and which facilitates the estimations of

the link gains. We show that within this computational

paradigm, a special form of the Asynchronous DCPC

(ADCPC) algorithm can be used to evaluate the link

gains with almost no additional computation. This will

be used below, to show how SMIRA can be implemented

distributively. It will also serve as a building block for

new removal algorithms. (Note that SMIRA has been

originally evaluated under noiseless and unconstrained

powers, whereas we deal with receiver noise and con-

strained power.)

In section 2, we introduce the model and general defi-

nitions. In section 3, we derive basic results laying out

the foundation for the algorithms we are proposing. In

section 4, we specify the algorithms, and in section 5 we

compare the algorithms with respect to their outage

probabilities and their time to converge to a steady state.

Comparisons are made in a hexagonal macro-cellular

system, and in two metropolitan micro-cellular systems.

Finally, we present our conclusions in section 6.

2. System model

We restrict our definitions to the uplink case (from

mobile to base). The downlink is modeled in the same

way, with the appropriate notational changes. The link

propagation and the receiver noise variables are clearly

different, but the model is still the same, and the results

in this paper hold true for the downlink case as well.

Consider a cellular radio system and focus on a gen-

eric channel (a specific frequency or time slot). Assume

that channels are orthogonal, so adjacent channel inter-

ference is negligible. Let N � f1; 2; :::;Ng, be the set of

transmitters using this generic channel, and let

p � �p1; p2; . . . ; pN� denote the transmission powers used

by the mobiles communicating with their corresponding

base stations. We will add a time index to the powers,

whenever necessary. That is, p�t� � �p1�t�; . . . ; pN�t��.

The transmission power level is bounded from above by

p.

Denote the link gain matrix (see, e.g., [10] and [21])

by G � �gij�, where gij is the gain of the radio link from

transmitter j to base i, 1Wi; jWN. All link gains assume

values in the semi-open interval �0; 1�. Let

��� � ��1; . . . ; �N�, be the receiver noise vector at the base

stations. The noise vector in general is non-negative, and

we require that at least one element is positive. As dis-

cussed in the Introduction, the link quality is measured

by the Carrier to Interference Ratio (CIR). For a given

power vector p, theCIR at the base station used by trans-

mitter i is given by

i �
pigii

�i �

P
j:j 6�i

gijpj

; 1WiWN :

For notational convenience, we represent i by

i �
pi

�i �

P
j
aijpj

; 1WiWN ; �1�

where �i � �i=gii, and

aij �
gij=gii ; if i 6� j ;

0 ; if i � j .

�

The matrix and the vector of the normalized gains and

noises are denoted by A � �aij� and by ��� � ��1; . . . ; �N�,

respectively. Also let p � ��p; �p; . . . ; �p�.

We adopt the standard convention for matrix and

vector inequalities. That is, for every two matrices or

vectors A and B, AWB, if the inequalities hold element-

wise; and A < B, if AWB and strict inequality holds for

at least one of the elements.

We say that a power vector p supports all transmitters

at a CIR target 
t
, if and only if

pX
t
�Ap� ���� :

That is, each receiver i has aCIR iX
t
.

Other useful notations are the following:

C�� � fpX0 : pX�Ap� ����g :
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C
ÿ

�� � fpX0 : p < �Ap� ����g ;

S�� � C�� \ B�p� ;

S
ÿ

�� � C
ÿ

�� \ B�p� ;

whereB�p� � fp : 0WpWpg.

These sets are graphically depicted in [13], and have

the following geometrical interpretations. For W

�

,

the set C�� is an infinite polyhedral cone with tip at p
�

,

where all receivers attain i � . The set C
ÿ

��, is the

inverse polyhedral cone truncated by the non-negative

Euclidean subspace. For  > 

�

, the set C�� is empty,

and the set C
ÿ

��, is the non-negative part of the polyhe-

dral cone generated by theN hyper-planes i �  (where

every i, 1WiWN, generates one hyper-plane). The sets

S�� and S
ÿ

��, are the C�� and C
ÿ

��, truncated by the

feasible power vectors boxB�p�, respectively.

Next, we describe the power updates made by the

algorithms DCPC and ADCPC, when the target CIR is



t
. Given the power vector at time t, p�t�, and the set of

transmitters updating their powers at time t� dt, U�t�,

then

pi�t� dt�

�

minfp; 
t
�
pi�t�

i�t�
g �

minfp; 
t
��i �

P

j2N
pj�t�aij�g ; if i 2 U�t� ,

pi�t� ; otherwise .

8

>
<

>
:

�2�

Note that U�t� is an arbitrary set. Thus, any asynchro-

nous power update is allowed (subject to someweek con-

ditions which exclude infinitely long intervals where a

power is not being updated). If U�t� � N , for every

update instance t, then we get the synchronous DCPC

algorithm. Otherwise, we get an arbitrary asynchronous

version (ADCPC). A special ADCPC version, which

we will use below, is the Round Robin ADCPC (RR-

ADCPC), where transmitters update their powers one at

a time, and in aRoundRobin fashion.

Also note, that pi�t�gii=i�t� is the interfering power

(including the background noise) at receiver i. Since the

receiver interference power can be measured, and gii can

be detected by the transmitter from the base station pilot

signal (assuming a reciprocal system), this algorithm

can be implemented in a distributed manner. To exclude

non-practical cases where a transmitter cannot over-

come its receiver background noise, we assume that

p > 

t
�i; 8i.

It has been shown in [12], that for any given 

t
,

DCPC andADCPC converge to a unique positive power

vector determined by the fixed point solution to

p � minfp; 
t
�Ap� ����g: �3�

A power vector p which satisfies the fixed point equa-

tions in (3), will be referred to as the stationary power vec-

tor. When all transmitters can be supported, the DCPC

(andADCPC) converge to the fixed point solution to

p � 

t
�Ap� ����: �4�

It will be useful to annotate the stationary power vector

with its corresponding set of transmitters. That is, for

every subset of transmittersN 0 � N , p
N 0

will denote the

stationary power vector of a system which consists only

of the set N 0. Also, let SN 0
be the subset of transmitters

which are supported (at 
t
) under the stationary power

vector p
N 0

(i.e., in a system where DCPC runs only with

the set of transmitters N 0). Note, that this corresponds

to a gain matrix and a noise vector which are obtained

fromA and ���, respectively, by removing the columns and

the rows which do not correspond toN 0. The respective

gain matrix is denoted by A
N 0
. From [12], it follows

that

pi � p ; 8i 2 S
N 0

; �5�

whereS denotes the complement set ofS.

We note here, that all the results which have been

obtained in [12] (from which some are cited here) holds

in the following more general model. Each receiver i, has

its own CIR target 
t

i
, and each transmitter i, has its

own upper and lower power constraints, p
i
and p

i

,

respectively.

3. Basic results

In this sectionwe develop the foundation for the heur-

istic algorithms which we study. The proofs of all the

assertions below are given in the Appendix. To justify

our heuristic approach we start by showing that the

transmitter removal problem isNP-complete.

Proposition 1. The problem of finding the maximum

number of transmitters that can be supported at a given

CIR target, 
t
, is anNP-complete problem.

Next, we demonstrate the need of transmitter

removal algorithms even when the DCPC power control

scheme is being used. We will do so by showing that the

set of non-supported transmitters under DCPC can be

large, while only one removal brings the rest to their CIR

target. Thus, simply removing the non-supported set

may result in toomany unnecessary removals. First con-

sider a case with two transmitters where both of them

cannot be supported in the same channel. The power

regions indicating where each transmitter is supported,

is depicted in Fig. 1. Let p be the maximum transmission

power, and C
ÿ

�� be the region where both transmitters

are not supported, given a target CIR of . When �p; p� is

in the interior of C
ÿ

��, DCPC converges to �p; p�, where

both links are not supported. Clearly, by setting off the

power of one of the transmitters, or driving the powers
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to a point on the apex of the region C
ÿ
��, result in one

supported transmitter.

A similar example can be constructed with any num-

ber of transmitters, where DCPC converges to

�p; . . . ; p�, where none are supported, while there are

powers where all but one, are supported. Another case

with three transmitters, is where the DCPC stationary

powers support only transmitter 3, while there are

powers that can support transmitters 1; 2. This occurs

when �p; p; p� 62 C
ÿ
��, but �p; p; x� 2 C

ÿ
��, for

0 < xW� < p. In this case, DCPC converges to �p; p; ��,

where only transmitter 3 is supported. It is not hard to

see that there is a power vector �p; p; x�, x < �, where

transmitters 1 and 2 are supported.

The rest of this section is sub-divided into three parts.

In the first one, we show how to evaluate the matrix A

during thepowerupdatesmadeby theRR-ADCPCalgo-

rithm. In the second subsection, we derive a sufficient

condition to test if a subset of transmittersN 0 � N , can

be supported under the stationary power vector p
N 0

(i.e.,

the fixed-point solution corresponding to the system

with transmitter setN 0). In the third subsection, we pro-

pose a generic DCPC algorithmwith Gradual Removals

(GR-DCPC). We show that a sub-class of these algo-

rithms converge to a unique stationary power vector,

under which the set of supported transmitters contains

the supported set under theDCPCalgorithm.

3.1. Gain matrix derivation

Consider the RR-ADCPC power update algorithm,

and agree to identify the power update times with their

corresponding sequential numbers. Thus, t � 1; 2; 3; . . .

denote the power update times. By definition, at times

t � k �N � j, k � 0; 1; 2; . . ., only transmitter j, 1WjWN,

updates its power.

Thus, from (12.) and (2) it follows that for every

update step �k �N � j�; k � 0; 1; 2; . . .,

pi�k �N � j�

i�k �N � j�
ÿ

pi�k �N � j ÿ 1�

i�k �N � j ÿ 1�

� aij�pj�k �N � j� ÿ pj�k �N � j ÿ 1��; 1Wi; jWN:

�6�

Note that pi=i is the interference which can bemeasured

by receiver i, and that each base i, knows its correspond-

ing mobile transmission power pi, at any time. Thus, by

distributing the transmitter powers, every base i can

compute the gains aij; 1WjWN, after every update time

�k �N � j�; k � 0; 1; 2; . . .. To get the full matrix A in

each base, the vectors ai;: � �ai1; . . . aiN�, are distributed

among the base stations through the wire-line connect-

ing network.

Note that RR-ADCPC is not a strict requirement to

obtain the link gains. It is only necessary that the powers

are being updated one at a time. Also note that this dis-

tributed computational procedure ofA is enabled by our

paradigm, and it is applicable to non-stationary gain

matrices. It uses only the fact that each link gain stays

stable between two consecutive power updates of the

corresponding transmitter.

Hereinafter, we assume that the matrix A is readily

available for our algorithms (if needed).

3.2. Bounds on the maximum removals

In this subsection we derive measure functions which

facilitate transmitter removal algorithms, and a suffi-

cient condition to test if a subset of transmitters can be

supported. The latter will be used to derive an upper

bound on the number of required removals.

For every feasible power vector p, and every subset

N 0 � N , define

�j�p� � 
t
��j � pj

X

i2N

aij� ÿ pj �1WjWN� ;

�j�p� � 
t
��j �

X

i2N

ajipi� ÿ pj ;

D
N 0
�p� �

X

j2N 0

�j�p� : �7�

Also, let

p
N =N 0

i
�

p
N

i
; if i 2 N 0 ,

0 ; otherwise .

�
�8�

Note that �j�p� measures the total excess interference

power resulting from the transmission of transmitter j,

and �j�p� measures the excess interference power which

the receiver of j is experiencing. The sumD
N 0�p�, simply

measures the total excess interference power which all

the receivers in subsetN 0 are experiencing.

Fig. 1. Two transmitters where both links are not supported under

DCPC.
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To simplify the notation we agree to use p
N =N 0

in

two ways. One is a N tuple whose elements are defined in

(8), and the other is the N0 tuple, which is the reduction

to the elements corresponding to the set N 0. The same

notational conventionwill be used for other vectors.

Some useful properties of these measures, which will

be used later on, are given below. By exchanging the

summation order, it is easy to verify that

D
N
�p� �

X

j2N

�j�p� �

X

j2N

�j�p� :

Also, from (3) we have

�j�p
N
�X0 ; for 1WjWN ;

D
N
�p
N
�X0 ;

D
N
�p
N
� � 0 ; if and only if all transmitters are

supported under the stationary

power vector : �9�

After removing some of the transmitters, one would

expect that the new stationary power will not increase.

This is indeed shown in the following Lemma, and will

be used for subsequent results.

Lemma 2. For every subset N 0 � N , we have p
N 0

Wp
N =N 0

.

A direct consequence of Lemma 2 is that all transmit-

ters in N which are supported under p
N
, and are not

removed from the system, will remain supported under

the new stationary power vector p
N 0
. This is stated in the

Corollary below.

Corollary 3. For every subset N 0 � N , we have

S
N
\N 0 � S

N 0
.

In the next theorem we derive some relations between

the measure functions D
N 0�p

N =N 0�, D
N 0�p

N 0� and

D
N
�p
N
�, which will justify their use for transmitter

removals. The algorithms which are based on this Theo-

rem are presented in section 4.

Theorem 4. For every subset N 0 � N , we have

D
N 0�p

N =N 0�WD
N
�p
N
�, andD

N 0�p
N 0�WD

N
�p
N
�.

From the assertion in Theorem 4 and (9), the func-

tions D
N 0�p

N =N 0� and D
N 0�p

N 0� measure in some

respect, how likely a subset of N 0 transmitters can be

supported under its stationary power vector. Notice

however, that given the stationary power p
N
, the func-

tions D
N
�p
N
� and D

N 0�p
N =N 0� are known, whereas

D
N 0�p

N 0� is not. Thus, the former ones can be used to

evaluate a removal set. In section 4, we show how they

facilitate removal algorithms. Note also, that

D
N 0�p

N =N 0�may drop below zero.

A useful device in a removal algorithm is a fast com-

putational procedure to test whether or not a subset of

transmitters can be supported. It would be nice to have a

device for this purpose, which is based just on the func-

tion D
N 0�p

N =N 0�. However, we were not successful in

finding such one. Nevertheless, a simple and fast test

function which is based on the stationary power vector

p
N
, is given in the next theorem.

Theorem 5. For every subset N 0 � N , if


t
��i �

P
j2N 0

aijp
N

j
�Wp for every i 2 N 0, then

S
N 0
� N 0 (i.e., all transmitters in N 0 are supported

under p
N 0
).

In section 4, we show how to apply Theorem 5 to

derive a non-trivial upper bound on the number of

required removals.Wewill also use it for selectingmulti-

ple removals.

3.3. A generic gradual removal DCPC

In this subsection, we propose a removal scheme

which combines power control with removal decisions.

This approach is quite attractive as it can be implemen-

ted as an on-the-fly algorithm. Furthermore, it can be

assembled with mobile admission and cell-site selection

[15,20,5,3], which also combine their decisions with

power control.

The generic combined scheme (Gradual Removals X

DCPC (GRX-DCPC)), which we propose, consists of

two elements. One is a specification of those instances

where removal decisions are made before continuing

with the power control. The other, is the arbitration rule

used to select a single removal. The removal instances

whichwe use, are thosewhere at least one of the receivers

experiences an interference power which cannot be

over-come by its corresponding transmitter (due to the

power level constraint). For the arbitration rule we leave

a lot of freedom, and it willmainly depend on the amount

of additional measurement and information distribution

one is willing to invest. A precise definition of the algo-

rithm is given below. The main idea of the GRX-DCPC

algorithm is to remove transmitters that cannot possibly

be supported underDCPC, in an early stage of the power

update process. Thus, reducing interference and poten-

tially leading to a larger set of supported transmitters.

The X in the notation GRX-DCPC stands for either R

(Restricted), or N (Non-restricted), which classifies the

set fromwhich amobile is being removed.

We show that under any algorithm in GRR-DCPC,

the power vectors converge to a stationary power vector

under which all remaining transmitters are supported.

Moreover, every transmitter which is supported under

DCPC, is also supported under this scheme. The conver-

gence though, holds for every algorithm in GRX-

DCPC.

In the following definition we adopt a programming

pseudo-code notation X  Y to denote that X is substi-

tuted by Y . Also, the set R below denotes the set of

removedmobiles.
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GenericGRX-DCPCalgorithm

Start with the complete set of transmitters N and set

p�0� 2 C
ÿ

�
t
�, R � ;, and k � 0. For every step k,

update the power vectors as follows, and stop when any

pre-determined convergence condition is satisfied:

(1) For every i 2 N nR; Set pi�k�1� � minfp; 
t
pi�k�=

i�k�g (as DCPC does), and for i 2 R; set

pi�k� 1� � 0.

(2) Let	 � fj : p < 
t pj�k�

j�k�
g. If	 6� ;, then take the fol-

lowing meta-step:

(2.1) If (X=R, i.e., Restricted), set 
 � 	. Other-

wise (i.e., Non-restricted), set
 � N nR.

(2.2) Remove from 
 a single transmitter j0,

according to any given arbitration rule.

(2.3) Set pj0
�k� 1�  0, andR  R[ fj

0
g.

(3) Set k �k� 1� and go to 1.

In the following theorem we prove that the GRR-

DCPC algorithm (i.e., for X=R) above, converges to a

stationary power vector, which supports at least those

transmitters which are supported by the DCPC station-

ary power vector.

Theorem 6.Under either synchronous or asynchronous

power updates, theGenericGRR-DCPCalgorithm con-

verges to a stationary power vector with the following

properties:

(a) All the remaining transmitters are supported with

the target CIR, 
t
.

(b) The set of remaining transmitters contains the set

of transmitters which are supported by the station-

ary power vector of DCPC.

Remark 1. The result that under the Generic GRR-

DCPC algorithm,R � S
N
, relies heavily on the fact that

the initial power vector is in the set C
ÿ

�
t
�. In practice,

this is a drawback of the algorithm, which will be

addressed in subsection 4.3

4. Removal algorithms

In this section we derive one-by-one, multiple, and

power control combined removal algorithms. The algo-

rithms will be based on the properties proven in Theo-

rems 4, 5 and 6.

Recall that the one-by-one and multiple removal

algorithms are taking the following approach.An under-

lying power control without removals is assumed. It

updates transmitter powers, and converges to a station-

ary power vector. When reaching a stationary power

vector, some of the transmitters may not be supported,

in which event a one-by-one or a multiple removal algo-

rithm is invoked. The removal algorithm removes one

or more transmitters, and the power control resumes

with the remaining ones. After reaching to a new station-

ary power vector, the removal procedure is repeated. A

removal algorithm specifies how to select the set of

removals under the stationary power vector.

In the first subsection, we specify an algorithm to

compute an upper bound,R
�

, on the number of required

removals. This upper bound is used to set an upper limit

on the number of removals in a multiple removal algo-

rithm. The removal algorithms are specified in the sec-

ond subsection. In the third subsectionwe specify a set of

power control algorithms which combine power updates

with removals. This is a novel approach, which also

emerges as practically the best one in our numerical

examples.

4.1. Upper bound to the number of removals

To compute an upper bound R
�

, to the number of

required removals, we assume that the stationary powers

and the size of the non-supported set j S
N
j, are given.

This information needs to be passed to the base stations

which execute the algorithm. We also assume that the

matrixA has been computed by the procedure presented

in section 3.1, and is available for any of the base stations

which executes the algorithm. The algorithm can be exe-

cuted by a single, or by all of the base stations. In the lat-

ter case, no distribution of the result is needed. Note

that a trivial upper bound toR
�

is j S
N
j.

An algorithm to derive an upper bound

For every k � 0; 1; . . . ; j S
N
j ÿ1, do:

1. Check the condition in Theorem 5 for all subsets

N 0 � N of cardinality k.

2. If a set which satisfies the condition is encountered,

then stop and setR
�

� k.

3. Otherwise, increment k and continue.

4. If the condition in Theorem 5 is not satisfied for any

k, then set R
�

�j S
N
j. (In this case, the optimal sub-

set of removals is S
N
.)

Observe that during the computation, candidate sub-

sets for removals are also identified. The computational

complexity of this algorithm is O�N
jS
N
jÿ1
�. Thus, it is

tractable only for small sizes of non-supported sets. For

cases where the set S
N
is too large, one may stop looping

when k reaches to a pre-determined threshold. When

this occurs, simply set R
�

to the trivial upper bound

j S
N
j.

4.2. One-by-one and multiple removals

From (9), Theorem 4 and its subsequent discussion,

the functionsD
N 0
�p
N =N 0

� andD
N

�p
N

�measure in some

respect, how likely the subset of transmittersN 0, can be

supported if the others are removed. The precise algo-

rithm is specified below, and it assumes the knowledge of

the stationary power vector, and the matrix A. As for

the upper bound, the latter is being computed by the pro-
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cedure presented in section 3.1. The algorithm can be

executed by a single, or by all of the base stations. In the

latter case, no distribution of the result is needed.

We start by showing that the one-by-one SMIRA

algorithm can be derived based on the measure function

D
N
�p

N
�. The lower it is being reduced by removing a sin-

gle transmitter j, the better is the prospect to support

the remaining transmitters N n fjg. Observe, that it can

be reduced either by removing an element �j�p
N
�, or by

removing an element �j�p
N
�. Thus, the transmitter j

which attains the

max

j2N

fmax��j�p
N
�;�j�p

N
��g

is a natural candidate for removal. This selection criter-

ion is equivalent to the SMIRA algorithm. Note how-

ever, that here it is extended to the case with power

constraints and receiver noise.

In the sequel, the number of removals,R, are parame-

terized into a unified algorithm. Thus, one-by-one and

multiple removals are special instances of the same algo-

rithm. The parameter R can be determined in several

ways. One is to set R � minfR
�
;Mg, where M is a user

defined parameter reflecting his personal trade-off

between fast and safe. Another is to set R � bqR
�
c,

where 0WqW1, is a user defined proportion. (Here, bxc

denotes the largest integer smaller than or equals x.)

From the discussion following Theorem 4, a more

promising measure function than D
N
�p

N
�, is the differ-

enceD
N
�p

N
� ÿD

N
0�p

N =N
0�. Again, the lower it is being

reduced by removing a subset of transmitters N n N
0
,

the better is the prospect thatN
0
will be supported. The

new removal algorithm (referred to as, Single or Multi-

ple Accumulative Removals Technique -SMART(R) ),

is then as follows:

SMART(R) algorithm

Given the number of required removals R, remove the

setN n N
0
withR transmitters which attains

max

N
0
�N

fD
N
�p

N
� ÿD

N
0

�p
N =N

0

�g

� max

N
0
�N

f

X

j 62N
0

��j�p
N
� � �j�p

N
� � �p

N

j
ÿ 

t
�j��g :

The computational complexities of SMART(1) and

SMIRA are the same, and are dominated by the compu-

tation of f�j�p�; �j�p�; 1WjWNg. This is done in O�N
2

�

basic operations. Sorting them can be done inO�NlogN�

basic operations. Thus, the computational complexity

of SMART(1) isO�N
2

�.

For R > 1, the computational complexity is domi-

nated by N
R
, an upper bound on the number of subsets

of size R. An O�N
2

� approximation is to remove the R

transmitters with the R largest ��j�p
N
� � �j�p

N
�

��p
N

j
ÿ 

t
�j��.

Remark 2.Note that the sum�j�p
N
� � �j�p

N
� in the cri-

terion above equals the transmitting interference plus

the receiving interference, minus 2p
N

j
. In the criterion

above, one p
N

j
is canceled out, and the other remains. It

would make more sense to factor out also the other p
N

j
.

The reason is that if two subsets result in equal reduc-

tions, we would rather remove the one with the higher

sum of powers, and not the one with the lower sum of

powers as the criterion above suggest. Indeed, it turned

out that this results in a slightly better outage probabil-

ity.

Another removal algorithm can be deduced from

Theorem 5. Suppose we remove the set of transmitters

N n N
0
. Thus, their power is set to zero, and we resume

the power control with the initial power vector p
N =N

0

(i.e., the previously stationary power vector after remov-

ing the elements corresponding to the removed subset).

Let p�K ;N
0
� be the powers after K updates, as being

computed by the followingDCPCalgorithm iteration:

p�k� 1� � minfp; 
t
�A

N
0p�k� � ����g;

k � 0; 1; . . . ;K ÿ 1 :

To derive p�K ;N
0
�, each base station can emulate the

update steps without actually implementing them.What

can we learn from the value p�K ;N
0
�, which may assist

us in deciding which subsetN n N
0
to remove? Observe,

that from the proof of Theorem 5, the remaining subset

N
0
is supported since,

p�1;N
0
�Wp

N =N
0

: �10�

This, subsequently results in a non-increasing sequence

of power vectors. However, when we restrict ourselves

to a limited number of removals, we cannot guarantee

the inequality in (10). Alternatively, we can select a set

N
0
, which results in the largest reduction in a single

DCPC update iteration. More general, select the set N
0

which results in the largest reduction after K DCPC

update iterations. This is made precise in the following

Power Reduction Removal Algorithm in K iterations -

PRRA-K(R).

PRRA-K(R) algorithm

Given the number of look-ahead steps K, and the num-

ber of required removals R, remove the set N
0
with R

transmitters which attains

max

N
0
�N

f

X

j 62N
0

p
N

j
�

X

j2N
0

�p
N

j
ÿ pj�K;N

0
��g :

This algorithm requires the same information as

SMART(R) requires, and can also be executed by one,

or all the base stations. The computation consists of the

DCPC power updates, which is O�N
2

�; sorting which is

O�NlogN�; and the construction of all subsets of size R,
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which is N
R
. Thus for R � 1, the complexity is O�N

2
�,

and forR > 1, the complexity isO�N
R
�.

To summarize, SMIRA, SMART and PRRA-K, all

require the same amount of information which can be

evaluated distributively, and be distributed to the base

stations which execute the algorithms. For a single

removal, all algorithms have computational complexity

of O�N
2
�, and for R > 1 removals, the complexity is

O�N
R
�. Thus, in this respect they are equivalent, and the

most prefered will be the one which results in the lowest

outage probability. Such a comparison will be given in

section 5.

4.3. Power control with removals combined

Here, we present a novel approach to the mobile

removal problem.Whereas, the one-by-one and themul-

tiple removal algorithms above, remove transmitters

only after reaching a stationary power vector, the power

control with removals combined, removes them during

power updates. In this respect, this algorithm is more

efficient than the previous ones. Also, as transmitters are

removed earlier, their interference impact is relieved

sooner, giving rise to a larger supported set. Moreover,

the most important property is that one of its versions

can be implemented distributively using the same amount

of information thatDCPCuses.

In section 3.3, we introduced the Generic GRX-

DCPC class of algorithms. A specific algorithm in this

class is determined by selecting X � R orN, and a speci-

fic Arbitration Rule which is used to remove a transmit-

ter from 
, in meta-step (2.2). Except for this step, the

information and power update are the same as inDCPC.

Here, we specify two types of arbitration rules. One

uses the current power vector and the matrix A. This

requires the gain matrix derivation procedure in subsec-

tion 3.1, and the distribution of the current power vector

when the event 	 6� ; occurs (see step (2) of the GRX-

DCPC algorithm). The other type of arbitration rule is a

distributed one, which uses no further information.

Another issue which needs attention, is how to deal

with arbitrary initial powers for the GRR-DCPC class.

We show that one may use DCPC in a way which will

safely drift any initial power vector to C
ÿ

�
t
�, without

deteriorating the CIR of the transmitters which are

already supported.

Ageneral arbitration rule

An arbitration rule � selects from several candidates,

one transmitter for removal. The selection is based on the

current power vector p, and the gain matrixA. This is pre-

cisely what a one-by-one removal algorithm does. There-

fore, natural candidates for � are SMIRA and

SMART(1), where the set of candidates is
, and the sta-

tionary power vector is any relevant p.

To avoid coordination when the event 	 6� ; occurs,

and to rely only on local information, wemay use the fol-

lowing distributed rule. Observe that each transmitter

knows whether or not it belongs to the set	. In addition,

we rather have in each step a single removal than multi-

ple removals. On account of a complete distributed algo-

rithm, this can be obtained only with probability. Let �

be some given success probability of a coin tossing,

which is tuned by the system tomaximize the probability

of exactly one removal, when the event	 6� ; occurs.

Adistributed arbitration rule

Each transmitter in the set 	 removes itself with prob-

ability �, and stayswith probability 1 ÿ �. Other transmit-

ters staywith probability one.

In systems where it is most likely that	 consists of a sin-

gle transmitter, � is taken to be close to 1.

Drifting to C
ÿ

�
t
�

For any initial power vector p, letS be the set of trans-

mitters which are supported under the target CIR, 
t
.

To drift the power vector into C
ÿ

�
t
�, without letting the

CIRs of any transmitter inS drop below 

t
, do:

1. For every i 62 S, temporarily reset its power to zero.

That is, pi � 0.

2. Execute DCPC only with the set of transmitters S.

3. Stop when DCPC converges according to a given

convergence stopping criterion.

From [12, Lemmas 6 and 9], the power vectors of the

transmitters in S, monotonically decrease to a power

vector (while keeping all transmitters in S supported at

any time), satisfying

pi � 

t
��i �

X

j2S

aijpj� ; 8i 2 S :

Since all other powers have been set to zero, the com-

bined power vector after convergence is in C
ÿ

�
t
�.

To summarize, we have two basic classes of GRX-

DCPC(�) removal algorithms, GRR-DCPC(�) and

GRN-DCPC(�). For the former one, we may use a gen-

eral or a distributed arbitration rule �. For the latter,

only a general arbitration rule can be applied. In the fol-

lowing section we will see how they performwith respect

to other algorithms.

5. Numerical examples

The removal algorithms are compared in amacro-cel-

lular system and in a micro-cellular system. The macro-

cellular system which we use is a standard hexagonal cell

plan, e.g., [16]. This system is selected mainly for com-

parison with the SMIRA algorithm proposed in [16].

M.Andersin et al. /Gradual removals in cellular PCS 35



For a micro-cellular system, we use two cell plans in a

Manhattan-like metropolitan environment, [14]. The

details of the cell plans are given below.

The link gain, gij, is modeled as a product of two vari-

ables, gij � lij � sij . The variable lij is the large scale propa-

gation loss, which depends on the transmitter and

receiver locations, and on the type of topology envi-

ronment (see below). The variable sij is the variation in

the received signal due to shadow fading. We assume

that the variables sij's are independent, and log-normally

distributed with a mean of 0 dB, and a log-variance of

�
2

. The value of � is environment dependent.

For each cell plan we use a fixed channel assignment

scheme that divides the cells into Nc different channel

groups. The maximum transmitter power is set to 1 W,

and the receiver noise is taken to be 10

ÿ15

W.

A hexagonal macro-cellular system

All cells have an hexagonal shape with a radius of

1 km, and each base station is located at the center of its

cell. Base stations use omnidirectional antennas and

Nc � 7. This cell plan is depicted in Fig. 2, with 19

cochannel cells, which is the number we use in our simu-

lation. The locations of the mobiles are independently

sampled from a uniform distribution over each cell area

and themobiles are connected to the closest base station.

The large scale propagation loss is modeled as

lij � 1=d
4

ij
, where dij is the distance between mobile i and

base station j. The log-variance of the shadow fading is

taken as � � 6 dB. This is the same setting which has

been used in [16].

A Manhattan-like micro-cellular system

This is a typical metropolitan environment consisting

of building blocks of a square shape, Figs. 3, 4. Streets

are running between the building blocks in two direc-

tions, horizontal and vertical. In our simulation we

assume that each block is of length 100 m. We further

assume that radio-waves can propagate only along the

streets. To model the large scale propagation loss, set

�xi; yi� and (xj ; yj) to be mobile i and base station j coor-

dinates, respectively.

Denote by x � jxi ÿ xjj and y � jyi ÿ yjj, the horizon-

tal and the vertical distances, respectively, between the

mobile and the base station. From [6], the large scale

propagation loss between mobile i and base station j can

bemodeled by

lij �

"

16

�
2

f
2

c
2

xye
ÿ

20WxWy

xy

ÿ �

� x� y� 10

� �

2

� 1�

����������������������������������������������������������������

x� y

Ln

� �

2nÿ4� �

�

x
2

� y
2

Lm

2

� �

mÿ2� �

s

0

@

1

A

3

5

ÿ1

;

where c is the speed of light, f is the transmission fre-

quency, andWx andWy are the street widths in the hori-

zontal and vertical direction, respectively. The

parameters n, Ln, m and Lm are all propagation con-

stants, [7].

Fig. 2. Hexagonal cell planwith 7 cell cluster and 19 cochannel cells.

Fig. 3. The symmetric SHS(2,0) cell plan with cluster size Nc � 4. The

dark crosses are the cochannel cells and the white squares are the build-

ings seen from above.

Fig. 4. The asymmetric AHS(1,1) cell plan with cluster size Nc � 3.

The dark crosses are the cochannel cells and the white squares are the

buildings seen from above.
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In our simulation we use f � 900 MHz, Wx �Wy

� 25 m, n � 4, m � 25, Ln � 200 m and Lm � 700 m.

The log-variance of the shadow fading is taken as

� � 4dB, which is typical formetropolitan areas, [7].

Since in the literature, there are few results on the

performance of power control algorithms in metropoli-

tan micro-cellular systems, we study the removal algo-

rithms for two different cell plans. The first one, a

Symmetric Half Square (SHS) cell plan, is depicted in

Fig. 3. The cluster size Nc � 4, and the line-of-sight

(LOS) reuse distance is DLOS � 2. This cell plan is

denoted by SHS(2,0), in agreement with the notation in

[14].

The second cell plan which we consider is an Asym-

metric Half Square (AHS) cell plan, depicted in Fig. 4.

The cluster size Nc � 3, and the line-of-sight (LOS)

reuse distance is DLOS � 3. This cell plan is denoted by

AHS(1,1), in agreementwith the notation in [14].

In both cell plans, one base station is placed in every

street corner at lamp-post level. Base stations use omni-

directional antennas and the cell size is assumed to be

half a block in all four directions. In the simulation,

mobiles locations are independently sampled from a uni-

form distribution over each cell area, with 36 (6� 6)

cochannel cells. As in the hexagonal cell plan, the

mobiles are connected to the closest base station. From

our numerical results, the outage probability curve as a

function of the target CIR (which is used as a compari-

son criterion) for the SHS(2,0) case, is a shift of the curve

for the AHS(1,1) case. This can be explained by the fact

that the distance between two LOS interferes is smaller

in the SHS(2,0) case, which results in a larger interfer-

ence level. Therefore, we present most of the results only

for theAHS(1,1) case.

Method of comparison

The prime criterion bywhich we compare the removal

algorithms is their resulting outage probability, Poutage,

defined as

Poutage � P�W

t
� ;

where  is the CIR of a random communication link

between a mobile and its corresponding base station.

The outage probability measures the expected propor-

tion of mobiles which have to be removed by a removal

algorithm. The secondary criterion is the time required

to converge to a steady state with all mobiles being sup-

ported at their target CIR.

To evaluate the outage probabilities, and the time

required to remove all non-supported mobiles, we carry

the following simulation. Under every removal algo-

rithm we take 1000 independent instances of mobile

locations, and shadow fading. For each instance, we

remove mobiles according to the algorithm rule.

Mobiles are removed until all the remaining mobiles can

be supported at their target CIR. The outage probability

is estimated by counting the proportion ofmobiles which

are being removed over the 1000 realizations.

Note that after sampling a realization, mobiles are

``frozen'' at their position. This is a reasonable model

when power control and removal decision are relatively

much faster thanmobile movements. In addition, taking

1000 independent realizations results in small estimation

errors. We confine our examples to the uplink case, and

stop the power control update when the maximum rela-

tive error between two consecutive power vectors

becomes smaller than 10

ÿ8

.

Results

When comparing between algorithms we have to

bear in mind the amount of information and coordina-

tion required by each algorithm. We have algorithms

which use global information, and algorithms which use

only local information. The latter, are easier to imple-

ment distributively, and certainly faster. The local-infor-

mation-based algorithms are the following. The

Distributed GRR-DCPC defined above; the Simple

DCPC (where the entire non-supported set under the

stationary power vector is removed); the Random

Removal DCPC (where a single random transmitter is

removed from the non-supported set under the station-

ary power vector); and the Fixed Transmission Power

(where any non-supported transmitter is immediately

removed). The global-information-based algorithms are

all the rest.

In Figs. 5^8, we compare the performance of the var-

ious one-by-one removal algorithms. The results for the

micro-cellular cell plan AHS(1,1) are presented in Figs.

5, 6, and for the hexagonal cell plan in Figs. 7, 8. Fig. 6

and Fig. 8 are drawn in a larger scale covering a smaller

target CIR interval, of Figs. 5 and 7, respectively.

For the micro-cellular system we observe that

PRRA-3(1) is the best one-by-one removal algorithm.

Fig. 5. Outage probabilities for one-by-one removal algorithms.
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The second best is PRRA-2(1), and then SMART(1).

Following is PRRA-1(1), SMIRA and SRA. As

expected, the outage probability of PRRA-K(1)

improves with the number of look-ahead stepsK . Except

for SRA, all algorithms perform almost equally and

have the same computational complexity. Thus, PRRA-

3(1) is the preferred choice. It should be noted that all fig-

ures present outage probabilities, and the best algorithm

in this sense is not necessarily the best realization-wise.

For the macro-cellular hexagonal system we observe

that SMART(1) is the best one-by-one removal algo-

rithm. The second best is SMIRA, and then follow the

PRRA-3(1) and SRA. In this case we have also com-

puted the outage probability under the optimal removal

algorithm, which has been obtained by an exhaustive

search in each realization. Notice that SMART(1) closes

more than 50% of the remaining gap left between

SMIRA and the optimal outage probabilities. Neverthe-

less, they are quite similar in absolute values. Again, as

their computational complexity is the same, SMART(1)

is the preferred choice.

By their nature, one-by-one removal algorithms are

slower in converging to a state where all mobiles are sup-

ported. This is evident in our next comparison where

the best one-by-one, and multiple removal algorithms in

anAHSmicro-cellular system are compared. The outage

probabilities are shown in Fig. 9, and the number of

removal steps are depicted in Fig. 10. The number of

removal steps are counted as follows. A mobile is

sampled in every cell, theDCPCpower control is applied

until convergence, and then one or more mobiles are

removed (depending on the algorithm). This is the first

removal step. After this, the DCPC power control is re-

invoked until convergence, and the second removal step

is taken. This process continues until all the remaining

mobiles are supported.

Fig. 6. Outage probabilities for one-by-one removal algorithms magni-

fied for CIR target of 14^20 dB.

Fig. 7. Outage probabilities for one-by-one and optimal removal

algorithms.

Fig. 8. Outage probabilities for one-by-one and optimal removal

algorithmsmagnified for CIR target of 15^20 dB.

Fig. 9. Outage probabilities formultiple removal algorithms.
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In the multiple removal method we determine the

number of removals R for every realization, by first cal-

culating the upper bound R
�
. Then, we set R � bqR

�
c,

where q is either 0:6 or 0:8. In this comparison, we also

include the computation of the upper bound. This algo-

rithm is denoted in the figures byUpper Bound.

Observe that the best one-by-one removal algorithm

outperforms all the others in terms of outage probabil-

ity. Further, it pays off to cautiously remove mobiles,

although it is slower, as seen from Fig. 10. Another

observation is that PRRA-1(R) outperforms

SMART(R) with respect to both criteria, the outage

probability and the number of steps. Although this is not

shown in our graphs, we found out that the O�N
2
�

approximation to SMART(R) in section 4.2, yields

almost identical results as SMART(R).

From Figs. 9 and 10 we learn that, there is a trade-

off between the number of removal steps and the outage

probability. Surprisingly in our mind, is that the GRN-

DCPC(SMART) removal algorithm, has a small num-

ber of steps and a small outage. Moreover, its outage

probability does not differ very much from the best one-

by-one removal algorithm.

In Fig. 11, the outage probabilities of several GRX-

DCPC algorithms are compared to the best one-by-one

algorithm, PRRA-3(1), in a micro-cellular AHS cell

plan. We observe that the best results are obtained by

using a non-restricted removal set, and the SMART

arbitration rule, GRN-DCPC(SMART). The second

best is the non-restricted removal with the SMIRA

arbitration rule, GRN-DCPC(SMIRA), followed by

the restricted GRR-DCPC(SMART), GRR-DCPC

(SMIRA), and then the distributed GRR-DCPC. As

noted above, the outage probability of GRN-

DCPC(SMART) is not significantly different from that

of PRRA-3(1).

Finally, in Figs. 12^14 we compare among the best

removal algorithms from each class which use global

information, and all the algorithms which use local

information. Fig. 12 presents the outage probabilities in

the hexagonal macro-cellular system, Fig. 13 in the

SHS micro-cellular system, and Fig. 14 in the AHS

micro-cellular system.

We observe that for every cell plan, the Distributed

GRR-DCPC is significantly better than any other local

information based algorithm. Furthermore, its outage in

comparison to the globally best algorithm is reasonably

close. At the 10% outage probability level, a CIR gain of

about 1:3 dB can be achieved by the Distributed GRR-

DCPC compared to the Simple DCPC. At the 20% out-

age probability level, a CIR gain of about 2dB can be

achieved.

Not surprisingly, algorithms which use global infor-

mation achieve lower outage probabilities. Note that in

the hexagonal macro-cellular system (Fig. 12), the out-

age probability curves of GRN-DCPC(SMART),

Fig. 10.Distribution of number of removal steps. Fig. 11. Outage probabilities for gradual removal algorithms.

Fig. 12. Outage probability comparison between all removal

algorithms.
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SMART(1), and the optimal removal algorithms, are

extremely close to each other. For themicro-cellular sys-

tems (Figs. 13, 14), the best one-by-one algorithm,

PRRA-3(1) is still the global best, and the GRN-

DCPC(SMART) is very close. In all cases, the one-by-

one and Gradual Removal algorithms outperform the

reference algorithms for all target CIRs. At the 10% out-

age probability level, a CIR gain of about 8 dB can be

achieved compared to the fixed transmitter power

scheme, and about 2 dB compared to the DCPC algo-

rithm.

6. Conclusions

The problem of mobile removals in cellular networks

is shown to be NP-complete. Properties of a broad set

of removal algorithms which use local and global infor-

mation are proven, and snapshot simulations are used to

compare their performance. The following is a summary

of themain comparison results.

� The Distributed GRR-DCPC removal algorithm is

significantly better than any other local-information-

based algorithm, and its outage probability is reason-

ably close to that of the globally best algorithm.

� Among the proposed removal algorithms,

SMART(1) and PRRA-3(1) have the lowest outage

probability. Although in absolute values, the

improvement over SMIRA is marginal, in relative

values, with respect to the optimum, the improvement

is substantial. As all these algorithms have the same

computational complexity, SMART(1) and PRRA-

3(1) should be the preferred choices with respect to

outage probability.

� With respect to outage probability, it is preferred to

remove mobiles in small amounts at a time, rather

than in large amounts. With respect to convergence

time to a steady state, the reverse holds.

� GRN-DCPC(SMART) obtains outage probabilities

which are very close to that of SMART(1) and

PRRA-3(1). In the hexagonal macro-cellular system,

it is almost indistinguishable from the optimum.With

respect to convergence time to a steady state, it is

clearly better.

In future PCS environments, user mobility and fast

changing propagation conditions will have a greater

impact on the system performance. Dynamic and bold

channel allocation may efficiently utilize the scarce

bandwidth resource. In such systems, distributed and

efficient removal algorithms will become of utmost

importance. The case studies above suggest that theDis-

tributed GRR-DCPC is an excellent candidate for this

task.

Appendix

Proof of Proposition 1

We show that this problem is at least as hard as the

problemof solving the followingMaximum InducedSub-

graphwith anHereditary andNon-trivial Property�.

Let A be a given transformed gain matrix, and

pX

t
�, be any feasible power vector. Define a complete

directed graphG � �V ;E� as follows.

Set V � N , and E � f�j ! i� : 8i 6� j 2 Vg. To define

property�, we associate to each vertex and edge the fol-

lowing positiveweights.

For every i 2 V set w�i� � pi ÿ 
t
� �i, and for every

�j ! i� 2 E setw�j ! i� � 
t
aijpj.

We say that a subgraphG
0

� �V
0

;E
0

� satisfies property

�, if and only if w�i�X
P

j2V
0 w�j ! i�; 8i 2 V

0

.

Fig. 13. Outage probability comparison between all removal

algorithms.

Fig. 14. Outage probability comparison between all removal

algorithms.
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Note that property � is nothing but the property

that all transmitters are being supported under power

vector p. Therefore, property � is hereditary (i.e., every

subgraph of G
0
satisfies � whenever G

0
satisfies �), and

non-trivial (i.e., it is satisfied for infinitely many graphs

and false for infinitelymany graphs).

Now, finding the maximum number of supported

transmitters under power vector p, is the same as finding

the maximum induced subgraph with property �. This

is known to be NP-complete, [9, GT21]. Note that

although the problem is re-stated for complete graphs, it

is not less general than an arbitrary graph, as the weights

may be arbitrarily small. /

Proof of Lemma 2

Use the vector p
N =N

0

as the initial powers for the

DCPC algorithmwith the setN
0
.We first prove that

p
N =N

0Xminfp; 
t

�A
N

0p
N =N

0

� ����g : �11�

Consider two cases:

Case (i) for i 2 N
0
\ S

N
, i.e., transmitters which are

not supported under p
N
.

Case (ii) for i 2 N
0
\ S

N
, i.e., supported transmitters.

For every i in case (i) it follows from (5) that,

p
N =N

0

i
� p. Thus, (11) trivially holds for component i.

For every i in case (ii) it follows from (8), and from

the fact that the aij's are non-negative, that

p
N =N

0

i
� p

N

i
� 

t

��i �

X

j2N

aijp
N

j
�

Xminfp; 
t

��i �

X

j2N
0

a
N

0

ij
p
N =N

0

j
g :

Thus, inequality (11) holds for all i 2 N
0
.

From [12, Lemmas 6 and 9], it follows that using

DCPCwith an initial power vector p
N =N

0

satisfying (11),

results in a non-increasing powers sequence which con-

verges to p
N

0

. (This is also a well known result for super-

harmonic functions with respect to any operator.) This

completes the proof. /

Proof of Corollary 3

First note that the complement set of �S
N
\N

0
� is

�S
N
[N

0
�. Thus, it is sufficient to show that if i 2 S

N
0

then i 2 S
N
.

Let i 2 N
0
be in the non-supported set S

N
0

. Thus,

from (5) andLemma 2,

p
N

i
Wp � p

N
0

i
< 

t

��i �

X

j2N
0

aijp
N

0

j
�W

t

��i �

X

j2N

aijp
N

j
� :

Thus i, is also in the non-supported set S
N
, which com-

pletes the proof. /

Proof of Theorem 4

We start with the first inequality. From (7) and (9) it

follows that

D
N
�p

N
� �

X

j2N

�j�p
N
�X

X

j2N
0

�j�p
N
�X

X

j2N
0

�j�p
N =N

0

�

� D
N

0

�p
N =N

0

� :

The last inequality above, results from (8) and the fact

that the aij's are non-negative.

Next, we prove the second inequality. From (3) and

(9) it follows that �j�p
N
� � 0 for j 2 S

N
, and �j�p

N
0� � 0

for j 2 S
N

0

. Thus,

D
N
�p

N
� ÿD

N
0

�p
N

0

� �

X

j2S
N

�j�p
N
� ÿ

X

j2S
N
0

�j�p
N

0

� :

�12�

From Corollary 3 we have S
N
� S

N
0

. Furthermore,

from (9), �j�p
N
� > 0 for j 2 S

N
. Thus, eq. (12) implies

D
N
�p

N
� ÿD

N
0

�p
N

0

�X

X

j2S
N
0

��j�p
N
� ÿ �j�p

N
0

�� : �13�

Since every j 2 S
N

0

is not supported neither with N nor

withN
0
, it follows from (5) that their stationary powers

in both systems equal p. Thus, (13) implies

D
N
�p

N
� ÿD

N
0

�p
N

0

�

X

X

j2S
N
0


t

�

X

i2N

ajip
N

i
ÿ

X

i2N
0

ajip
N

0

i
�X0 :

The last inequality follows from the fact that aijX0 and

Lemma 2. /

Proof of Theorem 5

Take p
N =N

0

as the initial power vector for the DCPC

algorithm for the set N
0
. That is, DCPC starts with

p�0� � p
N =N

0

. We show that under the Theorem condi-

tion, the power vector sequence converges to a station-

ary power vector under which all the transmitters in N
0

are supported. That is,

p
N

0

� 
t

�A
N

0p
N

0

� ����: �14�

From the Theorem condition and (11),

p�0�Xminfp; 
t

�A
N

0p�0� � ����g � 
t

�A
N

0p�0� � ���� :

Thus, DCPC yields a subsequent power vector p�1�,

which satisfies

p�1� � 
t

�A
N

0p�0� � ����Wp�0�Wp :

By induction on the DCPC update steps, it is easy to ver-

ify that for every k,

p�k� 1� � 
t

�A
N

0p�k� � ��Wp�k�Wp : �15�

Thus, the sequence fp�k�g is non-decreasing, and con-

verges to the stationary power vector p
N

0

satisfying

equation (14). This concludes the proof. /

Proof of Theorem 6

Clearly, the number of removals are bounded by
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N ÿ 1. Let R be the number of removals, and

R � fj1; . . . ; jRg be the set of removed transmitters.

Denote by 0Wk1Wk2W . . .WkR the step numbers where

the transmitters are removed by meta-step (2.2) of the

GenericGRR-DCPC algorithm.

Let f~p�k�; kX0g, be the power sequence generated

by DCPC (as defined in (2)), given that

~p�0� � p�0� 2 C
ÿ

�
t
�. Also, denote by fp�k�; kX0g, the

power sequence generated by Generic GRR-DCPC

algorithm, given that p�0� 2 C
ÿ

�
t
�. Note that

~p�0�Wminfp; 
t
�A~p�0� � ����g :

Thus, from [12, Lemmas 6 and 9], ~p�k�; kX0g, is a non-

decreasing sequence which converges to the fixed-point

stationary power vector p
N
. That is,

~p�k�W~p�k� 1� ; kX0 : �16�

To prove the Theorem,wewill first show that:

(i) p�k�W~p�k�, for every kX0.

(ii) R � S
N
.

(iii) For every kXkR, the sequence fp�k�; kX0g, evolves

exactly as the sequence f~p�k�; kX0g, under DCPC

for the set of transmittersN nR.

Assertions (i) and (ii) will be proven by induction on

the removal instances. For 0WkWk1 (before the first

meta-step in (2.2) of the Generic GRR-DCPC algo-

rithm), we have p�k� � ~p�k�. By the definition of step (2)

in theGenericGRR-DCPC,

~p
j1
�k1� � pj1

�k1� � p < 
t
��j1 �

X

j2N

aj1;j
pj�k1 ÿ 1��

� 
t
��j1 �

X

j2N

aj1;j
~p
j
�k1 ÿ 1�� : �17�

Therefore, eq. (16) implies that

~p
N

j1
� p < 

t
��j1 �

X

j2N

aj1;j
~p
N

j
� : �18�

Hence, j1 2 S
N
. Furthermore, after the meta-step in

(2.2) of the genericGRR-DCPCalgorithm, we have

p�k1�W~p�k1� : �19�

Assume by induction that, p�k�W~p�k�; 80WkWkmÿ1,

and fj1; . . . ; jmÿ1g 2 SN .

For every kmÿ1 < kWkm (before the m
th
meta-step in

(2.2) of the Generic GRR-DCPC algorithm), pi�k�

� 0W~pi�k�; 8i 2 fj1; . . . ; jmÿ1g. For i 62 fj1; . . . ; jmÿ1g,

we have

pi�kmÿ1 � 1� � minfp; 
t
��i �

X

j2N

aijpj�kmÿ1��g

W
t
��i �

X

j2N

aij~pj�kmÿ1�� �
~p
i
�kmÿ1 � 1�:

�20�

Thus, p�kmÿ1 � 1�W~p�kmÿ1 � 1�. By a straightforward

induction argument, it also follows that, p�k�

W~p�k�; 8kmÿ1WkWkm. (If km � kmÿ1 � 1, the above

argument is not required.) Repeating the arguments in

(17)^(19) for themth removal, we obtain the proof of the

induction step. Thus, p�k�W~p�k�; 8 0WkWkR, and

R � S
N
. The latter implies part (b) of the Theorem. To

show the convergence properties, note that for k > kR,

the power sequence of the transmitters i 2 N n R, under

the Generic GRR-DCPC, evolves exactly as under

DCPC operating with the set of transmitters N nR.

Thus, having the same convergence properties as DCPC

has, under synchronous and asynchronous power

updates (see [12]).

Part (a) of the theorem follows from the fact that there

are at most N ÿ 1 removals, and therefore all removals

occur after a finite number of steps. This completes the

proof. /
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