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ABSTRACT. Many observations regarding grain growth 
in ice sheets are glaciologically interesting but imperfectly 
understood. Here we develop the theory of grain growth in 
ice th,at is not deforming rapidly, and in the succeeding 
paper we use this theory to explain observations from 
glacial ice. In the absence of significant strain energy, the 
driving force for grain growth arises from grain-boundary 
curvature. Grain growth is slowed by the interaction of 
grain boundaries with extrinsic materials (microparticles, 
bubbles, and dissolved impurities) . If the driving force for 
growth is not large enough to cause boundaries to separate 
from an extrinsic material, then the grain-boundary velocity 
is determined by the velocity characteristic of the extrinsic 
material (low-velocity regime). If the driving force is large 
enough to cause separation, then boundaries migrate more 
rapidly than the extrinsic material (high-velocity regime) but 
the net driving force is reduced through transient pinning 
by the extrinsic material. Polar ice is typically in the 
low-velocity regime relative to dissolved impurities and the 
high-velocity regime relative to microparticles and bubbles. 
Cross-sectional area of grains is predicted to increase 
linearly with time under most but not all circumstances. 

RESUME. Croissance des grains dans la glace poiaire: I. 
Theorie. De nombreuses observations sur la croissance des 
grains dans les calottes polaires sont interessantes du point 
de vue glaciologique mais pas encore totalement elucidees. 
Nous developpons ici une theorie de croissance des grains 
dans une glace it deformation faible et dans I'article suivant 
nous l'utilisons pour expliquer les observations obtenues sur 
ce type de glace. En I'absence d'energie de deformation 
notable, la cause de croissance du grain provient de sa 
courbure de surface. La croissance du grain est diminue par 
l'interaction de sa surface avec des materiaux extrinseques 
(microparticules, bulles, et impuretes dissoutes). Si la force 
majeure de croissance n'est pas suffisante pour separer la 
surface du materiel extrinseque, alors la vitesse de la limite 
du grain est determinee par la vitesse caracteristique du 
materiau extrinseque (regime de vitesse lente). Au contraire 

SYMBOLS USED AND VALUES OF CONSTANTS 

Grain-boundary impurity concentration 

Eutectic composition for impurity-ice 
system 

Ice-lattice impurity concentration 

si cette force est suffisante pour assurer la separation, alors 
les limites migrent plus rapidement que le materiau (regime 
de fortes vitesses) mais la force principale est reduite it 

cause du pincement dO au materiau extrinseque. La glace 
polaire se situe typiquement dans un regime de basse vitesse 
vis it vis des impuretes dissoutes et dans un regime de 
fortes vitesses quant aux microparticules et aux bulles. On 
arrive it la conclusion qu'une section droite de grain 
s'accrOIt lineairement en fonction du temps dans la plupart 
des situations. 

ZUSAMMENFASSUNG. Kornwachstum in polarem Eis: I. 
Theorie . Vie le Beobachtungen zum Kornwachstum in 
Eisdecken sind glaziologisch interessant, aber ungentigend 
verstanden. Hier wird die Theorie des Kornwachstums in 
Eis, das sich nicht schnell verformt, entwickelt; im n1ichsten 
Beitrag wird diese Theorie zur Erkl1irung von Beobachtungen 
des Gletschereises herangezogen. Wenn keine signifikante 
Spannungsenergie vorhanden ist, entwickelt sich die 
Triebkraft fur das Kornwachstum aus der Krummung der 
Korngrenzfl1ichen. Das Kornwachstum wird durch die 
Wechselwirkung der Korngrenzfl1ichen mit eingelagerten 
Materialien (Mikropartikel, Blasen, gelOste Verunreinigungen) 
verlangsamt. 1st die Triebkraft zum Wachstum nicht stark 
genug, urn die Trennung zwischen Grenzfl1ichen und 
eingelagertem Material zu bewirken, dann wird die 
Geschwindigkeit der Korngrenzfl1ichen durch die 
charakteristische Geschwindigkeit des eingelagerten Materials 
bestimmt (Zustand der niedrigen Geschwindigkeit). 1st die 
Triebkraft gross genug, urn Trennung zu verursachen, dann 
wandern die Grenzfl1ichen schneller als das eingelagerte 
Material (Zustand der hohen Geschwindigkeit), doch wird 
die Netto-Triebkraft durch vortibergehendes Haften am 
eingelagerten Material verringert. Polareis befindet sich 
typisch im Zustand der niedrigen Geschwindigkeit relativ zu 
gelOsten Verunreinigungen und im Zustand der hohen 
Geschwindigkeit relative zu Mikropartikeln und Blasen. Es 
Hisst sich vorhersagen, dass die Querschnittsfl1iche von 
KOrnern unter den meisten, aber nicht allen Umst1inden 
linear mit der Zeit zunimmt. 

A verage impurity concentration in bulk 

sample 

Grain-boundary diffusivity of water 
molecules in ice = 5.68 x 10-3 exp 
[~.93 x 10- 20 /(kT)] m2 S-1, where we 

have set the activation energy to two
thirds the value for lattice diffusion 

(Paterson, 1981, p. 18) 
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Diffusivity of water molecules across 
grain boundaries in ice 

Value of Dv at pore close-off 

Ice-lattice diffusivity of water molecules 
= 5.68 10-3 exp[-1.04 x 1O- 19/(kT)] m2 s-1 

(Hobbs, 1974, p. 383) 

Ice-air surface diffusivity of water mole
cules, assumed equal to Db 

Diffusivity of water molecules in air 
8.79 x 1O- 10T1.81 m2 S-1 (Smithsonian 

Institution, 1958, p. 395) 

Drag force from one bubble 

Drag force from one particle 

Maximum drag force from one particle 

Number of extrinsic materials present 

Boltzmann's constant = 1.38 x 10-23 J K-} 

Grain-boundary partition coefficient 

Constants for grain-growth rate 

Exponent in power-law grain-growth 
relation 

Water-molecule mass 2.99 x 10-26 kg 

Inverse of: general grain-boundary drag; 
bubble drag; extrinsic grain-boundary 
drag; intrinsic grain-boundary drag 

Areal density of particles on grain 
boundary 

Number of bubbles on each grain 
boundary 

P, PI' P2, Ps' p. Driving force for grain-boundary migra
tion under different conditions 

, 

'c 

'p 

R 

specified in text 

Equilibrium vapor pressure over planar 

ice surface: log10PO = 2-9.09718 
«To/n - I) - 3.5665410g10 (To/T) + 
0.876793(1 - (T/To» + log106.1071 
where To = 273.16 K and Po is in 
N m- 2 (Smithsonian Institution, 1958, 
p. 350) 

Drag force from: bubbles; microparticles; 
impurities 

Bubble radius 

Bubble radius at pore close-off 

Microparticle radius 

Average grain radius 

Value of R at time = 0 

Radius of grain that is neither growing 
nor shrinking 

Radius of jth grain in a sample 

R m, R/n, R~, R~ Limiting size for grain growth in 
presence of: all extrinsic materials; 
jth extrinsic material; bubbles, 
micro particles 
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Radius of curvature of grain-boundary 

section 

Time 

Absolute temperature 

Impurity-boundary interaction energy 

Grain- boundary velocity 

Maximum steady-state bubble velocity 

Microparticle volume fraction 

Impurity / grain-boundary interaction 
parameter 

Contact angle of boundary encircling 
particle 

Correction factor for microparticle drag 

Ice grain-boundary energy = 

0.065 J m-2 (Hobbs, 1974, p. 440) 

Ice/extrinsic material surface energy 

Ice--air surface energy = 0.109 J m- 2 

(Hobbs, 1974, p. 440) 

Average diffusion distance across a bubble 

Thickness of ice surface; also, t grain
boundary thickness = 4.5 x 10-10 m 
(estimated as I Burger's vector; Hobbs, 
1974, p. 22) 

Microparticle/ grain-boundary contact angle 
(Fig. I) 

Density of ice 
p. 348-50) 

920 kg m-3 (Hobbs, 1974, 

Density of water molecules in vapor 

Equilibrium dihedral angle at bubble/ 
grain-boundary intersection 

Angles between plane continuing grain 
boundary across bubble and leading, 
trailing edges of bubble 

Molecular volume of water in ice 
2.99 x 10-26 kg 

Grain-size in glacial ice is of interest because it 
controls many physical properties of ice and because it may 
record the age and past history of ice. As yet, however, we 
do not have a clear understanding of grain growth in 
glacial ice and some observations remain enigmatic. Here we 
review relevant theories for grain growth in dry, isothermal 
fim and glacial ice above the depth where significant flow 
deformation occurs and strong c-axis textures develop 
(roughly 10- 1000 m depth in central Greenland or 
Antarctica); in the succeeding paper (Alley and others, 1986; 
hereafter referred to as paper Il) we use the theories 
developed here to explain some observations regarding grain 
growth in natural glacial ice and to identify where further 
data are needed . We do not consider the more difficult 
problem of grain growth in deforming ice, which has been 
addressed by Duval (1984) and Duval and Lliboutry (1985), 
among others . We also do not consider grain growth in low
density firn in the presence of strong temperature gradients, 
which has been considered by Col beck (1982), among others . 
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In the depth region considered here, grain growth is driven 
only by grain-boundary curvature. Drag forces opposing 

grain growth in this region are caused only by inert 
second-phase particles (microparticles), bubbles, dissolved 
impurities, and the intrinsic drag of grain boundaries. 

Many of the theories describing grain growth have 

been developed for metallurgical systems. There certainly are 
many atomistic differences between ice and metals; however, 
phenomenologic similarities are compelling, including 
Arrhenius-type temperature dependence of diffusivities, en
hanced diffusion along grain boundaries, and segregation of 
dissolved impurities to grain boundaries. Also, theories for 
grain growth in metals have found wide application in the 

study of ceramics, which also show atomistic differences 
but phenomenologic similarities to metals. Thus, although it 
is incumbent upon us to exercise caution, we feel justified 
in applying to ice theories for grain growth in metals. 

We follow the metallurgical convention of referring to 

crystals as grains. The two terms are essentially synonymous 
in the depth region considered here, although geometrically 

distinct units composed of two or more crystals each have 
been reported from shallow fim and have been termed 
grains (Gow, 1969). 

We consider here the case of cold ice only. At temper
atures above about -10 ·C, liquid and pseudo-liquid layers 
appear in natural ice and the behavior of the system 

changes. Grain growth in wet snow has been discussed by 
Colbeck (1979). 

INTRINSIC GRAIN GROWTH 

The general relation describing grain-boundary velocity, 

v, can be written as 

v = MP (I) 

where M is the grain-boundary mobility and P is the 
driving force for grain-boundary migration (Higgins, 1974). 

The "driving force" actually has units of pressure and arises 
from a gradient in free energy, but we follow conventional 

usage in referring to it as force. The inverse of the 
mobility is the drag on grain-boundary migration. In the 

case where there are no extrinsic drag forces (no micro

particles, bubbles, or dissolved impurities in the material), 

M = Mi' the intrinsic grain-boundary mobility, and the 
driving force for migration of an isotropic, spherically 

curved section of grain boundary with radius of curvature 
R' is given by 

21 
P =-

1 R' 
(2) 

where 1 is the grain-boundary energy or surface tension. 
(We use the letter P to denote a driving force for grain 
growth. The numerical subscripts 1, 2, etc. identify the 
driving force for different conditions, e.g. with or without 
bubbles, with or without microparticles.) The value of the 
surface tension between adjacent grains, 1, does not depend 
on the relative orientation of the grains for most orient
ations, although it is reduced significantly if there is very 
low mismatch between lattices of adjacent grains or if 
adjacent grains are in certain restricted orientations with 
high densities of coincidence sites (Verhoeven, 1975, p. 

208-09). We assume here that 1 is the same for all surfaces 
in a sample, which is a good approximation in the absence 
of strong deformational fabrics (Colbeck, 1982). 

Grains in fully consolidated, single-phase systems 
cannot be spherical, so Equation (2) must be modified to 

account for the actual geometry of materials. Many attempts 

have been made to do this, using both analytical (Hillert, 
1965; Louat, 1974; Mullins, 1986) and numerical (Anderson 
and others, 1984, 1985; Srolovitz and others, 1984) 

techniques. Analytical techniques suffer from the necessity 
of oversimplifying the complex geometry of real materials; 

however, analytical models supply clear, easily interpretable 

results and allow further calculation. Numerical models offer 
the possibility of eventually modeling the true complexity 
of grain growth. Thus far, however, numerical models have 

been limited to two-dimensional or simplified three-
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dimensional systems and the results are not fully independ

ent of the numerical scheme used. Also, numerical models 
do not yield analytical equations that can be used in further 
calculations. 

We will study grain growth using the analytical model 

developed by Hillert (1965). Empirical, numerical, and 
analytical studies conducted since 1965 have shown that this 
model does not provide an exact description of grain 
growth (see Anderson and others, 1984; Srolovitz and others, 

1984), but that it does provide an excellent first approxim
ation. The reader should remember, however, that the 
theory of grain growth is not complete and that some of 
our conclusions may require refinement in the light of 
future advances. 

The Hillert model is based on the observation that 
average grain-size in a material increases because small 
grains shrink and disappear while large grains grow. This 
implies that at any instant there must be some critical grain 

radius, R cr' such that all grains with longer radii are 
growing and all grains with shorter radii are shrinking. The 

length of this critical radius increases with time as the 

average grain-size increases. (The numerical experiments of 
Srolovitz and others (1984) confirm this in general but 

indicate that there is some random noise in the growth of 
large grains.) The simplest relation that gives growth of 

grains wit~ radius R j > Rcr and shrinkage of grains with 

R j < Rcr IS 

dR j = K' r~ __ 1_] 
dt l.R J Rcr 

(3) 

where t is time and K' is a constant; Hillert (1965) based 
his model on this relation. 

Observations of grain growth generally show that, after 

a short transient period, the grain-size distribution of a 
sample normalized by the mean grain-size of that sample 

does not vary with time. By using Equation (3) and requir

ing that the normalized grain-size distribution be steady, 
Hillert was able to derive the grain-growth law and steady

state grain-size distribution in terms of the critical radius. 

He was also able to express the critical radius in terms of 

the average radius, R. Using these results, the intrInSIc 
driving force for grain growth in Equation (2) can be 

rewritten as 

161 
P =-

1 81R 
{4} 

Hillert also noted that if Equation {I} is applied to bulk 

material, the velocity can be rewritten as 

dR 
(5) )I =--

dt 

Combining Equations {I} (with M ~ Mi)' (4), and (5), 

Hillert found that 

where 

dR 

dt 

K 

2R 

K = 2 P6]1M .. 
L81 1 

Equation (6) can be solved for R to obtain 

{6} 

{7} 

(8) 

where Ro is the average grain radius at t = O. A grain
growth equation of this form but with a different value of 
K was derived by Smith (1948) and was applied to glacial 

ice first by Gow (1969) and Stephenson {1967}. 
Virtually all theoretical and experimental treatments of 

grain growth conclude that grain-size distributions 
normalized by their means rapidly approach a steady state, 

and that in this steady state the growth law is at least 

approximated by the form 

(9) 

where K' and m are constants (Anderson and others, 1984; 
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Srolovitz and others, 1984). Values reported for m typically 
range from 2 to 3. Because the data for glacial ice are 
most consistent with m = 2 (Gow and Williamson 1976' 
Duval and Lorius, 1980) and because of the th~oreticai 
justification for m = 2, we will use Equation (8) to 
describe grain growth and will follow previous workers in 
assuming that deviations from m = 2 arise only from 
extrinsic effects (Grey and Higgins, 1973). The derivation 
of Equations (7) and (8) involved a number of 
assumptions and approximations; thus, the constant (16/ 81) is 
likely to be somewhat inaccurate. We will use (16/ 81) here 
but (1 / 5) is sufficiently accurate for most purposes. 

The intrinsic mobility, Mi, is often expressed 
(Verhoeven, 1975, p. 209) 

(10) 

where Db is the diffusivity of water molecules across grain 
boundaries and shows an Arrhenius-type temperature 
dependence, 2Ss is the jump length of diffusing molecules 
( ... grain-boundary thickness), n is the molecular volume, k 

is Boltzmann's constant, and T is absolute temperature. The 
diffusivity of water molecules across grain boundaries is 
often identified with the diffusivity along grain boundaries. 
We discuss the validity of this identification in the 
succeeding paper. 

EXTRINSIC EFFECTS ON GRAIN GROWTH 

If all ice were pure and fully densified, then Equation 
(8) would provide a complete description of steady-state 
grain growth driven by grain-boundary curvature. This is 
not the case, however, and we must consider the effects of 
extrinsic materials (microparticles, bubbles and dissolved 
impurities) on grain growth. To do this: we will first 
present a general discussion of extrinsic effects and then 
consider microparticles, bubbles, and dissolved idtpurities in 
turn, following the approach of Higgins (1974). 

Extrinsic materials can interact with grain boundaries. 
In almost all cases the interaction energy causes the 
extrinsic materials to be concentrated on the boundaries 
either by diffusion to boundaries or by interaction with 
migrating boundaries. Microparticles and bubbles replace 
boundary area, whereas impurities dissolve in boundaries. 

The effect of extrinsic materials on the migration rate 
of grain boundaries is determined by the relative magnitudes 
of the intrinsic driving force for boundary migration and 
the force required to separate boundaries from extrinsic 
m~terials . If the intrinsic driving force exceeds the separ
atIOn force, then boundaries will migrate away from 
extrinsic materials ("high-velocity regime"); after separation 
the net driving force will be reduced slightly from it~ 
intrinsic value by further encounter with and separation 
from extrinsic materials (Higgins, 1974). If the intrinsic 
driving force is not sufficient to cause separation then 
boundaries . remain wi.th the extrinsic materials and ~igrate 
at a. veloclt~ determIned by the extrinsic materials ("Iow
velOCity regime"). Depending on the mobility of extrinsic 
~aterials, bounda~ies in the low-velocity regime may be 
fIXed or may migrate rapidly; however, the transition to 
the high-velocity regime always increases migration rates. 
. In the high-velocity regime, the intrinsic driving force 
IS reduced to the separation force from some extrinsic 
m~terial, j, when the grain-size reaches the limiting size 
Rin. During grain growth toward this limiting size, the net 
driving force is given by 

16)' (.!.._ ~I ] 

81 LR . Rrh 
(I I) 

where 1~')' / (8IR) is the intrinsic driving force and 
16), / (8IRin) is the separation force. Most evidence indicates 
tha~ if seve~al extrinsic materials are present in a sample, 
their separation forces are additive (Higgins, 1974). In the 
presence of i different extrinsic materials, Equation (1 I) 
becomes 

418 

i I 
I:
j=I~' 

(12) 

Then, substituting Equation (12) into the general migration 
relation, Equation (I), we find 

dR 

dl 
(13) 

where K is again defined by Equation (7) and dR/ dl by 
Equation (5). The solution of this differential equation is 

where Ro is the value of R at 1 = O. 

K 
-I 
2 

(14) 

Equation (14) is the general description of grain growth 
influenced by extrinsic materials, just as Equation (8) is 
the general description of intrinsic grain growth. In many 
cases, R » Ro' Then if Rm » R (little extrinsic drag) or 
if Rm is proportional to R (which might occur if the 
volume fraction of some extrinsic material decreases as 
grains grow), extrinsic grain growth will mimic intrinsic 
growth in that grain area will increase linearly with time' 
however, grain growth will be slower than for intrinsi~ 
growth if Rm is significant but proportional to R. If 
extrinsic materials are present, R is of the same . m 
magnItude .as R, and Rm does not vary directly with R, 
then Equation (14) shows that linear increase of grain area 
with time will not occur. 

The drag forces discussed above are independent of 
grain-boundary velocity; however, some drag forces are 
directly proportional to velocity (Grey and Higgins, 1973). 
If the driving force, P, in Equation (I) is reduced by a 
drag force proportional to velocity, v, then Equation (I) 
becomes 

(15) 

where M-r/ is defined as the velocity-independent coefficient 
of the velocity-dependent drag force M - lv. Then algebraic 
manipulation of Equation (15) shows that e 

P 
(16) 

We thus see that M-r/ is the extrinsic grain-boundary drag 
just at M;l is the intrinsic grain-boundary drag. Velocity
dependent drag forces thus can be said to reduce boundary 
mobility. Then Equation (14) again applies, if we replace 

Mi in Equation (7) by (M;l + ME/r l
. 

Microparlicie drag 
The effect on grain growth of inert micro particles with 

incoherent interfaces was first quantified by Zener (in 

Smith, 1948) for metallic systems. Zener's theory has been 
considered further by Ashby and others (1969), Hellman and 
Hillert (1975), and Nes and others (1985). We will present 
Zener's derivation and then summarize improvements to it. 

. .Microparticles are assumed to be spherical, uniformly 
dlstnbuted, of only one size which is small compared to 
grains, and to have zero mobility (Ashby and Centamore, 
1968). If surface energy is independent of orientation of a 
surface, then the surface-tension balance at a triple junction 
(the intersection of three surfaces in a line) reduces to a 
balance of force vectors directed along the surfaces perpen
dicular to the line of intersection, with magnitudes equal to 
the surface tensions of the respective surfaces (Fig. I; see 
Verhoeven (1975, chapter 7.2) for a more complete 
development). For a particle of material B resting on a 
boundary between two grains of A, the particle-grain 
surface tensions cause equal and opposite forces (Fig. I). 
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Fig. I. Force balance in microparticie drag. A spherical 
particle of material B rests on a moving boundary between 

two grains of A; the boundary is symmetric about the axis 
shown (dashed line) and moving in the direction indicated. 

Surface energies 1 AA and 1 AB act as forces along 
interfaces in the directions indicated. 

The force of the boundary on the particle. and thus of the 
particle on the boundary. Fp. then arises wholly from the 

AA surface tension. 1 AA or simply 1. Fp depends on the 
angle e shown in Figure I. according to 

Fp = 2nr p),cos e sin e (17) 

where r p is the particle radius. FP' is maximized for e 
n/4. at which it has the value Fp given by 

(18) 

All particles with centers within r p of a boundary on 
either side will be contacted by the boundary. If the 

particles are widely spaced (spacing greater than a few 
particle diameters). the boundary can bend so that each 
particle exerts its maximum force. If particles occupy 
volume fraction V p of the material and the number of 

particles in contact with unit area of boundary is 

denoted np. then 

Vp 
-- (2rp ). 
4.nr s 
3 p 

(19) 

The total drag force caused by microparticles per unit 
area of grain boundary. Pp. is the product of the number 

of particles per unit area. np. and the drag force per 

particle. Fp. or 

(20) 

The driving force for grain growth in the presence of 

micro particles only. P {' is the intrinsic driving force. PI in 
Equation (4). reduced by the microparticle drag force. Pp. 

Thus 

P = 16n~_243 VP). 
.. 81 l.R 32 r p 

(21) 

If p.. is greater than zero. then grain boundaries can 
separate from micro particles and grain growth occurs in the 
high-velocity regime shown in Figure 2a. When p.. falls to 

zero. grain boundaries cannot escape from microparticles and 

Alley and others: Grain growth in polar ice 

grain growth ceases for inert microparticles (low-velocity 
regime; Fig. 2a). 

We can define R~ to be the grain radius at which the 
intrinsic driving force equals the microparticle drag force. 
Equation (21) then can be rewritten as 

P = 161 r~_~J. RP == ~ rp . (22) 
.. 81 lR p' m 243 V RKi p 

Equation (18) can be altered to allow for particle type 
and for enhanced bending of boundaries. The study of 

Ashby and others (1969) indicates that Fp should be multi
plied by the factor (I + cos (X') where (x' is the contact 

angle between grain boundary and microparticle (taken to be 

n/2 in Zener's derivation). This contact angle depends on 
the type of microparticle and the relative orientation of the 

particle and grains. and varies between 0 and n/2. For 

widely spaced particles. Hellman and Hillert (1975) showed 

that a moving boundary will bend to remain in contact 

with more particles than assumed by Zener. To allow for 

this. they proposed that the value of np be multiplied by 
the factor B. which is given approximately by 

[
40R'] 

B = 0.1251n -;; (23) 

where R' is again the radius of curvature of the section of 
boundary under consideration. The factor B will vary 

between I and 2 in most cases. 

The drag effect of particles is probably overestimated 

by these calculations. however. as discussed by Hellman and 
Hillert (1975). First. some particles may exert less than their 

maximum effect. Also, a moving boundary will experience 
an added driving force (negative drag force) upon first 

encountering a particle. In the light of these factors and the 
uncertainty involved in the constants in Pp, we follow 
Hellman and Hillert (1975) in taking 

(24) 

and taking B to be identically I. Then the ratio of the 
particle drag force to the intrinsic driving force is 

(25) 

The constant 4/9 in Equations (24) and (25) is 

probably somewhat inaccurate. but it is unlikely to 
underestimate particle drag. We can also be confident that 

micro particle drag is directly proportional to the volume 
fraction of particles and inversely proportional to the 

particle radius. If particles of different radii are present. 
then the total particle-drag force is the integral of Equation 
(24) over all particles in the sample. 

Finally. Hellman and Hillert (1975) pointed out that, if 
the volume fraction of microparticles is near or above 10%, 
many particles will fall on triple junctions where they exert 
less drag force on grain-boundary migration. The factor B 
is thus significantly less than I at large particle 

concentrations. although its exact value has not been 
calculated. 

Bubble drag 

Bubbles that are small compared to the grain-size cause 

drag in the same way as micro particles , except that bubbles 

are mobile in the low-velocity regime. Continuous porosity 

and large bubbles cannot separate from boundaries to grain 

interiors, but can cause drag through the action of thermal 
grooves and intergranular necks. 

We first consider bubble-boundary separation. which is 
the transition from low-velocity to high-velocity migration 

relative to bubbles. If the chemical potential of material in 

contact with a bubble varies across the bubble (owing to 
different curvatures on opposite sides of the bubble, 
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Fig. 2. Relation between intrillsic grain-boundary velocity and velocity in the presence of extr illsic 

materials in ice. Solid lines indicate behavior likely to occur in natural systems; dashed lilies 

indicate behavior unlikely in Nature but theoretically possible; dotted lines indicate ullstable 

behavior; and dot-dash lines show intrlllslC behavior. (a) Behavior ill the presellce of 

micropartic/es only. ( b) Behavior in the presence of low-mobility porosity (bubbles in ice) ollly. (c) 

Behavior in the presence of high- mobility porosity (small necks and thermal grooves ill firn) ollly. 
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impurities only. 

imposed temperature gradients, or other factors) , then 
material will diffuse across the bubble and the bubble will 
migrate. Diffusion may occur through the bubble (vapor 
diffusion, with diffusivity Dv)' along the bubble surface 
(surface diffusion, D~), or through the material around the 
bubble (lattice diffusIOn, D R)' The relative rates of vapor : 

surface : lattice diffusion are given approximately by 
(Shewmon, 1964) 

!3L& . ~. 
2 

. . DJ 
Pi r 

(26) 

where Pv and Pi are the densities of water molecules in the 
v~por ~nd . ic~ lattice, respectively, 5s is the thickness of the 
high-diffuSIVity surface layer, and r is the bubble radius. 
(More precisely, I' is the radius of the sphere with volume 
equal to the volume of the bubble in question. Bubbles in 
ice are sufficiently spherical that this distinction is not 
significant.) If we take a sample from Byrd Station, 
Antarctica, with a temperature of -28°C and pore radius of 
about 0.3 mm (Gow, 1968) as a typical example, and we use 
the values of physical parameters listed at the beginning of 
this paper, then the ratio in statement (26) becomes 
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10-12 : 10-17 : 10 -16 (27) 

and it is evident that we need worry only about vapor 
diffusion for the ice-air system. (Compression of bubbles 
with depth will decrease Dv and " thus decreasing the 
vapor-diffusion term and increasing the surface-diffusion 
term in statement (27); however, the two terms would 
become equal only if bubbles were subjected to a pressure 
equivalent to an overburden of more than 50 km of ice and 
if no air dissolved in the ice lattice.) 

Separation of a bubble migrating primarily by vapor 
diffusion from a boundary between two grains has been 
considered in some detail by Hsueh and Evans (1983). 
Where a grain boundary intersects a bubble, motion of the 
boundary causes the bubble to change shape so that the 
radius of curvature is longer for the leading edge than for 
the trailing edge (Fig. 3). The equilibrium vapor pressure 
varies directly with the radius of curvature, so a flux of 
molecules is established from the leading to the trailing 
edge, causing the bubble to move in the same direction as 
the boundary. Hsueh and Evans (1983) then calculated the 
maximum steady-state velocity of the bubble, v~, assuming 
that it remains nearly spherical and that the mean free path 
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Fig. 3. Geometry used in model of bubble drag. after Hsueh 
and others (1982). Bubble and boundary are symmetric 
about the axis shown (dashed line) and moving in the 

direction indicated. The equilibrium dihedral angle is 

1/1{ = eIIt + ell R} and I/It = Tl/2 to maximize bubble velocity. 
Vapor pressure across the bubble is shown schematically, 

and Po is the equilibrium vapor pressure over a planar 
surface. Bubbles in ice are more nearly spherical than 
shown here. 

of diffusing molecules is long compared to the bubble 
dimension; a boundary moving faster than v~ will separate 
from an associated bubble. 

Bubbles in ice are sufficiently spherical for this 
analysis, but the mean free path of water molecules 
diffusing through air at atmospheric pressure is about 
10-7 m (Hobbs and Mason, 1964), whereas bubble radii 
typically exceed 10-4 m. We thus must modify the expression 
of Hsueh and Evans (1983) to allow for diffusion of water 
molecules through air. The resulting expression for vir then 
is 

Alley and others: Grain growth in polar ice 

moving at v~ has an altitude of 1.06r.) The equilibrium di
hedral angle of a bubble in ice is about ell - 0.8n. 

Substituting these values into Equation (28) and simplifying 
yields 

O. 128m' rrtsPc{Jcr 
(kT)2 Pi'cs (29) 

with the restriction that rc = r above pore close-off. Thus 
m 2 ' 

Vb .. Ilr for pores at atmospheric pressure, but vir" r 
for closed bubbles undergoing compression. 

In the high-velocity regime, the effect of bubbles is 
entirely analogous to the effect of microparticles. If the 
bubbles are randomly distributed, then the equations derived 
for the effect of micro particles in the high-velocity regime 
also describe the effect of bubbles. 

The analysis of bubble-boundary separation presented 
above does not yield the bubble drag in low-velocity 
migration easily, so we use the older, phenomenological 
approximation, which has been discussed by Shewmon 
(1964), Kingery and Francois (1965), Nichols (1966, 1968), 
and Brook (1969), among others. Using the analysis of 
Shewmon (1964), the bubble-drag force in the low-velocity 
regime, Pb , is 

(30) 

where Nb is the number of bubbles per grain boundary 
2nR

2 
is the area per grain boundary (the other 2TlR2 of ~ 

spherical grain is allocated to adjacent grains), and F
b

, the 
drag force per bubble, is given by 

]

-1 

+ D, . (31) 

The. vapor-diffusion term is dominant in Equation (31). 
NotIce that the grain-boundary and bubble velocities are 
equal in the low-velocity regime, and that the bubble-drag 
force is velocity-dependent. For bubbles below the firn-ice 
transition! Dv varies with r3 and Fb is independent of 
bubble size; however, if D is constant then Fb varies 

. h 3 v' 
Wit r and small bubbles cause little drag. 

We can use Equation (31) to rewrite Equation (30) as 

Pb = Mi/ v (32) 

where M b, the bubble mobility, is given by 

[
Ex f2 ~ ]-1 

2 
+ + D, . 

Pi r 
(33) 

.!!.s:.. [2Tlm']t [r]3 [p f[2 [2rrt] ) 
tu IT ;; -:: j nkT ~ (0. I 3e11

2 
- O.85e11 + 1.4) (28) 

where Dc is the diffusivity of water molecules in air at 
pore close-off, !lx is the characteristic diffusion distance, 
m' and n are the mass and volume of a water molecule, k 

is Boltzmann's constant and T is absolute temperature, r is 
bubble radius and r c is its value at pore close-off, Po is 
equilibrium vapor pressure over a planar ice surface, Pi is 
the density of ice, 1~ is the ice-air surface tension, and 1/1 

is the equilibrium dihedral angle where a grain boundary 
and bubble intersect. The expression in curly brackets is the 
original relation advanced by Hsueh and Evans (1983) and 
allows for the pressure difference arising from curvature 
difference across the bubble. The additional terms correct 
for the effect of air on diffusion and for the variation of 
diffusivity caused by compression of bubbles below the 
firn-ice transition; r c should be set equal to r when air 
pressure is atmospheric. The diffusion distance, !lx, is on 
the order of r. (A cylindrical pore with volume and base 
equal to the volume and maximum cross-section of a pore 

The general behavior of bubble drag is plotted in 
Figure 2b and c. The slope of the low-velocity regime in 
these figures is Mi1/(Mi1 + Mi/) (see Equation (15». When 
Mb = 0, bubbles do not migrate and the slope is zero; this 
is the case for microparticles. If Ml) is small (Fig. 2b), then 
the low-velocity regime will exhibit little grain growth; 
however, if Mb is large (Fig. 2c), then low-velocity 
migration may approach the intrinsic case. In paper II 
(Alley and others, 1986), we show that Figure 2b applies to 
bubbles in ice and that Figure 2c applies to thermal grooves 
and small necks in firn . Remember that, in all cases, 
transitIOn from low-velocity to high-velocity boundary 
migration (which occurs off -scale in Figure 2c) involves an 
increase in boundary velocity. 

Figure 2b and c are shown double-valued for some 
velocities because a boundary in the low-velocity regime 
collects bubbles as it migrates. Thus, a driving force large 
enough to cause high-velocity migration through uniformly 
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distributed bubbles may be unable to cause separation from 
the extra bubbles accumulated during low-velocity migration. 

Impurity drag 

Dissolved impurIties are the most important cause of 
extrinsic drag forces in many materials. Even a few parts 
per million of some solutes will reduce grain-boundary 
mobilities by orders of magnitude (Aust and Rutter, 1959; 
Rutter and Aust, 1960). 

An impurity atom introduced into a regular lattice will 
cause strain in the lattice because of misfit in size and/or 
charge. A grain boundary is disordered relative to a lattice, 
so an impurity atom causes less strain in a grain boundary 
than in a regular lattice. There is thus an interaction 
energy, U, between an impurity atom and a grain boundary 
that causes the impurity to segregate to the grain boundary. 
For dilute systems such as glacial ice, the concentration of 
impurities in the boundary, Cb' is related to the concen
tration in the lattice, Cl' by 

Cb = C .exp rtil (34) 

where U is positive for attraction between boundaries and 
impurities, and may be on the order of IOkT for strong 
interactions (Westengen and Ryum, 1978). (A boundary can 
be viewed crudely as a region transitional between liquid 
and solid. The limiting case of grain-boundary segregation 
then is seen to be the commonly observed phenomenon of 
solute segregation to a melt during solidification.) 

For a grain boundary to migrate, it must either escape 
its associated impurity atmosphere by moving faster than the 
impurities can diffuse (high-velocity regime in Figure 2d) 
or it must drag the impurities along (Jow-velocity regime; 
Fig. 2d). The plot of actual versus intrinsic velocity for 
impurity drag is double-valued within a narrow range (Fig. 
2d; Cahn, 1962), for the same reason that the bubble-drag 
plot is double-valued (see above). The transition velocity for 
escape from impurities has not been calculated exactly, but 
the value estimated by Cahn (1962) is several orders of 
magnitude faster than that observed in glacial ice or in 
most metallurgical experiments. We thus follow Higgins 
(1974) and Grey and Higgins (1973) in assuming that, 

during normal grain growth, the low-velocity regime 
obtains. The impurity drag force, Ps' then is estimated as 
(Cahn, 1962) 

(35) 

where Cl is the concentration of impurities in the bulk 
lattice, v is the grain-boundary velocity, and a is an inter
action parameter between a grain boundary and impurities 
which depends on the concentration and diffusivity profiles 
of impurities in the immediate vicinity of the boundary. 
This parameter can be evaluated experimentally even though 
it cannot be calculated a priori at present. 

Because Ps is velocity-dependent, its effect is to reduce 
the grain-boundary mobility or increase the grain-boundary 
drag. Just as we did in Equation (16), we can use Equation 
(35) to rewrite Equation (I) as 

p 
v (36) 

where Mi is the intrinsic grain-boundary mobility. The term 
aC I is thus the extrinsic drag of Equation (l6). 

The value of Cl is constant in some systems, but may 
increase with grain growth under certain restricted circum
stances. The variation of Cl can be discussed most easily in 
terms of the grain-boundary partition coefficient, ko, which 
we define as 

ko = ~[= exp ~~] 1 (37) 

where Cl:) is the impurity concentration in the boundary. 
The partition coefficient in solid-liquid systems may be 
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concentration-dependent or 
depending on the system and 
considered (Gross and others, 
grain-boundary system for ice, 
consider ko to be a constant. 

concentration-independent, 
the range of concentrations 
1975[aJ, [b]); in the lattice/ 
it is sufficiently accurate to 

The total concentration of solute, CT' is fixed in a 
sample that is large relative to grain-size. We now make a 
first-order estimate of the distribution of this solute in the 
sample. Consider a spherical grain or "unit cell" of radius R 

and impurity concentration CT in such a sample. This grain 
is divided into a lattice region with impurity concentration 

C. and a surface boundary layer of thickness Ss' volume 
4nR2ss' and impurity concentration Cb. Conservation of 
mass requires that 

or, substituting for Cb from Equation (37) and re-arranging, 

3S 
=-::s-<~ - I) + 

R 

(39) 

We must now consider two cases. In the first, the surface 
layer is not saturated with solute and its thickness, Ss' is 
fixed by the intrinsic nature of ice. In the second case, the 
surface layer is saturated with solute and Ss increases as 

grains grow. (We follow Chaterjee and Jellinek (1971) in 
assuming that the surface layer is saturated when its 
composition, Cb' equals the eutectic composition for the 
water-impurity system, CC.) 

For Ss fixed, Equation (39) shows that Cl is nearly 
equal to CT and independent of R if ko is not extremely 
large. This case probably applies to most natural glacial ice 
relative to most impurities. For Ss constant and ko » I, 
C I varies directly with R and is less than CT. 

If the boundary composition equals the eutectic compo
sition, then Equation (37) gives 

(40) 

Substituting this for Cl in Equation (39) and solving for Ss 
as a function of grain radius then leads to 

(41) 

and the grain-boundary thickness is directly proportional to 
grain radius. (This idea was advanced first for ice by 
Chaterjee and Jellinek (1971}.) This sort of behavior is 
likely only for highly impure materials, such as first-year 
sea ice. 

For some systems, it has been suggested that vacancies 
supply an additional drag force analogous to the impurity 
drag force (Gleiter, 1979; Estrin and Liicke, 1981; Liicke 
and Gottstein, 1981). Calculations made following these 
authors indicate that vacancy drag should not have a 
significant effect on the slow, high-temperature migration of 
boundaries in ice, but uncertainties in the theories and in 
our knowledge of some physical quantities are large enough 
that significant vacancy drag is possible. If present, vacancy 
drag would reduce boundary mobility but not cause 
deviation from linear dependence of grain area on time. 

DISCUSSION AND CONCLUSIONS 

We have reviewed how microparticles, bubbles, and 

dissolved impurities can cause drag on grain growth in both 
high-velocity and low-velocity regimes and have considered 
both velocity-dependent and velocity-independent drag 
forces. Grain growth driven by boundary curvature in 
natural glacial ice typically occurs in the high-velocity 
regime relative to bubbles, the high-velocity regime relative 
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to microparticles (see paper H), and the low-velocity regime 
relative to dissolved impurities. The transition from high
velocity migration to low-velocity migration occurs when the 
driving force for high-velocity grain growth is reduced to 
zero at grain radii R~ for micro particles and R~ for 

bubbles. Impurity drag in the low-velocity regime is 
proportional to grain-boundary velocity, so impurities reduce 
the grain-boundary mobility. 

Taking these together, grain growth in ice is described 
by 

where 

dR 

dt 

161 P .. _...!..) 
81 l.R ~ 

M(l + aC. 

(42) 

(43) 

The value of R~ is given by Equations (21) and (22), and 
R~ is also given by Equations (21) and (22) in the high
velocity regime. 

A number of observations should be made regarding 
Equation (42). The terms I/Rm and aC, are identically zero 
in pure, fully densified ice, and Equation (42) then predicts 
linear increase with time of the cross-sectional area of 
grains. This is also predicted if impurities are present but 
C. is independent of R, and if Rm is proportional to R. 
Deviation from linear increase of grain area with time 
occurs if C J depends on Rand aC J is significant or if Rm 
is not linearly dependent on Rand I/R m is significant. 

Finally, we should re-emphasize that our analysis is 
restricted to cold ice. If the temperature of the 
ice-impurity system rises above the melting point of the 
impure grain boundaries, then liquid will form along the 
boundaries. This will increase diffusivities and allow Ostwald 
ripening of grains to occur through the liquid matrix 
(Fischmeister and Grimvall, 1973). Under such conditions, 
an increase in impurity content will increase the amount of 
liquid present and increase the rate of grain growth; thus, 
Equation (42) will not apply in high-temperature, impure 
systems. 

Although most of the theories presented here are still 
under active development, the general ideas seem well 
established. We are now in a position to assess qualitatively, 
and often quantitatively, how different factors affect rates 
of grain growth in natural glacial ice. We do so in the 
following paper. 
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