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GRAMMAR FUNCTORS AND COVERS: 

FROM NON-LEFT-RECURSIVE TO 

GREIBACH NORMAL FORM GRAMMARS 

ANTON NIJHOLT 
Abstract. 

Attention is paid to structure preserving properties of transformations from a non-left- 
recursive context-free grammar to a Greibach normal form grammar. It is demonstrated 
that such a transformation cannot only be ambiguity preserving, but also both cover and 
functor relations between grammars or their associated syntax-categories can be obtained 
from such a transformation. 

Keywords: context-free grammar, cover, syntax-category, grammar functor, Greibach 
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1. Introduction. 

In this paper we consider some structure preserving properties of 

transformations from non-left-recursive context-flee grammars  to context-free 
grammars in Greibach normal form (GNF). Two approaches are followed. In the 
syntax-categorical approach of transformations one is interested in the existence 
of a (grammar) functor between certain categories associated with each grammar.  
The existence of such a grammar  functor leads to the conclusion that the syntactic 
structure has been preserved by the transformation. In the cover approach of 
transformations (see for example Gray and Harrison [3] and Aho and Ullman 
[1]) the primary interest is the relationship between the parses of the grammar  
which is obtained after the transformation and the parses of the original grammar.  
If such a simple relationship (a homomorphism) exists then the new grammar  can 
be used for parsing and its parses can be mapped on the parses of the original 
grammar. The categorical approach for this special transformation to G N F  has 
been discussed by Benson [23. 

Preliminaries. 

The length of a string ~ is denoted by M; if Ict[__> k then (k)~ denotes the first k 
symbols of c~, else it denotes e; analogously, we have ~tk) for the last k symbols of cc 
The empty string will be denoted by e. 

Let G=(N,Z,P,S) be a context-flee grammar  (CFG). Elements of N 
(nonterminal symbols) will be denoted by upper-case Roman letters, elements of 
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2; (terminal symbols) by lower-case Roman letters and elements of V* = (N U 2)* 
by lower-case Greek letters. The productions in P__ N × V + are assumed to be 
uniquely numbered. S is the startsymbol. 

A leftmost derivation of ~ ~ V * from A e N is denoted by A ~ ~, where 
(the left parse) is the sequence of numbers of the productions which are used, in 
the proper order, in this derivation. The CFG G is said to be non-left-recursive if 
there are no derivations of the form A = ~  Act. CFG G is said to be in Greibach 
normal form (GNF) if all productions are of the form A -~ as, where a e E and 

~ N*. The grammars in this paper are assumed to be proper (Aho and Ullman 
[1]). The language of a CFG G is denoted by L(G). 

For the concept of syntax category we follow Benson [2]. Let G = (N, 2, P, S) be 
a CFG. Then (V*,P) generates the free strict monoidal category S(G) which will 
be called the syntax category of G. Here, objects are elements of V* and 
morphisms are derivations (or better, equivalence classes of similar derivations) 
from one object to the other. 

A well-known relation for morphisms i~ the following: 

(L°g l )  q- (f2°g2) = (fl +f2)°(gl +g2) 

where we assume that domains and codomains are defined properly. Here, o 
denotes composition of morphisms (in general o will be omitted) and + stands for 
the concatenation of morphisms, that is, if h i :  ct --', fl and h2: ? ~ c5, then hi 
+ h 2: :ty ~ flc~ stands for the derivation which is composed by first going from ~? 
to fly by h i and then from fly to fib by h 2. 

For each object a, the categorical identity at a is denoted by i,: a -* a. 

2. Grammar  functors and covers. 

First we recall the definitions of left cover (Aho and Ullman [I])  and externally 
fixed grammar functor (Benson [2]). 

DEFINITION 2.1. A CFGG'=(N',r,,P',S') is said to left cover a C F G G  
= (N,2;,P,S) if there exists a (cover-)homomorphism q~: P'--~ P* such that 

(i) if S' ~' = ~  w, then S ~ w, and 

(ii) if S ~ = ~  w, then there exists n' such that S' ' '  w and q~(n')=m 

We do not distinguish between productions and their numbers. Notice that we 
have ~o: P' --~ P* instead ofq~: P' -~ P, that is, q~ may map a production of P' on 
a (possibly empty) string of productions of P. From the definition it follows that 
L(G') = L(G). Given a sentence w e L(G), its degree of ambiguity with respect to G, 
notation <w, G>,'is the number of left parses for w. It follows that (w, G> __< <w, G'>. 

DEFINITION 2.2. Let G '=  (N',r,',P',S') and G =  (N,X, P,S) be two context-free 
grammars. A grammar functor F: S(G') ~ S(G) is a functor which preserves 
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concatenation (both for objects and morphisms) and the empty string, and which 
is defined as follows 

(i) F(A) ~ V* for all A 6 N', 
(ii) F(a) ~ ,Y_,* for all a 6 Z', and 

(iii) F(S')=S. 

F is externally fixed if S, '=Z and F(a)=a for all a 6 Z'. 

Except for condition (i) Definition 2.2 is similar to the definition in Benson [2]. 
In that paper F(A) is in N*, for each A e N'. To define a grammar  functor 
F: S(G')-~ S(G) it is in general sufficient to define F on V '=  (N'U Z') and on P'. 
Free generation takes care of the rest. In this paper we will only make use of 
externally fixed grammar  functors. Henceforth grammar  functor will usually stand 
for externally fixed grammar  functor. From Definition 2.2. it follows that 
L(G')~=L(G). 

Notice that without further restrictions on F we cannot relate (w ,G ' )  to 
(w ,G) .  A grammar  functor F can be restricted to the HOM-sets  of S(G'). Let 
~,/3 ~ V '*, then the HOM-set  of (c~, 13) is denoted by S(G')(~,/3) and the restriction 
of F to this HOM-set  is denoted by 

F(c¢,/3): S(G')(~,/3) ~ S(G)(F(cO, F(/3)): f --, F ( f )  . 

In the case of covers we are only interested in the relationship between derivations 
from the start symbol to sentences (represented by parses) of G' and G. That is, in 
terms of functors, we are only interested in relations between S(G')(S',w) and 
S(G)(S,w) for each w ~ L(G'). 

The notion of cover as defined in Definition 2.1 can now be compared with a 
g rammar  functor F which has the property that for each w~L(G'),  F(S',w) is a 
surjection. In this case L(G') = L(G) and (w, G ' )  ~ (w, G). 

For grammar  functors we can go into more details. A grammar  functor is said 
to be full if for each pair of objects ~t, f l~ V'*, F(ct,/3) is surjective; it is said to be 

externally full if for each pair of objects c~ 6 V'* and w ~ Z'*, F(ct, w) is surjective. 

A grammar  functor is faithful if for each pair of objects (7,/3), F(~,/3) is injective. 
Obviously, for covers we are interested in injectivity of F(S',w). If a cover- 
homomorphism is such that (w, G ' ) =  (w, G) then we call the cover faithful. 

3. A transformation to Greibach normal form. 

The usual transformation (Aho and Ullman's algorithm 2.14) to a C F G  G' in 

G N F  from a non-left-recursive C F G  G is in general not ambiguity preserving. 
That  is, we can have the situation that (w, G ' )  is less than (w, G). In this case we 
can not expect to have a left cover from G' to G or a g rammar  functor F such that 
F(S', w) is surjective for all w ~ L(G'). 

Despite this negative observation it is possible to obtain a C F G  G' in G N F  
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from a non-left-recursive grammar  G in such a way that G' left covers G. A similar 
result can be obtained for grammar  functors. To show this we will use a variant of 
the standard method. 

The standard transformation to G N F  is also used in Benson [3]. It is claimed 
that this yields an externally fixed grammar  functor which is faithful and 
externally full. However, to obtain this result the transformation which is given 
yields a CFG G' in G N F  which may have productions which are the same except 
for their index. One may consider this as introducing semantical ambiguity (Aho 
and Ullman [1]), that is, syntactical ambiguity is replaced by semantical 
ambiguity. 

We consider proper and non-left-recursive grammars which may have single 
productions (i.e. of the form A ~ B). Such a g rammar  is said to be very proper if 
no single production has left-hand side S. Note that due to this condition a 
situation S =g* a, S = ~  a with a e 52 and rc # p cannot occur. In this situation a 
cover, for any transformation to GNF,  cannot be defined. 

The transformations which are used in this section are simple and only require 
straightforward proofs. Therefore detailed proofs are omitted. Since the cover 
relation is transitive we can obtain the cover result by composing different steps. 
The first algorithm deals with single productions. After the algorithms there is a 
short discussion on the grammar  functor result. 

In the algorithms we start with the productions of P. If A - ~  ~ is the ith 
production in P then we write A---,e(i). In the subsequent steps of the 
algorithm new productions are introduced. The cover-homomorphism will be 
defined implicitly in the algorithm with the notation A ~ ~(rc), that is, a newly 
obtained production A ~ e will be mapped on a string ~ of productions of P. 

Algorithm 3.1. 
Input. A very proper non-left-recursive C F G  G = (N, I2, P, S). 
Output. A C F G  G' = (N', Z, P', S) such that G' has no single productions and G' 

left covers G. Moreover, the cover is faithful. 
Method. Let 15 be the subset of P which consists of all single productions. 

Initially set P1 = P - P  and N ' =  N. Now there are three steps. 
(i) Let B ~ N, B ~ C ~ 7in G, with n'4=~ and where 171 > 2  or ), E 2;. Set n 

=Wi. Add [Brr]--, 7(n ) to PI and [B~] to N'. 
(ii) Set P'=O. Define a homomorphism h: N ' U S  -<, NU2;, by defining h(X) 

= X  for each X ~ N U S ,  and h([ATr])=A for each [An] ~ N ' - N .  For 
each production C ~ 7(re) in P1 (hence, C ~ N' and 1' ~ (N U S) +) add the 
set {C ~ 7 ' (n ) [C- -~  ~(Tr) in Pl and h(7')=~,} to P'. 

(iii) Remove all useless symbols. I 

In the following algorithm we assume that in the right-hand sides of the 
productions of the input grammar  a terminal symbol can only occur in the left- 
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most position. This can be done without loss of generality; for example, a 
production A-~.~afl(n), c~+e, can be replaced by A--'O~Hafl(n) and 

H,,--~ a(e). 

ALgorithm 3.2. 
Input. A proper, non-lefl-recursive CFG G = (N, 22, P, S) where all productions 

are of the form A --~ ~, with ~ ~ ZN* U NN +. 
Output. A CFG G'=  (N' ,Z,P' ,S) in GNF, G' left covers G and the cover is 

faithful. 
Method. Let/5 be the subset of P which consists of all productions of the form 

A ~ a~, c~ ~ N*. Set P1 =/5 and N'=N.  There are three steps. 
(i) For each A e N and a eZ ,  if in G, A ~ Ca' @ a e ,  where n ' , e ,  C e N  

and e',~ s N +, then add A --~ a[~l~c~n]a~r-l)(rc) to P r  Here, n'i=n, tel=r,  
and [~a~en] is a newly introduced nonterminal which is added to N'. 

(ii) Set P ' =  P1. Let [An] be a newly introduced nonterminal symbol. Then, for 
each )' e ZN'* such that A ~ 7(Q) is in P~, add the production [An] 
--~ ),(¢) to P'. 

(iii) Remove all useless symbols. II 

In the following Corollary the results of the two algorithms are collected. 

COROLLARY 3.1. Each very proper non-left-recursive CFG G =  (N, Z, P,S) is left 
covered by a CFG G' in GNF. The cover is faithful. 

With some simple observations we show the existence of an externally fixed and 
externally full and faithful grammar functor H:  S(G') -~ S(G) for any proper and 
non-left-recursive CFG G which is transformed by our Algorithms 3.1 and 3.2 to a 
CFG G' in GNF. Notice that faithfulness and external fullness are preserved under 
functor composition. Since in each production C ~ 7(n)  which appears in the 
transformations n stands for a corresponding leftmost derivation in the image 
grammar (notice that for less simpie left covers this is not always necessary) we 
can use the notation n also to denote the corresponding morphism. To avoid 
confusion we will use ~ for the morphism. For  example, a leftmost derivation 

A + By + coy + bey 

has a corresponding left parse 123, while the corresponding morphism of S (G) is 
1 ~ (2 +iD) (3 + ico). This morphism follows uniquely from the string 123. 

CLAIM 3.1. Algorithm 3.1 yields a CFG G' without single productions and such 
that there exists an externally fixed and externally full and faithful grammar 
functor H: S(G')---, S(G). 



78 A N T O N  N I J H O L T  

PROOF. We have to define H on the objects and the morphisms of S(G'). For the 
objects it is sufficient to define H on V', which is clone by letting H ( X ) = X  for 
each X e V and H([Bn])=B for each [Bn] ~ N ' - N .  For the morphisms it is 
sufficient to define H on P', which is done by letting H(A --~ ~'(rc))=~ for each 
production A --* ct'(n) in P'. 

Notice that this is a proper definition. If A --, ct '(n) is in P' then n represents a 
leftmost derivation from H(A) to H(~'), since H on N' coincides with 
homomorphism h in step (ii) of the algorithm, and n runs from h(A) to h(~'). Now 
the proof can proceed in a straight forward way. • 

The condition mentioned before Algorithm 3.2 can also be handled functorially. 
For  instance, for the given example the functor H should satisfy H(Ha)=a, 
H(A~Haf l )=A- -*~a f l  and H ( H a ~ a ) = i  a. This can be generalized in an 
obvious way and clearly such a functor is faithful and externally full. 

CLAIM 3.2. Algorithm 3.2 yields a CFG G' in G N F  such that there exists an 
externally fixed, externally full and faithful grammar functor H: S(G') ~ S(G). 

PROOF. The method which is used in Algorithm 3.2 is functorial as well. For 
each newly introduced nonterminal of the form [(1)ctn] define H([(1)~n])=(1)~. 
Furthermore, define for each newly introduced production A ~ a[(l)~n]c~ ~'- 1)(re) 
in step (i), H(A ~ a[(1)~n]~('-l)(n))=~. Moreover, for each production [An] 

Y(0), newly introduced in step (ii), H([An] ~ y(O))=O. For all other 
nonterminal symbols and productions, H is the identical functor. Now the proof 
can proceed in a straight forward way. • 
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