
Grain of Salt — An Automated Way to Test

Stream Ciphers through SAT Solvers

Mate Soos

UPMC LIP6, PLANETE team INRIA, SALSA team INRIA

Abstract. In this paper we describe Grain of Salt, a tool developed
to automatically test stream ciphers against standard SAT solver-based
attacks. The tool takes as input a set of configuration options and the
definition of each filter and feedback function of the stream cipher. It
outputs a problem in the language of SAT solvers describing the cipher.
The tool can automatically generate SAT problem instances for Crypto-1,
HiTag2, Grain, Bivium-B and Trivium. In addition, through a simple
text-based interface it can be extended to generate problems for any
stream cipher that employs shift registers, feedback and filter functions
to carry out its work.

1 Introduction

SAT solvers have recently been enjoying a boom in the area of cryptanalysis. It
has been shown in multiple papers [1,2,3] that SAT solvers are indeed a viable
technique in algebraic cryptanalysis to both analyse and potentially break stream
or block ciphers. SAT solvers work with problems described in Conjunctive
Normal Form (CNF), but obtaining such a problem description is non-trivial.
Essentially all works that aimed to analyse a cipher through SAT solvers have
developed a way to convert descriptions of ciphers to their CNF form.

In this paper we present Grain of Salt (GoS), a tool that generates optimised
CNFs given the description of a stream cipher. It is aimed to be flexible and easy
to use, helping the cryptanalyst obtain the best results within the least amount
of time. The tool comes loaded with the descriptions of ciphers Crypto-1 [4],
HiTag2 [5], Trivium [6], Bivium-B [7], and Grain [8], but can be easily extended
with any stream cipher that uses shift registers, feedback functions and filter
functions to carry out its work. The tool is designed to be intuitive to use and
general enough to cover a large set of different ciphers while remaining specific
enough to address the optimisations possible for the SAT-based cryptanalysis of
many stream ciphers.

The rest of this paper is structured as follows. In Sect. 2 we give some
background on SAT solvers and SAT-based cryptanalysis. Then, in Sect. 3 we
present the input format that GoS uses to describe ciphers. In Sect. 4 we present
the various features that GoS offers, and in Sect. 5 we shortly describe the timing
results possible with the use of the GoS tool. Finally, in Sect. 6 we conclude this
paper.

2 Background

In this section we give a short description of SAT solvers and their use in
cryptanalysis.

2.1 SAT solvers

Satisfiability solvers are complex mathematical algorithms used to decide whether
a set of constraints have a solution or not. This paper only discusses the well-
known conjunctive normal form (CNF) constraint type. The CNF formula ϕ on
n binary variables x1, . . . , xn, is a conjunction (and-ing) of m clauses ω1, . . . , ωm

each of which is the disjunction (or-ing) of literals, where a literal is the occurrence
of a variable e.g. x1 or its complement, ¬x1.

In this paper we focus on solvers that use the DPLL algorithm. The DPLL
procedure is a backtracking, depth-first search algorithm that tries to find a
variable assignment that satisfies a system of clauses. The algorithm branches
on a variable by assigning it to true or false and examining whether the value
of other variables depend on this branching. If they do, the affected variables
are assigned to the indicated value and the search continues until no more
assignments can be made. During this period, called propagation, a clause may
become unsatisfiable, as all of its literals have been assigned to false. If such
a conflict is encountered, a learnt clause is generated that captures the wrong
variable assignments leading to the conflict. The topmost branching allowed by
the learnt clause is reversed and the algorithm starts again. The learnt clauses
trim the search tree, reducing the overall time to finish the search. Eventually,
either a satisfiable assignment is found or the search tree is exhausted without a
solution being found and the problem is determined to be unsatisfiable.

Most DPLL-based SAT solvers understand and deal with problems described
in CNF. Usually, a non-trivial part of using SAT solvers is to convert the problem
at hand to CNF format. The CNF can then be given to many different SAT
solvers, and an appropriate one (e.g. fastest, distributed, etc.) can be selected.

2.2 SAT Solver-based cryptanalysis

SAT solver-based algebraic cryptanalysis have successfully been applied to break
a number of ciphers secure against other forms of cryptanalysis. The first SAT
solver-based algebraic cryptanalysis was by Massacci et al. [9], experimenting
with the Data Encryption Standard (DES) using DPLL-based SAT solvers. More
recent work by Courtois and Bard has produced attacks against KeeLoq [10]
and investigated DES [1]. SAT solver-based algebraic cryptanalysis has also been
effectively used on modern stream ciphers, such as the reduced version of Trivium,
Bivium-B [3] by Soos et al.

In parallel to the above mentioned papers, there have been multiple tools
developed that convert cryptographic functions to CNF. Among them is the
python module developed by Martin Albrecht for the sage mathematics platform
[11], Logic2CNF developed by Edd Barrett [12], and STP (Simple Theorem Prover)

by Ganesh et al. [13]. These tools offer widely different features and can be used at
different levels of abstraction. For instance, Logic2CNF only converts a description
of the cipher in Algebraic Normal Form (ANF) to CNF, but cannot generate
the ANF given a cipher description. STP can parse a complete cipher description
but does not retain or deal with the ANF form of the description, thus omitting
optimisations possible at that level of abstraction. Finally, the sage module only
converts to CNF a description that has already been described in sage, but can
use the tools provided by sage to process (and simplify) the problem at the ANF
level.

Most of the above mentioned papers and tools implement their own way of
describing the cipher in CNF, inventing or re-inventing methods on the way.
A well-known reference is the paper by Bard et al. [14] which describes some
starting points for the conversion, but individual conversion methods vary widely.
Grain of Salt tries to merge the ideas from these papers and tools into one,
easy-to-use package.

3 The input to GoS

The input to GoS describes a stream cipher in terms of shift registers, feedback,
filter and output functions. There are two phases for each attack, the initialisation
phase, and the standard running phase. Accordingly, there are two feedback
functions associated with each shift register: one that operates during initialisation,
and one that operates during normal operation. These feedback functions are
often different, as is the case with Crypto-1, Grain and Trivium. Filter functions
are always calculated, and their outputs can be used at any point in time by
any of the functions, including other filter functions, thus forming a chain. This
is important for ciphers such as Crypto-1, where there are multiple micro-filter
functions that make up the final output (when in normal mode) and the feedback
(when in initialisation mode). The output function is simply a specially designated
filter function that produces the output, active only during the normal phase.

Let us now take Grain as an example cipher, and describe it in GoS. Grain
has two shift registers, both 80 bits long and its initialisation phase has 160 steps.
The main configuration file for this cipher is grain/config, and looks as follows:

sr_size = 80,80 (1)

linearizable_sr_during_init = (2)

linearizable_sr_during_norm = 1 (3)

filters = 1 (4)

init_clock = 160 (5)

tweakable = sr1-0...63 (6)

one_out = sr1-64...79 (7)

Line (1) tells that there are two shift registers, numbered sr0 and sr1. Line
(2) means that none of the shift registers’ feedback functions are linearizeable
during the initialisation phase — i.e. their feedback functions are non-linear. Line

(3) says that during normal operation, shift register sr1’s state is linearizeable,
as according to the Grain specification [8], the second shift register is an LFSR.
Line (4) says that the number of filter functions used is one, called f0. The
function f0 models the complex filter that is used during both the initialisation
and the normal phase of the cipher. Line (5) says that the initialisation takes
160 cycles. Line (6) says that the first 64 bits of the second shift register is the
IV, i.e. these bits are tweakable (can be freely chosen). Finally, line (7) says that
the last 16 bits of the second shift register must be filled with binary ones.

3.1 Initialisation phase

The Grain cipher has two phases: the initialisation phase and the normal running
phase. Each shift register has to have a feedback function associated with it for
each phase. The files describing these functions for Grain must be under the
directory grain/functions/srX/, where X is the number of of the shift register
(0 or 1 in case of Grain). The feedback of sr0 during initialisation is described
in the file grain/functions/sr0/feedback init.txt shown in Fig. 1(a), which
corresponds to the line in the Grain specification file

bi+80 =si + bi+62 + bi+60 + bi+52 + bi+45 + bi+37 + bi+33 + bi+28 + bi+21+

+ bi+14 + bi+9 + bi + bi+63bi+60 + bi+37bi+33 + bi+15bi+9+

+ bi+60bi+52bi+45 + bi+33bi+28bi+21 + bi+63bi+45bi+28bi+9+

+ bi+60bi+52bi+37bi+33 + bi+63bi+60bi+21bi+15+

+ bi+63bi+60bi+52bi+45bi+37 + bi+33bi+28bi+21bi+15bi+9+

+ bi+52bi+45bi+37bi+33bi+28bi+21

The last line of the file (containing “f0”) in Fig. 1(a) cannot be found in this
equation since the filter (modelled with f0 in our case) must be XOR-ed into
the feedback during the initialisation phase. This filter function is defined in
grain/functions/f0.txt, present in Fig. 2, which corresponds to the following
set of definitions in the Grain specification:

zi =
∑

k∈A

bi+k + h(si+3, si+25, si+46, si+64, bi+63)

A ={1, 2, 4, 10, 31, 43, 56}

h(x) =x1 + x4 + x0x3 + x2x3 + x3x4 + x0x1x2 + x0x2x3 + x0x2x4 + x1x2x4 + x2x3x4

The feedback function of the second filter function during initialisation is
present in file grain/functions/sr1/feedback init.txt, present in Fig. 1(b),
which corresponds to the line in the Grain specification

si+80 = si+62 + si+51 + si+38 + si+23 + si+13 + si

which again is missing the f0, since the authors of the paper only specified the
initialisation phase later, in Sect. 2.1. Here, they make it clear that the filter
function, described by f0 in our case, needs to be XOR-ed to this feedback
function during the initialisation phase.

sr1-0

sr0-62

sr0-60

sr0-52

sr0-45

sr0-37

sr0-33

sr0-28

sr0-21

sr0-14

sr0-9

sr0-0

sr0-63 sr0-60

sr0-37 sr0-33

sr0-15 sr0-9

sr0-60 sr0-52 sr0-45

sr0-33 sr0-28 sr0-21

sr0-63 sr0-45 sr0-28 sr0-9

sr0-60 sr0-52 sr0-37 sr0-33

sr0-63 sr0-60 sr0-21 sr0-15

sr0-63 sr0-60 sr0-52 sr0-45 sr0-37

sr0-33 sr0-28 sr0-21 sr0-15 sr0-9

sr0-52 sr0-45 sr0-37 sr0-33 sr0-28 sr0-21

f0

(a) Feedback of the NLFSR

sr1-62

sr1-51

sr1-38

sr1-23

sr1-13

sr1-0

f0

(b) Feedback of the LFSR

Fig. 1. Feedback functions of Grain used during the ini-
tialisation phase. The left-hand figure is stored in the file
grain/functions/sr0/feedback init.txt while the right-hand figure is
stored in the file grain/functions/sr1/feedback init.txt

3.2 Normal phase

The feedbacks during normal running look exactly like the feedbacks for initial-
isation, except for the last lines: the filter function is not XOR-ed in, instead
it is simply output as the keystream. Therefore the file describing the feedback
of the NLFSR during normal operation, grain/functions/sr0/feedback.txt,
is exactly the same as that present in Fig. 1(a), with the exception of the last
line, f0. Similarly, the file describing the feedback of the LFSR during nor-
mal operation is missing the f0. Finally, the file that specifies the keystream,
grain/functions/output0.txt, contains just one line with f0, signifying that
it is equal to the filter function f0.

3.3 Composition of filters

Filter functions, such as f0 for Grain can be used extensively in the function
descriptions of the cipher. They can also be combined to create some interesting

sr0-1

sr0-2

sr0-4

sr0-10

sr0-31

sr0-43

sr0-56

sr1-25

sr0-63

sr1-3 sr1-64

sr1-46 sr1-64

sr1-64 sr0-63

sr1-3 sr1-25 sr1-46

sr1-3 sr1-46 sr1-64

sr1-3 sr1-46 sr0-63

sr1-25 sr1-46 sr0-63

sr1-46 sr1-64 sr0-63

Fig. 2. File that describes the filter function for Grain, stored in the file
grain/functions/f0.txt

effects. For instance, the output of the Crypto-1 cipher is generated using a
set of mini-filter functions as present in Fig. 3(b). In the case of Crypto-1, it
is best not to describe the final feedback function as one big function, but to
preserve the structure of the mini-filter functions. To achieve this, we can define
f0. . . f4, similarly to how we defined filters in Grain, and define the output in
crypto1/functions/output0.txt, present in Fig. 3(a), as a combination of the
internal filter functions.

4 Features offered

The GoS tool offers multiple features to help analyse the stream cipher. We list
the most important features here.

4.1 Variable number of generated output bits

The number of output bits generated and given to the solver as the base of solving
can be chosen at will. The command line switch for this option is --outputs

NUM, where NUM is a number that should be sufficient to fully determine the
searched-for data. For example, if the initialisation is used for Grain, the number
of output bits needed should be at least 80. However, if the initialisation is not
used, then at least 160 bits are needed, since the solver has to solve for 160 bits
of unknowns (the full state of both shift registers) in that case.

f0

f2 f0

f3 f0

f3 f1 f0

f3 f2 f1

f4

f4 f0

f4 f1 f0

f4 f2 f1 f0

f4 f3

f4 f3 f0

f4 f3 f1

f4 f3 f2 f1

(a) The output of Crypto-1, de-
scribed as a function of mini-filter
functions f0. . . f4.

Fi
na

l fi
lte

r

1
2

3
0

4

(b) The functional diagram of the Crypto-1
cipher

Fig. 3. The Crypto-1 cipher (on the right), and the description of its final filter
function (on the left), made up of multiple micro-functions. The network of
micro-functions is clearly visible in the functional diagram, and is replicated in
Grain-of-Salt with the use of multiple filter functions.

4.2 ANF generation with fact propagation

An Algebraic Normal Form of the described cipher with the given number of
parameters (described below) can be generated. Various statistical data on the
ANF can also be obtained, such as the size (number of monomials) of the each
function, the sum size of all functions, etc.

We call fact propagation the effect of evaluating all equations with respect to
the given information. The given information can be the output of the cipher or
other form of helping information. The evaluations might, for instance, cause a
variable to be set instantly, for example, if a = bc⊕ d and b = false, d = true

then a = true, and by substituting this fact into other equations, further facts
could be found. GoS automatically handles this, and recursively propagates all
such facts.

Under the aegis of fact propagation GoS also propagates variable equivalences.
For example, if a = bc and c = true then a = b, which might lead to further facts.
For example, the equation d = b⊕ ab would be changed to d = b⊕ bb = b⊕ b =
false allowing the propagation of a further fact. Fact and variable equivalence
propagation considerably shortens problems, which help when they need to be
solved using the SAT solver.

4.3 CNF Generation

GoS automatically generates CNF from the fact-propagated ANF using a variety
of mechanisms to optimise the conversion. There are mainly two ways of converting
an equation in ANF to CNF:

1. Through cutting long XOR-s, and introducing internal variables for each
monomial of degree > 1.

2. Through the use of a Karnaugh map generator [15]. Karnaugh maps essentially
directly generate the CNF from a truth table, needing no conversion. This
method was first used in converting cryptographic ANFs by Soos et al. [3].

Deciding which method to use is non-trivial, and GoS can be given a heuristic
cut-off that decides which method to use. The cut-off is given with the command-
line parameter --karnaugh NUM where if more than NUM monomials are present in
an ANF, the first method is used, while if less or equal, the second method is used
to convert to CNF. Essentially, the first method is relatively straight-forward, but
can generate very non-optimal representation if the number of monomials is small,
their average degree is high and they make use of a small number of variables.
For example, the Crypto-1 and HiTag2 ciphers’ mini filter functions all fall into
this category, and they are best represented as such. However, if for example the
degree is low, then the Karnaugh map representation is uniquely non-optimal, as
Karnaugh maps behave the worst (exponentially) for XOR functions, and they
also behave very badly with near-XOR functions.

The straight ANF-to-CNF method of simply converting the XOR to CNF and
then introducing internal variables for monomials of degree > 1 is done as follows.
Long XOR-s must be cut due to the exponential nature of their conversion: an
n-long XOR can only be represented (without introduction of internal variables)
as 2n−1 clauses. To overcome this, XOR-s are cut such as:

a⊕ b⊕ c⊕ d⊕ e⊕ f =true↔

a⊕ b⊕ c⊕ i =false

d⊕ e⊕ f ⊕ i =true

but the best limit at which XOR-s must be cut, which is usually called the cutting

number is not easy to determine. The default is 7 in GoS, but can be changed
with --xorcut NUM. Monomials are expressed in the CNF language through the
introduction of internal variables. For example, the monomial ab is expressed as
i2 = ab, leading to the clause-set:

¬i2 ∨ b

¬i2 ∨ a

i2 ∨ ¬a ∨ ¬b

An optimisation for the straight ANF-to-CNF conversion is that monomials
in the CNF world can contain negations, i.e. it is no longer necessary to write
a ⊕ ab, since that can be simply written as a(1 + b) = a¬b. This optimisation

can be applied recursively. For example:

a⊕ b⊕ ab⊕ c⊕ cd =true↔

b⊕ a(1⊕ b)⊕ c(1⊕ d) =true↔

1⊕ (1⊕ a)(1⊕ b)⊕ c(1⊕ d) =true↔

¬a¬b⊕ c¬d =false

reducing the original 5 monomials into a mere two. Representing these monomials
that are not free of negations takes exactly the same amount of resources in
CNF as representing those that are free of negations, leading to a potential
overall reduction in the final CNF. The reduction is only potential, as the internal
variables that represent monomials that are used in multiple places need only
be described once, and the extended monomials could possibly make it more
difficult for the same monomials to appear, limiting their benefits. Therefore, this
optimisation can be turned off with the command-line switch --noextmonomials.
The default is for this optimisation to be turned on, as we have experienced
speedups using it.

4.4 Dependency tree generation

It is assumed that only the output of the stream cipher is known to the attacker.
Therefore, functions that are not connected in some way to the output of the
function can be discarded: they are internal variables that need not be calculated,
since they cannot help solving the internal state. To remove these functions, a
dependency tree is generated that takes as root all the output bits of the cipher,
and generates a tree that reaches the original internal state bits. All functions
that are not connected to this tree can be discarded.

Dependency tree generation is very important, as it lets the designer describe
as many filter functions as he or she wishes: the functions that are not used will
not hamper the solving. For example, some ciphers use filter functions that are
specific to the initialisation phase. Without dependency tree generation, these
filter functions would be calculated (but not used) during the normal running
phase, slowing down the solver.

4.5 Solving with and without initialisation phase

The GoS tool has two running modes. It can either try to solve for the non-
tweakable and non-oned-out parts of the cipher when initialisation is turned on,
or it can solve for the entire state when initialisation is turned off. In other words,
the two typical scenarios are covered: either the IV is known, the key is unknown,
and the initialisation is carried out, or the entire state of the cipher is unknown,
but the initialisation is not carried out. This behaviour can be simply switched
using a command line switch --init yes or --init no.

Typically, with the initialisation turned on, the number of bits to be solved is
much less. For example, in the case of Grain, the IV is 64, and the one-ed out part

is 16 bits, so only 80 bits of the first shift register (i.e. the key) is the unknown.
However, the initialisation takes 160 cycles, which greatly increases the difficulty
of the resulting set of equations. On the other hand, without initialisation, the
number of unknown bits increases to 2*80 = 160, but since initialisation is not
carried out, most equations are very short.

4.6 Base shifting

Base shifting can be activated when solving without initialisation. Base shifting
is the name we use for the technique first presented in [3, Sect. 4.3]. There, the
authors show that the base unknown of the cipher can be any moment in time. So,
for example, if the number of output bits generated is 200, and no initialisation
is used, then the cipher is clocked for 100 bits, with a total length of 100 + 80 =
180 (since 80 is the original size of each). Any consecutive 80 bit frame of this
can be taken as the unknown, as the feedback functions can be re-arranged to
clock backwards for these ciphers. This is very advantageous, as typically, the
complexity increases exponentially starting from a point T , and if we take T to
be near the middle of the time-frame (e.g. at T = 90 in our example), then the
total complexity of the generated functions are much less than if we had taken
the typical approach, i.e. to take T = 0.

The command line parameter for base shifting is --base-shift NUM where
NUM must be smaller or equal to the number of output bits. For this to work with
NUM > 0, the feedback functions of the cipher must be reversible. This is true for
Crypto-1, HiTag2, Bivium-B, Trivium, and Grain. Stream ciphers can be created
where this is not the case — these stream cipher are, however, usually constrained
in that it is hard to make them work faster through parallel implementation of
the feedback and filter functions in hardware.

As a concrete example, let us take the Grain cipher, without the initialisation
phase switched off. If the number of output bits generated is 200, the base shifting
can be any number between 0 and 200. For a shifting number x, the unknowns
are the states of the shift registers at time x. In other words, if we take each shift
register as a memory line that does not forget its old contents, then the unknowns
are the state variables x . . . x + 80 of both shift registers. We call these variables
the reference state variables. When initialisation is turned on, the reference state
variables are simply the variables that are neither tweakable nor one-ed out, i.e.
they are the state variables where (typically) the key is loaded.

4.7 Help bit calculation

Help bits are data pieces that are given such that it is easier to solve for the state
of a cipher. These are important, as it is infeasible to wait immense amounts of
time to check whether, for example, the state of Grain can be solved. In order
to circumvent this problem, we give some reference state variables as help bits

to the solver, such that it can solve faster. Once the solving has finished, one
can estimate the time it would take to solve for the whole state of the cipher,
without the help bits. The GoS tool offers two types of help bit calculations. One

is a probabilistic calculator, and the other is a deterministic calculator, and both
employ a Monte-Carlo method to achieve their goals. For the following sections,
let us assume that V the possible set of variables that can be help bits (i.e. V
contains exactly the reference state variables).

The Monte-Carlo method, first introduced by Metropolis and Ulam [16] is
used in many areas of research such as integration and computer security (e.g. the
Rabin primality test [17]). It is essentially a randomised algorithm that samples a
tiny part of the possibly immense space and processes the results to approximate
an unknown value for the whole space. In case of the Rabin primality test, the
Monte-Carlo algorithm uses a randomised test to decide if a positive integer is a
prime or not. The algorithm has a certain chance (< 1/4) to give a false negative
result, but running the algorithm many times essentially eliminates the chance
that a number is composite.

Deterministic method Since using different reference state variables as help
bits could give different timings, it is non-trivial which ones to use. To achieve
maximum performance, we use an approach that we have found to be adequate
to find a good set.

We first generate the ANF that describes the cipher given all settings. Then,
we set a variable v ∈ V , v ← true, and propagate all changes. We count the
number of monomials in the resulting ANF. Then, we set v ← false, and again
count the size of the resulting ANF. The sum of these two values is the “score”
for this help bit. We perform these steps for each variable in L, and the one that
has the smallest score wins. We now put this winning variable into the ordered
set H, and continue the search as follows.

Let us call L the possible set of variables that can be help bits (i.e. L contains
exactly the reference state variables). We take a variable v ∈ L
H and randomly set all variables in H, plus we set v ← true, and count the
score. We do ten such measures, each time setting the variables in H randomly,
and sum the scores. Then, we do the same, but with v ← false, and sum the
scores. The sum of these 20 measurements will be the score for this v. We do
this for all v ∈ L
H: the variable with the smallest score wins and enters H. At the end of the
algorithm, we reach a point where L
H = ∅, and all variables have been ordered in H.

The presented algorithm is a randomised greedy algorithm that tries to find
a local minima at each point. Since even a local minima is very difficult to find,
the algorithm probabilistically tries to find this local minima, through 20 random
tests. For better local minima finding, the number 20 can be increased to any
even number, ameliorating the algorithm.

We have found this algorithm to be very powerful in reducing the time to
solve a given cipher. Without such ordering of bits, the speed to solve a certain
problem can be hundreds of times more difficult. The output of this algorithm is
simply put a file called “best-bits”, and the variable numbers are simply listed

one after the other. If the cryptographer knows a better ordering, this file can
simply be overwritten.

Once the “best bits” file has been generated, it can be used from the program
by giving the option --deterBits NUM, where NUM is the number of best bits the
program should set randomly when generating the problem instances. Averaging
the time it takes to solve these problems and multiplying the average by 2NUM one
gets the amount of expected time to solve the cipher.

The program specifically does not include a method to break a cipher, though
given a specific cipher output, it could generate all 2NUM possible problems.
Naturally, one of the generated problems would actually break the given output
stream, revealing the key or the state of the cipher (depending on whether
initialisation was enabled or not).

Probabilistic method The probabilistic method is activated with the command
line switch --probBits NUM and it simply randomly sets a random set of NUM
variables from L and does many runs of these random configurations. The time
it takes to solve these randomly picked instances is then averaged.

To approximate the time it takes to attack the cipher without giving any
variables we use the following technique. We run many instances of the above
algorithm with NUM = n, n−1, . . . n−k number of reference state variables, where
n is small enough such that the algorithm is not trivial to solve, and n− k is as
small as possible such that the resulting system is still solved within a reasonable
amount of time. The average time is then plotted against the number of reference
state variables given, and the plot is extrapolated to the point where there are
no reference state variables given.

Although there is no proof that at any point during NUM = n − k − 1 . . . 0
the graph does not suddenly change, we believe this to be extremely unlikely.
For the explication of the reasons, let us first define some notions. Let us define
two problems for a given cipher: problem A is when NUM = x, and problem B is
where NUM = x− 1, where n ≥ x > 0 but otherwise x is irrelevant. Let us assume,
without loss of generality, that V ′ is the set of reference variables selected to be
assigned in B. Let the set of reference variables assigned in A be V ′

⋃
v. We can

now list the reasons why we believe the graph does not deviate from a straight
line if the time is plotted in a logarithmic scale:

– Every problem in B can be directly mapped to 2|V \ V ′| = 2(n − x + 1)
problems in A. Since the underlying algorithm of DPLL-based SAT solvers is
essentially an intelligent brute-force, we can safely assume it does not behave
worse than a brute-force, and solves the problem B in at most twice the time
than solving any problem in A. This is further underlined by our observation
that SAT solvers branch on the reference state variables — thus the first
branching of the solver when solving B will indeed be a variable from |V \V ′|

– The more choice of variables a SAT solver has to branch on, the better the
dynamic variable branch ordering will work. This means that it is expected
of the solver to solve in less than twice the time problem B with a choice of

n− x branch variables, than two problems in A with a choice of n− x− 1
branch variables

– Clauses learnt during the solving of A that are independent of the setting of
variable v cannot be reused between the solving instances. Therefore, it is
expected that problem B can be solved faster than two problems in A, as
the solver in the former case does not need to re-learn these same clauses

– The underlying problem structure does not change between problem A and
problem B

– It is the same underlying randomised solving algorithm that is used to solve
both problem A and problem B

The extrapolation is usually straightforward if a large enough number of
randomisation steps are involved: the plotted graph is straight if plotted against a
logarithmic time. We note that the possibility of extrapolation is an advancement
over previous attempts. Previous attempts failed, as they did not introduce
sufficient randomness into the system. This lack of suitable randomisation meant
that their results were not extrapolateable [18,2].

5 Results

GoS in conjunction with an appropriate SAT solver such as CryptoMiniSat [19]
can be used to break Crypto-1 in 40 s, HiTag2 in 214.5 s, and Bivium-B in an
approximated 236.5 s using a a Xeon E5345@2.33GHz computer. All these figures
are faster than exhaustive search, leading to the breaking of these algorihtms.
In the literature we have not found any results that indicated a faster solving
time for these ciphers using a SAT-based cryptanalsysis, and so we believe these
figures to be the current state-of-the-art.

6 Conclusions

We have presented Grain of Salt, an integrated package to test stream ciphers
against SAT solver-based attacks. The tool can flexibly generate with a minimum
of user intervention a CNF representation of any shift-register based stream cipher,
helping the researcher evaluate the cipher against SAT solver-based algebraic
attacks. The input language and the command line options of the tool are easy
to use and user-friendly, helping the novice as well as the advanced users to
profit from the tool. We envision that Grain of Salt will be further extended by
researchers to carter for their specific needs, making the tool more diverse and
more useful for the whole of the research community.

Acknowledgements

The author was supported by the RFID-AP ANR Project, project number
ANR-07-SESU-009. I would like to thank Karsten Nohl for some initial ideas,
notably base-shifting.

References

1. Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the Data Encryption
Standard. In Galbraith, S.D., ed.: IMA Int. Conf. Volume 4887 of Lecture Notes in
Computer Science., Springer (2007) 152–169

2. Eibach, T., Pilz, E., Völkel, G.: Attacking Bivium using SAT solvers. In Büning,
H.K., Zhao, X., eds.: SAT. Volume 4996 of LNCS., Springer (2008) 63–76

3. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic
problems. In Kullmann, O., ed.: SAT. Volume 5584 of Lecture Notes in Computer
Science., Springer (2009) 244–257

4. Garcia, F.D., de Koning Gans, G., Muijrers, R., van Rossum, P., Verdult, R.,
Schreur, R.W., Jacobs, B.: Dismantling MIFARE Classic. In Jajodia, S., López,
J., eds.: ESORICS. Volume 5283 of Lecture Notes in Computer Science., Springer
(2008) 97–114

5. Courtois, N., O’Neil, S., Quisquater, J.J.: Practical algebraic attacks on the HiTag2
stream cipher. In Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A., eds.: ISC.
Volume 5735 of Lecture Notes in Computer Science., Springer (2009) 167–176

6. Cannière, C.D.: Trivium: A stream cipher construction inspired by block cipher
design principles. In Katsikas, S.K., et al, eds.: ISC. Volume 4176 of LNCS., Springer
(2006) 171–186

7. Raddum, H.: Cryptanalytic results on Trivium. Technical Report 2006/039,
ECRYPT Stream Cipher Project (2006)

8. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained environ-
ments. IJWMC 2(1) (2007) 86–93

9. Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT-problem: Encoding and
analysis. Journal of Automated Reasoning 24 (2000) 165–203

10. Courtois, N., Bard, G.V., Wagner, D.: Algebraic and slide attacks on KeeLoq. In
Nyberg, K., ed.: FSE. Volume 5086 of Lecture Notes in Computer Science., Springer
(2008) 97–115

11. The SAGE Group: SAGE mathematics software (2008) http://www.sagemath.org.
12. Barrett, E.: Logic2CNF logic solver and converter (March 2010) http://projects.

cs.kent.ac.uk/projects/logic2cnf/.
13. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In Damm,

W., Hermanns, H., eds.: CAV. Volume 4590 of Lecture Notes in Computer Science.,
Springer (2007) 519–531

14. Bard, G.V., Courtois, N.T., Jefferson, C.: Efficient methods for conversion and
solution of sparse systems of low-degree multivariate polynomials over GF(2) via
SAT-solvers. Cryptology ePrint Archive, Report 2007/024 (2007)

15. Karnaugh, M.: The map method for synthesis of combinational logic circuits.
Transactions of American Institute of Electrical Engineers part I 72(9) (November
1953) 593–599

16. Metropolis, N., Ulam, S.: The Monte Carlo method. Journal of the American
Statistical Association 44(247) (1949) 335–341

17. Rabin, M.O.: Probabilistic algorithm for testing primality. J. Number Theory 12(1)
(1980) 128–138

18. McDonald, C., Charnes, C., Pieprzyk, J.: Attacking Bivium with MiniSat. Technical
Report 2007/040, ECRYPT Stream Cipher Project (2007)

19. Soos, M.: CryptoMiniSat — a SAT solver for cryptographic problems (2009)
http://planete.inrialpes.fr/~soos/CryptoMiniSat2/index.php.

http://www.sagemath.org
http://projects.cs.kent.ac.uk/projects/logic2cnf/
http://projects.cs.kent.ac.uk/projects/logic2cnf/
http://planete.inrialpes.fr/~soos/CryptoMiniSat2/index.php

	Grain of Salt --- An Automated Way to Test Stream Ciphers through SAT Solvers
	Mate Soos

