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Abstract

In this paper we propose a real-time rendering approach for procedural cities. Our first contribution is a new

lightweight grammar representation that compactly encodes facade structures and allows fast per-pixel access.

We call this grammar F-shade. Our second contribution is a prototype rendering system that renders an urban

model from the compact representation directly on the GPU. Our suggested approach explores an interesting

connection from procedural modeling to real-time rendering. Evaluating procedural descriptions at render time

uses less memory than the generation of intermediate geometry. This enables us to render large urban models

directly from GPU memory.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

In this paper we introduce a new grammar called F(acade)-

shade that is useful to encode facade structures. The research
problem tackled is how to encode facade structures accord-
ing to the following two goals. Compactness: The represen-
tation should consume as little graphics memory as possi-
ble. An additional benefit should be reduced file sizes on
disk and faster network transmission times. Fast Random

Access: The representation should allow for fast random ac-
cess given (u,v) texture coordinates. This enables rendering
from a compressed representation directly, e.g. using ray-
tracing or rasterization.

Our representation is motivated by rendering applications
of large urban models. Due to the size of urban models,
memory consumption and memory transfer has become a
critical bottleneck in rendering. For example, the 55M trian-
gles Munich model used in our results consumes over 3.3GB
of memory which still poses problems for many consumer
GPUs. An application of particular interest is interactive 3D
rendering of urban models on devices with little memory,
like smart phones, netbooks, tablet PCs, and car navigation
systems for urban navigation.

A facade structure in our system is a layout of rectangular
textured regions. Each region has assigned a texture atlas id,
texture coordinates to look up a texture value in the atlas,
a constant displacement depth, and material parameters. We

Figure 1: On the left we show a rectified facade image and

on the right the layout of rectangular textured regions that

has been encoded using F-shade. The rules have been sim-

plified to make all window regions within a floor share the

same window texture.

assume that within a facade and especially within a larger
city several rectangular regions will share the same textures
for doors, windows, walls, etc. See fig. 1 for an example.

We consider two alternative approaches to encode facade
structures. The first approach is to use shape grammars, e.g.
[MWH∗06]. Shape grammars are compact representations
but in our tests they were about two orders of magnitude too
slow for real-time derivation. We could only generate less
than 100 buildings per second for the Munich model. The
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second approach is to encode facade structure using geome-
try. Triangulating the rectangular layout makes it possible to
reuse textures in the texture atlases and graphics hardware is
optimized for rendering triangle meshes. In our results we
will compare to the geometry representation and we will
show that the memory requirement is still significant and
rendering would require out-of-core methods. To represent
the texture atlases existing compression algorithms (S3TC /
DXTC) are very suitable and they can be used in combina-
tion with any representation for facade structures.

The main idea of F-shade is to use only simple rules for
each facade to develop a grammar that can be derived in real-
time. A more powerful rule set is more compact but the ren-
dering speed is typically slower. The real-time grammar in-
troduced in this paper is what we believe to be a good trade-
off between rule complexity and evaluation time. Some of
our main insights are that conditional rules, parametric rules,
and context-sensitive rules make the derivation at least an or-
der of magnitude too slow.

The contribution of our work are the introduction of F-

shade and a prototype rendering system for it. We limit the
scope of the rendering part to demonstrate how buildings
encoded by F-shade can be rendered. We do not address
system issues such as integration with other representations
(e.g. pure geometry, impostors, and geometric LODs), and
aspects like occlusion culling, memory management, and
model transmission over the network.

1.1. Related Work

Our contributions impact the modeling, rendering and the
representation of urban environments. We will briefly review
related work in these three areas.

Modeling: Synthetic urban models can be generated us-
ing procedural methods. Previous work showed how urban
layouts consisting of street networks and parcels [PM01]
and individual buildings can be modeled using gram-
mars [WWSR03, MWH∗06, LWW08]. Even though our
grammar shares similarity with existing shape grammars, the
main difference is that existing grammars, e.g. [MWH∗06]
are not suitable for real-time rendering because they are too
complex and cannot be evaluated per pixel. Image-based
modeling is a great source to obtain F-shade models. One
of our test scenes was generated by building on recent work
in facade analysis [MZWG07, XFT∗08].

Rendering: Real-time rendering systems use a combina-
tion of established methods, such as occlusion culling [GK,
MBW08], image-based simplification [SLS∗, GM05], level-
of-detail techniques [BGB∗05], and triangle data structure
optimization [SNB07,Hop], and out of core texture manage-
ment [BD05]. Alternatively, real-time ray-tracing made sig-
nificant progress in recent years [WSBW,RSH05] and many
developers are speculating that the future of real-time ren-
dering will move towards hybrid ray-tracing and rasteriza-

tion systems. An example of a hybrid system is the use of
rasterization for the coarse geometry, and the rendering of
details in a fragment shader ray tracer [POJ05,Don05,BD06,
Tat06, CDG∗07, AYRW09].

Representation: The philosophy of our work is to ren-
der urban models from a compressed representation. Two
approaches exist in this context. One approach is to decom-
press the representation before it is transferred to GPU mem-
ory which gives great results for terrain rendering [LH04,
GMC∗06, DSW]. The second approach is to render the
compressed representation directly, which makes fast per

pixel access essential. In real-time rendering, a very popular
method is to use matrix or tensor factorization. This has been
suggested for precomputed radiance transfer [LK03], BRDF
data sets [KM], and also facade textures [AYRW09]. An-
other approach is to use epitomes to factor repeating content
in large image collections [WWOH]. While previous work
is also able to encode facade textures, it is not possible to ef-
ficiently encode uv coordinates in a facade structure. There-
fore, previous approaches work with procedural textures, but
not with texture atlases. Another interesting aspect of our
representation is that it encodes boundaries with sub-pixel
precision which has also been recognized as an important
feature [Sen04].

1.2. Overview

First, we explain how F-shade works by describing selected
examples and by describing the syntax. We also explain the
grammar derivation for per pixel access (See section 2). To
demonstrate the decompression performance for per pixel
access, we present a real-time rendering prototype based on
GPGPU and deferred shading (See section 3). Different ap-
plications scenarios are presented, i.e. how the rules are cre-
ated (See section 4). Finally, we present results (section 5) to
compare F-shade against alternative representations and dis-
cuss advantages, limitations, and future work in section 6.

2. F-shade

F-shade is a grammar to encode facade structure over a base
polygon that is parametrized by (u,v) texture coordinates.
It encodes a layout of rectangular regions where each re-
gion has assigned a texture atlas id, texture coordinates (s, t)
for all four corners, a constant displacement depth, a diffuse
material color, and a specular material color. The most im-
portant use of F-shade in our real-time rendering framework
is to query a facade structure with (u,v) texture coordinates
to obtain the texture atlas ID, (s, t) texture coordinates, dis-
placement depth, and the diffuse and specular material color
for the corresponding (u,v) sampling point. This output of
the grammar derivation can then be combined with existing
shading computations, such as Phong shading, per pixel ray
tracing, normal mapping, environment mapping, or BRDF
evaluations.
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Figure 2: The grammar manages a rule- and a texture-

scope in parallel on the same facade polygon to evaluate

a sample at location (u,v). Expressing the sample relative to

(utex,vtex) gives the texture coordinates (s, t). We mostly use

tiled textures.

The differences to existing shape grammars are the fol-
lowing: F-shade cannot access shape information. There-
fore it is no longer a shape grammar and we introduce the
term shade grammar. The grammar does not use conditional
rules, stochastic rule selection, or context-sensitive rules. We
found that current hardware is still slowed down consider-
ably when the rules are allowed to contain branching in-
structions. Therefore, to maximize thread-parallelism on the
GPU, it is important that the computation of a pixel color
can be done with as little branching as possible. This design
choice could be re-evaluated with future hardware.

The grammar operates on a fixed set of attributes and only
uses relative size and location values. The relative attributes
are an important aspect of procedural modeling and allow
to generate details for facade polygons of different sizes.
Grammar rules are also restricted to one operation per rule
and cannot contain any nesting of rules.

These choices seem restrictive, but designing a grammar
for real-time rendering is a trade off between compactness
and fast per-pixel access. We found that using more com-
plex rules, e.g. semantic rules, parametric rules, or context
sensitive rules, quickly gets too expensive in terms of ren-
der time. In contrast, adding a few more simple rules or rule
parameters can be done without dramatically affecting ren-
dering performance.

Grammar Description: The grammar operates as a
state machine that manipulates the following state variables
(fig. 2): (1) a scope of the rule, given as a parametrization
of the current rectangular region. The scope consists of the
uscope and vscope position of the lower left corner of the
polygon and the extent of the polygon in parameter space
(duscope and dvscope). Typically the grammar is invoked with
uscope = 0, vscope = 0, duscope = 1, and dvscope = 1. A fifth
component is the scope depth. (2) A texture-scope that is
described with four parametrization values similar to the
scope. 3) Material properties (e.g. Phong parameters). The
grammar is invoked with a sample location (u,v), and the
initial rule ID. We use nine rule operations: Split, Re-

peat, Trafo, TrafoTex, NormTex, LookupTex, Ma-
terial, Overlay, and Multiply.

Split splits the rule-scope along one axis into two or
more successors. The first parameter of the rule is the type
of axis, u or v. Then comes a list of pairs consisting of
split positions and successor rules. Repeat splits the scope
along one axis to fit as many successors of the same kind as
possible. Trafo and TrafoTex transform the correspond-
ing scope in size and position. Similarly, NormTex resets
the texture-scope back to 0,0,1,1. LookupTex is a terminal
and reads a region from the texture atlas specified by an ID.
Material sets material and shading attributes. Overlay
and Multiply behave similarly. In both cases the gram-
mar generates two or more successors with scopes on top of
each other. Overlay uses alpha testing to decide the final
color and Multiplymultiplies the colors component-wise.
Please note that we only implemented Overlay and Mul-
tiply with the alternative rendering method described in
the additional materials. The complete syntax of F-shade is
described in detail in app. A.

Grammar Derivation: The grammar derivation returns
texture information and has the following four steps: 1) take
a rule, 2) update the state variables according to the opera-
tion (e.g. split finds out in which of the regions the sample
position (u,v) lies) and invoke the successor rule. 3) If the
successor is a terminal rule, return the state information.

Grammar Example: We use an example to explain the
functionality of F-shade. The example rules are shown be-
low and a derivation using these rules is illustrated in fig. 3.
The first rule splits the complete facade into a ground floor
and several other floors (Floors) and a cornice on top. In the
figure we see how the red position that is going to be sam-
pled falls into the scope of the successor Floors. Therefore,
rule 2 is selected where the texture scope is modified. The
change in texture scope implicitly tiles the texture 5 times in
u and six times in the v direction, by scaling the extent by
0.2 and 0.15 respectively. In the example we would subse-
quently select rules 3, 4, 5, and finally 7. In this case, rule 6
is bypassed by the derivation in the figure. Rule 8 would
set the texture-scope to be identical to the scope. This is the
standard way of modeling windows and doors.

1: Facade ❀ Split v 0.15 Groundfloor 0.8 Floors 0.05 Cornice

2: Floors ❀ TrafoTex 0 0 0.2 0.15 FloorsTex

3: FloorsTex ❀ Repeat v 0.25 Floor

4: Floor ❀ Repeat u 0.16 Tile

5: Tile ❀ Split u 0.2 Wall 0.6 SubTile 0.2 Wall

6: SubTile ❀ Split v 0.1 Wall 0.7 Window 0.2 Wall

7: Wall ❀ LookupTex wallTextureID

8: Window ❀ NormTex WindowTex

9: WindowTex ❀ LookupTex windowTextureID

10:Groundfloor ❀ . . .
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Figure 3: This figure visualizes the rule set from the grammar example in the text. The images show from left to right the

derivation sequence of the rule- and texture-scope for the sample marked with a red dot. Note how the rule scope zooms in on

the pixel. As the last step - which is rule 7 for the shown sample - a tileable texture is evaluated (bottom right).

3. GPGPU Rendering of Compressed Facades using

Deferred Shading

In this section we introduce a real-time rendering system
based on deferred shading that can render building mass
models with F-shade facade structures. The main goal is
to demonstrate the performance of per-pixel random access
for a larger model. Our system directly renders from a com-
pressed facade representation and we assume that the com-
plete model is stored in graphics memory. We acknowledge
that a competitive real-time rendering system also requires
several additional components and we discuss possible ex-
tensions and alternative system designs at the end of this
section and in section 6.

Deferred shading [Shi05, Koo07] is a popular alternative
to computing pixel colors in the fragment shader directly.
In the following we will discuss the three main steps of our
solution: 1) geometry rendering to establish geometry and
shading information of visible fragments into viewport-sized
textures, 2) per fragment rule evaluation to decompress the
facade representation, 3) final pixel shading including dis-
placement mapping.

Rasterization In the first step the geometry is rendered
using vertex buffer objects (VBOs). The VBOs store ver-
tex locations, normals, (u,v) texture coordinates, and the fa-
cade ids (i.e. the F-shade grammar start symbols). We use
the standard OpenGL methods to a) transform the geome-
try, b) interpolate vertex locations, normals, and (u,v)s us-
ing perspective correct interpolation, and c) write all values
to an off-screen buffer (FBO). Z-buffering is used to ensure
the correct visibility. If displacement mapping is enabled we
also compute and store the light direction and the view di-
rection in image space.

Split axis n args(n)

Repeat axis dim succ

Trafo args(5) succ 0

Trafotex args(4) succ 0

Material args(8) succ 0

LookupTex tid 0 0

NormTex succ 0 0

Overlay n args(n) 0

Multiply n args(n) 0

Table 1: F-shade rule layout on the GPU. The rules can ap-

pear in arbitrary order in the main int4 rule array. Each

succ element stores the array index of the successor rule.

Per-pixel rule evaluation In the second step we decode
the facade description. Our implementation uses CUDA, but
alternatives such as OpenCL and DirectCompute could be
used equivalently. F-shade rules are stored as arrays of inte-
ger and floating point numbers. We use a main integer array
with an int4 data type for efficient look-up. Each int4

vector represents one rule and optionally references a float
array for arguments. As an exception, the arguments of the
split operation have variable length and are put into separate
int/float arrays. Each row in table 1 shows a possible element
in the main int4 array.

Based on the syntax introduced in section 2 we encode
the rule arguments as follows. The first column identifies the
rule (integer constant). axis uses 0,1 for the u,v-directions.
succ is the start address of the successor rule or - in case
of the Split rule - the start address of n integer/float ar-
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f o r e a c h p i x e l {
s h a d e r p a r a m s . r e s e t ( ) ;
s t a t e . i n i t (FBO . lookup ( ) ) ;
w h i l e ( s t a t e . r u l e )

e v a l R u l e ( s t a t e , &s h a d e r p a r a m s ) ;
TBO. w r i t e ( s h a d e r p a r a m s ) ;

}

Listing 1: Pseudo-code of the derivation loop in the main

CUDA kernel. First, the FBO values generated in the ras-

terization step for the current pixel are fetched to setup the

initial state. The rule evaluation is repeated as long as there

is a valid successor rule. Finally, the resulting shading pa-

rameters are written to the texture buffer (TBO).

guments in the split arrays. args(n) is the start address
for n successive arguments (the type depends on the current
rule) and tid indicates the index of the texture. Our material
setup uses an RGB diffuse and specular component includ-
ing a weight (8 values in total).

The rule arrays are stored in CUDA memory (located in
the GPU VRAM) and accessed as read-only and hardware-
cached textures. The output of the rule evaluation is stored
in texture buffer objects (TBO) mapped by CUDA. The most
important outputs are the (s, t) coordinates of the diffuse fa-
cade texture. Additionally, we store the corresponding tex-
ture atlas id (i.e. the index into the texture array), depth, and
material properties.

The rule derivation is implemented as a loop in listing 1.
For each pixel, the function lookup reads the FBO values
generated in the rasterization step at its corresponding po-
sition. init sets the initial state for the grammar derivation
based on the FBO values. evalRule is a sub-function for
rule evaluation. This sub-function uses a flow control state-
ment to jump into a code block based on the rule type, reads
the data of the corresponding rule, and updates the current
state. Thereby, rule operations such as LookupTex or Ma-
terial also update the shader parameters. For the execu-
tion of the overlay and multiply commands, we extend the
scope with a stack data structure to keep track of the parallel
branches. After the derivation, write writes the final shading
parameters into the texture buffer.

This CUDA-based method is the result of a number of
evolutions. An earlier approach to evaluate F-shade directly
in GLSL is described in the additional material to this paper.
That method was abandoned due to the limited number of
rules it could evaluate with present hardware.

Pixel shading In the third step we apply pixel shading.
Based on the pixel position, the fragment shader first fetches
the texture ID and the position (s, t) of the pixel in facade
coordinates. This information is then used to look-up the
color components (diffuse, specular, dirt, environment) in

the texture atlas. If enabled, a displacement mapping in im-
age space is inserted before the texture look-ups. This dis-
placement step traces a ray in screen space until it intersects
with the facade surface. The ray tracer is an adaptation of the
method by Policarpo et al. [POJ05]. The main difference is
that we trace a ray in the intermediate buffer rather than in
facade tangent space.

4. Application Scenarios

In this section we will sketch several applications of F-

shade. The detailed descriptions of these applications is be-
yond the scope of this paper. We do not claim a contribution
to modeling, but we believe a better understanding of the
data is helpful to interpret the results.

Modeling F-shade manually: Rule sets for facade de-
signs can be created using a text editor. The appropriate use
of the repeat rule will make the designs size independent.
This means that a facade can be retargeted to differently
sized rectangular starting shapes. However, complex varia-
tions such as the selection of a variety of textures for win-
dows and doors will not be possible. Therefore many designs
have to be created to fill a complete city.

Converting orthographic facade textures: Ortho-
graphic facade images can be segmented and classi-
fied by a combination of interactive editing and auto-
matic analysis [XFT∗08], and F-shade rules can be ex-
tracted [MZWG07]. In order to save texture memory, tex-
tures can be processed to select one representative for re-
peating facade elements. The Paris test scene in the video
was modeled using this approach.

Converting procedural urban models: Procedural mod-
els can be created using the commercial software CityEngine

and CGA-shape. The conversion of the procedural model
requires several steps. We first extract facade polygons
and then compute the layout of rectangular textured re-
gions for each of the facades. Using an approach similar
to [MZWG07], we then extract F-shade rules. The Munich
test scene was created in this manner.

A common challenge to all these approaches is that many
facades will initially have their own rule set. In order to ex-
ploit coherence between facade designs, we implemented an
additional optimization algorithm to cluster identical rules.
It iteratively traverses the rule tree of the complete model in
a bottom-up manner and merges identical rules. In this way,
the rule tree is converted into a directed acyclic graph.

5. Results

We evaluate the two most important aspects of F-shade:
compactness and decoding time during rendering (i.e. time
per frame). Our test platform is a Dell Precision T7500
workstation with a Nvidia Quadro 4800 graphics card. Fig 4
summarizes our test scenes: (1) three selected facade designs
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Figure 4: The three scenes used in the measurements in ta-

ble 2 and fig 7: (1) 3 selected facade designs (left), (2) 8

designs randomly distributed on a 100x100 facade grid (top

right), (3) Munich city model with 42’000 uniquely gener-

ated buildings (bottom right).

Scene M1 M2 M8 Fac 10k Munich

Fac Tris 2 2 2 20k 688k
Fac Geo 336b 336b 336b 3.2M 110M
Rules 0.7k 1.4k 1.0k 15.5k 170M
F-shade 1.0k 1.7k 1.3k 3.2M 280M

Full Tris 520 182 388 4.7mio 55mio
Full Geo 35.0k 7.69k 14.0k 244M 3.3G

Compr. 3% 22% 9% 1% 12%

Table 2: To evaluate the compactness we measure the mem-

ory consumption for the scenarios shown in fig 4. We use

the following values: Fac Tris/Geo: Number of triangles and

size of the facade polygons if stored in a non-indexed VBO

layout on the GPU (F-shade needs 56bytes per vertex). F-
shade: The size of our F-shade representation for the facade

details. Full Tris/Geo: Number of triangles and size if the

facade model is fully represented in geometry (20bytes per

vertex).

with varying amount of repetition, (2) a random distribu-
tion of eight designs on a 100x100 facade grid and (3) the
Munich city model consisting of 42’000 uniquely generated
buildings.

Compactness: We evaluate the compactness of the F-

shade representation by measuring the memory consump-
tion of the shade rules and the facade polygons in GPU mem-
ory. Table 2 compares our results (F-shade) against storing
the facade structures using polygons (Full Geo). The total
model size for F-shade is the sum of the facade polygons
and the F-shade representation. Compared to the full facade
geometry, the F-shade representation is about 5-30 times
smaller for single facades, about 100 times smaller for the

Scene Single Fac Fac 10k Munich

Cam 1: Pass 1 1/1/2 1/1/2 8/8/9
Cam 1: Rules 1/1/3 1/2/7 1/5/10
Cam 1: Total 1/2/5 2/4/9 9/14/19

Cam 2: Pass 1 1/1/2 1/1/2 8/8/9
Cam 2: Rules 2/2/3 3/4/5 1/3/5
Cam 2: Total 3/4/5 5/6/7 10/12/14

”Unity” (Avg) <0.5 3 160 (Ext)

Table 3: The min/mean/max frame-times in ms of the de-

ferred shading passes. We compare our results with the aver-

age render speed of the commercial render engine “Unity”.

Please note that the frame time for the Munich model in

Unity has been extrapolated. The second render pass has

been omitted as it is constant and negligible.

facade grid and 8 times smaller for the Munich model. These
numbers show that the size of F-shade is not directly depen-
dent on the number of facades in a model but has instead a
strong dependency on the number of different facade designs
and the amount of repeating patterns in the model (e.g. when
comparing facade M1 to M2 and M8, M1 has the smallest
rules because it exposes a higher number of repetitions).

We omitted the size of the texture atlas in tab. 2 as it is
used in the F-shade and the full geometry representation in
the same way. The size of the uncompressed atlas for the
Munich model is 12MB. If we represented our facade de-
signs M1 to M8 as single textures, they would have an av-
erage size of 20MB. Extrapolating this to the 300k facade
designs in the Munich model, a model representation which
uses one single texture per facade is clearly not practical.

Figure 5: The top row shows the Munich model, the bottom

row shows the Paris model. The frames on the left show de-

tailed views with screen-space displacement enabled.

Decoding Speed: We evaluate our shading algorithm for
the three test scenes. We use two different camera anima-
tions: Cam1 zooms to the model from far away and Cam2

pans over the model. Fig. 5 contains selected frames from
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the accompanying video in the supplemental material, fig. 6
exemplifies five frames from the Cam1 sequence, and fig. 7
shows the resulting timings for the three passes of our de-
ferred shading implementation. Table 3 summarizes and
compares the rendering times with the state-of-the-art ren-
dering engine “Unity“. Because the model consumes over
4GB of memory, we only managed to load a part of the
Munich model into Unity, which renders at 40ms per frame
with 10mio triangles. As expected, rendering using F-shade

is slower as geometry based rendering for smaller models,
but becomes more efficient for larger models (about 10 times
faster).

6. Discussion

Our results show that for large city models with many tex-
tures our F-shade representation is smaller and renders faster
in-core than a model which contains all the facade details as
geometry. In the following, we examine a number of aspects
in more detail.

Limitations of the Representation: In our current im-
plementation we are limited to one constant displacement
value per rectangular region. However, a straightforward ex-
tension could include additional displacement maps for finer
structures, such as brick and mortar or facade ornaments.
Our representation is therefore also suitable for complex de-
tails that can be stored in displacement maps. Another sim-
ple extension would be to use classification maps to label
facade regions thereby encoding higher level semantics. In
contrast, F-shade will not work well if each rectangular re-
gion has a unique texture or if the arrangement of elements
is not aligned properly. Therefore, F-shade is not a solution
to encode general textures and structures.

Resolution Independence: F-shade encodes rectangular
regions on a facade polygon where the boundaries can have
arbitrary floating point locations. If we resample a facade
structure into a single image, the boundary locations have to
be rounded to the closest pixel locations. These errors will
be most visible for facade elements that are thin compared
to the size of a facade, such as window frames.

Rule Complexity: One important design choice of the
grammar is to decide on how many types of rules to use.
An alternative approach would be to simplify the rule set
even further. For example, we also experimented with gram-
mars that only have simple split rules. These grammars more
closely resemble axis aligned BSP-trees or kD-trees. How-
ever, we manipulate several variables ((s, t), depth, mate-
rial parameters, texture atlas id) and our experiments indi-
cate that we need to store changes to the variables at inte-
rior nodes to ensure compactness. Consequently, the deriva-
tion of the grammar cannot be greatly simplified as most of
the operations manipulate different state variables. We also
tested the combination of relative and absolute split dimen-
sions which allows for better size-independent operations.

Unfortunately, we found the additional branching necessary
to evaluate these mixed arguments to be too expensive.

Render Performance: The render times in fig. 7 show
three major dependencies: (1) a major dependency on the
number of active pixels (i.e. pixels which are inside a fa-
cade), (2) a strong dependency on the number of active pix-
els belonging to different facade designs, (3) a minor de-
pendency on the size of the F-shade rules. The first depen-
dency is explained by the rule evaluation time being approx-
imately proportional to the number of evaluated pixels. The
second observation is explained by the thread divergence of
CUDA if a lot of different facades are rendered. The third de-
pendency is explained by the impaired look-up performance
when the F-shade rule arrays get larger (the arrays are imple-
mented as cached CUDA textures). Therefore, the slowest
frame-times correspond to situations when a large number
of pixels are covered by the model, but there is little coher-
ence between neighboring pixels.

We do not yet use any visibility-based acceleration
method to render the facade polygons, therefore the first ren-
der pass is more or less constant and defines the lower bound
of the frame time (about 1ms for the small models and 8ms
for the Munich model). We confirmed the performance of
the first pass with other VBO based renderers which take
5ms to render the Munich model without facade details. The
difference of 3ms is due to the multiple render targets in
our implementation, which make the first render pass also
fragment-limited. Visibility computation would make a big
difference on the number of rendered polygons, especially at
street level.

Render Quality: Anti-aliasing is not yet included in our
rendering method. An extension that works well with de-
ferred shading is a version of multi-sampling that evaluates
more samples close to internal edges of a facade and uses
alpha-blending to smoothen the transitions between facade
regions. A related idea is to stop the evaluation of scopes that
have a similar size as a pixel and return a reference to a (pre-
computed) average color instead. As a positive side-effect,
the latter method will also serve as a level-of-detail con-
straint and reduce evaluation time. Our displacement mapper
is designed for the typical rectangular regions inside a facade
and cannot deliver the same visual quality as full geometry
rendering.

Future Work: Our current displacement mapping imple-
mentation is basically a simple ray caster. In a future im-
plementation, it would be worthwhile to explore the use of
F-shade in a pure ray tracing architecture. Another interest-
ing extension for devices with low graphics memory would
be to develop a rule optimization scheme which trades visual
quality for smaller rule size (i.e. a ”lossy“ compression). In
a similar way, lossy compression could also be applied to
the facade regions itself by merging together similar texture
regions, e.g. to reduce the number of different window types.
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Figure 6: The figure shows five frames of the ”Cam 1: City Model“ sequence as measured in fig. 7. The Munich city model is

the biggest test set we evaluated. Such a large model can be easily rendered in the core independently from the point of view.

On the left, the whole city model is visible and on the right, facades details are recognizable - and both viewpoints are rendered

at almost similar frame time using F-shade.

Figure 7: We measured the total frame-times (in black) for the three test scenes (single facade M1; facade grid; Munich model)

and two camera animations (Cam 1: zoom, Cam 2: pan) at 1024x768 pixels resolution. We measure the timings of the three

main components of our deferred shading algorithm (section 3): (1) The first render pass is the rasterization step (in red). (2)

The second pass executes the F-shade rules using CUDA (in green). (3) Finally, a GLSL shader reads the evaluated F-shade
rules and performs texture look-up and Phong shading (in blue, almost zero). The screen-space displacement was disabled for

the measurements. See the accompanying video and table 3 for a visual correlation of frame-time and camera position. We

suppose that the oscillation between the two visible values in the first render pass (red) is an effect of the VBO handling of the

GPU driver.

7. Conclusion

In this paper we described F-shade, a grammar-based rep-
resentation for facade textures. We argued how the demands
of rendering applications require a facade representation to
be compact and to provide fast per-pixel access. Our results
show that our representation is able to fulfill these two goals
simultaneously in contrast to existing alternatives.
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Appendix A: F-shade Syntax

Rule = Predecessor ❀ ShadingOp

ShadingOp = Split | Repeat | Trafo | TrafoTex | LookupTex

| Material | Overlay | Multiply

Split = "Split" Axis Float Successor {Float Succes-

sor}

Repeat = "Repeat" Axis Float Successor

Trafo = "Trafo" Float Float Float Float Float Suc-

cessor

TrafoTex = "TrafoTex" Float Float Float Float Succes-

sor

NormTex = "NormTex" Successor

LookupTex = "LookupTex" TextureID

Material = "Material" Float Float Float Float Float

Float Float Float Successor

Overlay = "Overlay" Successor Successor {Successor}

Multiply = "Multiply" Successor Successor {Successor}

Predecessor = String | Integer

Successor = String | Integer

TextureID = Integer

Axis = "u" | "v"
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