
Journal of Machine Learning Research 3 (2003) 1333-1356 Submitted 5/02; Published 3/03

Grafting: Fast, Incremental Feature Selection by
Gradient Descent in Function Space

Simon Perkins S.PERKINS@LANL .GOV

Space and Remote Sensing Sciences
Los Alamos National Laboratory
Los Alamos, NM 87545, USA

Kevin Lacker LACKER@EECS.BERKELEY.EDU

Department of Computer Science
University of California, Berkeley
CA 94720, USA

James Theiler JT@LANL .GOV

Space and Remote Sensing Sciences
Los Alamos National Laboratory
Los Alamos, NM 87545, USA

Editors: Isabelle Guyon and Andr´e Elisseeff

Abstract
We present a novel and flexible approach to the problem of feature selection, calledgrafting. Rather
than considering feature selection as separate from learning, grafting treats the selection of suitable
features as an integral part of learning a predictor in a regularized learning framework. To make
this regularized learning process sufficiently fast for large scale problems, grafting operates in an
incremental iterative fashion, gradually building up a feature set while training a predictor model
using gradient descent. At each iteration, a fast gradient-based heuristic is used to quickly assess
which feature is most likely to improve the existing model, that feature is then added to the model,
and the model is incrementally optimized using gradient descent. The algorithm scales linearly
with the number of data points and at most quadratically with the number of features. Grafting
can be used with a variety of predictor model classes, both linear and non-linear, and can be used
for both classification and regression. Experiments are reported here on a variant of grafting for
classification, using both linear and non-linear models, and using a logistic regression-inspired loss
function. Results on a variety of synthetic and real world data sets are presented. Finally the
relationship between grafting, stagewise additive modelling, and boosting is explored.
Keywords: Feature selection, functional gradient descent, loss functions, margin space, boosting.

1. Introduction

Systems for performing automated feature selection have long occupied a strange position, acting
as a bridge between the harsh reality of the real world, and the cozy idealistic environments in-
habited by most machine learning algorithms. No wonder then, that feature selection is often seen
as something rather separate from learning, and altogether much moread hocand mysterious. As
a result, most feature selection methods are rather independent of the learning systems they work
with. Filter methods, for example the RELIEF algorithm (Kira and Rendell, 1992), use a quickly
computed heuristic to estimate the value of each feature, individually or in combination, and use this

c©2003 Simon Perkins, Kevin Lacker and James Theiler.

PERKINS, LACKER AND THEILER

to select a set of features before the underlying learning engine ever sees the data. Wrapper methods
(Kohavi and John, 1997), do at least interact with an underlying learning engine, but they typically
only communicate with it through brief summaries of performance,e.g.cross-validation scores. All
the other information that the learning system might have gleaned from the data is usually ignored
when choosing features.

More recently however, great efforts have been made to expand the applicability and robustness
of general learning engines, and as a result, the distinction between feature selection and learning is
beginning to look a little artificial. After all, are they not just two sides of the same overall task of
learning a good model, given a set of training data described using a large number of features, and
without using any special domain knowledge?

This observation motivates the approach presented in this paper, where we view feature selec-
tion, whether for performance or pragmatic purposes, as part of an integrated criterion optimization
scheme.

Section 2 of this paper presents the regularized risk minimization framework that forms the core
of this scheme, and Section 3 introduces a fast, incremental method for finding optimal (or some-
times approximately optimal) solutions, which we call grafting.1 Section 4 provides an empirical
comparison of grafting with a number of other learning and feature selection techniques, and fi-
nally, Section 5 draws conclusions and contrasts grafting with related work in stagewise additive
modelling and boosting.

2. Learning to Select Features

In this paper, we view feature selection as just one aspect of the single problem of learning a map-
ping based on training data described by a large number of features. At the core of this view is a
common modern approach to machine learning, which can be described asregularized risk mini-
mization. In the rest of this section, we review this approach, consider how it can be adapted to
include feature selection, and explain why this might be a good idea.

2.1 Learning as Regularized Risk Minimization

First, a few definitions. We assume that we are trying to find a predictor functionf (·) that maps
feature2 vectorsx of fixed lengthn, onto a scalar output value. If we have a binary classification
problem then we derive an output labely∈ {−1,+1} with y = sign(f (x)). If we have a regression
problem then we produce an output predicted valuey= f (x). Since this is a machine learning paper,
f (.) is derived, via a learning procedure, from a training set consisting ofm randomly sampled(x,y)
pairs drawn from the distribution we’re attempting to model.

We assume thatf (·) is a member of a family of predictor functions that are parameterized by a
set of parametersθ. We can specify a particular member of this family explicitly asfθ(·), but we
will often omit the subscript for brevity. We want to come up with aθ that minimizes the expected
risk:

R(θ) =
∫

L(fθ(x),y) p(x,y)dxdy (1)

1. The name “grafting” is derived from “gradient feature testing”, for reasons that will become clear.
2. The term “feature” rather than “variable” is used throughout this paper to cover the general case where the arguments

of f (·) are themselves functions of the raw variables describing the problem.

1334

GRAFTING: FAST, INCREMENTAL FEATURE SELECTION

whereL(f (x),y) is a loss function that specifies how much we are penalized for returningf (x) when
the true target value isy; andp(x,y) is the joint probability density function forx andy. For classifi-
cation problems the most common loss function is the misclassification rate:L≡ 1

2 |y−sign(f (x))|.
In general we do not knowp(x,y) in (1), so it is usually not possible to directly optimize that cri-
terion with respect toθ. Instead, we usually work with the empirical riskRempcalculated from the
training data, with the integral in (1) replaced by a sum over all data points. As is well known,
directly optimizing the empirical risk can lead to overfitting, so it is common in modern machine
learning to attempt to minimize a combination of the empirical risk plus a regularization term to
penalize over-complex solutions. That is, we attempt to minimize a criterion of the form:

C(θ) =
1
m

m

∑
i=1

L(fθ(xi),yi)+ Ω(θ) (2)

whereΩ(θ) is a regularization function that has a high value for “complex” predictorsf .

2.1.1 LOSSFUNCTIONS FORCLASSIFICATION

In theory, we could simply use the error rate as the loss function in (2), but there are two main
problems with this. First, this loss function almost inevitably leads to an optimization problem that
is hard to solve exactly. Second, experience and theory have shown that we obtain robust and better
generalizing classifiers if we prefer classifiers that separate the data by as wide amarginas possible.
Discussion of this phenomenon, and many examples, can be found in Smola et al. (2000). We can
usually improve generalization performance and make the criterion easier to optimize by choosing
a loss function that encourages such large-margin solutions.

We define the margin for a classifierf on a single data pointx with true labely∈ {−1,+1} to
beρ = y f(x). The margin is positive if the point is correctly classified (the sign off (x) agrees with
the sign ofy), and negative otherwise.

Many commonly used loss functions can be conveniently defined in terms of this margin. Fig-
ure 1 illustrates a few of these.

In our classification work, we use the Binomial Negative Log Likelihood loss function (Hastie
et al., 2001, p. 308):

Lbnll = ln(1+e−ρ)

This loss function is derived from a model that treatsf (x) as the log of the ratio of the probability
thaty = +1 to the probability thaty =−1.

The main value of this assumption is that it allows us to calculatep(x) ≡ p(y = +1|x) from
f (x) using the following relation:

p(x) =
ef (x)

1+ef (x)

This loss function can also be readily generalized to a multi-class classification problem using
the ideas of multi-class logistic regression (Hastie et al., 2001, pp. 95–100). That reference also
contains a derivation of the loss function.

Lbnll defines the BNLL loss for a single data point. It also useful to define the total loss over the
training set, also known as theempirical risk, which is the first term in (2):

LBNLL =
1
m

m

∑
i=1

Lbnll

1335

PERKINS, LACKER AND THEILER

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

ρ
f

Lo
ss

Example Loss Functions

Error Rate
SVM
Perceptron
Binomial Negative Log Likelihood

Figure 1: Commonly used loss functions, plotted as a function of the marginρ = y f(x). Shown
are the “SVM” loss function:Lsvm= max(0,1− ρ); the perceptron criterion:Lper =
max(0,ρ); and the binomial negative log-likelihood:Lbnll = ln(1+e−ρ).

2.1.2 REGULARIZATION

Possibly the most straightforward approach to machine learning involves defining a family of mod-
els and then selecting the model that minimizes the empirical risk. While this is certainly an often-
used technique, it has two serious problems.

The first problem is that for certain combinations of model family, empirical risk function, and
training data, the optimization problem can be unbounded with respect to the model parametersθ.
For example, consider the linear model defined by:

f (x)≡
n

∑
i=1

wixi +b (3)

wherew = (w1, . . . ,wn)T is a vector of weights,xi is thei’th feature of the feature vectorx, andb is
a constant offset. If the training data is linearly separable, then we can increase the magnitude ofw
indefinitely to reduceLBNLL.

The second problem is the well-known overfitting problem. Given a sufficiently flexible family
of classifiers, it is often possible to find one that has a very low empirical risk, but that generalizes
very badly to previously unseen data.

Both these problems can be tackled by adding a regularization term to the empirical risk. The
regularization term (or regularizer) is a function of the model parameters that returns a high value
for “unlikely” or complex models that are liable to generalize badly. By optimizing a sum of the
regularizer and the empirical risk, we achieve a trade-off between model simplicity and empirical
risk. If the balance is chosen appropriately then we can often improve generalization performance
significantly compared with simple empirical risk minimization.

The form of the regularizer depends to some extent on the form of the model, but here we restrict
ourselves to a class of models where the model parametersθ take the form of a vector of real-valued
numbers of lengthp, which we will refer to as a weight vectorw. This class of models includes
linear models and many types of multi-layer perceptron (MLP).

1336

GRAFTING: FAST, INCREMENTAL FEATURE SELECTION

Given this parameter vector, we can define a commonly employed family of regularizers param-
eterized by a non-negative integerq, and a vector of positive real numbersα:

Ωq(w) = λ
p

∑
i=1

αi |wi |q (4)

Members of this regularizer family correspond to different kinds of weighted Minkowski norm
of the parameter vector, and soΩq is often referred to as anlq regularizer. Usually, we choose
αi ∈ {0,1} so as to simply include or exclude certain elements ofw from the regularization.3 The
essence of these regularizers is that they penalize large values ofwi whenαi > 0.

It is easy to show that the solutions found by unconstrained minimization of (2) using anΩq

regularizer are equivalent to those found by the following constrained optimization problem:

minimize
1
m

m

∑
i=1

L(f (xi),yi) (5)

s.t.
p

∑
i=1

αi |wi |q ≤ γ

There is a one-to-one (but not necessarily simple) correspondence between the parametersλ and
γ. This alternative formulation is useful when we consider theΩ0 regularizer.

The most interesting members of the family involveq∈ {0,1,2}. The following is a summary
of the properties and peculiarities if these three regularizers.

Ω2 This regularizer is seen in ridge regression (Hoerl and Kennard, 1970), the support vector ma-
chine (Boser et al., 1992, Sch¨olkopf and Smola, 2002) and regularization networks (Girosi
et al., 1995). Those references give various justifications for this form of regularization. One
reason for preferring it over otherΩq regularizers is that it is the only one which produces the
same solution under an arbitrary rotation of the feature space axes. Thel2 norm also makes
the solution to (2) bounded. Asλ is increased, the magnitudes of the elements ofw will tend
to decrease, but in general none will go to zero. Thel2 norm is a convex function of weights,
and so if the loss function being optimized is also a convex function of the weights, then the
regularized loss has a single local (and global) optimum.

Ω1 The l1-based regularizer is also known as the “lasso”. Tibshirani (1994) describes it in great
detail and notes that one of its main advantages is that it often leads to solutions where some
elements ofw are exactly zero. Asλ is increased, the number of zero weights steadily in-
creases. Unlike theΩ2 regularizer, using thel1 norm means that an arbitrary rotation of the
feature axes in general produces a different solution, so the feature axes have special status
with this choice of regularizer. Like theΩ2 regularizer, this regularizer leads to bounded solu-
tions. Similarly, thel1 norm is a convex function of weights, and so if the loss function being
optimized is also a convex function of the weights, then the regularized loss has a single local
(and global) optimum.

Ω0 If we define 00 ≡ 0, then this contributes a fixed penaltyαi for each weightwi 6= 0. If all αi

are identical, then this is equivalent to setting a limit on the maximum number of non-zero
weights. Thel0 norm is, however, a non-convex function of weights, and this tends to make
exact optimization of (2) computationally expensive.

3. For instance in a linear model we usually want to exclude the constant offset term.

1337

PERKINS, LACKER AND THEILER

2.2 Feature Selection as Regularization

If we have a mathematical expression for a model in which feature vector elements only ever appear
with an associated multiplicative weight, then the process of feature selection amounts to producing
a model in which only a subset of weights associated with features are non-zero. Of the regularizers
described above,Ω0 andΩ1 lead to solutions with some weights set to exactly zero. But can they
be justified in terms of the standard reasons for feature selection?

There are many motivations for feature selection, but we will consider two broad classes which
generally encompass the reasons most commonly given.

2.2.1 PRAGMATIC MOTIVATIONS FOR FEATURE SELECTION

Often, the motivations for feature selection are pragmatic. We wish to reduce training time; reduce
the time it takes to apply a learned model to new data; reduce the storage requirements for the model;
or improve the intelligibility of the model. We can interpret all of these as either constituting a fixed
penalty for including a feature in the model, or as a constraint on the maximum number of features
in the model. For the simplest linear model case, where each feature appears in the model associated
with just a single weight, then it is easy to see that both of these interpretations correspond to aΩ0

regularizer withαi > 0 only wherewi is the multiplicative weight on a feature. For more complex
models, where each feature might be associated with several weights, then we can handle this with
a slightly modified version of theΩ0 regularizer:

Ω0(w) =
n

∑
i=1

αiδi (6)

whereδi = maxj∈si (w
0
j), in whichsi is the set of weight indices associated with thei’th feature.

If different features carry different costs, for instance if some features are very expensive to
compute, then we can adjust theαi associated with those features accordingly.

2.2.2 PERFORMANCEMOTIVATIONS FOR FEATURE SELECTION

The other common motivation for feature selection is to improve the generalization performance
of our learned models. In general, the more feature dimensions a model includes, the greater its
“capacity”, and hence the greater the tendency for it to overfit the training data — the so-called
“curse of dimensionality”. But regularization techniques are intended to prevent overfitting, and
the question arises: if we use regularization, do we need to do any additional feature selection?
Or alternatively, can we achieve improved generalization performance by using a regularizer that
encourages zero-weighted features in our model, such as theΩ1 andΩ0 regularizers?

In order to explore this issue, we performed a simple experiment to compare the generalization
performance of the same simple linear classifier usingΩ0, Ω1 andΩ2 regularizers, in the presence of
varying numbers of irrelevant features. We created a sequence of simplen-feature two-class problem
as follows. For the first class, then features for each training example are drawn independently from
a normal distribution with mean equal to -1 and standard deviationσ. Then features of the second
class are generated in the same way except a normal distribution with a mean of +1 is used. We then
randomly permute the feature values between all the training examples for all elements of the feature
vector except the first two features. This produces a training set where each feature has exactly the
same distribution, but only the first two are correlated with the class label and the othern− 2

1338

GRAFTING: FAST, INCREMENTAL FEATURE SELECTION

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

Irrelevant features

M
ea

n
m

is
cl

as
si

fic
at

io
n

ra
te

σ=0.5

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

Irrelevant features

M
ea

n
m

is
cl

as
si

fic
at

io
n

ra
te

σ=1.0

Ω
0

Ω
1

Ω
2

Unregularized
Bayes Error

Figure 2: Comparison of different regularization schemes on a problem with varying numbers of
irrelevant features and different optimal Bayes error.

feature are irrelevant. Training sets with between 0 and 12 irrelevant features were generated, each
containing 10 samples drawn from each class. We compared problems withσ = 0.5 andσ = 1.0.
The former has a Bayes misclassification rate of 0.0035, the latter has a Bayes misclassification rate
of 0.079. Test sets were generated in the same way, but with 1000 samples in each class. We used
a linear model as in (3) which was trained by optimizing a regularized risk criterion (2), using the
logistic regression loss functionLbnll and one of the threeΩq regularizers, or using no regularization.
ForΩ1 andΩ2 we used a gradient descent algorithm (Nelder and Mead, 1965), and forΩ0 we used
backward elimination (Kohavi and John, 1997), choosing to eliminate the feature that increased the
loss function by the least at each step. This is a greedy procedure that may not produce the optimal
answer, but exhaustive subset comparison was impractically slow. The regularization parameters (λ
for theΩ1 andΩ2 regularizers,γ for theΩ0 regularizer) were found by generating multiple instances
of each problem and searching for the values that minimized the average misclassification rate.

Figure 2 compares the performance of the various regularizers as the number of irrelevant fea-
tures is altered. For each problem type, 200 training and test sets were randomly generated. The
plots show the mean test score for each type of regularizer, and for the two different values ofσ.
For reasons of clarity, error bars indicating the standard error of the mean misclassification rate are
not shown here, but they are small compared to the separation between the curves.

Both values ofσ produce qualitatively similar results. The unregularized and subset selection
(Ω0) experiments perform worst, although subset selection does relatively better when the informa-
tive features are well-separated in the lowσ case. Of the other two experiments, when most features
are relevant, thenΩ2 regularization slightly outperformsΩ1 regularization. But as the number of
irrelevant features increases,Ω1 regularization takes the lead. Interestingly, when more than two-
thirds of the features are irrelevant in this case, the test performance usingΩ1 regularization seems
to level off, while the performance usingΩ2 regularization continues to degrade.

In conclusion, if performance alone is the key concern, then eitherΩ1 or Ω2, rather thanΩ0,
seem to be the preferred regularizers. If we expect a large fraction of irrelevant features, then
we might prefer theΩ1 regularizer. These conclusions are somewhat similar to those reached by
Tibshirani (1994).

1339

PERKINS, LACKER AND THEILER

Criterion Ω0 Ω1 Ω2

Models pragmatic motivations for feature selection? Yes No No
Models performance motivations for feature selection?No Yes Yes
Leads to sparse solutions? Yes Yes No
Performance when most features are relevant? OK Good Excellent
Performance when most features are irrelevant? Poor Good OK
Convex regularizer? (doesn’t add extra local optima) No Yes Yes
Numerical friendliness Poor Good Excellent

Table 1: Comparison of three differentΩq regularizers.

2.3 A Unified Optimization Criterion

We have argued that for a significant class of models, described by real-valued parameter vectors,
many motivations for feature selection can be incorporated into a regularized risk minimization
framework, using a suitable combination ofΩq regularizers.

Table 1 summarizes the different qualities of the threeΩq regularizers we have considered. In
general, we might want to use all three, which leads to the following optimization criterion:

C(w) =
1
m

m

∑
i=1

L(f (x),yi)+ λ2

p

∑
i=1

α2,i |wi|2 + λ1

p

∑
i=1

α1,i |wi |+ λ0

n

∑
i=1

α0,iδi (7)

3. Grafting

We wish to find a minimum of (7), with respect to our model parameters. We now consider how
this might be done, and introduce thegrafting algorithm, as a fast way of getting to an optimal or
approximately optimal solution, ifλ0 or λ1 is non-zero.

3.1 Direct Gradient Descent Optimization

Probably the most direct method of solution of (7) is to perform gradient descent with respect to the
model parametersw, until a minimum is found. If we can compute the gradient of the loss function
and the regularization term(s) with respect to these parameters, then we can use conjugate gradient
or quasi-Newton methods. If not, then we can use a minimization method that doesn’t require
gradient information, such as Powell’s direction set method. See Press et al. (1992, chap. 10) for
overviews of these methods.

Unfortunately there are a number of problems with this approach. Firstly, the gradient descent
can be quite slow. Algorithms such as conjugate gradient descent typically scale quadratically
with the number of dimensions,4 and we are particularly interested in the domain where we have
many features and sop is large. This quadratic dependence on number of model weights seems
particularly wasteful if we are using theΩ0 and/orΩ1 regularizer, and we know that only some
subset of those weights will be non-zero.

The second problem is that theΩ0 andΩ1 regularizers do not have continuous first derivatives
with respect to the model weights. This can cause numerical problems for general purpose gradient
descent algorithms that expect these derivatives to be continuous.

4. Conjugate gradient descent requires onlyO(p) line minimizations, but the gradient calculation required to determine
the direction for each minimization is also typicallyO(p), giving total complexity that is closer toO(p2) for largen.

1340

GRAFTING: FAST, INCREMENTAL FEATURE SELECTION

Finally, we have the problem of local minima. TheΩ2 andΩ1 regularizers are convex functions
of the weights and so if the loss function being used is also a convex function of weights, then we
have a single optimum. TheΩ0 regularizer on the other hand is not convex and introduces many
local minima into the optimization problem.

3.2 Stagewise Gradient Descent Optimization

If we are using theΩ1 or Ω0 regularizer, and we suspect that the numberN of non-zero weights in
the final model is going to be much less than the total number of weightsn, then a more efficient
stagewise optimization procedure suggests itself. We call this algorithmgrafting. The basic plan is
to begin with a model in which almost all weights are at zero. At each iteration of the grafting pro-
cedure, we use a fast gradient-based heuristic to decide which zero weight should be adjusted away
from zero in order to decrease the optimization criterion by the maximum amount. We then perform
gradient descent using that weight and any other non-zero weights in the model, and continue until
no further progress can be made.

3.2.1 THE BASIC GRAFTING ALGORITHM

For ease of presentation, we first consider the case whereλ0 = 0 in (7), butλ1 andλ2 are non-zero.
We will return to the case whereλ0 6= 0 later. At this stage, our discussion applies to a broad class
of models and loss functions.

As described above, we assume that the model we are using is parameterized by a weight vector
w. At any stage in the grafting process, the model weights are divided into two disjoint sets. Those
weightswi ∈ F are “free” to be altered as desired. The remaining weightswi ∈ Z(≡ ¬F) are fixed
at zero.

We also assume that the output of the model for a given training example is differentiable with
respect to the model weights,i.e.we can calculate∂ f (xi)/∂wj for an arbitrary feature vectorxi and
and an arbitrary weightwj .

As explained below, after each grafting step (and before the first step) we minimize (7) with
respect to the free weights, so before thek’th grafting step, we have:

∀i ∈ F
∂C
∂wi

= 0

During thek’th grafting step, we wish to move one weight fromZ to F . It seems sensible to
select the weight which is going to have the greatest effect on reducing the optimization criterionC.
The gradient of the criterion with respect to an arbitrary model weightwi is:

∂C
∂wi

=
1
m

m

∑
i=1

(
∂L

∂ f (xi)
∂ f (xi)

∂wi

)
+2λ2α2,iwi + λ1α1,isign(wi)

=
1
m

m

∑
i=1

(
∂L

∂ f (xi)
∂ f (xi)

∂wi

)
±λ1α1,i (8)

The contribution from theΩ2 term disappears becausewi = 0 for allwi ∈Z. Slightly more subtle
is the replacement of sign(wi) with ±1, which invites the question of what sign should be used, and
whether in fact sign(0) has a well-defined value at all. Recall, however, that we are interested in

1341

PERKINS, LACKER AND THEILER

determining which weight, when adjusted in the appropriate direction, will decreaseC at the fastest
rate. Consider∂LTOT/∂wi, the derivative of the total loss with respect towi (this is just the first
term in the above expression). Suppose that∂LTOT/∂wi > λ1α1,i . This means that∂C/∂wi > 0,
regardless of the sign ofwi . In this case, in order to decreaseC, we will want to decreasewi . Since
wi starts at zero, the very first infinitesimal adjustment towi will take it negative. Therefore for our
purposes we can let sign(wi) = −1. Similarly, if ∂LTOT/∂wi < −λ1α1,i , then we can effectively
let sign(wi) = +1. Essentially, the effect of theΩ1 derivative is simply to reduce themagnitudeof
∂C/∂wi by an amountλ1α1,i . The same argument shows that if|∂LTOT/∂wi| < λ1α1,i then it is not
possible to produce any local decrease inC by adjustingwi away from zero. This is the essence of
why theΩ1 regularizer leads to solutions with zero-valued weights, and also provides the basis for
one of the two stopping conditions discussed below.

At each grafting step, we calculate the magnitude of∂C/∂wi for eachwi ∈ Z, and determine
the maximum magnitude. We then add the weight to the set of free weightsF , and call a general
purpose gradient descent routine to optimize (7) with respect to all the free weights. Since we
know how to calculate the gradient of∂C/∂wi , we can use an efficient quasi-Newton method. We
use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) variant (see Press et al. 1992, chap. 10 for a
description). We start the optimization at the weight values found in thek−1’th step, so in general
only the most recently added weight changes significantly.

Note that choosing the next weight based on the magnitude of∂C/∂wi does not guarantee that
it is the best weight to add at that stage. However, it ismuchfaster than the alternative of trying
an optimization with each member ofZ in turn and picking the best. We shall see below that this
procedure will take us to a solution that is at least locally optimal.

3.2.2 INCORPORATING THEΩ0 REGULARIZER

Use of theΩ0 regularizer means that transferring a weightwi from Z to F incurs a penalty of
λ0α0,iδi. This fixed penalty makes it substantially harder to determine which weight is the most
promising one to transfer toF .5 The heuristic we use in this case is based upon the empirical
observation that in a sequence of grafting steps, the magnitude of the most recently added weight in
F typically decreases monotonically. This allows us to estimate an upper limit on the magnitude of
the weight we are about to add, which in turn means we can roughly estimate a bound on the change
in C which will result from adding a weightwi in the grafting step after a weightwj was added:

∆C(wi)≥ λ0α0,iδi −
∣∣wj

∣∣(∣∣∣∣∂LTOT

∂wi

∣∣∣∣−λ1α1,i −λ2α2,i

∣∣wj

∣∣) (9)

Picking the best weight to add then amounts to choosingwi ∈ Z that minimizes (9). Note that
if λ0 = 0 and∀{wi,wj} ⊂ Z : α2,i = α2, j , then this heuristic is equivalent to the simple heuristic
previously discussed.

3.2.3 STOPPINGCONDITIONS

If only the Ω2 regularizer is being used, then in general the model will contain no zero-valued
weights, and the grafting procedure will not terminate untilZ is empty. In this case there is no
advantage in using grafting over full gradient descent optimization.

5. One exception is when all weights inZ incur the sameΩ0 penalty, as is the case with a simple linear model where
we simply penalize the number of included features. In this case it is reasonable to use the standard heuristic.

1342

GRAFTING: FAST, INCREMENTAL FEATURE SELECTION

If we are using theΩ1 regularizer, then we can reach a point where:

∀wi ∈ Z
∣∣∣∣∂LTOT

∂wi

∣∣∣∣≤ λ1α1,i

At this point it is not possible to make any further decrease inC by either moving a weight from
Z to F , or by adjusting any weights inF and so we are at a local (and perhaps global) minimum,
and can terminate the grafting procedure.

If we are using theΩ0 regularizer, then we may reach a point whereC increases after adding
wi to F . We must then setwi to zero, remove it fromF , and undo the last optimization step (it
is convenient to keep a copy of the previous model around in order to avoid an extra optimization
step). We then have a choice. It is possible that a different choice ofwi might lead to a decrease in
C, so we could try the optimization step again with thewi associated with the next lowest value of
∆C(wi). This cycle could be repeated until all remaining weights inZ have been eliminated, and
the algorithm then terminates. Alternatively we can just terminate the algorithm the first time this
happens, recognizing that with theΩ0 regularizer, our solution will be a greedy approximation to
the optimal solution at best. The latter approach is the one we recommend in most cases.

3.2.4 OPTIMALITY

If we have a convex loss function (as a function of weights) and are using just theΩ2 and/orΩ1

regularizers (which are themselves convex functions of the weights), then there is only one minimum
of (7). Examination of the stopping conditions above reveal that the grafting algorithm is guaranteed
to stop at a local optimum, and so grafting is guaranteed to find the global optimum in these cases.

As we have seen by now, use of theΩ0 regularizer makes it much harder to find an optimal
solution. The grafting procedure with non-zeroλ0 amounts to a greedy heuristic forward subset se-
lection method, which sacrifices optimality in return for fast learning. Whether this is good enough
for the problem at hand depends on the situation.

One should note however, that asλ0 is made smaller and smaller relative toλ1, then the chances
of ending up in a sub-optimal situation decrease. Hence we are inclined to makeλ0 fairly small in
most cases.

3.2.5 COMPUTATIONAL COMPLEXITY

We have claimed that grafting is substantially faster than full gradient descent. We will now exam-
ine this claim more carefully. If there arep weights in our weight vector, then full gradient descent
requires some multiple ofp line minimizations to optimize our criterion, let’s saycp minimiza-
tions.6 Determining the direction requiresp derivatives∂C/∂wi to be computed. The computation
of each derivative is dominated by the computation of∂LTOT/∂wi , which is simply a weighted sum
of m simple derivatives∂ f (x j)/∂wi . The line minimizations themselves require a fewO(m) func-
tion evaluations, but ifp is large, then this is a minor contribution. If we denote the time taken to
calculate one simple derivative asτ, then the total time taken for full gradient descent is≈ cmp2τ.

Under grafting we will select some numbers weights before the algorithm terminates. Since
we select one weight at each grafting step we takes steps. Thek’th step consists of two phases.
First we evaluate∂C/∂wi for each of the(p− k) weights inZ. As noted above, the derivative
calculation takesmτ, and so the time devoted to gradient testing overs steps is≈ mspτ. The

6. Here,c = 1 if our criterion is a perfect quadratic form, andc > 1 otherwise.

1343

PERKINS, LACKER AND THEILER

second phase involves optimizing with respect to thek free weights. At most this might takeck
line minimizations, but it should take less than this since most of the free weights will be close to
their optimal values. To compensate for using a constantc that is probably too high here, we again
ignore the time taken for the line minimizations themselves (some small multiple ofmτ). Therefore
the time taken for optimization at thek’th step is≈ cmk2τ. Overs steps, this is≈ 1

3cms3τ. Putting
this together the total grafting run time is≈ (msp+ 1

3cms3)τ. If we assume thats� p then it is
clear that the grafting algorithm should be substantially quicker than the≈ cmp2τ required for full
gradient descent. Also note that the full gradient descent algorithm has to deal with discontinuities
in the gradient which can slow it down significantly. By keeping zero-valued weights out of the
optimization steps, grafting avoids this difficulty.

3.2.6 NORMALIZATION

In order to make the gradient magnitude heuristic a fair comparison, it is usually important to
normalize all features so that they have approximately the same scale. Before we begin, we linearly
scale all feature vectors so that each feature has a mean value of zero and has a standard deviation of
one. It is of course important to scale testing data using the same scaling parameters derived from
the training data.

3.3 Grafting Examples

It is helpful to illustrate the grafting algorithm in more detail for some particular models and loss
functions. Here we will concern ourselves only with binary classification problems and so a suitable
loss function to use is the binomial negative log likelihoodLbnll . For simplicity, we will also assume
only Ω1 andΩ0 regularization are used, and that allα1,i ∈ {0,1}.

3.3.1 LINEAR MODEL

We first consider linear models withn+1 weights, of the form:

f (x) =
n

∑
i=1

wixi +w0

If we define the margin for a given training pair(xi ,yi) asρi = yi f (xi), then the following is the
regularized optimization criterion:

C(w) =
1
m

m

∑
i=1

(1+e−ρi)+ λ1

n

∑
i=1

|wi|+ λ0s (10)

wheres is the number of selected features. Note that the constant offset termw0 does not appear in
the regularizer since we do not want to penalize a mere translation of the linear discriminant surface.

The derivatives we need (ignoring theΩ0 term for now) are:

∂C
∂wj

=
1
m

m

∑
i=1

∂Lbnll

∂ρi

∂ρi

∂wj
±λwj

= − 1
m

m

∑
i=1

1
1+eρi

yixi, j ±λwj

wherexi, j is the j ’th component ofxi .

1344

GRAFTING: FAST, INCREMENTAL FEATURE SELECTION

It is instructive to interpret this derivative in a geometric way. First, we imagine anm-dimensional
margin space, which has one dimension for each training point. If we think of each of the coor-
dinate axes as representing the marginsρi for the current model on the pointxi , then the total loss
function can be thought of as a function over this space, and we can calculate the full gradient of
that function:

∇ρL =
(

∂L
∂ρ1

,
∂L
∂ρ2

, . . . ,
∂L

∂ρm

)T

In the same margin space we can also imagine thefeature margin vectorr j :

r j = (y1x1, j ,y2x2, j , . . . ,ymxm, j)
T

Given this we can write:
∂C
∂wj

= ∇ρL · r j ±λwj

Since the grafting heuristic for selecting the next weight to add to the model is only interested
in the magnitude of this derivative, and since the regularizer component always acts to reduce this
magnitude, we can see that picking the next weight amounts to choosing the feature margin vector
that is most well-aligned with the direction of steepest descent of the loss function in margin space.

For the linear model, we initializeF to contain justw0 and perform an initial optimization. We
then proceed in the usual grafting fashion, picking one new weight to add toF at each grafting
step until anΩ0 or Ω1 stopping condition is reached. In this case, each weight corresponds to one
feature.

The simplicity of the linear model means that it sometimes cannot fit the training data very
well. But this problem is somewhat reduced when we have many features since in general the extra
features will tend to make the problem more linearly separable.

3.3.2 MULTI LAYER PERCEPTRONMODEL

For a more powerful model, we might use an MLP withh hidden units having sigmoid transfer
functions and a linear output unit with unit output weights. We can write this MLP function as:

f (x) =
h

∑
j=1

g

(
n

∑
i=1

w(j)
i xi +w(j)

0

)
+w(0)

0

In this modelw(j)
i is the weight from thei’th feature to thej ’th hidden unit. The sigmoid transfer

functiong(·) is defined as:

g(x) =
2

1+e−x −1

which is the usual neural net sigmoid function, scaled vertically so thatg(0) = 0, g(+∞) = +1 and
g(−∞) =−1, which makes the net slightly better behaved under grafting.

The optimization criterion is almost identical to (10) with the differentf (·) substituted. All the
weights in the MLP model are included equally in the regularization term, except for the “bias”
weights on each node which are excluded, and the constant weights on the output node. Rather than
use a fixed number of hidden units, the grafting procedure we describe here allows hidden units to
be added as the grafting process continues. In the MLP model, each weight added corresponds to

1345

PERKINS, LACKER AND THEILER

a new connection in the network. We begin withF containing just the output bias weightw(0)
0 and

a network with no hidden units, and perform an initial optimization with respect to just that bias
weight. At each grafting step we decide how to grow the network in one of two possible ways:

Adding a new hidden unit: If there arek−1 hidden units already, this involves adding a hidden
node, along with a new connection to the output node, and a new connection from the hidden node
to a feature input, with weightw(k)

i . The question becomes: which feature should be connected to
the new hidden unit? The derivative we need is:

∂C

∂w(k)
i

=− 1
m

m

∑
j=1

1
1+eρi

yjxj,i ±λw(k)
i

Adding an input connection to an existing hidden unit: Each of theh hidden units may be
connected to any of then input features and any of these connections are candidates for adding to
the model (if they are not present already). If we are considering adding a connection from thei’th
input feature to thek’th hidden unit, then the relevant derivative is:

∂C

∂w(k)
i

=− 1
m

m

∑
j=1

1
1+eρi

yj xj,i g
′
(

n

∑
l=1

w(k)
l xi,l +w(k)

0

)
±λw(k)

i

with:

g′(x) =
2e−x

(1+e−x)2

After t grafting steps, there aren possibilities to consider for adding a new hidden unit, and
(hn− t) possibilities to consider for adding a connection to a new hidden unit. Following the usual
grafting procedure, we calculate the derivatives for all these candidates and pick the one with the
largest magnitude. The corresponding weight is added toF and we reoptimize. The cycle is
repeated until one of the stopping conditions is met. If a new hidden unit is added, then we also
need to include the associated bias weight, initialized at zero, inF .

3.4 Variants

A number of variants to the basic grafting procedure are possible. One interesting alternative is
not to attempt a full optimization of the full setF after each grafting step. Instead only the most
recently added weight and perhaps the bias weights are adjusted. This makes each grafting step
faster, at the expense of a loss in accuracy and the strong possibility of ending up at a solution that is
not even a local optimum. In practice, if only a small fraction of the possible weights are non-zero
when grafting finishes, then the time spent checking gradients to determine the next weight to add
often dominates the run time, and so saving a little effort on the optimization makes little difference.

Grafting can also be readily extended to regression problems through the use of a suitable loss
function, such as the squared error loss function. This has not yet been implemented.

4. Grafting Experiments

In this section, we compare the performance of grafting and a number of other different approaches
to feature selection, on a set of synthetic and real world test problems. For simplicity, we concentrate
entirely on binary classification problems in this paper.

1346

GRAFTING: FAST, INCREMENTAL FEATURE SELECTION

4.1 The Datasets

Five datasets were used in these experiments, labeledA throughE. Each dataset consists of a train-
ing set and a test set. DatasetsA, B andC are synthetic problems, and are all instances of the same
basic task described below. DatasetsD andE are real world problems, taken from the online UCI
Machine Learning Repository (Blake and Merz, 1998).

The three synthetic problems are variations of a task we call thethreshold max(TM) problem.
In the most basic version of this problem, the feature space containsnr informative features, each of
which is uniformly distributed between -1 and +1. The output label for a given point is defined as:

y =
{

+1 if max(xi) > 2(1−1/nr))−1 ; i = 1. . .nr

-1 Otherwise

The y = −1 points occupy a large hypercube wedged into one corner of the larger hypercube
containing all the points. They = +1 points fill the remaining space. The constant in the above
expression is chosen so that half the feature space belongs to each class. Variations of this basic
problem are derived by addingni irrelevant features uniformly distributed between -1 and +1, and
nc redundant features which are just copies of the informative features. The TM problem is designed
so that each of the informative features only provides a little information, but by using all of them
together, the problem is completely separable. In addition, the optimal discriminating surface for
the problem is very non-linear, but the problem is asymmetric so a linear discriminant should be
able to do at least better than random.

Ten instantiations of the training and testing sets of each of the three synthetic problems were
generated to obtain some statistics on relative algorithm performance.

In more detail, the datasets are:

Dataset A The TM problem, withnr = 10, nc = 0 andni = 90. Both the training set and the
test set contain 1000 points each. This dataset explores the effect of irrelevant features in the TM
problem.

Dataset B The TM problem, withnr = 10, nc = 90 andni = 0. Both the training set and the
test set contain 1000 points each. This dataset explores the effect of redundant features in the TM
problem.

Dataset C The TM problem, withnr = 10,nc = 490 andni = 500. The training set contains only
100 training points, despite the problem dimensionality of 1000. The test set contains 1000 points.
This dataset explores an extreme situation in which there are many more features than training
points.

Dataset D The “Multiple Features” database from the UCI repository. This is actually a handwrit-
ten digit recognition task, where digitized images of digits have been represented using 649 features
of various types. The task tackled here is to distinguish the digit “0” from all other digits. The
training and test sets both consist of 1000 points. The features were all scaled to have zero mean
and unit variance before being used here.

Dataset E The “Arrhythmia” database from the UCI repository. The task here is to distinguish
normal from abnormal heartbeat behavior from ECG data described by 279 numeric and binary
attributes. The data was slightly modified from the original to make it easier to use. Feature number
14 (“J”) was missing in most of the records, so it was removed from all the records. Of the 452

1347

PERKINS, LACKER AND THEILER

instances in the database, 32 had other missing attribute values and so those instances were also
removed, leaving 420 instances described by 278 attributes. These were divided into a training set
of 280 points, and a test set of 140 points.

All the datasets used in these experiments can be found online at:

http://nis-www.lanl.gov/˜simes/data/jmlr02/

4.2 The Algorithms

Eight different algorithms, which we denote by the letters(a) through(h), were compared on the
five datasets described above. Except where described below, all implementation relied on Matlab
(including the Matlab Optimization Toolbox).

(a) The linear grafting algorithm described in Section 3.3, and using bothΩ0 andΩ1 regularization.

(b) The MLP grafting algorithm described in Section 3.3, and using bothΩ0 andΩ1 regularization.

(c) Simple gradient descent to fit anΩ1 regularized linear combination of all the input features.
After gradient descent is complete, any weights with a magnitude less than 10−4 of the maxi-
mum magnitude in the weight vector, are pruned in order to obtain the subset selection driven
by theΩ1 regularization.

(d) Simple gradient descent to fit anΩ1 regularized, fully connected MLP of a similar form to
that learned by the MLP grafting algorithm, with the exception that the number of hidden
nodes is fixed at 10 nodes (and of course the connectivity is much higher). After gradient
descent is complete, any weights with a magnitude less than 10−4 of the maximum magnitude
in the weight vector, are pruned in order to obtain the subset selection driven by theΩ1

regularization.

(e) Linear SVM, which effectively usesΩ2 regularization and a slightly different loss function than
that used by the grafting implementations. The SVM implementation we used islibsvm
(Chang and Lin, 2001).

(f) Gaussian RBF kernel SVM, using the defaultlibsvm kernel parameters.

(g) Gaussian RBF kernel SVM as above, but in conjunction with “wrapper” feature subset selection.
At each feature selection step, all possible features are considered for addition to the current
feature set, and 3-fold cross-validation is used to select the best one. This process is repeated
until we have selected 10 features, and a final RBF SVM is trained using just those features.
This is essentially greedy forward subset selection.

(h) Gaussian RBF kernel SVM, but in conjunction with a “filter” feature subset selection. For each
dataset, we simply take the 10 features that are most highly correlated with the label and train
our SVM using those features.

Note that an efficient implementation of grafting must directly exploit the sparsity of the models
being trained. Our Matlab implementations take care to do this.

1348

GRAFTING: FAST, INCREMENTAL FEATURE SELECTION

Linear Graft/GD MLP Graft/GD Linear SVM RBF SVM
(λ1/λ0) (λ1/λ0) (C) (C)

A 3×10−4/0.005 10−6/0.005 0.01 10
B 10−4/0.005 10−6/0.005 0.01 0.1
C 0.2/0.001 0.1/0.001 0.001 100
D 0.005/0.001 3×10−4/0.001 1 1
E 0.05/0.001 3×10−5/0.001 0.01 1

Table 2: Regularization parameters used in experiments for each dataset, chosen using five-fold
cross-validation. “GD” stands for Gradient Descent.

4.3 Experimental Details

Each algorithm was applied to each of the datasets. The exception to this was the fully connected
MLP (algorithm (d)), which failed to converge for several of the larger datasets. We suspect that
this was caused by the large number of weights close to zero in the model, and the discontinuous
derivative of the regularizer at this point. For the three synthetic problems the training runs were
repeated for ten different random instantiations of the training and test sets, to assess sensitivity to
small changes in the dataset.

The regularization parameters used in these experiments were chosen using five-fold cross val-
idation on each of the training sets. Algorithms(a) and(c) share the same parameters; as do algo-
rithms (b) and(d); and algorithms(f), (g) and(h). Note that the grafting algorithms,(a) and(b),
use bothΩ1 andΩ0 regularization, requiring parametersλ1 andλ0, while the corresponding simple
gradient descent algorithms,(c) and (d), use onlyΩ1 regularization. This is due to the difficulty
of incorporatingΩ0 regularization into a standard gradient descent algorithm. The parameters are
listed in Table 2.

For the Matlab implementations (algorithms(a), (b), (c) and (d)) the training time on each
dataset was recorded to see if grafting gave a speedup over simple gradient descent. A direct speed
comparison between the SVM algorithms (written in C) and the Matlab implementations was not
attempted at this time, due to the inherent efficiency differences between Matlab and C code.

We also recorded the number of features selected (not the same as the number of weights in
general), for those algorithms that select a subset of the features (all algorithm except(e) and(f)).
In addition, for the three synthetic problems, we can directly calculate a measure of how useful the
selected feature subsets are. Recall that in each of these problems there arenr informative features,
not including redundant duplicates. We can define a feature setsaliencymeasure:

s=
ng

nr
+

ng

nf
−1

whereng is the number of “good” features selected (i.e. informative features, but not including
any duplicate redundant features), andnf is the total number of features selected. The saliency
evaluates to 1 if allnr good features are selected and no others are selected. It evaluates to -1 if
no good features are selected, and it evaluates to approximately zero if all the good features are
selected, but only along with many irrelevant or redundant features.

Note that the number of selected features for the linear and MLP models trained by simple
gradient descent (algorithms(c) and (d)) relies on a somewhat subjective pruning of low valued
weights, as described above. Therefore the measurements of numbers of selected features, and

1349

PERKINS, LACKER AND THEILER

Linear Graft MLP Graft Linear GD MLP GD

A 0.5 12.1 1.1 14.6
B 0.5 13.1 0.9 13.1
C 1.1 0.6 216.9 -
D 1.1 9.4 350.4 -
E 0.4 3.3 58.9 -

Table 3: Timing comparisons for Matlab-implemented algorithms on the five datasets. The entries
in the table are the mean number of CPU seconds used by each training algorithm on each
dataset. Note that the MLP gradient descent algorithm could not be applied to the larger
datasets due to convergence problems.

feature subset saliency should be treated with some suspicion for these two algorithms. Grafting
avoids this issue by only adjusting weights that are likely to end up as non-zero.

4.4 Results and Analysis

Figure 3 summarizes the test performance and subset selection results of the experiments. Table 3
details the mean run time for the various Matlab algorithms on each dataset.

We will consider the results for each dataset in turn.

Dataset A 90% of the features in this dataset are irrelevant, while each of the others is only weakly
relevant by itself. The problem is not linearly separable so the error rate of the linear algorithms
(a), (c) and (e) probably couldn’t be much better than the observed 0.36–0.38 level, even with
an optimal choice of hyperplane. Curiously enough though, the non-linear SVM algorithm(f) also
performed badly, presumably due to the large number of irrelevant features. Adding subset selection
to the non-linear SVM made it perform somewhat better — the filter selection method(g) slightly
outperforming the wrapper method(h). The winner by a very long way though is the MLP graft
algorithm (b). The reasons behind these performance differences can largely be explained by the
saliency chart. The gradient test heuristic was able to pick out just the salient features with almost
100% accuracy, and the MLP was flexible enough to fit the non-linear discriminant boundary to a
high degree of accuracy. The linear grafting algorithm also picked out good sets of features, but was
unable to exploit these due to its inflexible model. The correlation filter method picked the third
most salient set of features and came third in terms of performance. It is very likely that at least
some of the performance difference between the MLP grafting algorithm and the non-linear SVM,
is due to the fact that the MLP network matches the structure of the threshold max problem better
than an RBF network.

Dataset B This time there are no irrelevant features, but 90% of them are merely copies of other
features. The task is to pick out which ones are necessary. The linear models do as poorly as before,
although again, linear grafting was able to pick out a very salient and minimal subset of features. In
the absence of the noise features, the non-linear SVM did much better. Interestingly, the wrapper
subset selection did not affect the performance of the SVM significantly. Again the MLP grafting
algorithm is the runaway winner, picking out an extremely salient feature subset and achieving
much lower error rates than the other algorithms. The worst algorithm by a significant margin is the

1350

GRAFTING: FAST, INCREMENTAL FEATURE SELECTION

A B C D E
0

0.1

0.2

0.3

0.4

0.5

E
rr

or
 R

at
e

Performance on Test Set

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)

A B C D E
0

20

40

60

80

100

%

Percentage of Features in Final Model

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)

A B C

−1

−0.5

0

0.5

1

S
al

ie
nc

y

Saliency of Selected Features

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)

Figure 3: Experimental comparison of linear and non-linear grafting, with other learning methods
on five datasets. See the main text for a description of the data sets and the algorithms.
The short lines seen at the top of the first three groups of bars in the test performance chart,
represent the standard error of the mean test scores, obtained over ten different random
instantiations of the training and test sets. For datasetsC, D andE, the bar corresponding
to algorithm(d) is missing. This algorithm, which is a gradient descent trained, fully
connected,Ω1 regularized MLP, failed to converge to a solution for these larger datasets.

1351

PERKINS, LACKER AND THEILER

filter-based subset selection technique. This is to be expected since this simple filter has no reason
not to pick multiple redundant features.

Dataset C With 1000 dimensions and only 100 training points this is a very hard problem. Look-
ing at the saliency chart, it is clear that the grafting algorithms, along with both the wrapper and filter
selection methods, pick out very poor subsets of features. The only algorithms to perform much bet-
ter than a random classifier are the two SVM algorithms without subset selection,(e) and(f). The
non-linear SVM performs best by a significant margin. The problem seems to be that, given enough
features and few enough data points, the grafting and other subset selection methods are very likely
to find irrelevant features that explain the labels better than the true informative features, merely by
chance. They then seize on those features as the most useful. In contrast, the basic SVM, withl2
regularization and no subset selection, has less tendency to focus on just a few features, and so does
better.

Dataset D The digit recognition problem turns out to be very easy, with most algorithms misclas-
sifying only one member of the test set, out of 1000. The challenge here is to solve the problem
quickly and using as few features as possible — many of the features are relatively expensive to
compute so this is a real-world challenge. The linear and non-linear grafting algorithms(a) and
(b) do an excellent job in this respect, achieving excellent performance using only about 1% of the
features. This parsimony also pays off in terms of training time, as the linear grafting algorithm is
over 300 times faster than training a full linear model using gradient descent.

Dataset E The arrhythmia problem is quite a hard one. The best algorithm is the linear SVM(e),
with an average error rate of around 0.2. All the other algorithms achieve performance figures in the
vicinity of 0.25, although the grafting algorithms achieve this error rate using a very small fraction
of the available features.

5. Discussion

We finish with some conclusions, and compare grafting to some better-known algorithms.

5.1 Connections with Stagewise Additive Modelling

Both the linear and MLP models considered in this paper are examples of additive models:

E(y|x) =
k

∑
i=1

fi(x)

Hastie et al. (2001, chap. 9) provide an in-depth discussion of this class of models which have a
long history in statistics. They also describe a method called additive regression that allows us to fit
the above model usingbackfitting(Friedman and Stuetzle, 1981). Backfitting is a simple iterative
procedure whereby the individual functionsfi are adjusted one at a time to optimize a chosen loss
function, and by cycling through this process enough times we can optimize the whole model. Ad-
ditive logistic regression specializes this problem for classification by using the binomial negative
log likelihood loss function as an optimization criterion. For the classes of additive model consid-
ered in this paper, we can simply use sophisticated general purpose gradient descent algorithms to
optimize the model, which are likely to be more efficient than the simple backfitting procedure.

1352

GRAFTING: FAST, INCREMENTAL FEATURE SELECTION

As an alternative to using a model with a fixed number of componentsk, we can incrementally
develop such a model using a greedy stagewise algorithm. In this approach, at each time step, we
add a new component to the additive model, which is designed to reduce the current loss as much
as possible. The previous components are fixed, and only the new function is adjusted. An example
of this ismatching pursuit, described by Mallat and Zhang (1993). This approach is also discussed
at length by Friedman et al. (2000) where they develop a greedy stagewise form of additive logistic
regression.

All this looks very similar to the grafting procedure described in this paper, so what is new about
grafting? Here are some of the more important differences:

• Grafting is used to build up models out of components that may be combined together in
much more complicated ways than simply being added together. In MLP graft, for instance,
at each grafting step we consider both adding a new hidden node, and adding an input to an
existing node. These options are considered in the same framework, but involve rather differ-
ent alterations to the model. In stagewise additive modelling we are usually only concerned
with adding anotherfi to the model at each step.

• At each step, grafting considers many possibilities for altering the current model (typically
one for each weight inF) and decides between them using the gradient test heuristic. In
stagewise additive modelling, we usually only consider one possibility, which is to add (liter-
ally) a new functionfi , which will be fit to a weighted version of the training set.

• After updating the model, stagewise additive modelling typically only adjusts parameters
relating to the most recently addedfi. Grafting usually adjusts all the free parameters in
the model using a gradient descent engine. This is feasible because our model output is
always differentiable with respect to all the model parameters. Additive model practitioners
do sometimes use backfitting to fit their models, but this is likely to be less efficient than using
a quasi-Newton gradient descent algorithm.

5.2 Connections with Boosting

Boosting (Freund and Schapire, 1996) is one of the most active fields of research in modern machine
learning. Boosting, and in particular the AdaBoost algorithm, provides a way of training a sequence
of classifiers on some data and then combining them together to form anensemble classifierthat is
substantially better than any of its member classifiers.

Boosting can be viewed as a form of stagewise additive modelling (Friedman et al., 2000) that
optimizes a logistic regression-like loss function, combined with anl1 regularizer. It works by
reweighting the training data at each stage, training a new classifier using a “weak learner”, and
forming a composite classifier as a linear combination of the classifiers learned at each stage. The
reweighting of the data can be shown to “encourage” a new classifier to be learned that maximally
decreases the logistic regression loss (Friedman et al., 2000).

If we consider the variant of grafting mentioned in Section 3.4, where we only update the most
recently added weights, and use a linear model withΩ1 regularization, then we end up with some-
thing that is very much like an extreme version of boosting where the weak learner simply fits a
model of the formf (x) = w0 + w1xk, choosing a single featurexk to add to the model. The tech-
nique of “boosting with stumps” is similar to this, except thatf (x) is usually thresholded at zero
to produce an output that is -1 or +1, as required by the original AdaBoost algorithm. More recent

1353

PERKINS, LACKER AND THEILER

versions of boosting relax this requirement (Schapire and Singer, 1999) however, so in fact this
variant of linear grafting is a simple form of boosting.

The original boosting algorithm mandated anl1 regularizer and the logistic regression loss func-
tion. However, Mason et al. (2000) have devised a general purpose algorithm called AnyBoost,
which, like grafting (and stagewise additive modelling) can work with a variety of loss functions
and regularization methods.

5.3 Implications for Regularization

We achieved best performance with the grafting algorithms using both aΩ1 and aΩ0 regularizer. It
has been argued, (e.g., see Tibshirani, 1994), thatΩ1 regularization represents a good compromise
between the needs of coefficient shrinkage for generalization performance, and the needs of subset
selection for pragmatic reasons. However, as discussed in Section 2.1.2, these are really two separate
goals and perhaps should be accounted for separately. Our experience is that if we attempted to use
only Ω1 regularization then it was often impossible to find a single value ofλ1 that produced good
generalization performance without also incorporating many largely irrelevant features. It should
be noted, though, that theΩq regularizer withq = 1 is the smallestq-value where the regularizer is
convex.

5.4 Other Related Work

Das (2001) describes a technique for using boosting for feature selection. However he does not
combine feature selection with model building in the integrated way we have described.

Jebara and Jaakkola (2000) also examine feature selection in a regularized risk minimization
context for linear models. They define a prior describing likely values of weights, and choose one
that tends to drive a number of weights to zero, in a similar fashion tol1 regularization. In fact
l1 regularization can be viewed as being equivalent to a sharply peaked prior for weight values
(Tibshirani, 1994).

Weston et al. (2000) describe a gradient descent method that can be used to select a subset of
features non-linear for support vector machines. The input features are first weighted using a vector
of weightsσ. This vector is then optimized using gradient descent, to minimize a bound on the
expected leave-one-out error, subject to al1 constraint on the magnitude ofσ. This leads to some of
the elements ofσ being driven to zero.

SVMs are normally associated withl2 regularization, but it is possible to formulate them using
an l1 norm as well. Fung and Mangasarian (2002) describe a gradient descent technique for rapidly
optimizing suchl1 SVMs, which have the property that, as usual, many weights are driven to zero.

References

C.L. Blake and C.J. Merz. UCI repository of machine learning databases.
http://www.ics.uci.edu/˜mlearn/MLRepository.html , 1998. University of Califor-
nia, Irvine, Dept. of Information and Computer Science.

B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. InProc.
Fifth Annual Workshop on Computational Learning Theory, pages 144–152, Pittsburgh, ACM,
1992.

1354

GRAFTING: FAST, INCREMENTAL FEATURE SELECTION

C. Chang and C. Lin. LIBSVM: A library for support vector machines. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm , 2001.

S. Das. Filters, wrappers and a boosting-based hybrid for feature selection. InProc. ICML. Morgan
Kauffmann, 2001.

Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. InMachine Learning:
Proc. 13th Int. Conf., pages 148–156. Morgan Kaufmann, 1996.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting.
Annals of Statistics, 28:337–307, 2000.

J. Friedman and W. Stuetzle. Projection pursuit regression.Journal of the American Statistical
Association, 76:817–823, 1981.

G. Fung and O.L. Mangasarian. A feature selection Newton method for support vector machine
classification. Technical Report 02-03, Data Mining Institute, Dept. of Computer Sciences, Uni-
versity of Wisconsin: Madison, Sept 2002.

F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architectures.Neural
Computation, 7:219–269, 1995.

T. Hastie, R. Tibshirani, and J. Friedman.The Elements of Statistical Learning. Springer, 2001.

A.E. Hoerl and R. Kennard. Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics, 12:55–67, 1970.

T. Jebara and T. Jaakkola. Feature selection and dualities in maximum entropy discrimination. In
Proc. Int. Conf. on Uncertainity in Artificial Intelligence, 2000.

K. Kira and L. Rendell. A practical approach to feature selection. In D. Sleeman and P. Edwards,
editors,Proc. Int. Conf. on Machine Learning, pages 249–256. Morgan Kaufmann, 1992.

R. Kohavi and G.H. John. Wrappers for feature subset selection.Artificial Intelligence, 97:273–324,
1997.

S. Mallat and Z. Zhang. Matching pursuit with time-frequency dictionaries.IEEE Transactions on
Signal Processing, 41(12):3397–3415, 1993.

L. Mason, J. Baxter, P.L. Bartlett, and M. Frean. Functional gradient techniques for combining
hypotheses. In A.J. Smola, P.L Bartlett, B. Sc¨olkopf, and D. Schuurmans, editors,Advances in
Large Margin Classifiers, pages 221–246. MIT Press, 2000.

J.A. Nelder and R. Mead. A simplex method for function minimization.Computer Journal, 7:
308–313, 1965.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery.Numerical Recipes in C. Cambridge
University Press, 2nd edition, 1992.

R.E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions.
Machine Learning, 37(3):297–336, 1999.

1355

PERKINS, LACKER AND THEILER

B. Schölkopf and A. Smola.Learning with Kernels. MIT Press, Cambridge, MA, 2002.

A.J. Smola, P.J. Bartlett, B. Sch¨olkopf, and D. Schuurmans, editors.Advances in Large Margin
Classifiers. MIT Press, 2000.

R. Tibshirani. Regression shrinkage and selection via the lasso. Technical report, Dept. of Statistics,
University of Toronto, 1994.

J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature selection for
SVMs. Advances in Neural Information Processing Systems, 13, 2000.

1356

