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Abstract. Static and dynamic type systems have well-known strengths
and weaknesses, and each is better suited for different programming
tasks. In previous work we developed a gradual type system for a func-
tional calculus named λ?

→. Gradual typing provides the benefits of both
static and dynamic checking in a single language by allowing the pro-
grammer to control whether a portion of the program is type checked at
compile-time or run-time, and allows for convenient migration between
the two by adding or removing type annotations on variables. Gradual
typing introduces a statically unknown type, written ?, and replaces the
use of type equality in the type system with a new relation called type
consistency which checks for equality in the parts where both types are
statically known.

Object-oriented scripting languages such as JavaScript and Perl 6 are
preparing to add static checking. In support of that work, this paper de-
velops Ob?

<:, a gradual type system for object-based languages, extend-
ing the Ob<: calculus of Abadi and Cardelli. Our primary contribution
is to show that type consistency and subtyping are orthogonal and can
be combined in a principled fashion. We also develop a small-step se-
mantics for the calculus, provide a machine-checked proof of type safety,
and improve the space efficiency of higher-order casts.

1 Introduction

Static and dynamic typing have complimentary strengths, making them better
for different tasks and stages of development. Static typing provides full-coverage
error detection, efficient execution, and machine-checked documentation whereas
dynamic typing enables rapid development and fast adaptation to changing re-
quirements. Gradual typing allows a programmer to mix static and dynamic
checking in a program and provides a convenient way to control which parts of
a program are statically checked. The goals for gradual typing are:

– Programmers may omit type annotations on parameters and immediately
run the program; run-time type checks are performed to preserve type safety.

– Programmers may add type annotations to increase static checking. When
all parameters are annotated, all type errors are caught at compile-time.

– The type system and semantics should minimize the implementation burden
on language implementors.



In previous work we introduced gradual typing in the context of a functional
calculus named λ?

→ [49]. This calculus extends the simply typed lambda calculus
with a statically unknown (dynamic) type ? and replaces type equality with type
consistency to allow for implicit coercions that add and remove ?s.

Developers of the object-oriented scripting languages Perl 6 [50] and JavaScript
4 [25] expressed interest in our work on gradual typing. In response, this pa-
per develops the type theoretic foundation for gradual typing in object-oriented
languages. Our work is based on the Ob<: calculus of Abadi and Cardelli, a
statically-typed object calculus with structural subtyping. We develop an ex-
tended calculus, named Ob?

<:, that adds the type ? and replaces the use of
subtyping with a relation that integrates subtyping with type consistency.

The boundary between static and dynamic typing is a fertile area of research
and the literature addresses many goals that are closely related to those we
outline above. Section 2 describes the related work in detail.

Following the related work we give a programmer’s tour of gradual typing
(Section 3) and an implementor’s tour of gradual typing (Section 4).

Technical Contributions This paper includes the following original contributions:

1. The primary contribution of this paper shows that type consistency and
subtyping are orthogonal and can be naturally superimposed (Section 5).

2. We develop a syntax-directed type system for Ob?
<: (Section 6).

3. We define a semantics for Ob?
<: via a translation to the intermediate lan-

guage with explicit casts Ob〈·〉<: for which we define a small-step operational
semantics (Section 7).

4. We improve the space efficiency of the operational semantics for higher-order
casts by applying casts in a lazy fashion to objects (Section 7).

5. We prove that Ob?
<: is type safe (Section 8). The proof is a streamlined

variant of Wright and Felleisen’s syntactic approach to type soundness [54]
that we developed for this work. The formalization and proof are based on
a proof of type safety for FOb?

<: (a superset of Ob?
<: that also includes

functions) we wrote in the Isar proof language [53] and checked using the
Isabelle proof assistant [40]. The formalization for FOb?

<: is available in a
technical report [48].

6. We prove that Ob?
<: is statically type safe for fully annotated programs

(Section 8), that is, we show that neither cast exceptions nor type errors
may occur.

2 Related Work

Type Annotations for Dynamic Languages Several dynamic programming lan-
guages allow explicit type annotations, such as Common LISP [32], Dylan [15,
46], Cecil [9], Boo [12], extensions to Visual Basic.NET and C# proposed by Mei-
jer and Drayton [37], the Bigloo [7, 45] dialect of Scheme [33], and the Strongtalk
dialect of Smalltalk [5, 6]. In these languages, adding type annotations brings



some static checking and/or improves performance, but the languages do not
make the guarantee that annotating all parameters in the program prevents all
type errors and type exceptions at run-time. This paper formalizes a type system
that provides this stronger guarantee.

Soft Typing Static checking can be added to dynamically typed languages using
static analyses. Cartwright and Fagan [8], Flanagan and Felleisen [21], Aiken,
Wimmers, and Lakshman [3], and Henglein and Rehof [28, 29] developed analyses
that can be used, for example, to catch bugs in Scheme programs [22, 29]. These
analyses provide warnings to the programmer while still allowing the program-
mer to execute their program immediately (even programs with errors), thereby
preserving the benefits of dynamic typing. However, the programmer does not
control which portions of a program are statically checked: these whole-program
analyses have non-local interactions. Also, the static analyses bear a significant
implementation burden on developers of the language. On the other hand, they
can be used to reduce the amount of run-time type checking in dynamically
typed programs (Chambers et al. [10, 13]) and therefore could also be used to
improve the performance of gradually typed programs.

Dynamic Typing in Statically Typed Languages Abadi et al. [2] extended a stat-
ically typed language with a Dynamic type and explicit injection (dynamic) and
projection operations (typecase). Their approach does not satisfy our goals, as
migrating code between dynamic and static checking not only requires chang-
ing type annotations on parameters, but also adding or removing injection and
projection operations throughout the code. Our approach automates the latter.

Interoperability Gray, Findler, and Flatt [23] consider the problem of interoper-
ability between Java and Scheme and extended Java with a Dynamic type with
implicit casts. They did not provide an account of the type system, but their
work provided inspiration for our work on gradual typing. Matthews and Find-
ler [36] define an operational semantics for multi-language programs but require
programmers to insert explicit “boundary” markers between the two languages,
reminiscent of the explicit injection and projections of Abadi et al.

Tobin-Hochstadt and Felleisen [52] developed a system that provides con-
venient inter-language migration between dynamic and static languages on a
per-module basis. In contrast, our goal is to allow migration at finer levels of
granularity and to allow for partially typed code. Tobin-Hochstadt and Felleisen
build blame tracking into their system and show that errors may not originate
from statically typed modules. Our gradual type system enjoys a similar prop-
erty. If all parameters in a term are annotated then no casts are inserted into the
term during compilation provided the types of the free variables in the term do
not mention ? (Lemma 2). Thus, no cast errors can originate from such a term.

Hybrid typing Flanagan’s Hybrid Type Checking [20] combines standard static
typing with refinement types, where the refinements may express arbitrary pred-
icates. The type system tries to satisfy the predicates using automated theorem



proving, but when no conclusive answer is given, the system inserts run-time
checks. This work is analogous to ours in that it combines a weaker and stronger
type system, allowing implicit coercions between the two systems and inserting
run-time checks. One notable difference between our system and Flanagan’s is
that his is based on subtyping whereas ours is based on type consistency.

Ou et al. [41] define a language that combines standard static typing with
more powerful dependent typing. Implicit coercions are allowed to and from
dependent types and run-time checks are inserted. This combination of a weaker
and a stronger type system is again analogous to gradual typing.

Quasi-Static Typing Thatte’s Quasi-Static Typing [51] is close to our gradual
type system but relies on subtyping and treats the unknown type as the top of
the subtype hierarchy. In previous work [49] we showed that implicit down-casts
combined with the transitivity of subtyping creates a fundamental problem that
prevents the type system from catching all type errors even when all parameters
in the program are annotated.

Riely and Hennessy [43] define a partial type system for Dπ, a distributed
π-calculus. Their system allows some locations to be untyped and assigns such
locations the type lbad. Their type system, like Quasi-Static Typing, relies on
subtyping, however they treat lbad as “bottom”, which allows objects of type
lbad to be implicitly coercible to any other type.

Gradual Typing The work of Anderson and Drossopoulou on BabyJ [4] is closest
to our own. They develop a gradual type system for nominal types and their
permissive type ∗ is analogous to our unknown type ?. Our work differs from
theirs in that we address structural type systems.

Gronski, Knowles, Tomb, Freund, and Flanagan [24] provide gradual typ-
ing in the Sage language by including a Dynamic type and implicit down-casts.
However, they do not provide a declarative specification of gradual typing (such
as the type consistency relation from our work), but instead handle the implicit
down-casts as part of their subtyping algorithm. The lack of a declarative specifi-
cation makes it difficult for users of their system to understand its behavior. Also,
their work does no include a result such as Theorem 2 of this paper which shows
that all type errors are caught in programs with fully annotated parameters.

Concurrent to the work in this paper, Herman, Tomb, and Flanagan [30]
proposed a solution a space-efficiency problem that occurs with the traditional
approach to higher-order casts. (We used the traditional approach in our previous
work [49].) Similar to the new approach proposed in this paper, they delay the
application of higher-order casts. The details of their approach are based on the
coercion calculus from Henglein’s Dynamic Typing framework [28]. The coercion
calculus can be viewed as a way to compile the explicit casts used in this paper,
removing the interpretive overhead of recursively traversing types at run-time.

Type inference Gradual typing is syntactically similar to type inferencing [11,
31, 38]: both approaches allow type annotations to be omitted. However, type
inference does not provide the same benefits as dynamic typing (and therefore



gradual typing). With type inference, programmers save the time it takes to
write down the types but they must still go through the process of revising their
program until the type inferencer accepts the program as well typed. As type
systems are conservative in nature and of limited (though ever increasing) ex-
pressiveness, it may take some time to turn a program (even one without any
real errors) into a program to which the type inferencer can assign a type. The
advantage of dynamic typing (and therefore of gradual typing) is that program-
mers may begin executing and testing their programs right away.

Implementing polymorphism There are many interesting issues regarding effi-
cient representations for values in a language that mixes static and dynamic
typing. The issues are similar to those of parametric polymorphism, as dynamic
typing is just a different kind of polymorphism. Leroy [34] discusses the use of
mixing boxed and unboxed representations, limiting the slower boxed representa-
tions to code that requires polymorphism. Shao [47] further improves on Leroy’s
mixed approach by showing how it can be combined with the type-passing ap-
proach of Harper and Morrisett [27] and thereby provide support for recursive
and mutable types.

3 A Programmer’s View of Gradual Typing

We give a description of gradual typing from a programmer’s viewpoint, showing
examples of how gradual typing would look in the ECMAScript (aka JavaScript)
programming language [14]. The following Point class definition has no type
annotations on the data member x or the dx parameter. The gradual type system
therefore delays checks concerning x and dx inside the move method until run-
time, as would a dynamically typed language.

class Point {
var x = 0
function move(dx) { this.x = this.x + dx }

}
var a : int = 1
var p = new Point
p.move(a)

More precisely, because the types of the variables x and dx are statically
unknown the gradual type system gives them the “dynamic” type, written ? for
short. Supposing that the + operator expects arguments of type int, the gradual
type system allows an implicit coercion from type ? to int. This kind of coercion
could fail (like a down-cast), and therefore must be dynamically checked. In
statically-typed object-oriented languages, such as Java and C#, implicit up-
casts are allowed (they never fail) but not implicit down-casts. Allowing implicit
coercions that may fail is the distinguishing feature of gradual typing and is
what allows gradual typing to support dynamic typing.



To enable the gradual migration of code from dynamic to static checking,
gradual typing allows for a mixture of the two and provides seamless interaction
between them. In the example above, we define a variable a of type int, and
invoke the dynamically typed move method. Here the gradual type system allows
an implicit coercion from int to ?. This is a safe coercion—it can never fail at
run-time—however the run-time system needs to remember the type of the value
so that it can check the type when it casts back to int inside of move.

Gradual typing also allows implicit coercions among more complicated types,
such as object types. An object type is similar to a Java-style interface in that it
contains a list of member signatures, however object types are compared struc-
turally instead of by name. In the following example, the equal method has a
parameter p annotated with the object type [x:int].

class Point {
var x = 0
function bool equal(p : [x:int]) { return this.x == p.x }

}
var p = new Point
p.equal(p)

The method invocation p.equal(p) is allowed by the gradual type system. The
parameter type is [x:int] whereas the argument type is [x:?,equal:[x:int]→bool]. We
compare the two types structurally, one member at a time. For x we have a
coercion from ? to int, so that is allowed. Next we consider the equal. Because
this is an object-oriented language with subtyping, we can use an object with
more methods in a place that is expecting an object with fewer methods.

Next we consider how gradual typing treats a fully annotated program, that
is, a program where all the variables are annotated with types. In this case the
gradual type system acts like a static type system and catches all type errors
during compilation. In the example below, the invocation of the annotated move

method with a string argument is flagged as a static type error.

class Point {
var x : int = 0
function Point move(dx : int) { this.x = this.x + dx }

}
var p = new Point
p.move(”hi”) // static type error

The class definition for Point also defines an object type with the same name,
similar to Objective Caml [35].



4 An Implementor’s View of Gradual Typing

Next we give an overview of gradual typing from a language implementor’s view-
point, describing the type system and semantics. The main idea of the type sys-
tem is that we replace the use of type equality with type consistency, written
∼. The intuition behind type consistency is to check whether the two types are
equal in the parts where both types are known. The following are a few exam-
ples. The notation [l1 : s1, . . . , ln : sn] is an object type where l : s is the name
l and signature s of a method. A signature has the form τ → τ ′, where τ is the
parameter type and τ ′ is the return type.

int ∼ int int 6∼ bool ? ∼ int int ∼?
[x : int → ?, y : ? → bool] ∼ [y : bool → ?, x : ? → int]

[x : int → int, y : ? → bool] 6∼ [x : bool → int, y :? → bool]
[x : int → int, y : ? → ?] 6∼ [x : int → int]

To express the “where both types are known” part of the type consistency re-
lation, we define a restriction operator, written σ|τ . This operator “masks off”
the parts of type σ that are unknown in type τ . For example,

int|? =? int|bool = int

[x : int → int, y : int → int]|[x: ?→ ?,y:int→int] = [x : ? → ?, y : int → int]

The restriction operator is defined as follows.

σ|τ = case (σ, τ) of
(−, ?) ⇒ ?

| ([l1 : s1, . . . , ln : sn], [l1 : t1, . . . , ln : tn]) ⇒
[l1 : s1|t1 , . . . , ln : sn|tn ]

| (−,−) ⇒ σ

(σ1 → σ2)|(τ1→τ2) = (σ1|τ1) → (σ2|τ2)

Definition 1. Two types σ and τ are consistent, written σ ∼ τ , iff σ|τ = τ |σ,
that is, when the types are equal where they are both known.3

Proposition 1. (Basic Properties of ∼)
1. ∼ is reflexive.
2. ∼ is symmetric.
3. ∼ is not transitive. For example, bool ∼ ? and ? ∼ int but bool 6∼ int.
4. τ ∼ τ |σ.
5. If neither σ nor τ contain ?, then σ ∼ τ iff σ = τ .
3 We chose the name “consistency” because it is analogous to the consistency of partial

functions. This analogy can be made precise by viewing types as trees and then using
the standard encoding of trees as partial functions from tree-paths to labels [42]. The
?s are interpreted as places where the partial function is undefined.



A gradual type system uses type consistency where a simple type system
uses type equality. For example, in the following hypothetical rule for method
invocation, the argument and parameter types must be consistent.

Γ ` e1 : [. . . , l : σ → τ, . . .] Γ ` e2 : σ′ σ′ ∼ σ

Γ ` e1.l(e2) : τ

Gradual typing corresponds to static typing when no ? appear in the program
(either explicitly or implicitly) because when neither σ nor τ contain ?, we have
σ ∼ τ if and only if σ = τ , as stated in Proposition 1.

Broadly speaking, there are two ways to implement the run-time behavior
of a gradually typed language. One option is to erase the type annotations and
interpret the program as if it were dynamically typed. This is an easy way to
extend a dynamically typed language with gradual typing. The disadvantage of
this approach is that unnecessary run-time type checks are performed. We do
not describe this approach here as it is straightforward to implement.

The second approach performs run-time type checks at the boundaries of
dynamically and statically typed code. The advantage is that statically typed
code performs no run-time type checks. But there is an extra cost in that run-
time tags contain complete types so that objects may be completely checked at
boundaries. There are observable differences between the two approaches. The
following runs to completion with the first but errors with the second.

function unit foo(dx : int) { }
var x : ? = false; foo(x)

We give a high-level description of the second approach by defining a cast-
inserting translation from Ob?

<: to an intermediate language with explicit casts
named Ob〈·〉<: . The explicit casts have the form 〈τ ⇐ σ〉e, where σ is the type
of the expression e and τ is the target type. As an example of cast-insertion,
consider the translation of the unannotated move method.

function move(dx) { this.x = this.x + dx }
 function ? move(dx : ?) { this.x = 〈?⇐ int〉(〈int⇐ ?〉this.x + 〈int⇐ ?〉dx) }

We define the run-time behavior of Ob〈·〉<: with a small-step operational se-
mantics in Section 7. The operational semantics defines rewrite rules that sim-
plify an expression until it is either a value or until it gets stuck (no rewrite rules
apply). A stuck expression corresponds to an error. We distinguish between two
kinds of errors: cast errors and type errors. A cast error occurs when the run-time
type of a value is not consistent with the target type of the cast. Cast errors can
be thought of as triggering exceptions, though for simplicity we do not model
exceptions here. We categorize all other stuck expressions as type errors.

Definition 2. A program is statically type safe when neither cast nor type
errors can occur during execution. A program is type safe when no type errors
can occur during execution.

In Section 8 we show that Ob?
<: is type safe and we show that Ob?

<: is statically
type safe for fully annotated terms.



5 Combining Gradual Typing and Subtyping

In previous work we discovered that approaches to gradual typing based on
subtyping and ? as “top” do not achieve static type safety for fully annotated
terms [49]. This discovery led us to the type consistency relation which formed
the basis for our gradual type system for functional languages. However, subtyp-
ing is a central feature of object-oriented languages, so the question is how can
we add subtyping to gradual type system while maintaining static type safety
for fully annotated terms? It turns out to be as simple as adding subsumption:

Γ ` e : σ σ <: τ
Γ ` e : τ

We do not treat ? as the top of the subtype hierarchy, but instead treat ? as
neutral to subtyping, with only ? <: ?. The following defines subtyping.

Subtyping

int <: int float <: float bool <: bool ? <: ?

int <: float [li : si
i∈1...n+m] <: [li : si

i∈1...n]

While the type system is straightforward to define, more care is needed to
define 1) a type checking algorithm and 2) an operational semantics that takes
subtyping into account. In this section we discuss the difficulties in defining a
type checking algorithm and present a solution.

It is well known that a type checking algorithm cannot use the subsumption
rule because it is inherently non-deterministic. (The algorithm would need to
guess when to apply the rule and what τ to use.) Instead of using subsumption,
the standard approach is to use the subtype relation in the other typing rules
where necessary [42]. The following is the result of applying this transformation
to our gradual method invocation rule.

Γ ` e1 : [. . . , l : σ → τ, . . .] Γ ` e2 : σ′ σ′ <: σ′′ σ′′ ∼ σ

Γ ` e1.l(e2) : τ

This rule still contains some non-determinacy because of the type σ′′. We need
a combined relation that directly compares σ′ and σ.

Fortunately there is a natural way to define a relation that takes both type
consistency and subtyping into account. To review, two types are consistent
when they are equal where both are known, i.e., σ ∼ τ iff σ|τ = τ |σ. To combine
type consistency with subtyping, we replace type equality with subtyping.

Definition 3 (Consistent-Subtyping). σ . τ ≡ σ|τ <: τ |σ
Here we apply the restriction operator to types σ and τ that may differ according
to the subtype relationship, so we must update the definition of restriction to
allow for objects of differing widths, as shown below.



σ|τ = case (σ, τ) of
(−, ?) ⇒ ?

| ([l1 : s1, . . . , ln : sn], [l1 : t1, . . . , lm : tm]) where n ≤ m ⇒
[l1 : s1|t1 , . . . , ln : sn|tn ]

| ([l1 : s1, . . . , ln : sn], [l1 : t1, . . . , ln : tm]) where n > m ⇒
[l1 : s1|t1 , . . . , lm : sm|tm , lm+1 : sm+1, . . . , ln : sn]

| (−,−) ⇒ σ

(σ1 → σ2)|(τ1→τ2) = (σ1|τ1) → (σ2|τ2)

The following proposition allows us to replace the conjunction σ′ <: σ′′ and
σ′′ ∼ σ with σ′ . σ in the gradual method invocation rule.

Proposition 2 (Properties of Consistent-Subtyping). The following are
equivalent:

1. σ . τ ,
2. σ <: σ′ and σ′ ∼ τ for some σ′, and
3. σ ∼ σ′′ and σ′′ <: τ for some σ′′.

It is helpful to think of the type consistency and subtyping relation as al-
lowing types to differ along two different axes, with ∼ along the x-axis and <:
along the y-axis. With this intuition, Proposition 2 can be represented by the
following diagram.

σ′

∼

τ |σ ∼ τ

σ

<:

OO

∼

∼

σ|τ

<:

OO

σ′′

<:

OO

The following is an example of the above diagram for a particular choice of types.

[x : int → ?]

∼

[x :? → ?] ∼ [x :? → int]

[x : int → ?, y : bool → bool]

<:

OO

∼

∼

[x :? → ?, y : bool → bool]

<:

OO

[x :? → int, y : bool → bool]

<:

OO

The method invocation rule can be formulated in a syntax-directed fashion
using the consistent-subtyping relation.

Γ ` e1 : [. . . , l : σ → τ, . . .] Γ ` e2 : σ′ σ′ . σ

Γ ` e1.l(e2) : τ



6 A Gradually Typed Object Calculus

We define a gradually typed object calculus named Ob?
<: by extending Abadi

and Cardelli’s Ob<: [1] with the unknown type ?.4 The syntax of Ob?
<: includes

three constructs for working with objects. The form [li=τi ς(xi : σi)ei
i∈1...n]

creates an object containing a set of methods. Each method has a name li, a
parameter xi with type annotation σi, a body ei, and a return type τi. The
ς symbol just means “method” and is reminiscent of the λ used in functional
calculi. The self parameter is implicit. Omitting a type annotation is short-hand
for annotating with type ?. Multi-parameter methods can be encoded using
single-parameter methods [1]. The form e1.l(e2) is a method invocation, where
e1 is the receiver object, l is the method to invoke, and e2 is the argument. The
form e1.l:=τ ς(x :σ)e2 is a method update. The result is a copy of e1 except that
its method l is replaced by the right-hand side. Abadi and Cardelli chose not to
represent fields in the core calculus but instead encode fields as methods.

Variables x ∈ X ⊇ {self} e ∈ Ob<:

Method labels l ∈ L
Ground Types γ ∈ G ⊇ {bool, int, float, unit}
Constants c ∈ C ⊇ {true, false, zero, 0.0, ()}
Types ρ, σ, τ ::= γ | [li : si

i∈1...n]
Method Sig. s, t ::= τ → τ
Expressions e ::= x | c | [li=τi ς(xi :σi) ei

i∈1...n] |
e.l(e) | e.l:=τ ς(x :σ)e

Syntactic Sugar l=e : τ ≡ l=τ ς(x :unit)e (x /∈ e)
e.l ≡ e.l(())
e1.l:=e2 : τ ≡ e1.l:=τ ς(x :unit)e2 (x /∈ e)

Types ρ, σ, τ += ? e ∈ Ob?
<: ⊃ Ob<:

Syntactic Sugar ς(x)e ≡ ? ς(x :?)e
l=e ≡ l=e :?
e1.l:=e2 ≡ e1.l:=e2 :?

The following is an example of a point object in Ob?
<:.

[equal=bool ς(p:[x:int]) self.x.eq(p.x), x=zero]

The gradual type system for Ob?
<: is shown in Figure 1. (For reference, the

type system for Ob<: is in the Appendix, Fig. 4.) We use Γ for environments,
which map from variables to types. The domain of an environment is finite.
The type system is parameterized on a TypeOf function that maps constants to
types. The rules for variables and constants are standard. The rule for object
4 For purposes of exposition, we add one parameter (in addition to self) to methods.



creation (GObj) requires that each method body ei type check in an environ-
ment where self is bound to the object’s type ρ and parameter xi is bound to
the parameter type σi. The parameter type σi and the type τi of ei must match
the corresponding method signature in ρ.

There are two rules for each elimination form. The first rule handles the case
when the type of the receiver is unknown and the second rule handles when the
type of the receiver is known. In the (GIvk1) rule for method invocation, the
type of the receiver e1 is unknown and the type of the argument e2 is uncon-
strained. Because the receiver’s type (and therefore method type) is unknown,
so is the result type. The rule (GIvk2) is described in Section 5, and is where we
use the consistent-subtyping relation .. The rule (GUpd1) for method update
handles the case when the type of the receiver e1 is unknown. The new method
body is typed checked in an environment where self is bound to [l : σ → τ ]
and the parameter x is bound to its declared type σ. The result type for this
expression is [l : σ → τ ]. The rule (GUpd2) handles the case for method update
when the type of the receiver is an object type ρ. The new method body is type
checked in an environment where self is bound to ρ and x is bound to its declared
type σ. The constraints σk . σ and τ . τk make sure that the new method can
be coerced to the type of the old method.

Fig. 1. A Gradual Type System for Objects.

(GVar)
Γ (x) = τ

Γ `G x : τ
Γ `G e : τ

(GConst) Γ `G c : TypeOf (c)

(GObj)
Γ, self :ρ, xi : σi `G ei : τi ∀i ∈ 1 . . . n

Γ `G [li=τi ς(xi :σi)ei
i∈1...n] : ρ

(where ρ ≡ [li : σi → τi
i∈1...n])

(GIvk1)
Γ `G e1 : ? Γ `G e2 : τ

Γ `G e1.l(e2) : ?

(GIvk2)
Γ `G e1 : [. . . , l : σ → τ, . . .] Γ `G e2 : σ′ σ′ . σ

Γ `G e1.l(e2) : τ

(GUpd1)
Γ `G e : ? Γ, self : [l : σ → τ ], x :σ ` e′ : τ

Γ `G e.l:=τ ς(x :σ)e′ : [l : σ → τ ]

(GUpd2)
Γ `G e1 : ρ Γ, self :ρ, x :σ `G e2 : τ σk . σ τ . τk

Γ `G e1.lk:=τ ς(x : σ)e2 : ρ

(where ρ ≡ [li : σi → τi
i∈1...n] and k ∈ 1 . . . n)



7 A semantics for Ob?
<:

In this section we define a semantics for Ob?
<: by defining a cast-inserting transla-

tion to the intermediate language Ob〈·〉<: and by defining an operational semantics
for Ob〈·〉<: . The syntax and typing rules for the intermediate language are those
of Ob<: [1] (Fig. 4 of the Appendix) extended with an explicit cast. The syntax
and typing rule for the explicit cast are shown below.

Intermediate Language

Expressions e += 〈τ ⇐ τ〉e e ∈ Ob〈·〉<: ⊃ Ob<:

· · · Γ ` e : σ σ ∼ τ σ 6= τ

Γ ` 〈τ ⇐ σ〉e : τ
Γ ` e : τ

Most run-time systems for dynamic languages associate a “type tag” with
each value so that run-time type checks can be performed efficiently. In this paper
we use a term-rewriting semantics that works directly on the syntax, without
auxiliary structures. The role of the type tag is played by the cast expression. The
cast includes both the source and target type because both pieces of information
are needed at run-time to apply casts to objects.

We do not allow “no-op” casts in the intermediate language to simplify the
canonical forms of values, e.g., a value of type int is an integer, and not an
integer cast to int. The typing rule for casts requires the source and target type
to be consistent, so the explicit cast may only add or remove ?’s from the type.
Implicit up-casts due to subtyping remain implicit using a subsumption rule, as
such casts are safe and there is no need for run-time checking.

7.1 The Cast Insertion Translation

The cast insertion translation is guided by the gradual type system, inserting
casts wherever the type of a subexpression differs from the expected type. For
example, recall the rule for method invocation.

(GIvk2)
Γ `G e1 : [. . . , l : τ → τ ′, . . .] Γ `G e2 : σ σ . τ

Γ `G e1.l(e2) : τ ′

The type σ of e2 may differ from the function’s parameter type τ . We need to
translate the invocation to a well typed term of Ob〈·〉<: , where the argument type
must be a subtype of the parameter type. We know that σ . τ , so σ can differ
from τ along both the type consistency relation ∼ and the subtype relation <:.
So we have the diagram on the left:



τ

σ

.
>>~~~~~~~

τ

σ

.
??��������

∼
// ρ

<:

OO

A cast can move us along the x-axis, and the subsumption rule can move us
along the y-axis. So a solution to the problem, shown above on the right, is to
cast e2 from σ to some type ρ where ρ <: τ . (We could just as well move up
along the y-axis via subsumption before casting along the x-axis; it makes no
difference.) The following example shows how we can choose ρ for a particular
situation and gives some intuition for how we can choose it in general.

[x :? → int]

[x : int → ?, y : bool → bool]

.
33hhhhhhhhhhhhhhhhhhhh

∼
// [x :? → int, y : bool → bool]

<:

OO

The type ρ must be the same width (have the same methods) as σ, and it must
have a ? in all the locations that correspond to ?s in τ (and not have ?s where
τ does not). In general, we can construct ρ with the merge operator, written
σ ↼ τ , defined below.

σ ↼ τ ≡ case (σ, τ) of
(?,−) ⇒ τ

| (−, ?) ⇒ ?
| ([l1 : s1, . . . , ln : sn], [l1 : t1, . . . , ln : tm]) where n ≤ m ⇒

[l1 : s1 ↼ t1, . . . , ln : sn ↼ tn]
| ([l1 : s1, . . . , ln : sn], [l1 : t1, . . . , ln : tm]) where n > m ⇒

[l1 : s1 ↼ t1, . . . , lm : sm ↼ tm, lm+1 : sm+1, . . . , ln : sn]
| (−,−) ⇒ σ

(σ1 → σ2) ↼ (τ1 → τ2) = (σ1 ↼ τ1) → (σ2 ↼ τ2)

With the merge operator, we have the following diagram:

σ

σ′

.
::uuuuuuuuuu

∼
// (σ′ ↼ σ)

<:

OO

Proposition 3 (Basic Properties of ↼).

1. σ ∼ (σ ↼ τ)
2. If σ . τ then (σ ↼ τ) <: τ .



The cast insertion judgment Γ ` e e′ : τ translates an expression e in the
environment Γ to e′ and determines that its type is τ . The cast insertion rule for
method invocation (on known object types) is defined as follows using σ′ ↼ σ
as the target of the cast on e2.

(CIvk2)
Γ ` e1  e′1 : [. . . , l : σ → τ, . . .] Γ ` e2  e′2 : σ′ σ′ . σ

Γ ` e1.l(e2) e′1.l(〈〈(σ′ ↼ σ) ⇐ σ′〉〉e′2) : τ

In the case when σ′ = σ, we do not insert a cast, which is why we use the
following helper function.

〈〈τ ⇐ σ〉〉e ≡ if σ = τ then e else 〈τ ⇐ σ〉e

The rest of the translation rules are straightforward. Fig. 2 gives the full defini-
tion of the cast insertion translation.

Fig. 2. Cast Insertion

Γ ` e e′ : τ

(CVar)
Γ (x) = τ

Γ ` x x : τ

(GConst) Γ ` c c : TypeOf (c)

(CObj)
Γ, self :ρ, xi : σi ` ei  e′i : τi ∀i ∈ 1 . . . n

Γ ` [li=τi ς(xi : σi)ei
i∈1...n] [li=τi ς(xi : σi)e

′
i

i∈1...n] : ρ
(where ρ ≡ [li : σi → τi

i∈1...n])

(CIvk1)
Γ ` e1  e′1 : ? Γ ` e2  e′2 : τ

Γ `G e1.l(e2) (〈〈[l : τ →?] ⇐?〉〉e′1).l(e′2) : ?

(CIvk2)
Γ ` e1  e′1 : [. . . , l : σ → τ, . . .] Γ ` e2  e′2 : σ′ σ′ . σ

Γ ` e1.l(e2) e′1.l(〈〈(σ′ ↼ σ) ⇐ σ′〉〉e′2) : τ

(CUpd1)
Γ ` e1  e′1 : ? Γ, self : [l : σ → τ ], x :σ ` e2  e′2 : τ

Γ ` e1.l:=τ ς(x :σ)e2  (〈〈[l : σ → τ ] ⇐?〉〉e′1).l:=τ ς(x :σ)e′2 : [l : σ → τ ]

(CUpd2)

Γ ` e1  e′1 : ρ Γ, self :ρ, x :σ ` e2  e′2 : τ
σk . σ τ . τk e3 ≡ 〈〈τk ⇐ τ〉〉[x 7→ 〈〈σ ⇐ σk〉〉y]e′2

Γ ` e1.lk:=τ ς(x :σ)e2  e′1.lk:=τk ς(y :σk)e3 : ρ
(where ρ ≡ [li : σi → τi

i∈1...n] and k ∈ 1 . . . n)

The cast-insertion judgment subsumes the gradual type system and addi-
tionally specifies how to produce the translation. It is not defined for ill-typed
terms.



Proposition 4 (Cast Insertion and Gradual Typing).
Γ `G e : τ iff ∃e′. Γ ` e e′ : τ .

When there is a cast insertion translation for term e, the resulting term e′

is guaranteed to be a well-typed term of the intermediate language. Lemma 1 is
used directly in the type safety theorem.

Lemma 1 (Cast Insertion is Sound).
If Γ ` e e′ : τ then Γ ` e′ : τ .

Proof. The proof is by induction on the cast insertion derivation.

The next lemma is needed to prove static type safety, that is, a fully annotated
term is guaranteed to produce neither cast nor type errors. The set of fully
annotated terms of Ob?

<: is exactly the Ob<: subset of Ob?
<:. The function FV

returns the set of variables that occur free in an expression.

Lemma 2 (Cast Insertion is the Identity for Ob<:).
If Γ ` e  e′ : τ and e ∈ Ob<: and ∀x ∈ FV(e) ∩ dom(Γ ). Γ (x) ∈ Ob<: then
Γ ` e : τ and τ ∈ Ob<: and e = e′.

Proof. The proof is by induction on the cast insertion derivation.

Lemma 2 is also interesting for performance reasons. It shows that for fully
annotated terms, no casts are inserted so there is no run-time type checking
overhead.

7.2 Operational Semantics of Ob〈·〉
<:

In this section we define a small-step, evaluation context semantics [16, 17, 54]
for Ob〈·〉<: . Evaluation normalizes expressions to values.

Definition 4 (Values and Contexts). Simple values are constants, variables,
and objects. Values are simple values or a simple value enclosed in a single cast.
An evaluation context is an expression with a hole in it (written []) to mark
where rewriting (reduction) may take place.

Simple Values ξ ::= c | x | [li=τi ς(xi :σi)ei
i∈1...n]

Values v ::= ξ | 〈τ ⇐ τ〉ξ
Contexts E ::= [] | E.l(e) | v.l(E) | E:=τ ς(x :τ)e | 〈τ ⇐ τ〉E

The reduction rules are specified in Fig. 3. When a reduction rule applies to
an expression, the expression is called a redex:

Definition 5 (Redex). redex e ≡ ∃e′. e −→ e′



The semantics is parameterized on a δ-function that defines the behavior of the
primitive methods attached to the constants. The rule for method invocation
(Ivk) looks up the body of the appropriate method and substitutes the argu-
ment for the parameter. The primitive method invocation rule (Delta) simply
evaluates to the result of applying δ. In both the (Ivk) and (Delta) rules, the
argument is required to be a value as indicated by the use of meta-variable v.
Method update (Upd) creates a new object in which the specified method has
been replaced.

Fig. 3. Reduction

(Ivk)
[li=τi ς(xi :σi)ei

i∈1...n].lj(v)
−→ [xj 7→ v]ej

(1 ≤ j ≤ n) e −→ e

(Delta) c.l(v) −→ δ(c, l, v)

(Upd)
[li=τi ς(xi :σi)ei

i∈1...n].lj :=τ ς(x :σ)e

−→ [li=τi ς(xi :σi)ei
i∈{1...n}−{j}, lj=τ ς(x :σ)e]

(1 ≤ j ≤ n)

(Merge)
ρ . τ ρ 6= τ

〈τ ⇐ σ〉〈σ ⇐ ρ〉v −→ 〈〈(ρ ↼ τ) ⇐ ρ〉〉v

(Remove)
ρ = τ

〈τ ⇐ σ〉〈σ ⇐ ρ〉v −→ v

(IvkCst) (〈τ ⇐ σ〉v1).lj(v2) −→ 〈τ2 ⇐ σ2〉(v1.lj(〈σ1 ⇐ τ1〉v2))
(where σ ≡ [. . . , lj : σ1 → σ2, . . .] and τ ≡ [. . . , lj : τ1 → τ2, . . .])

(UpdCst)
(〈τ ⇐ σ〉v).lj :=τ2 ς(x :τ1)e

−→ 〈τ ⇐ σ〉(v.lj :=σ2 ς(z :σ1)〈〈σ2 ⇐ τ2〉〉[x 7→ 〈〈τ1 ⇐ σ1〉〉z]e)
(where σ ≡ [. . . , lj : σ1 → σ2, . . .] and τ ≡ [. . . , lj : τ1 → τ2, . . .])

(Step) e −→ e′

E[e] 7−→ E[e′]
e 7−→ e

(Refl) e 7−→∗ e e 7−→∗ e

(Trans)
e1 7−→∗ e2 e2 7−→ e3

e1 7−→∗ e3

The traditional approach to evaluating casts is to apply them in an eager
fashion. For example, casting at function types creates a wrapper function with
the appropriate casts on the input and output [18, 19, 20].

〈(ρ → ν) ⇐ (σ → τ)〉v −→ (λx :ρ. 〈ν ⇐ τ〉(v (〈σ ⇐ ρ〉x))



The problem with this approach is that the wrapper functions can build up,
one on top of another, using memory in proportion to the number of cast ap-
plications. The solution we use here is to delay the application of casts, and to
collapse sequences of casts into a single cast. When a cast is applied to a value
that is already wrapped in a cast, either the (Merge) or (Remove) rule applies,
or else the cast is a “bad cast”.

Definition 6 (Bad Cast).

badcast e ≡ ∃v ρ σ σ′ τ. e = 〈τ ⇐ σ′〉〈σ ⇐ ρ〉v ∧ ρ 6. τ

BadCast e ≡ ∃E e′. e = E[e′] ∧ badcast e′

The (Merge) rule collapses two casts into a single cast, and is guarded by a
type check. The target type of the resulting cast must be consistent with the
inner source type ρ and a subtype of the outer target type τ . We therefore use
the ↼ operator and cast from ρ to ρ ↼ τ . The (Remove) rule applies when the
inner source and the outer target types are equal, and removes both casts.

The delayed action of casts on objects is “forced” when a method is invoked
or updated. The rules (IvkCst) and (UpdCst) handle these cases.

8 Type Safety of Ob?
<:

The bulk of this section is dedicated to proving that the intermediate language
Ob〈·〉<: is type safe. The type safety of our source language Ob?

<: is a consequence
of the soundness of cast insertion and the type safety of the intermediate lan-
guage. The type safety proof for the intermediate language has its origins in the
syntactic type soundness approach of Wright and Felleisen[54], but is substan-
tially reorganized using some folklore5 and a new idea concerning the Unique
Decomposition Lemma. We begin with a top-down overview of the proof and
then list the lemmas and theorems in the standard bottom-up fashion.

The goal is to show that if a term es is well-typed (` es : τ) and reduces in
zero or more steps to ef (es 7−→∗ ef ), then ` ef : τ and ef is either a value or
contains a bad cast or ef can be further reduced. Note that the statement “ef is
either a value or contains a bad cast or ef can be further reduced” is equivalent
to saying that ef is not a type error as defined in Section 4. The proof of type
safety is by induction on the reduction sequence. A reduction sequence (defined
in Fig. 3) is either a zero-length sequence (so es = ef ), or a reduction sequence
es 7−→∗ ei to an intermediate term ei followed by a reduction step ei 7−→ ef . In
the zero-length case, where es = ef , we need to show that if es is well-typed then
it is not a type error. This is shown in the Progress Lemma. In the second case,
the induction hypothesis tells us that ei is well-typed. We then need to show
5 The original proof of Wright and Felleisen requires the definition of faulty expressions

which is cumbersome and more complicated than necessary because it relies on a
proof by contradiction. Later type soundness proofs, such as [26, 39, 44], take a more
direct approach, as we do here.



that if ei is well-typed and ei 7−→ ef then ef is well-typed. This is shown in the
Preservation Lemma. Once we have a well-typed ef , we can use the Progress
Lemma to show that ef is not a type error.

Progress Lemma Suppose that e is well-typed and not a value and does not
contain a bad cast. We need to show that e can make progress, i.e., there is
some e′ such that e 7−→ e′. Therefore we need to show that e can be decomposed
into an evaluation context E filled with a redex e1 (∃e2. e1 → e2) so that we can
apply rule (Step) to get E[e1] 7−→ E[e2]. The existence of such a decomposition
is given by the Decomposition Lemma6. In general, when the Progress Lemma
fails for some language, it is because there is a mistake in the definition of
evaluation contexts (which defines where evaluation should take place) or there
is a mistake in the reduction rules, perhaps because a reduction rule is missing.

Preservation Lemma We need to show that if ` e : τ and e 7−→ e′ then ` e′ : τ .
Because e 7−→ e′, we know there exists an E, e1, and e2 such that e = E[e1],
e′ = E[e2], and e1 −→ e2. The proof consists of three parts, each of which is
proved as a separate lemma.

1. From ` E[e1] : τ we know that e1 is well-typed (` e1 : σ) and the context
E is well-typed. The typing judgment for contexts (defined the Appendix,
Fig. 5) assigns the context an input and output type, such as ` E : σ ⇒ τ .
(Subterm Typing)

2. Because e1 is well-typed and e1 −→ e2, e2 is well-typed with the same type
as e1. (Subject Reduction)

3. Filling E with e2 produces an expression of type τ . More precisely, if ` E :
σ ⇒ τ and ` e2 : σ then ` E[e2] : τ . (Replacement)

In general, Subterm Typing and Replacement hold for a language so long as
evaluation contexts are properly defined. Subject Reduction, on the other hand,
is highly dependent on the reduction rules of the language and is the crux of the
type safety proof.

We now state the lemmas and theorems in the traditional bottom-up order,
but without further commentary due to lack of space. We start with some basic
properties of objects.

Proposition 5 (Properties of Objects).

1. If Γ ` [li=τi ς(xi :σi)ei
i∈1...n] : ρ where ρ ≡ [li : σi → τi

i∈1...n] and
j ∈ 1 . . . n and Γ, self : ρ, xj : σj ` e′ : τj

then Γ ` [li=τi ς(xi :σi)ei
i∈{1...n}−{j}, lj=τj ς(xj : σj)e′] : ρ.

6 Our Decomposition Lemma differs from the standard Unique Decomposition Lemma
in that we include the premise that the expression is well-typed and conclude with
a stronger statement than usual, that the hole is filled with a redex. The standard
approach is to conclude with a hole filled with something, let us call it a pre-redex,
that turns out to be either a redex or an ill-typed term. We do not prove uniqueness
here because it is not necessary to prove type safety. Nevertheless, decompositions
are unique for Ob

〈·〉
<: .



2. If [li : σi → τi
i∈1...n] <: [lj : ρj → νj

j∈1...m] and k ∈ 1 . . .m then ρk = σk

and νk = τk.

8.1 Progress

Towards proving the Progress Lemma, we show that values of certain types have
canonical forms.

Lemma 3 (Canonical Forms).

1. If ` v : γ then ∃c ∈ C. v = c.
2. If ` v : ρ where ρ ≡ [li : σi → τi

i∈1...n]
then ∃x e. v = [li = τi ς(xi :σi)ei

i∈1...n]
or ∃x e σ. v = 〈σ ⇐ ρ〉[li = τi ς(xi :σi)ei

i∈1...n].
3. 6` ξ : ? (simple values do not have type ?)

The main work in proving Progress is proving the Decomposition Lemma.

Lemma 4 (Decomposition). If ` e : τ then e ∈ Values or
∃σ E e′. e = E[e′] ∧ (redex e′ ∨ badcast e′).

Proof. By induction on the typing derivation using the Canonical Forms Lemma
and Proposition 5.

Lemma 5 (Progress). If ` e : τ then e ∈ Values or ∃e′.e 7−→ e′ or BadCast e.

Proof. Immediate from the Decomposition Lemma.

8.2 Preservation

Next we prove the Preservation Lemma and the three lemmas on which it re-
lies: Subterm Typing, Subject Reduction, and Replacement. As proving Subject
Reduction is more involved, it requires several more lemmas.

Lemma 6 (Subterm Typing). If ` E[e] : τ then ∃σ. ` E : σ ⇒ τ and ` e : σ.

Proof. A straightforward induction on the typing derivation.

We assume that the δ function for evaluating primitives is sound.

Assumption 1 (δ-typability).
If TypeOf (c) = [. . . , l : σ → τ, . . .] and ` v : σ then ` δ(c, l, v) : τ .

For the function application case of Subject Reduction, we need the standard
Substitution Lemma, which in turn requires an Environment Weakening Lemma.

Definition 7. Γ ⊆ Γ ′ ≡ ∀xτ. Γ (x) = τ implies Γ ′(x) = τ

Lemma 7 (Environment Weakening).
If Γ ` e : τ and Γ ⊆ Γ ′ then Γ ′ ` e : τ .



Proof. A straightforward induction on the typing derivation.

Definition 8. We write Γ\{x} for Γ restricted to have domain dom(Γ )\{x}.

Lemma 8 (Substitution).
If Γ ` e1 : τ and Γ (x) = σ and Γ\{x} ⊆ Γ ′ and Γ ′ ` e2 : σ
then Γ ` [x 7→ e2]e1 : τ .

Proof. By induction on the typing derivation. All cases are straightforward ex-
cept for (Obj) and (Upd) for which we use Environment Weakening.

Lemma 9 (Inversions on Typing Rules).

1. If Γ ` c : σ → τ then there exists σ′ and τ ′ such that TypeOf (c) = σ′ → τ ′

and σ <: σ′ and τ ′ <: τ .
2. If Γ ` 〈τ ′ ⇐ σ〉e : τ then τ ′ <: τ and σ ∼ τ ′ and σ 6= τ ′ and Γ ` e : σ.
3. Suppose Γ ` [li = τi ς(xi : σi)ei

i∈1...n] : τ and let ρ ≡ [li : σi → τi
i∈1...n].

Then ρ <: τ and for any j ∈ 1 . . . n we have Γ, self : ρ, xj : σj ` ej : τj.

Proof. The proofs are by induction on the typing derivation.

Lemma 10 (Subject Reduction). If ` e : τ and e −→ e′ then ` e′ : τ .

Proof. The proof is by induction on the typing derivation, followed by case anal-
ysis on the reduction.

(Ivk) Use the Substitution and Inversion Lemmas and Proposition 5.
(Delta) Use δ-typability and the Inversion Lemma.
(Upd) Use Proposition 5 and the Inversion Lemma.
(Merge) Use Proposition 3 and the Inversion Lemma.
(Remove, InvCst, UpdCst) Use the Inversion Lemma.

Lemma 11 (Replacement). If E : σ ⇒ τ and ` e : σ then ` E[e] : τ .

Proof. A straightforward induction on the context typing derivation.

Lemma 12 (Preservation). If e 7−→ e′ and ` e : τ then ` e′ : τ .

Proof. Apply Subterm Typing to get a well-typed evaluation context and redex.
Then apply Subject Reduction and Replacement.

8.3 Type Safety

Lemma 13 (Type Safety of Ob〈·〉<:). If ` e : τ and e 7−→∗ e′ then ` e′ : τ and
e′ ∈ Values or BadCast e′ or ∃e′′. e′ 7−→ e′′.

Proof. By induction on the evaluation steps. For the base case, where e = e′, we
use Progress to show that e is either a value, a bad cast, or can make progress.
For the case where e1 7−→∗ e2 and e2 7−→ e3, e2 is well-typed by the induction
hypothesis and therefore e3 is well-typed by Preservation. Applying Progress to
e3 brings us to the conclusion.



Theorem 1 (Type Safety of Ob?
<:). If ` e1  e2 : τ and e2 7−→∗ e3 then

` e3 : τ and e3 ∈ Values or BadCast e3 or ∃e4. e3 7−→ e4.

Proof. The expression e2 is well-typed because cast insertion is sound (Lemma 1).
We then apply Lemma 13.

Theorem 2 (Static Type Safety of Ob?
<:). If e1 ∈ Ob<: and ` e1  e2 : τ

and e2 7−→∗ e3 then ` e3 : τ and e3 ∈ Values or ∃e4. e3 7−→ e4.

Proof. By Lemma 2 we have e1 = e2, so e2 does not contain any casts. By
Lemma 13 we know that either e3 is a value or a bad cast or can make progress.
However, since e2 did not contain any casts, there can be none in e3.

9 Conclusion and Future Work

The debate between dynamic and static typing has continued for several decades,
with good reason. There are convincing arguments for both sides. Dynamic typ-
ing is better suited for prototyping, scripting, and gluing components, whereas
static typing is better suited for algorithms, data-structures, and systems pro-
gramming. It is common practice for programmers to start developing a program
in a dynamic language and then translate to a static language later on. However,
static and dynamic languages are often radically different, making this transla-
tion difficult and error prone. Ideally, migrating between dynamic to static could
take place gradually and within one language.

In this paper we present the formal definition of an object calculus Ob?
<:,

including its type system and operational semantics. This language captures the
key ingredients for implementing gradual typing in object-oriented languages,
showing how the type consistency relation can be naturally combined with sub-
typing. The calculus Ob?

<: provides the flexibility of dynamically typed lan-
guages when type annotations are omitted by the programmer and provides the
benefits of static checking when all method parameters are annotated. The type
system and run-time semantics of Ob?

<: are relatively straightforward, so it is
suitable for practical languages.

As future work, we intend to investigate the interaction between gradual
typing and Hindley-Milner inference [11, 31, 38], and we intend to apply static
analyses (such as Soft Typing or Henglein’s Gradual Typing) to reduce the
number of run-time casts that must be inserted during compilation. There are a
number of features we omitted from the formalization for the sake of keeping the
presentation simple, such as recursive types and imperative update. We plan to
add these features to our formalization in the near future. Finally, we intend to
incorporate gradual typing into a mainstream dynamically typed programming
language and perform studies to evaluate whether gradual typing can benefit
programmer productivity.
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Appendix

Fig. 4. The type system for Ob<:.

(Var)
Γ (x) = τ

Γ ` x : τ
Γ ` e : τ

(Const) Γ ` c : TypeOf (c)

(Obj)
Γ, self :ρ, xi : σi ` ei : τi ∀i ∈ 1 . . . n

Γ ` [li = τi ς(xi : σi)ei
i∈1...n] : ρ

(where ρ ≡ [li : σi → τi
i∈1...n])

(Ivk)
Γ ` e1 : [. . . , l : σ → τ, . . .] Γ ` e2 : σ

Γ ` e1.l(e2) : τ

(Upd)
Γ ` e1 : ρ Γ, self :ρ, x :σ ` e2 : τ σk <: σ τ <: τk

Γ ` e1.lk:=τ ς(x : σ)e2 : ρ
(where ρ ≡ [li : σi → τi

i∈1...n] and 1 ≤ k ≤ n)

(Sub)
Γ ` e : σ σ <: τ

Γ ` e : τ

Fig. 5. Well-typed contexts.

(CxHole) ` [] : τ ⇒ τ ` E : τ ⇒ τ

(CxIvkL)
` E : σ ⇒ [. . . , l : ρ → τ, . . .] ` e : ρ

` E.l(e) : σ ⇒ τ

(CxIvkR)
` e : [. . . , l : ρ → τ, . . .] ` E : σ ⇒ ρ

` e.l(E) : σ ⇒ τ

(CxUpd)
` E : σ′ ⇒ ρ self : ρ, x : σ ` e : τ σk <: σ τ <: τk

` E.lk:=τ ς(x :σ)e : σ′ ⇒ ρ
(where ρ ≡ [li : σi → τi

i∈1...n] and 1 ≤ k ≤ n)

(CxSub)
` E : σ ⇒ ρ ` ρ <: ρ′

` E : σ ⇒ ρ′


	Jeremy Siek and Walid Taha   8.5plus3minus4plus24plus2minus2jeremy.siek@colorado.edu, taha@rice.edu

