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Abstract. Graph matching has a wide spectrum of computer vision ap-
plications such as finding feature point correspondences across images.
The problem of graph matching is generally NP-hard, so most exist-
ing work pursues suboptimal solutions between two graphs. This paper
investigates a more general problem of matching N attributed graphs
to each other, i.e. labeling their common node correspondences such
that a certain compatibility/affinity objective is optimized. This multi-
graph matching problem involves two key ingredients affecting the over-
all accuracy: a) the pairwise affinity matching score between two local
graphs, and b) global matching consistency that measures the uniqueness
and consistency of the pairwise matching results by different sequential
matching orders. Previous work typically either enforces the matching
consistency constraints in the beginning of iterative optimization, which
may propagate matching error both over iterations and across different
graph pairs; or separates score optimizing and consistency synchroniza-
tion in two steps. This paper is motivated by the observation that affinity
score and consistency are mutually affected and shall be tackled jointly
to capture their correlation behavior. As such, we propose a novel multi-
graph matching algorithm to incorporate the two aspects by iteratively
approximating the global-optimal affinity score, meanwhile gradually in-
fusing the consistency as a regularizer, which improves the performance
of the initial solutions obtained by existing pairwise graph matching
solvers. The proposed algorithm with a theoretically proven convergence
shows notable efficacy on both synthetic and public image datasets.

1 Introduction

Due to the powerful characteristics of abstraction, Graph Matching (GM) plays
a central role in tremendous computer vision applications such as image registra-
tion [39], object categorization [30], action recognition [5], shape matching [29],
stereo [20,46], and so forth. The problem of graph matching is to establish a com-
patible node-to-node mapping among two or more graphs. In computer vision,
GM has primarily been used to find correspondences among two or more sets
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of local features extracted from images. Different from conventional matching
methods such as RANSAC [15] and Iterative Closest Point (ICP) [4], GM goes
beyond the first-order node-wise feature as well as the focus of location infor-
mation [51], which incorporates more distinctive pairwise [43,47] or higher-order
[50,13,28,33] node interactions for matching structural objects. Consequently,
GM has attracted considerable research attention [12,17,22,34,16] for decades,
yet remains computationally challenging due to its combinatorial nature.

Current graph matching methods mostly focused on the two-graph scenario
such as [21,38,9,41,52,43,10,8,47]. In particular, there are several research groups
focusing on graph matching and related problems over the past years, such as
Professor Horst Bunke’s group in Bern [3], Professor Edwin R. Hancock’s group
in York [2], and Professor Francesc Serratosa’s group in Tarragona [1], to name a
few. Readers are referred to the recent comparison review paper [22] for more de-
tails therein. However, on one hand, many practical computer vision tasks need
matching multiple images or point sets, which is a building block for various ap-
plications that involve multi-view registration or matching. On the other hand,
it is generally recognized [47,44,40,36] that simultaneously exploring all pairwise
affinity information across the whole pool of graphs G = {G1, · · · , GN} may
improve the matching accuracy. Such an improvement is accomplished through
avoiding trapping to local optima, or a false optima away from the semantic
true correspondence due to the large deformation, appearing in the pairwise
case since only affinity between two local graphs is explored. Therefore, it is ap-
pealing to design effective and efficient multi-graph matching algorithms beyond
conventional pairwise matching solvers.

The multi-graph matching problem has been basically solved in a sequential
manner [37], where each step executes a pairwise matching of two graphs. Ide-
ally, the pairwise matching sequence can be designed by different orders that
cover all graphs in a path, e.g., G1→G2 →. . .→GN . However, whatever path
order is chosen, a single error in the corresponding sequence will typically create
a large number of erroneous pairwise matches. To fully explore the information
across the whole graph pool G, it is perhaps more robust to compute all or part
of pairwise matching results independently, and then leave the calculation of the
final solution to several post-steps [36,24]. Compared with computing a pairwise
matching chain like G1→G2 →. . .→GN , such an exhaustive matching strategy
would cause the problem of redundancy, or in another word, inconsistency, as
the node mapping between two graphs cannot be uniquely determined by differ-
ent pairwise matching paths. Formally, we use the term “cycle-consistency” as
introduced and described in [48,26,24], i.e., that composition of correspondences
between two graphs should be independent of the connecting path chosen.

2 Problem Statement

2.1 Graph Matching Formulations

For self-completeness, first we briefly introduce the widely used objective func-
tion of graph matching in the context of two graphs. Concretely, given two
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graphs G1(V1, E1, A1) and G2(V2, E2, A2), where V denotes nodes, E, edges and
A, attributes, there is an affinity matrixK ∈ Rn1×n2 , whereby its elementsKia;jb

measure the affinity with the edge pair candidate {v1(i), v1(j)} vs. {v2(a), v2(b)}.
The diagonal elements Kia;ia represent the unary affinity of a node pair can-
didate {v1(i), v2(a)}. By introducing a permutation1 matrix P ∈ {0, 1}n1×n2

whereby Pia=1 if node v1(i) matches node v2(a) (Pia=0 otherwise). It can be
concisely formulated as a constrained quadratic assignment problem (QAP [35]).
It goes beyond the linear assignment problem that can be efficiently solved by
the Hungarian method [27]. In general, the QAP is known to be NP-hard [18].

P
∗ = argmax

P

vec(P)TKvec(P) s.t. I
T
n1

P = 1
T
n2
,PIn2 = 1n1 ,P ∈ {0, 1}n1×n2 .

Here vec(P) is the vectorized permutation matrix of P, and vec(P)T is the
transpose version. The constraints refer to the one-to-one node bijection.

One step further, now we consider the formulation for the multi-graph match-
ing. Given N graphs and the pairwise affinity matrixKij(i, j = 1, 2, . . . , N ; i>j),
a natural extension for multi-graph matching as used in [47] is:

{Pij}
∗ = arg max

{Pij}

∑

i,j=1,2,...,N;i>j

vec(Pij)
T
Kijvec(Pij) (1)

s.t. I
T
n1

Pij = 1
T
n2

PijIn2 = 1n1 Pij ∈ {0, 1}ni×nj ∀i, j = 1, 2, . . . , N ; i > j

where {Pij} is the set of pairwise permutation matrix over N graphs. Note that
for notational simplicity, without loss of generality, here we omit the weight λij

for each quadratic term in the objective function as used in [47].

2.2 Notations and Preliminaries

We first give several notations and definitions which will be used throughout this
paper. Without loss of generality, given a set of N graphs G = {Gk,

∑N
k=1}, let

the assignment matrix Pij ∈ R
ni×nj denote the node-to-node mapping between

Gi and Gj . We also define the pairwise affinity matching score Jij that mea-

sures the similarity between two aligned graphs as Jij = vec(PT
ij)Kijvec(Pij).

This score definition is widely used in graph matching related work, such as
[9,52,43,10,8,47]. By stacking all Pij into one whole matrix, we define the result-

ing matching configuration matrix 2 as: W =

(
P11 · · · P1N

.

.

.
. . .

.

.

.
PN1 · · · PNN

)
∈ RnN×nN .

1 We use“assignment matrix”/“permutation matrix” interchangeably in the paper.
2 For multi-graph matching tackled in this paper, we seek the common inlier node
set (via the one-to-one node matching) shared among all graphs, and admit outliers
appearing in graphs i.e. ni = nin

i + nout
i for each graph Gi. In general, in the case

of ni �= nj , the variable Pij in Eq. (1) is a partial assignment matrix. Similar to
[52,21,40], we transform the partial assignment matrix P to a full square assignment
matrix by augmenting proper dummy nodes (adding slack variables into Pij accord-
ingly), so that the one-to-one two-way constraints can always be satisfied. This is
a conventional strategy used in solving linear programming, and also is previously
adopted by graph matching work such as [45,14,40]. Thus throughout the paper from
now on, we assume ni = nj = n for all graphs.
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Now we introduce several definitions that will facilitate the presentation of
the paper: Definition (1) and (2) are used to quantify the consistency metric
related to the proposed Alg.2 as we will show later. Definition (3) is regarding
with using Maximum Span Tree for multi-graph matching and related to the
concept of matching path in Definition (4), which is related to Alg.1 and Alg.2.

Definition 1. Given a set of graphs G={Gk,
∑N

k=1}, the consistency of graph

Gk is defined as C(Gk)=1−
∑N−1

i=1

∑N
j=i+1(‖Pij−PikPkj‖F /2

n(N−2)(N+1)/2 where Pij is the pair-

wise assignment matrix over the graph set G.

Definition 2. Given a set of graphs G={Gk,
∑N

k=1} and its pairwise assign-

ment matrix set {Pij}, we call the graph set G is fully consistent w.r.t. its

pairwise matching configuration W if ∀i, j, k ≤ N : Pij=PikPkj. Specifically,

the consistency measure of G is defined as C(G)=
∑

N
k=1 C(Gk)

N . Thus C(G)=1 if

and only if G is fully consistent.

Definition 3. Given a set of graphs {Gk,
∑N

k=1} and Pij , the super graph G is

defined as an undirected weighted graph such that each node k denotes Gk, and

its edge eij is weighted by the Jij = vec(Pij)
T
Kijvec(Pij).

Definition 4. The matching path Tij(k1, k2, . . . , ks) from graph Gi to Gj is de-

fined as a loop-free chain of graphs Gi → Gk1 → · · · → Gks
→ Gj which in-

duces the multiplication of the pairwise matching solutions: Hij(k1, k2, . . . , ks) �
Pik1Pk1k2 . . .Pksj. Its order s is further defined as the number of the interme-

diate graphs between the two ending graphs Gi, Gj. The score Jij(k1, k2, . . . , ks)
of the path is induced by the chaining matching solution Hij(k1, k2, . . . , ks) as

Jij(k1, k2, . . . , ks) =vec(Hij)
T
Kijvec(Hij).

Comments. By assuming full consistency of Definition (2), solving the multi-
matching problem reduces to finding N − 1 different assignment matrix, rather
than O(N2) that cover all pairwise cases. The consistency measurement regard-
ing a single graphs as defined in Definition (1) reflects its consistency contribu-
tion. The super graph is considered as a fully connected graph when each pair of
graphs is matched by some means (eij > 0) or set to zero if the pairwise match-
ing is unknown. In general, given a connected super graph (not necessarily fully
connected), a maximum spanning tree (MST) [19] can be found with more or
equal to the weight of every other spanning tree on the super graph.

3 Related Work

As a general problem for matching structural data, graph matching has been
extensively studied for decades not only in computer vision, but also in computer
science and mathematics [12]. Here we view the problem from several key aspects
that account for the main threads of the related work.
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Machine Learning for GM: Conventional graph matching methods first com-
pute an affinity matrix and keep the graph unchanged during the entire match-
ing process. Recent work leverage various leaning algorithms for estimating the
optimal affinity matrix [6,32,33,23,8], and the methods can fall into either su-
pervised [6] or unsupervised [32] or semi-supervised [33] learning paradigms.

Higher-Order Affinity Modeling: Combing the unary and pairwise edge in-
formation has been heavily investigated since such types of matching schemes
play a good tradeoff between computational complexity and representation ca-
pability [9,21,29,31,42]. More recently, the higher-order (most are third order)
information has been encoded to achieve more robust matching paradigms. Sev-
eral representative hypergraph matching methods have been developed for com-
puter vision applications [7,13,28,33,50] that encode higher-order information to
enhance the structural distinctiveness for matching.

Optimization Methods: Most approaches first formulate an objective func-
tion, and then employ certain optimization methods to derive optimal solu-
tions [21,29,42], which vary among a wide spectrum of optimization strategies
[11]. Some recent work first relax the objective function to convex-concave formu-
lation [52,49]. Then the optimal solutions are achieved using the so-called path
following strategy and a modified version of the Frank-Wolfe algorithm [49].
Probabilistic matching paradigms are also developed, which have shown unique
power in interpreting and addressing hypergraph matching problems [9,28,50].

Surprisingly, little work in computer vision community has been done for si-
multaneously addressing both matching consistency and matching affinity. The
most recent methods still concentrate on one single aspect of the problem - ei-
ther aiming at maximizing/minimizing the matching affinity score/cost by using
a reference graph to ensure the matching consistency, like [47,40], or address-
ing the problem from a spectral smoothing perspective to enhance consistency
like [36] while ignoring the affinity score between two local graphs. More specifi-
cally, Sole-Ribalta and Serratosa [40] extend the classical Graduated Assignment
Graph Matching (GAGM) algorithm [21,43] from pairwise to the multi-graph
case, which inherits the robustness of the original method, yet meanwhile, being
less efficient as it repeatedly applies the GAGM method across graph pairs iter-
atively. Yan et. al. [47] propose an iterative optimization method that imposes
the rigid matching consistency constraint via a closed form in each iteration.
The recent work [36] employs spectral analysis and approximation to eigenvec-
tor decomposition on the matching configuration matrix comprised of all initial
pairwise matching solutions, and recover the consistent matching solutions. In
this paper, we formulate the multi-graph matching problem as a novel graduated
regularized optimization procedure, and solve it using an iterative first-order ap-
proximating algorithm regarding with the affinity score.

The main contribution of this paper lies in the study of the correlation score
between affinity score and matching accuracy decays as the score value increases,
while consistency becomes a more informative regularizer. Based on this ob-
servation, a novel graduated consistency-regularization method is proposed to
effectively improve the accuracy from the initial pairwise matching solutions.
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4 Graduated Consistency-Regularized Approximating

4.1 Maximizing Matching Score under Consistency Constraints

Note that the formulation (1) does not automatically account for the matching
consistency. By introducing the consistency measure associated with the config-
uration matrix W for graph set G as defined in Definition (2), we present the
consistency-constrained version of the objective function:

{Pij}
∗ = arg max

{Pij}

∑

i,j=1,2,...,N;i>j

vec(Pij)
T
Kijvec(Pij) (2)

I
T
n1

Pij = 1
T
n2

PijIn2 = 1n1 Pij = PikPkj ∈ {0, 1}ni×nj ∀k = 1, 2, . . . , N ; k �= i, j

We first transform the above objective to a “Lagrange-multiplier” form, which
is more suitable for the problem as we will show later:

{Pij}
∗ = arg max

{Pij}

∑

i,j=1,2,...,N;i>j

vec(Pij)
T
Kijvec(Pij) + λ

N∑

k=1

‖Pij −PikPkj‖F (3)

I
T
n1

Pij = 1
T
n2

PijIn2 = 1n1 Pij = PikPkj ∈ {0, 1}ni×nj ∀k = 1, 2, . . . , N ; k �= i, j

Note that we do not move the one-to-one bijection constraint to the “Lagrange-
multiplier” term, this is due to existing pairwise graph matching solvers are able
to handle this constraint, such as relaxing to the permutation matrix’s convex
hull - a doubly stochastic matrix e.g. [9].

The above objective function is challenging due to NP-hard, and even harder
as more consistency constraints need being satisfied here. Thus we are more
interested in devising efficient approximating algorithms, which is based on two
rationales to the specific matching problem as we will show in the following.

4.2 Maximizing Pairwise Score via Approximating Path Selection

Our first key rationale is that the highest-score matching between two graphs
may be found along a higher-order path (refer to Definition 4) instead of the
direct (zero-order) pairwise matching. We formalize this idea as follows:

For graph Gi, Gj , all possible (loop-free) matching pathes can form the fol-
lowing (loop-free) path set Tij = {Tij(k1, . . . , ks), s = 1, 2, . . . , N − 2}. Its cardi-

nality |Tij | =
∑N−2

s=1 s!. Thus exhaustively searching for the best solution T ∗
ij is

intimidating as the complexity is exponential in terms of N .
One alternative approach is to approximate T ∗

ij by a set of consecutive first-
order iterations, which involves concatenating the first-order short pathes that
are chosen in each iteration, into a higher-order path. This idea is formally
described in Alg.1: in each iteration s, the pairwise matching solution Pij is
updated by the highest-score one among the confined subset of Tij with path
order s = 1 (See line 8-10 in the algorithm chart). This algorithm bears solid
convergence property due to the score-ascending procedure will always converge
to a fixed value because the score is bounded in the discrete permutation matrix
space. In general, such a greedy algorithm cannot ensure the global optimality
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Algorithm 1. Iterative Approximating Pairwise Affinity Maximization

Input

1: One set of N graphs with n nodes: Vi = {v1, v2, . . . , vn}, (i = 1, 2, . . . , N);
2: Pairwise affinity matrix Kij(i = 1, 2, . . . , N ; j = i+ 1, . . . , N);
3: Maximum iteration count: Smax, initial iteration count: s = 0;
Output

4: Consistent matching configuration matrix W ∈ R
Nn×Nn;

Procedure

5: Perform pairwise graph matching to obtain the putative assignment matrix
P

(0)
ij ∈ R

n×n and the matching configuration matrix W(0) ∈ R
Nn×Nn;

6: Calculate the initial total score J(0) by

J(0) =
∑N,N

i=1,j=i+1 vec(P
(0)
ij )

T
Kijvec(P

(0)
ij );

7: while s ≤ Smax do

8: for all i = 1, 2, . . . , N ; j = i+ 1, . . . , N do

9: Update P
(s)
ij = P

(s−1)
ik P

(s−1)
kj for k to maximize vec(P

(s)
ij )TKijvec(P

(s)
ij )

10: end for

11: Calculate the total score J(s) =
∑N,N

i=1,j=i+1 vec(P
(s)
ij )TKijvec(P

(s)
ij );

12: If Js = Js−1, break;
13: s++;
14: end while

15: Update W(s) by updating all P
(s)
ij ;

16: Impose full consistency by spectral smoothing method [36] when N > n, or
via building a maximum span tree on the super graph [25] when N <= n.

for affinity score. The following proposition shows under certain conditions, Alg.1
can guarantee the global optimality. Proving its correctness is trivial.

Proposition 1. For any Gi, Gj out of a fully connected super graph, denote

the “highest-score” path as T ∗
ij. If for any sub-segment T̃ ∗

kl of T
∗
ij, it is also the

“highest-score” path for the two ending graph Gk, Gl, i.e. T̃
∗
kl = T ∗

kl, then Alg.1

is ensured to find the global optimum for the initial configuration W.

To satisfy the full consistency as defined in Definition (2), after iteration,
a synchronization post-step [36] is performed (See the last step in Alg.1). This
step can also involve other smoothing methods especially when a small number of
graphs are used for matching (n > N). A simple alternative is finding maximum

spanning tree on the super graph induced by W(s) and populate other edges
(assignment matrix) by multiplication through the maximum span tree.

The above discussion is concretized into an iterative algorithm as described
in Alg.1: Iterative Approximating Pairwise Affinity Maximization (IA-
PAM). In each iteration, it approximates the best path w.r.t. pairwise matching
score between two graphs by the best solution out of the first-order path. This
algorithm is ensured to converge when the score stops increasing. Then the
post-step of global consistency synchronization is performed by either a spectral
smoothing method [36] or maximum span tree as discussed above. The efficacy
of such a score-ascending strategy can be exemplified by a concrete analysis:
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Algorithm 2. Graduated Consistency-Regularized Affinity Maximization

Input

1: One set of N graphs with n nodes: Vi = {v1, v2, . . . , vn}, (i = 1, 2, . . . , N);
2: Pairwise affinity matrix Kij(i = 1, 2, . . . , N ; j = i+ 1, . . . , N);
3: Maximum iteration count: Smax, initial iteration count: s = 0;
4: Consistency weight initialization λ = λ0 and the weight increasing rate ρ > 1;
Output

5: Consistent matching configuration matrix W ∈ R
Nn×Nn;

Procedure

6: Perform pairwise graph matching to obtain the putative assignment matrix
P

(0)
ij ∈ R

n×n and the matching configuration matrix W(0) ∈ R
Nn×Nn;

7: Set the constant score scale reference
J
(0)
max = max

P
(0)
ij

∈W(0) vec(P
(0)
ij )TKijvec(P

(0)
ij );

8: while s ≤ Smax do

9: for all i = 1, 2, . . . , N ; j = i+ 1, . . . , N do

10: Set P
(s)
ij = P

(s−1)
ik P

(s−1)
kj for k to maximize the regularized objective:

C(Gk) + (1− λ)vec(P
(s)
ij )TKijvec(P

(s)
ij )/J

(0)
max

11: end for

12: Increase λ by λ(s+1) = ρλ(s);
13: Calculate the total score J(s) =

∑N,N

i=1,j=i+1 vec(P
(s)
ij )TKijvec(P

(s)
ij )/J

(0)
max;

14: s++;
15: end while

16: Update W(s) by updating all P
(s)
ij ;

17: Impose full consistency by spectral smoothing method [36] when N > n, or
via building a maximum span tree on the super graph [25] when N <= n.

when matching graph Gi and Gj is ambiguous due to both are deformed, it is
still possible to recover the correct matching by an intermediate high quality
graph that is able to find perfect matches respectively.

4.3 Graduated Consistency-Regularized Optimization Algorithm

Our second key rationale is viewing the consistency constraint as a regularizer

for affinity score maximization. Note that maximizing pairwise matching score
among all pairs cannot ensure the consistency constraint. Moreover, due to out-
liers and local deformation and the difficulty in setting up the affinity matrix in
a parametric manner3, there can be a case that for some pairs of graphs, the
ground truth matching may not produce the highest score. Thus purely maxi-
mizing the overall matching score is biased to accuracy.

As a baseline method, Alg.1 separates score maximization and consistency
synchronization into two separate steps. It is yet appealing to tackle the two
aspects jointly. We make the following statements, for devising a novel algorithm
that gradually introduces consistency during the score-ascending procedure:

3 Currently the affinity function is mostly modeled by parametric functions, the fixed
parameters by whatever manual setting [43], or automatically learned from training
samples [6,8] etc. may still be unable to best fit the score with accuracy.
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(a) Deformation ε (b) Outlier # (c) Graph # (d) Accuracy

Fig. 1. Correlation coefficient value as a function of number of iterations of Alg.1 under
different synthetic settings on a set of N=24 graphs with nin=8 inliers: a) varying
deformation level ε = 0.2 and ε = 0.25; b) varying number of outliers for nout=4 and
nout=6; c) varying number of graphs for N=16 and N=24. For outlier test and graph
set size test, ε is set to 0.05 and 0.2 respectively. Dot dashed curve is for the correlation
coefficient between consistency and accuracy; dashed curve is for score and accuracy.
The solid curve is for the normalized score.

– For the initial assignment matrix W(0) obtained by the pairwise graph
matching solver, its scores are more correlated with the true accuracy.

– After rounds of iterations of score-ascending, score becomes less discrimina-
tive for accuracy and consistency becomes a more indicative measurement.

The assertions are verified on synthetic tests using Alg.1 as illustrated in Fig.1:
As we continue to iterate, the overall normalized matching score (solid curve)
increases, and the correlation coefficient between score and accuracy (dashed
curve) drops quickly, while the correlation coefficient for consistency and accu-
racy (dot dashed curve) still remain at a certain level (above 0.4). This obser-
vation is consistent across deformation and outlier tests as show in Fig.1(a) and
Fig.1(b) respectively. Moreover, Fig.1(c) shows a relatively larger size of graph
set will further improve the correlation between consistency and accuracy. In
summary, as affinity score increases along iterating, consistency gradually be-
comes more important as a regularizer that help dismiss the biased matching
resulting from an unfitted affinity function or due to arbitrary local ambiguities.

Thus we infuse the matching consistency in each iteration by a weighted term
that accounts for consistency. In line with the observation from Fig.1, its weight
λ gradually increases until the procedure exceeds a certain iteration threshold
or converges to a fully consistent configuration. To enhance the overall consis-
tency, the similar post-processing can also be conducted which will stop the score
growing immediately. This idea is detailed in Alg.2: Graduated Consistency-
Regularized Pairwise Affinity Maximization (GCRPAM). We will eval-
uate the two proposed algorithms in our experiments. Now we present the
convergence property of Alg.2 by Proposition (2) as follows.

Proposition 2. The iteration procedure of Alg.2 is ensured to converge to a

fixed matching configuration W
∗ after a finite number of iterations.

Intuitively, the matching configuration becomes more consistent as the weight λ
dominates over iterations. A rigorous proof is given in below.
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Proof. Given two graphs Gi, Gj with n nodes for each graph, define the set
of score difference {∆Sij} as ∆Sij = vec(P)TKijvec(P) − vec(Q)TKijvec(Q),
∀P,Q, between two possible assignment matrix P, Q ∈ Rn×n in the numerable
permutation space. Suppose the largest value of difference is δSmax

ij which is
constant given the fixed Kij . Moreover, for a certain iteration in Alg.2 (Line 10),
suppose the the most consistent graph by definition (1) is Ga, and the second

largest is Gb, the iteration will finally arrive C(Ga) − C(Gb) >
(1−λ)

λ δSmax
ij

as λ increase close enough to 1. Then, the algorithm will converge by always
choosing the most consistent graph Ga for updating, as its consistency score will
be further improved in next iteration. Thus we finish the proof.

Finally we discuss the computational complexity of the algorithms. In each it-
eration of Alg.1 and Alg.2, we re-calculate the pairwise score by vec(P)TKvec(P)
to update each graph pair’s correspondence by using each of other graphs as the
anchor graph. This complexity is O(N3)O(J1) where O(J1) is the overhead for
pairwise score computing. In addition, the Alg.2 requires the calculation of con-
sistency for each graph by using it as the anchor graph to compare the new
chaining solution with the original direct matching for all graph pairs. Its com-
plexity is O(N3)O(J2) where O(J2) is the overhead for the multiplication of
two permutation matrix for calculating a single graph’s consistency as defined
in 1. Typically the affinity matrix K is very sparse as Delaunay triangulation
is performed to sparsify the edge density. Thus it is usually significantly faster
than the worst case O(n3) - note the assignment matrix is also sparse. In addi-
tion, Step 9 in Alg.1 and Step 10 in Alg.2 can also be speeded up: one can first
compute all possible Pij by choosing different intermediate graph Gk. There is a
possible case that for k1 �= k2, one has Pik1Pk1j = Pik2Pk2j . Thus we only need
to compute the affinity score once given two equal derived P. This also enables
possible local search and hashing mechanism which we leave for future work.

5 Experiments

The experiments involve synthetic simulation and two public real image datasets
which follow a standard protocol widely employed by related work such as [9,43]
and so forth. We conduct the experiments on a laptop PC with dual cores at
3.02GHz for each. The pairwise graph matching solver is implemented in C++
and the iterative optimization procedure is implemented in Matlab. The compar-
ing methods are [47,36]4 since we focus on the multiple-graph matching problem
thus the pairwise matching solvers are in parallel with our work.

5.1 Protocol Description

Graph affinity setting. Following the widely used protocol of [52,47] etc, we
use Delaunay method to triangulate the landmarks that are annotated/detected

4 For space limitation, we did not present the results of [40]. In our test it is slightly
better than the pairwise matching in accuracy while being significantly slower.
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(a) Accuracy (b) Score (c) Consistency (d) Time

Fig. 2. Synthetic data evaluation via 10 random tests. alg1− (alg2−) denotes Alg.1
(Alg.2) without post-synchronization, alg1−2nd denotes replacing 1st-order approxima-
tion in Alg.1 with 2nd-order path selection. Deformation ε = 0.15, nin = 10, nout = 2
and edge density ρ = 1 (fully connected attributed graphs).

in each image. This setting can also speed up the score calculation in our al-
gorithms as it sparsifies the affinity matrix. The edge length affinity matrix

between two graphs is calculated by K
edge
ij,ab = e−

|qij−qab|

0.15 , where qij (qab) are the
Euclidean distance between two points i, j (a, b) that is further normalized to
[0,1] by dividing the largest edge value. For real image test, we further add the
edge angle affinity matrix in a similar way such that: K = 4

5K
edge + 1

5K
angle.

Evaluation Setting. The comparing multi-graph matching methods [47,36]
and ours all apply pairwise matching solvers as an out-of-box building block. For
space limitation, we focus on Reweighted Random Walks Matching (RRWM) as
it has been proven [9] in general more cost-effective5. Our methods are set to
stop when it converges or exceeds 10 iterations and set the consistency inflating
parameter in Alg.2 ρ = 1.05 for all tests. There are three main performance
metrics: i) accuracy: the number of correctly matched inliers divided by the total
number of inliers; ii) average matching affinity score over the whole graph set;
iii) consistency as defined in Definition (2). In addition, we testify the comparing
methods under two conditions: i) large number of graphs N > n; and ii) small
number of graphs N <= n. Note that for the spectral smooth method [36], it
requires the number of graphs shall be larger than the number of nodes, thus for
the second case, we build a maximum span tree on the super-graph.

5.2 Dataset Description

Synthetic Dataset. The synthetic test is performed with the aim of testing the
robustness against deformation and outlier in a quantitative manner. Specifically,
a reference graph with nin nodes is created by assigning random attribute to

5 We have also tested three widely used pairwise matching solvers including Graduated
Assignment (GAGM) [21], Reweighted Random Walks Matching (RRWM) [9] and
Integer Projected Fixed Point (IPFP) [31] respectively. It is found that the overall
performances are insensitive to the selection of pairwise solver.
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(a) House Accuracy (b) Hotel Accuracy (c) Car Accuracy (d) Duck Accuracy

(e) House Score (f) Hotel Score (g) Car Score (h) Duck Score

(i) House Consistency (j) Hotel Consistency (k) Car Consistency (l) Duck Consistency

Fig. 3. Evaluation on large sized graph set (N > n) by 10 tests of random sam-
pling on two object categories from CMU dataset, and two categories from WILLOW-
ObjectClass. N = 16, 18, 20, 22, 24; nin = 10 and nout = 3.

each of its edge, which is uniformly sampled from the interval [0,1]. Based on
the created reference graph, the “perturbed” graph set is created by adding a
Gaussian noise ε, which is sampled fromN(0, σ2), to the edge attribute dija by d

ij
b

= dija +ε. Each “perturbed” graph is further added nout outliers. This protocol
is the same with [9,43,47] etc. Furthermore, we set nin and nout equal across
all graphs to make P a square permutation matrix. This setting is adopted in
comparing methods [47,36,40] and so forth.

CMUHouse/HotelDataset.TheCMUhouse/hotel image sequence6 was com-
monly used to test the performance of graph matching algorithms [9,6,52,43,47,8]
etc. The hotel sequence contains 101 frames and the house sequence consists of
111 frames. Thirty landmarks are annotated in each image for both sequences.

6 http://vasc.ri.cmu.edu/idb/html/motion/

http://vasc.ri.cmu.edu/idb/html/motion/
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(a) House Accuracy (b) Hotel Accuracy (c) Car Accuracy (d) Duck Accuracy

Fig. 4. Evaluation on small sized graph set (N > n) by 10 tests of random sam-
pling on two object categories from CMU dataset, and two categories from WILLOW-
ObjectClass. N = 4, 6, 8, 12; nin = 10 and nout = 3.

(a) By ICCV13[47] (b) By Alg.2 (c) By ICCV13[47] (d) By Alg.2

(e) By ICCV13[47] (f) By Alg.2 (g) By ICCV13[47] (h) By Alg.2

Fig. 5. Matching illustration by Alg.2 and ICCV13 [47] on Duck and Car of WILLOW-
ObjectClass, and the hotel and house of CMU dataset. More yellow and less red denote
more accurate matching. White circles denote outliers.

For more details of the dataset, readers are referred to [9,52]. To model the chal-
lenges in real world, we use nin = 10 markers as the inliers, and randomly chose
nout = 3 from the rest of the markers as outliers.

WILLOW-ObjectClass dataset. The object class dataset7 is recently created
and used by Cho et al. [8]. Here we perform our tests on two categories of this
dataset: Duck (50 images) and Car (40 images) which is constructed with images
from Caltech-256 and PASCAL VOC2007 respectively. For each image, nin = 10
landmarks were manually labeled on the target object. Moreover, we also add
nout = 3 outliers of detected points from the background by the SIFT detector.

5.3 Results and Discussion

Tests on Synthetic Dataset. The results on synthetic dataset is shown in
Fig.2, which suggest the proposed two methods outperform other methods as the
number of graphs grows, under fixed deformation and outlier configuration. The
regularized maximization method (Alg.2) further improves the baseline (Alg.1)

7 http://www.di.ens.fr/willow/research/graphlearning/

http://www.di.ens.fr/willow/research/graphlearning/
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wherein no regularization is added. Fig.2 also plots the results of using 2nd-order
path score maximization policy (termed as Alg.1−2nd in black), from which one
can observe the first order method (in green) is cost-effective and almost equally
accurate. Note green and black dash lines are almost overlapped to each other
in Fig.2(a) while the overhead differs significantly as shown in Fig.2(d).

Tests on Large/Samll Number of Real Image Set. Intuitively (also empir-
ically exemplified in Fig.1(c)), more graphs will increase the robustness of consis-
tency as a correlated indicator towards accuracy. From Fig.3 for large number of
image sets test, one can observe the post-synchronization step improves accuracy
for both Alg.1 and Alg.2. However, as shown in Fig.4, this improvement decays
for small number of graph tests and the role of graduated regularization becomes
more important. On the other hand, as shown in Fig.3, the effectiveness of our
methods is highlighted on the Willow-Object dataset (Duck and Car) compared
with the CMU dataset (House and Hotel). Fig.5 shows some comparing exam-
ples from these datasets, from which one can observe the Willow-Object dataset
is more challenging for matching with more varying object size and viewing an-
gle. This suggests our methods are more robust for matching less related objects
with more deformation perturbation. In our analysis, the robustness comes from
our methods are able to flexibly and effectively capture the statistical correlation
behavior between score/consistency and accuracy at different score ranges (refer
to Fig.1). In the opposite, the comparing method [47] strictly imposes full con-
sistency in the beginning of iteration and is sensitive to the basis reference graph
selected for iterative optimization (there are fluctuations in the plot), while the
other method [36] imposes synchronization in an one-shot fashion.

6 Conclusion and Future Work

We proposed novel algorithms towards robust multi-graph matching by incorpo-
rating both matching scores andmatching consistency in an iterative approximat-
ing optimization procedure. Their efficacy is demonstrated through convincing
experiments conducted on both synthetic and public real image datasets. The un-
derlying rationale is that the two aspects are statistically coupled and can thus
be tackled jointly. Our future work include i) study the concept of “partial consis-
tency” that involves part of the nodes; ii) connect unsupervised or semi-supervised
machine learning methodologies with multi-graphmatching, as the consistency it-
self can guide the matching and learning.
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DMS-1317424, NSFC 61129001,61025005/F010403. The authors would also like
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