
Grain boundary segregation and thermodynamically
stable binary nanocrystalline alloys

The MIT Faculty has made this article openly available. Please share 
how this access benefits you. Your story matters.

Citation Trelewicz, Jason R., and Christopher A. Schuh. “Grain boundary
segregation and thermodynamically stable binary nanocrystalline
alloys.” Physical Review B 79.9 (2009): 094112. (C) 2010 The
American Physical Society.

As Published http://dx.doi.org/10.1103/PhysRevB.79.094112

Publisher American Physical Society

Version Final published version

Citable link http://hdl.handle.net/1721.1/51036

Terms of Use Article is made available in accordance with the publisher's
policy and may be subject to US copyright law. Please refer to the
publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/51036


Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys

Jason R. Trelewicz and Christopher A. Schuh
Department of Materials Science and Engineering, Massachusetts Institute of Technology,

77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

�Received 23 December 2008; revised manuscript received 19 January 2009; published 24 March 2009�

A free-energy function for binary polycrystalline solid solutions is developed based on pairwise nearest-

neighbor interactions. The model permits intergranular regions to exhibit unique energetics and compositions

from grain interiors, under the assumption of random site occupation in each region. For a given composition,

there is an equilibrium grain size, and the alloy configuration in equilibrium generally involves solute segre-

gation. The present approach reduces to a standard model of grain boundary segregation in the limit of infinite

grain size, but substantially generalizes prior thermodynamic models for nanoscale alloy systems. In particular,

the present model allows consideration of weakly segregating systems, systems away from the dilute limit, and

is derived for structures of arbitrary dimensionality. A series of solutions for the equilibrium alloy configuration

and grain size are also presented as a function of simple input parameters, including temperature, alloy

interaction energies, and component grain boundary energies.

DOI: 10.1103/PhysRevB.79.094112 PACS number�s�: 61.46.�w, 61.72.Mm, 64.75.Gh

I. INTRODUCTION

A variety of unique properties emerge as the characteristic

microstructural length scale of a polycrystalline material is

reduced to the nanometer range.1–8 The resulting structures

are composed of a high volume fraction of internal inter-

faces, which represent an interesting class of materials with

opportunities that extend to emerging technologies, and also

provide a platform for studying interface-dominated physics.

However, the introduction of a high density of interfaces has

an associated energetic penalty, and nanocrystalline materials

tend to be unstable with respect to thermally activated struc-

tural changes.9–11 The problem of nanostructure stability is

most apparent in elemental nanocrystalline metals, such as

Ni,2 Cu,12–16 Al,17,18 and Pd,19,20 which exhibit grain growth

at very low homologous temperatures. These materials oc-

cupy a far-from-equilibrium state, which can be understood

in the thermodynamic context formalized by Gibbs. The

change in the Gibbs free energy, G, with respect to grain

boundary area, A, is proportional to the grain boundary en-

ergy, �.

dG � �dA . �1�

An elemental metal has a positive grain boundary energy, so

a reduction in the interfacial area �i.e., an increase in grain

size� will always lower the Gibbs free energy.

Alloying has the potential to suppress the instability of

pure nanocrystalline materials, as evidenced by the enhanced

thermal stability of a number of binary nanocrystalline alloys

relative to their single-component counterparts.14,21–24 While

such behavior has been traditionally linked to kinetic phe-

nomena such as solute drag,25 recent studies have suggested

that nanocrystalline alloys could in fact be thermodynami-

cally stabilized by solute enrichment at the grain

boundaries.26–28 The idea of segregation-induced thermody-

namic stability in nanocrystalline solids was first addressed

analytically by Weissmüller,28–30 who considered the change

in the Gibbs free energy of a polycrystal upon alloying. Un-

der certain simplifying assumptions, a minimum free energy

is predicted at a specific solute content for a given grain size.

This critical segregant level can be physically interpreted as

the amount required to fill the available grain boundary sites

without supersaturating the interface. By solving the Gibbs

adsorption equation in the dilute limit assuming McLean-

type segregation,31 the grain boundary energy takes the fol-

lowing form:28

� = �o − ��X→0,f ig→0�Hseg + kT ln X� . �2�

Here �o is the grain boundary energy of the pure solvent, X is

the global solute content, � �X→0,f ig→0 is the solute excess in

the grain boundary �where the subscripts denote the limiting

assumptions with f ig the interfacial volume fraction�, Hseg is

the segregation energy �i.e., the difference in energy of a

solute atom occupying a grain boundary site vs a grain inte-

rior site�, k is the Boltzmann constant, and T is absolute

temperature. From Eq. �2�, it is evident that the grain bound-

ary energy can be reduced by enhancing the solute excess,

and if the magnitude of this reduction is sufficient to drive �
to zero, the grain boundaries can apparently exist in equilib-

rium.

Extremely fine nanocrystalline grain sizes have been real-

ized in a variety of binary alloy systems, for example Y-Fe,32

Ni-P,33 Pd-Zr,27,34 and Fe-Zr.35 Because the elements com-

posing these alloys are highly immiscible with a large posi-

tive heat of mixing, these systems are classified as strongly

segregating, with high assumed values of Hseg ��0.5 eV�
that can substantially reduce the grain boundary energy via

Eq. �2�. In all the alloy systems identified above, higher alloy

compositions have been experimentally correlated with finer

grain sizes �i.e., a higher volume fraction of grain bound-

aries�, suggesting grain boundary segregation as the essential

driving force for nanostructure stabilization. Alloys with a

weaker apparent segregation tendency have also been syn-

thesized with grain sizes spanning the entire nanocrystalline

regime. An example in this regard is the Ni-W system, where

there is some solid solubility, the segregation energy is low

��0.1 eV� and reduces further with increasing solute �W�
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addition;36 nevertheless, any grain size in the nanocrystalline

range can be produced by controlling the solute content.37

For some of the binary alloy systems discussed above,

solute enrichment at grain boundaries has been confirmed by

atom probe tomography.38–41 It has also been studied exten-

sively by computer simulations both for individual grain

boundaries42 and, more recently, for simulated nanocrystal-

line structures.36,43,44 A particularly clear illustration of the

principle behind Eq. �2� is provided by the molecular-

dynamics simulations of Millet et al.,44 which explicitly

show that for artificial states of segregation in Lennard-Jones

polycrystals, the grain boundary energy can indeed be driven

to zero.

Complementary analytical models have sought to extend

the early work of Weissmüller28 to understand the nature of

grain boundary energy reduction and solute distributions in

terms of the unique thermodynamic properties of binary

nanocrystalline systems.26,33,45–47 However, the key assump-

tions used in most of these models are quite severe, and

generally limit the discussion to dilute solutions with ex-

tremely high segregation tendencies. This is unfortunate be-

cause most of the experimental nanocrystalline alloys de-

scribed earlier are nondilute, and not all of them exhibit a

strong tendency for segregation �e.g., Ni-W�. Recently, Beke

et al.48,49 relaxed some of these assumptions in a statistical

model, and considered segregation to free surfaces on one-

dimensional nanocrystals. The statistical nature of this model

is attractive in principle, providing a concrete framework to

evaluate the conditions for equilibrium directly from a free-

energy function. However, being derived for segregation to a

free surface, this model lacks some of the thermodynamic

parameters associated with grain boundary properties that are

essential in differentiating various nanocrystalline alloys.

Thus, despite the progress cited above, there is as yet no

simple analytical model for grain boundary segregation-

based nanostructure stabilization that extends to general

�nondilute� alloys, and incorporates energetic interactions

that derive from the characteristic thermodynamic quantities

governing the mixing behavior of binary systems. In this

paper, we formulate such an analytical thermodynamic

model, without restricting ourselves to the dilute limit or to

strongly segregating solute species. The derivation is pre-

sented for grain geometries of arbitrary dimensionality, and

includes interactions among segregated solute atoms, which

alleviates the need to assume saturated grain boundaries. The

result is a simple model that permits comparative analysis of

various binary alloys and provides improved guidelines for

design of nanocrystalline materials.

II. ANALYTICAL FRAMEWORK

In this section, the statistical framework required to ana-

lyze grain boundary segregation in binary alloy systems is

developed. We begin by presenting a modified form of the

regular solution model that captures the additional energetic

penalty associated with introducing internal interfaces �i.e.,

grain boundaries� of a finite volume fraction into a single-

phase crystalline solution. The possibility of any competing

secondary or intermetallic phases is explicitly neglected, as

are contributions from any additional thermodynamic poten-

tials. The enthalpy of mixing is formulated by incorporating

the distribution of bonds in the grains and intergranular re-

gions into a modified solution model, and combined with

entropic contributions to establish the free energy of mixing.

A series of equilibrium equations are finally derived from the

free-energy function, which can be used to investigate ther-

modynamically stable grain sizes.

A. Solution model

To describe a binary mixture of solvent “A” and solute

“B” atoms, we consider a statistical framework that employs

pairwise interaction energies in a manner analogous to that

which yields the regular solution model. However, we divide

the full volume of the system into two separate regions—that

belonging to the grains, and that belonging to intergranular

regions. The latter region shall represent energetic contribu-

tions from all intergranular structural elements, including

grain boundaries, triple junctions, and quadruple nodes,

which are averaged together in this construction. The atomic

interactions are uniquely defined in the bulk and intergranu-

lar regions, as illustrated in Table I. It also becomes neces-

sary to introduce additional bonding pairs to capture bonds

that bridge between the two distinct regions, as depicted in

Fig. 1; we define these “transitional” bonds to have pairwise

energies characteristic of the intergranular region �cf. Table

I�. The solution energy can be written as a sum over the

individual bond energies, E, of all the possible atomic pairs,

N, in each bonding region, r;

Usoln = �
r

�Nr
AA

Er
AA + Nr

BB
Er

BB + Nr
AB

Er
AB� , �3�

where the superscripts denote the bond types involved, and

the subscript “r” distinguishes bulk �b�, intergranular �ig�,
and transitional �t� bonds; all the possible bonding configu-

rations are shown in Table I. Within this framework, the

energy of mixing, �Umix, not only accounts for chemical

interactions in the solid solution, but also incorporates the

interfacial energy characteristic of the intergranular region,

TABLE I. Bulk, intergranular, and transitional bond configura-

tions and their corresponding energies. Note that transitional bonds

are assigned energies characteristic of the intergranular region.

Region Number Energies

Bulk Nb
AA Eb

AA

Nb
BB Eb

BB

Nb
AB Eb

AB

Intergranular Nig
AA Eig

AA

Nig
BB Eig

BB

Nig
AB Eig

AB

Transitional Nt
AA Eig

AA

Nt
BB Eig

BB

Nt
AB Eig

AB
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�Umix = Usoln − Uref, �4�

where Uref represents the energy of an unmixed, interface-

free state of the same composition,

Uref = � zNA

2
	Eb

AA + � zNB

2
	Eb

BB. �5�

The coordination number is denoted by z, and NA and NB are

the total numbers of A and B atoms in solution, respectively.

For a system with a given global composition, the total

number of each atom type is related to the number of bonds

via

zNA = 2Nb
AA + 2Nt

AA + 2Nig
AA + Nb

AB + Nt
AB + Nig

AB, �6a�

zNB = 2Nb
BB + 2Nt

BB + 2Nig
BB + Nb

AB + Nt
AB + Nig

AB, �6b�

where the factors of 2 account for each like bond connecting

two like atoms. We can express Eqs. �6a� and �6b� in terms

of the numbers of like bonds in the bulk, and substitute these

relations into Eqs. �3� and �5� to obtain the change in the

internal energy upon mixing,

�Umix = Nb
AB�Eb

AB −
Eb

AA + Eb
BB

2
	 + �Nt

AA + Nig
AA��Eig

AA − Eb
AA�

+ �Nt
BB + Nig

BB��Eig
BB − Eb

BB� + �Nt
AB + Nig

AB�

��Eig
AB −

Eb
AA + Eb

BB

2
	 , �7�

where terms involving the like bonding pairs in the bulk

have cancelled with the equivalent terms contributed by the

reference state. We now examine the geometric constraints

imposed by a grain structure and the pairwise probabilities

for forming the various bond types to determine explicit ex-

pressions for the seven remaining values of N in Eq. �7�.

B. Bond distributions

The number of bonds of each type present in each of the

three bonding regions can be resolved by considering the

total number of bonds inherent to each region, and the prob-

ability that each of these bonds is of a given type. To address

the bonding distribution, we consider the volumetric density

of atoms in each region, normalized by the total number of

atoms in the system. Given an arbitrary grain geometry, the

intergranular region is assigned as a shell of finite thickness,

t /2, with a geometrically similar shape to the grain; this is

illustrated in Fig. 1 for a two-dimensional grain of irregular

shape.

Normalizing the volumetric atomic density by the total

number of atoms eliminates the numerical shape factor asso-

ciated with any specific grain geometry, and the intergranular

volume fraction, f ig, can be expressed as

f ig = 1 − �d − t

d
	D

, �8�

where d is the grain size, and D is the dimensionality of the

grain structure. D=3 should be used for a general three-

dimensional polycrystal, while D=2 is useful for columnar

or highly elongated grain structures and D=1 applies to

lamellar or platelike grains. We can also uniquely define the

solute content in the bulk, Xb, and intergranular, Xig, regions,

which are related to the global solute content, X, by a volume

fraction-weighted average,

X = �1 − f ig�Xb + f igXig. �9�

The probability of each possible bond configuration can be

enumerated by assuming random site occupation based on

the defined compositions in each of the regions, and are

listed in Table II.

The total number of bonding pairs present in the bulk

�Pb�, intergranular �Pig�, and transitional regions �Pt� are

functions of f ig and the total number of atoms, No,

TABLE II. Bond configurations and existence probabilities, de-

rived from the solute concentration in each of the respective re-

gions, central to the free energy of mixing.

Region Bonds Energy Probability

Bonds/

Region

Bulk Nb
AB Eb

AB 2Xb�1−Xb� Pb

Intergranular Nig
AA Eig

AA �1−Xig�2 Pig

Nig
BB Eig

BB Xig
2

Nig
AB Eig

AB 2Xig�1−Xig�

Transitional Nt
AA Eig

AA �1−Xb��1−Xig� Pt

Nt
BB Eig

BB XbXig

Nt
AB Eig

AB Xig�1−Xb�+Xb�1−Xig�

FIG. 1. �Color online� Schematic of an arbitrary grain shape,

with the atomic configuration at the interface between the pictured

and adjacent grain highlighted. Intergranular bonds are those lo-

cated entirely within the intergranular region, and transitional bonds

connect these atoms to those in the bulk region.
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Pb =
z

2
�1 − f ig�No, �10a�

Pig = � z

2
f ig − z�f ig	No, �10b�

Pt = z�f igNo. �10c�

According to Eq. �10a�, the number of bulk bonds is simply

equal to the total number of bonds in the system, zNo /2,

weighted by the bulk volume fraction. The leading term in

Eq. �10b� has the same form, weighting the total number of

system bonds by the grain boundary volume fraction; the

second term subtracts off the number of transitional bonds,

which are counted separately in Eq. �10c�. The factor, �,

termed the transitional bond fraction, represents the effective

coordination for atoms contributing bonds to the transitional

bonding region, and will be taken for all subsequent numeri-

cal calculations as 1/2. This essentially assigns half the

atomic bonds at the bulk-intergranular interface as transi-

tional bonds, with type probabilities deriving from both the

bulk and intergranular solute fractions. When the occupation

probabilities shown in Table II are scaled by the respective

number of regional bonds, expressions for the seven bonding

pairs central to the change in internal energy upon mixing are

obtained.

C. Free-energy function

The free energy of mixing, �Gmix, is a combination of

enthalpic and entropic contributions expressed as

�Gmix = �Hmix − T�Smix, �11�

where �Hmix and �Smix represent the system enthalpy and

entropy of mixing, respectively. As is customary for con-

densed phases, we neglect the change in volume upon mix-

ing, and the enthalpy of mixing is thus represented by the

change in internal energy given by Eq. �7�, i.e., �Hmix

=�Umix. The entropy of mixing may be derived using the

standard statistical approach, considering the random distri-

bution of atoms over distinct atomic sites throughout the

system, and simplifies to a volume fraction-weighted average

of the random mixing entropy for the bulk and intergranular

regions,

�Smix = − kNo��1 − f ig�
Xb ln Xb + �1 − Xb�ln�1 − Xb��

+ f ig
Xig ln Xig + �1 − Xig�ln�1 − Xig��� . �12�

Because the enthalpy and entropy of mixing both scale with

system size, the free energy can be expressed on a per atom

basis by normalizing with respect to No. Introducing Eqs. �7�
and �12� into Eq. �11� yields the complete form of the free

energy of mixing for our system. However, before introduc-

ing this full functional form, it is useful to examine the

physical limits on grain size, which is bounded by 0	 f ig

	1, corresponding to t	d	
. For d→
, the free energy

of mixing takes the form,

�Gmix
b = zXb�1 − Xb��Eb

AB −
Eb

AB + Eb
AB

2
	

+ kT
Xb ln Xb + �1 − Xb�ln�1 − Xb�� , �13�

where Xb and X are equivalent via Eq. �9�. As expected, in

the infinite grain-size limit the free energy of mixing con-

verges to a regular solution model for the bulk phase, and the

combination of bond energies in Eq. �13� is accordingly rec-

ognized as the regular solution interaction energy:

�b = �Eb
AB −

Eb
AA + Eb

BB

2
	 . �14�

Equation �14� has important implications for bond preference

in the bulk, where �b=0 is characteristic of an ideal solution,

�b�0 prefers like bonds, and �b
0 unlike bonds.

In the other limit, d→ t represents the reduction in grain

size to the so-called “amorphous limit,” where only the in-

tergranular region exists, with a corresponding free energy,

�Gmix
ig =

z

2
�1 − Xig��Eig

AA − Eb
AA� +

z

2
Xig�Eig

BB − Eb
BB�

+ zXig�1 − Xig��Eig
AB −

Eig
AA + Eig

BB

2
	

+ kT
Xig ln Xig + �1 − Xig�ln�1 − Xig�� �15�

and Xig is now equivalent to X. This expression may essen-

tially be regarded as a regular solution model for the inter-

granular material, and contains a characteristic regular solu-

tion parameter analogous to Eq. �14�,

�ig = �Eig
AB −

Eig
AA + Eig

BB

2
	 . �16�

In addition, the differences in like bond energies between the

grain and intergranular sites are incorporated by the first two

terms in Eq. �15�, and are proportional to the grain boundary

energies of the pure solvent, �A, and solute, �B, phases,

�A �
z

2
�Eig

AA − Eb
AA� , �17a�

�B �
z

2
�Eig

BB − Eb
BB� . �17b�

Introducing these relations into Eq. �15�, the resultant free

energy in the d→ t limit is written more succinctly as

�Gmix
ig =

�

t
�1 − Xig��A +

�

t
Xig�B + zXig�1 − Xig��ig

+ kT
Xig ln Xig + �1 − Xig�ln�1 − Xig�� , �18�

where the solvent atomic volume, �, normalized by the in-

tergranular shell thickness is taken for the proportionality

constants in Eq. �17�. Interestingly, Eq. �18� suggests that the

free energy of a binary intergranular region involves both the

chemical mixing preference and a weighted average of the

grain boundary energies of the pure components.
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Making use of some the above definitions, but without

carrying any of the simplifying assumptions, the full mixing

free energy function is written,

�Gmix = �1 − f ig��Gmix
b + f ig�Gmix

ig

+ z�f ig�
Xig�Xig − Xb� − �1 − Xig��Xig − Xb���ig

−
�

zt
�Xig − Xb���B − �A�
 . �19�

The leading two terms represent a rule of mixtures over the

free energies of the bulk and intergranular regions, given by

Eqs. �13� and �18�, respectively. The last term captures ener-

getic contributions from the transitional bonds between the

bulk and intergranular regions, demonstrating that the free

energy of a polycrystalline binary solid solution derives from

more complex interactions than those described by a simple

rule of mixtures.

D. Equilibrium equations

The equilibrium condition is given by the simultaneous

minimization of �Gmix with respect to the intergranular com-

position and grain size for a closed system �i.e., constant X�,

� ��Gmix

�Xig

�
X

→ 0, �20a�

� ��Gmix

� f ig

�
X

→ 0. �20b�

If we apply only the condition of Eq. �20a�, an expression for

the characteristic segregation isotherm is obtained, which de-

scribes the solute distribution for a given grain size,

Xig

1 − Xig

=
Xb

1 − Xb

· exp��Hseg

kT
� �21�

with a segregation energy, �Hseg, that bears some resem-

blance to the classical Fowler-Guggenheim form,

�Hseg = z��b −�ig�1 −
�

1 − f ig

	 −
�

zt
��B − �A��1 −

�

1 − f ig

	�
+ 2zXig�ig�1 −

�

1 − f ig

	
− 2z
Xb�b + ��Xig − Xb��ig� . �22�

The leading bracketed term in Eq. �22� is a combination of

bond energies that describes McLean-type segregation for a

free surface, with no segregated solute-solute interactions.

The additional terms account for such interactions, which in

the present model are functions of � and f ig, thus imparting a

grain-size dependence on the effective coordination in the

intergranular region.

The second equilibrium condition of Eq. �20b� is analo-

gous to imposing �→0, as the alloy grain boundary energy,

�, is directly related to the partial derivative,

� =
t

�
·
��Gmix

� f ig

, �23�

where the scaling factor t /� is the reciprocal of the propor-

tionality constant introduced in Eq. �18�. To calculate corre-

sponding equilibrium grain sizes for the solute distributions

given by Eqs. �9� and �21�, Eq. �20b� must be concurrently

evaluated and introduced into Eq. �23�,

� = �A −
ztXig

�
��b − �ig�1 −

�

1 − f ig

	 −
�

zt
��B − �A��1 −

�

1 − f ig

	� −
zt

�
��Xb

2 − 2XbXig��b + Xig
2 �ig�1 −

�

1 − f ig

	�
+

zt�

��1 − f ig�
��Xig�Xig − Xb� + Xb�1 − Xig���ig + Xb

�

zt
��B − �A�� +

tkT

�
�Xig ln�Xig

Xb

	 + �1 − Xig�ln�1 − Xig

1 − Xb

	�
= 0. �24�

While Eq. �24� appears cumbersome at first glance, its form

can be understood by considering a simplified system: one in

which we assume a dilute solute concentration �X→0�, a

high segregation tendency ��Hseg�kT�, and McLean-type

segregation �f ig→0�, assumptions that were central in the

prior models of nanostructure stability by Weissmüller28 and

Liu and Kirchheim.33 Under these simplifying conditions,

with �=1 /2, the segregation energy �denoted in this limit as

�Hseg
o � and alloy grain boundary energy simplify to

�Hseg
o = z��b −

�ig

2
−

�

2zt
��B − �A�� , �25a�

� = �A −
tXig

�

�Hseg

o + kT ln�Xb�� , �25b�

where Eq. �25a� characterizes McLean-type segregation, as

discussed above in reference to the leading term of Eq. �22�.
Equation �25b� is incorporated as the leading two terms of

Eq. �24�, and simplifies exactly to Eq. �2�; the solute excess

in the dilute, infinite grain-size limit is expressed as

��X→0,f ig→0 =
t · Xig

�
, �26�
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which is identical to the form provided in Ref. 33. Higher

order effects from solute-solute and solute-solvent interac-

tions in the bulk, transitional, and intergranular regions are

captured by the remaining terms.

The true equilibrium state of a polycrystal is determined

by simultaneously applying the two criteria of Eqs. �20�,
recast as Eqs. �21� and �24�, and solving for the two un-

knowns, intergranular solute content and grain size. Because

constant X is imposed, the equilibrium grain size is coupled

to the global solute content, such that for any given compo-

sition there is one equilibrium grain size, and for any grain

size there is one energy-minimizing composition. To illus-

trate this more clearly, we have schematically plotted

�Gmix-d contours for various values of Xig in Figs. 2�a� and

2�b� for a constant global composition. These plots are es-

sentially two-dimensional projections of the free-energy sur-

face as viewed along the Xig axis, with Fig. 2�a� showing the

approach to the minimum-energy configuration from below

the equilibrium value of Xig, and Fig. 2�b� showing the in-

crease in system energy beyond. In each of the �Gmix-d con-

tours there is a local minimum, but the true equilibrium grain

size, deq, only exists on a single contour, corresponding to a

single intergranular solute content, Xig
eq, at the global mini-

mum on the free-energy surface. The minimum in �Gmix

with respect to Xig can be more readily understood when

plotted at the equilibrium grain size, as illustrated in Fig.

2�c�. The free energy monotonically decreases when solute is

initially added to the system, and in order to satisfy Eq. �21�,
enough solute must be supplied to minimize �Gmix as indi-

cated. At lower solute contents, the grain boundaries can be

viewed as “underfull” with additional sites available for sol-

ute atoms, whereas when Xig surpasses the stable composi-

tion, the grain boundaries become saturated and solute atoms

occupy energetically unfavorable sites in the bulk, resulting

in the subsequent increase in �Gmix.

The minimization procedure described above can be em-

ployed to calculate equilibrium grain sizes and intergranular

solute contents as a function of global composition for alloys

with various interaction energies. The prototypical output of

this model is illustrated in Fig. 3: the equilibrium grain size

decreases with increasing global solute content in a power-

law-like decay. The functional form of this relationship is a

signature of thermodynamic stabilization, and is widely ob-

served in experimental data on this subject.27,32–34,37 Such

scaling is an inherent consequence of Eq. �8�, where the

(b)(a)

(c)

FIG. 2. �Color online� Two-dimensional slices of the free-energy

surface as a function grain size for intergranular solute contents �a�
less than and �b� greater than the equilibrium composition, Xig

eq. For

the equilibrium grain size indicated in �a� and �b�, �Gmix is plotted

in �c� as a function of intergranular solute content, and demonstrates

a minimum at Xig
eq; intergranular compositions less than or greater

than Xig
eq correspond to underfull or overfull boundaries, respec-

tively. The minimum identified in the free energy of mixing repre-

sents the global minimum on the free-energy surface, and defines

the thermodynamically stable state.

FIG. 3. �Color online� Equilibrium grain size as a function of

the global solute content for a single example set of interaction

energies. A power-law-like decay in grain size is observed with

increasing global composition, indicating that more solute is re-

quired to stabilize finer nanocrystalline grain sizes.

FIG. 4. �Color online� Interfacial excess and intergranular solute

content plotted against the global solute content. For the example

set of interaction energies, both quantities are independent of global

composition, and thus denote the critical intergranular coverage

level required to achieve equilibrium.
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grain boundary volume fraction is inversely related to grain

size. Additional solute is thus required to effectively fill the

grain boundaries and lower the system energy, especially at

the finest nanocrystalline grain sizes where interfaces be-

come the dominant structural feature.

While grain size correlates with the global composition,

the corresponding segregation isotherm in Fig. 4 indicates

that the intergranular composition is unaffected by solute ad-

ditions. However, because d is coupled to X, the interfacial

volume fraction varies with global composition, making it

very difficult to analyze the segregation behavior from a

characteristic isotherm. To address this complexity, we turn

our attention to the Gibbsian excess, or intergranular solute

excess, �,31,50 which is derived by considering the distribu-

tion of atoms, N, in the system,

� =
1

Aig

�Nig
B − Nb

B�Nig
A

Nb
A	� . �27�

This representation is convenient as � is normalized by the

interfacial area, Aig, thus incorporating the inherent variation

in interfacial volume fraction. Aig can be calculated from the

system volume, N0 ·�, and the intergranular volume faction

and shell thickness,

Aig =
N0 · � · f ig

t
. �28�

When Eq. �28� is introduced into Eq. �27�, the interfacial

excess takes the form

� =
t�Xig − Xb�

��1 − Xb�
. �29�

Note that this expression simplifies exactly to Eq. �26� in the

dilute, infinite grain-size limit. Introducing the results for Xig,

X, and f ig from the segregation isotherm into Eq. �29�, we

obtain � as a function of X, as illustrated in Fig. 4. As the

segregation isotherms imply, the interfacial excess is indeed

unaffected by solute additions for the given set of energetic

state variables. However, this does not imply that � is uni-

versally independent of X, which is only observed here as a

consequence of the chosen interaction energies. This will be

demonstrated in the following parametric study, which will

also emphasize the importance of incorporating grain-size

variations when analyzing segregation behavior.

III. PARAMETRIC STUDY

The equilibrium equations derived in Sec. II are param-

eterized by a number of geometric and thermodynamic state

variables that influence both the segregation tendency and

equilibrium grain size, including T, �b, �ig, �A, �B, and D. In

this section, we will illustrate the individual effects of these

parameters by numerically evaluating Eqs. �21� and �24� to

solve for equilibrium pairs of d and X, with an assumed

constant intergranular shell thickness of t=0.5 nm. The de-

fault settings of the state variables are the same throughout

this section: T=1000 °C, �b=0.03 eV ��2.9 kJ /mol�, �ig

=0 eV, �A=�B=0.48 J /m2, and D=3; these values are used

except where it is explicitly stated otherwise.

(a)

(b) (c)

FIG. 5. �Color online� Ther-

modynamic equilibrium states as a

function of temperature for inter-

action energies defined as: �b

=0.03 eV, �ig=0 eV, and �A

=�B=0.48 J /m2. With increasing

temperature, �a� the segregation

energy decreases, �b� the grain

size trends first shift to higher sol-

ute contents, followed by a scaling

inflection and shift to lower global

compositions as shown in the in-

set, and �c� the interfacial excess

decreases, indicating that tempera-

ture promotes a more random sol-

ute distribution.
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A. Temperature

Our free energy of mixing is derived for a system limited
to pairwise nearest-neighbor interactions, an assumption that
leads to a temperature-independent enthalpy, with T pre-
dominantly coupled to the entropy via Eq. �12�. The most
general influence of temperature, then, is to randomize the
solute distribution, desegregating systems that exhibit a seg-
regation tendency; this is captured in Fig. 5�a�, where we
have varied T over the range 200–1000 °C. Equilibrium
grain size decreases with global composition in Fig. 5�b�,
and the temperature-dependent segregation energy affects
this scaling in subtle and complex ways. First, for lower
global compositions �X
10 at. %�, the reduced driving
force for segregation at elevated temperatures results in a

lower interfacial excess, as evidenced in Fig. 5�c�, and the

system therefore requires more solute to effectively eliminate

the alloy grain boundary energy; this is manifested in Fig.

5�b� as a shift of the d-X trends to higher global composi-

tions. However, as X is increased beyond 10 at. %, the d-X

trends instead shift to lower global compositions with in-

creasing T, as demonstrated in the inset of Fig. 5�b�. While

this appears counterintuitive, the observed reduction in � 
cf.

Fig. 5�c�� indicates that the system transitions to a more ran-

dom configuration with increasing X, which is favored at

elevated temperatures. Less solute is required to achieve

equilibrium in a more random system, thus accounting for

the observed inflection in the scaling of the grain size-

composition relationships with temperature.

B. Bulk interaction energy

The bulk interaction energy scales directly with the heat

of mixing, which is viewed as one of the principal driving

forces for grain boundary segregation. Here we examine the

influence of �b over the range 0.025–0.08 eV. The segrega-

tion energy, shown in Fig. 6�a�, markedly increases with in-

creasing �b, as expected from Eq. �22�; all other things being

equal, higher heat-of-mixing alloys should exhibit a higher

segregation tendency. The resulting effect on the equilibrium

grain size-composition relationships is shown in Fig. 6�b�;
for greater values of �b, less global solute is required to

stabilize a given nanocrystalline grain size, thereby shifting

the characteristic d-X trends downward. However, the effect

of �b on the interfacial excess, illustrated in Fig. 6�c�, is

more complex. For low bulk interaction energies ��b


0.05 eV�, the interfacial excess is independent of global

composition, as illustrated in Fig. 6�c� for �b=0.04 eV.

Composition-independent � are also evident at even lower

interaction energies, trending to reduced coverage levels as

the system approaches an ideal solution �i.e., �b=0�, and are

not included for clarity of presentation. As �b is increased

beyond 0.05 eV, bulk atomic interactions more strongly dic-

tate the segregation behavior, with like bond formation be-

coming more energetically favorable in the bulk. At higher

global compositions where the probability to form like bonds

is greatly enhanced, solute atoms prefer to occupy bulk sites

to minimize the system free energy. This leads to a more

(a)

(b) (c)

FIG. 6. �Color online� Ther-

modynamic equilibrium states as a

function of the bulk interaction

energy for the state variables: T

=1000 °C, �ig=0 eV, and �A

=�B=0.48 J /m2. With increasing

bulk interaction energy, �a� the

segregation energy increases and

�b� the grain size trends shift to

lower global solute contents, indi-

cating that less solute is required

to stabilize the nanostructure for

large bulk interaction energies. �c�
The interfacial excess is initially

independent of composition at low

�b, then scales with the global

solute content as �b further devi-

ates from �ig.
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rapid decrease in � with increasing X, as observed in Fig.

6�c�, especially when �b exceeds 0.06 eV.

C. Intergranular interaction energy

One of the essential features of the present model is its

adaptability to a variety of alloy systems via distinct, tunable

interaction energies. For clarity in evaluating the effect of T

and �b in Secs. III A and III B, the intergranular region was

assumed to behave as an ideal solution, with no particular

bonding inclination. In this section, the intergranular interac-

tion energy is varied and the results are contrasted with the

effect of the bulk interaction energy. The equilibrium results

are summarized in Fig. 7 as a function of �ig, and generally

exhibit opposite trends as compared to the effect of �b. Fig-

ure 7�a� illustrates that as �ig is increased, a noticeable re-

duction in the driving force for segregation results, owing to

the enhanced energetic penalty imparted on segregating at-

oms. The equilibrium d-X relationships, shown in Fig. 7�b�,
shift to higher global compositions to counteract the reduced

driving force for segregation.

D. Solvent grain boundary energy

In this section, we systematically vary �A while �B is held

constant at 0.48 J /m2; whereas the driving force for segre-

gation in Secs. III A–III C derived from the interaction ener-

gies of the bulk and intergranular regions, here the differen-

tial between the pure component grain boundary energies
becomes a second-order contribution to the segregation en-
ergy. Because a greater energetic penalty is imposed on at-
oms occupying intergranular sites as �A is increased, the de-
sire for solute atoms to segregate to the grain boundaries
diminishes, with a corresponding decrease in �Hseg 
Fig.
8�a��. However, since equilibrium requires segregated solute
to counteract the interfacial energy, more solute should be
required to effectively eliminate a higher grain boundary en-
ergy, as is indeed observed in Figs. 8�b� and 8�c� via an
upward shift of the d-X relationships and the interfacial ex-
cess with increasing �A. The segregation energy also varies
with X for various values of �A, and specifically depends on
the relative difference between �A and �B. When �A��B, a
decrease in the segregation energy is observed with increas-
ing global composition, while the opposite trend is realized

when �A
�B. For the case where �A��B, an A-rich bound-

ary is characterized by a higher energy and lower driving

force for segregation, as discussed above, leading to the ob-

served decrease in �Hseg with X. The converse case follows

the same logic, and when �A=�B, the nature of the bound-

aries no longer influences the propensity for segregation, as

illustrated by the composition-independent segregation en-

ergy in Fig. 8�a�.

E. Grain structure dimensionality

The present model does not require specification of a dis-

tinct grain shape, but the dimensionality of the grains affects

(a)

(c)(b)

FIG. 7. �Color online� Ther-

modynamic equilibrium states as a

function of the intergranular inter-

action energy for the state vari-

ables: T=1000 °C, �b=0.03 eV,

and �A=�B=0.48 J /m2. With in-

creasing intergranular interaction

energy, �a� the segregation energy

decreases, �b� the grain size trends

shift to higher global solute con-

tents, and �c� the interfacial excess

increases toward higher coverage

levels, all of which support that

higher solute contents are required

to stabilize the nanostructure as

�ig tends toward large, positive

values.
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the scaling of grain boundary volume fraction with grain size

via Eq. �8�, and thus impacts the final equilibrium state. For

the chosen set of energetic state variables, the segregation

energy is calculated to be 0.36 eV, and is independent of both

dimensionality and global composition. However, the equi-

librium grain size-global composition relationships are a

function of grain dimension, as shown in Fig. 9�a�. As D

increases, the d-X curves shift to higher global compositions

for the same solute distribution. According to Eq. �8�, for a

specified grain size and intergranular shell thickness, the in-

tergranular volume fraction exponentially increases with

grain dimension, and additional solute is therefore required

to effectively eliminate the alloy grain boundary energy at

higher f ig. However, the critical interfacial excess required

for �→0 is independent of grain dimensionality, as shown in

Fig. 9�b�, and decreases with X to reduce the probability for

energetically unfavorable solute-solute interactions in the

grain boundary.

IV. IMPLICATIONS FOR EXPERIMENTAL

NANOCRYSTALLINE ALLOYS

The present model is strictly limited to binary systems

with no competing second phases, and considers only pair-

wise first-order interactions. Accordingly, it is not intended to

directly predict behavior of specific alloy systems in a quan-

titative sense, where higher order atomic interactions and

competing phases must be considered. However, it can offer
some qualitative guidelines for understanding differences in
the behavior of various binary alloys that have been studied
extensively in the experimental literature. For example, con-
sider electrodeposited alloys of Ni-W and Ni-P, which both
exhibit the characteristic d-X trend expected for segregation-
based stabilization, as shown in Fig. 10�a� after Detor and
Schuh37 and Liu and Kirchheim,33,34 respectively. Whereas
the experimental grain size-composition data for the Ni-P
system exhibit a very limited range of accessible nanocrys-
talline grain sizes, with a rather sharp bend in the curve at
�3 at. % P, results for the Ni-W system demonstrate a
much broader range of attainable grain sizes, with a more
gradual increase in the slope as compared to Ni-P. Further-
more, atom probe tomography has demonstrated a rather
subtle segregation tendency for Ni-W alloys,38 while consid-
erable segregation has been observed in Ni-P alloys.39 Al-
though these materials are deposited using a similar nonequi-
librium approach, and experimental evidence suggests that
they are not in a formally stable thermodynamic state, there
is evidence that they are in a deep metastable condition with
a strong thermodynamic contribution to their stability.21,26

Moreover, since they are both produced by essentially simi-

lar methods, they should be in comparable states, permitting

some comparison of their very different characteristic curves

in Fig. 10�a� on the basis of alloy energetics.

Thermodynamic data, such as solution interaction ener-

gies �i.e., �b�, are readily available for binary systems;

(a)

(b) (c)

FIG. 8. �Color online� Ther-

modynamic equilibrium states as a

function of the solvent grain

boundary energy for the state vari-

ables: T=1000 °C, �b=0.03 eV,

and �ig=0 eV. With increasing

grain boundary energy, �a� the

segregation energy generally de-

creases �but depends to a large ex-

tent on the global solute content

and relative magnitudes of the

solute-solvent grain boundary en-

ergies�, �b� the grain size trends

shift to higher global solute con-

tents, and �c� the interfacial excess

increases toward higher coverage

levels. These observations indi-

cate that more solute is required to

drive higher energy grain bound-

aries to equilibrium.
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for Ni-W in particular, �b is on the order of 0.05 eV when
considering only first-order interactions, which is roughly
a sixth �i.e., 2 /z� the magnitude of the heat of mixing
��0.27 eV /atom� as determined via Miedema’s semiempir-
ical mixing model.51–53 Similarly, for Ni-P we approximate
�b�0.1 eV by scaling the heat of mixing from Miedema’s
model by 2 /z. Employing these interaction energies and as-
suming �ig��b, T=100 °C �close to the deposition tem-
perature�, and �A=�B=0.5 J /m2, we computed d-X trends
for Ni-W and Ni-P-like interactions, as illustrated in Fig.
10�b�. Whereas the d-X relationship for �b of 0.1 eV exhibits
a relatively sharp increase in grain size at a low global solute
content, as demonstrated in Fig. 10�b� and similar to the Ni-P
data in Fig. 10�a�, the 0.05 eV interaction energy trend is
shifted to higher global solute contents with a more moderate
curvature, in line with the Ni-W experimental results. The
difference between these curves is a consequence of the
higher-order terms in Eq. �24�, where solute-solute and
solute-solvent interactions in the grain boundary tend to ease
the rate at which � decreases, thus shifting the equilibrium
trends to higher global solute contents.

This example illustrates how differences in alloy energet-
ics can influence the formation and stabilization of nanocrys-
talline structures. On the one hand, we may conclude that
more pronounced atomic interactions in the bulk �i.e., a high
bulk heat of mixing� correlate with a higher grain boundary
segregation tendency, which leads to more rapid grain refine-
ment at small solute additions. On the other hand, a lower
bulk interaction energy �lower heat-of-mixing� system re-
quires more solute to achieve the same grain size, and thus
has a more gently sloping d-X curve as in Fig. 10�b�; this
may offer more precise control over grain size than would

the steeper trend found in more strongly segregating systems,

where slight compositional fluctuations lead to large devia-

tions in grain size.

V. CONCLUSIONS

Within the framework of statistical thermodynamics, we

have developed an analytical model for nanostructure stabi-

(b)

(a)

FIG. 9. �Color online� �a� Equilibrium grain size vs global com-

position as a function of grain structure dimensionality. �b� Interfa-

cial excess plotted for D=1, 2, or 3 as a function of global solute

content. The trends in �a� shift to higher global solute contents as D

increases, attributed to the concurrent increase in grain boundary

volume fraction. The interfacial excess in �b� is independent of

dimensionality, and its functional dependence on X is imparted by

the assigned state variables: T=1000 °C, �b=0.03 eV, �ig=0 eV,

�A=�B=0.48 J /m2.

(b)(a)

FIG. 10. �Color online� �a� Experimental grain size-composition data for the strongly segregating Ni-P system and the weakly segregating

Ni-W system, after Liu and Kirchheim �Ref. 33� and Detor and Schuh �Ref. 37�, respectively. A higher alloy composition promotes finer

grain sizes, regardless of the segregation tendency. �b� Grain size as a function of global composition for systems modeled after Ni-P with

�b=0.1 eV, and Ni-W with �b=0.05 eV. The Ni-W-like trend is shifted to higher global solute contents, with a more gradual increase in

grain size with decreasing composition, as compared to the Ni-P-like trend.
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lization in binary systems, extending previous models to
more general segregation behavior and alloy compositions.
The result is essentially a regular solution model for a binary
polycrystalline system, in which grain size is a state variable
and grain boundary segregation contributes strongly to the
energetics of the system. Global energetic variables are iden-
tified from the various bonds �A-A, B-B, and A-B� in grain
interiors and grain boundaries, and their influence on the
equilibrium states were investigated in a parametric study,
revealing that:

�i� In binary systems, segregation of solute to grain
boundaries leads to an equilibrium grain size at which the

system energy is minimized, as suggested by prior models.

The equilibrium grain size decreases as solute is added to the

system.

�ii� A reduced segregation energy is exhibited by systems

with a lower bulk interaction energy, higher intergranular

interaction energy, and a higher solvent grain boundary en-

ergy.

�iii� Lower segregation energies generally shift the equi-

librium grain size-composition trends upward �to higher glo-

bal compositions�, and promote a gentler decrease in grain

size with increasing global solute content.

�iv� All other things being equal, temperature acts to ran-

domize the solute distribution, generally shifting the grain

size-composition trends upward, to higher global solute con-

tents.

The model offers some insight on differences between

various experimental alloys, and also offers guidance for the

selection of alloying elements that promote nanocrystalline

structures.
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