
BIT 19 (1979), 73 78

GRAMMAR FUNCTORS AND COVERS:

FROM NON-LEFT-RECURSIVE TO

GREIBACH NORMAL FORM GRAMMARS

ANTON NIJHOLT
Abstract.

Attention is paid to structure preserving properties of transformations from a non-left-
recursive context-free grammar to a Greibach normal form grammar. It is demonstrated
that such a transformation cannot only be ambiguity preserving, but also both cover and
functor relations between grammars or their associated syntax-categories can be obtained
from such a transformation.

Keywords: context-free grammar, cover, syntax-category, grammar functor, Greibach
normal form.

1. Introduction.

In this paper we consider some structure preserving properties of

transformations from non-left-recursive context-flee grammars to context-free
grammars in Greibach normal form (GNF). Two approaches are followed. In the
syntax-categorical approach of transformations one is interested in the existence
of a (grammar) functor between certain categories associated with each grammar.
The existence of such a grammar functor leads to the conclusion that the syntactic
structure has been preserved by the transformation. In the cover approach of
transformations (see for example Gray and Harrison [3] and Aho and Ullman
[1]) the primary interest is the relationship between the parses of the grammar
which is obtained after the transformation and the parses of the original grammar.
If such a simple relationship (a homomorphism) exists then the new grammar can
be used for parsing and its parses can be mapped on the parses of the original
grammar. The categorical approach for this special transformation to G N F has
been discussed by Benson [23.

Preliminaries.

The length of a string ~ is denoted by M; if Ict[__> k then (k)~ denotes the first k
symbols of c~, else it denotes e; analogously, we have ~tk) for the last k symbols of cc
The empty string will be denoted by e.

Let G=(N,Z,P,S) be a context-flee grammar (CFG). Elements of N
(nonterminal symbols) will be denoted by upper-case Roman letters, elements of

Received July t0, 1978. Revised October 10, 1978.

74 ANTON NIJHOLT

2; (terminal symbols) by lower-case Roman letters and elements of V* = (N U 2)*
by lower-case Greek letters. The productions in P__ N × V + are assumed to be
uniquely numbered. S is the startsymbol.

A leftmost derivation of ~ ~ V * from A e N is denoted by A ~ ~, where
(the left parse) is the sequence of numbers of the productions which are used, in
the proper order, in this derivation. The CFG G is said to be non-left-recursive if
there are no derivations of the form A = ~ Act. CFG G is said to be in Greibach
normal form (GNF) if all productions are of the form A -~ as, where a e E and

~ N*. The grammars in this paper are assumed to be proper (Aho and Ullman
[1]). The language of a CFG G is denoted by L(G).

For the concept of syntax category we follow Benson [2]. Let G = (N, 2, P, S) be
a CFG. Then (V*,P) generates the free strict monoidal category S(G) which will
be called the syntax category of G. Here, objects are elements of V* and
morphisms are derivations (or better, equivalence classes of similar derivations)
from one object to the other.

A well-known relation for morphisms i~ the following:

(L°g l) q- (f2°g2) = (fl +f2)°(gl +g2)

where we assume that domains and codomains are defined properly. Here, o
denotes composition of morphisms (in general o will be omitted) and + stands for
the concatenation of morphisms, that is, if h i : ct --', fl and h2: ? ~ c5, then hi
+ h 2: :ty ~ flc~ stands for the derivation which is composed by first going from ~?
to fly by h i and then from fly to fib by h 2.

For each object a, the categorical identity at a is denoted by i,: a -* a.

2. Grammar functors and covers.

First we recall the definitions of left cover (Aho and Ullman [I]) and externally
fixed grammar functor (Benson [2]).

DEFINITION 2.1. A CFGG'=(N',r,,P',S') is said to left cover a C F G G
= (N,2;,P,S) if there exists a (cover-)homomorphism q~: P'--~ P* such that

(i) if S' ~' = ~ w, then S ~ w, and

(ii) if S ~ = ~ w, then there exists n' such that S' ' ' w and q~(n')=m

We do not distinguish between productions and their numbers. Notice that we
have ~o: P' --~ P* instead ofq~: P' -~ P, that is, q~ may map a production of P' on
a (possibly empty) string of productions of P. From the definition it follows that
L(G') = L(G). Given a sentence w e L(G), its degree of ambiguity with respect to G,
notation <w, G>,'is the number of left parses for w. It follows that (w, G> __< <w, G'>.

DEFINITION 2.2. Let G '= (N',r,',P',S') and G = (N,X, P,S) be two context-free
grammars. A grammar functor F: S(G') ~ S(G) is a functor which preserves

GRAMMAR FUNCTORS AND COVERS:, , . 75

concatenation (both for objects and morphisms) and the empty string, and which
is defined as follows

(i) F(A) ~ V* for all A 6 N',
(ii) F(a) ~ ,Y_,* for all a 6 Z', and

(iii) F(S')=S.

F is externally fixed if S, '=Z and F(a)=a for all a 6 Z'.

Except for condition (i) Definition 2.2 is similar to the definition in Benson [2].
In that paper F(A) is in N*, for each A e N'. To define a grammar functor
F: S(G')-~ S(G) it is in general sufficient to define F on V '= (N'U Z') and on P'.
Free generation takes care of the rest. In this paper we will only make use of
externally fixed grammar functors. Henceforth grammar functor will usually stand
for externally fixed grammar functor. From Definition 2.2. it follows that
L(G')~=L(G).

Notice that without further restrictions on F we cannot relate (w ,G ') to
(w ,G) . A grammar functor F can be restricted to the HOM-sets of S(G'). Let
~,/3 ~ V '*, then the HOM-set of (c~, 13) is denoted by S(G')(~,/3) and the restriction
of F to this HOM-set is denoted by

F(c¢,/3): S(G')(~,/3) ~ S(G)(F(cO, F(/3)): f --, F (f) .

In the case of covers we are only interested in the relationship between derivations
from the start symbol to sentences (represented by parses) of G' and G. That is, in
terms of functors, we are only interested in relations between S(G')(S',w) and
S(G)(S,w) for each w ~ L(G').

The notion of cover as defined in Definition 2.1 can now be compared with a
g rammar functor F which has the property that for each w~L(G'), F(S',w) is a
surjection. In this case L(G') = L(G) and (w, G ') ~ (w, G).

For grammar functors we can go into more details. A grammar functor is said
to be full if for each pair of objects ~t, f l~ V'*, F(ct,/3) is surjective; it is said to be

externally full if for each pair of objects c~ 6 V'* and w ~ Z'*, F(ct, w) is surjective.

A grammar functor is faithful if for each pair of objects (7,/3), F(~,/3) is injective.
Obviously, for covers we are interested in injectivity of F(S',w). If a cover-
homomorphism is such that (w, G ') = (w, G) then we call the cover faithful.

3. A transformation to Greibach normal form.

The usual transformation (Aho and Ullman's algorithm 2.14) to a C F G G' in

G N F from a non-left-recursive C F G G is in general not ambiguity preserving.
That is, we can have the situation that (w, G ') is less than (w, G). In this case we
can not expect to have a left cover from G' to G or a g rammar functor F such that
F(S', w) is surjective for all w ~ L(G').

Despite this negative observation it is possible to obtain a C F G G' in G N F

76 ANTON NIJttOLT

from a non-left-recursive grammar G in such a way that G' left covers G. A similar
result can be obtained for grammar functors. To show this we will use a variant of
the standard method.

The standard transformation to G N F is also used in Benson [3]. It is claimed
that this yields an externally fixed grammar functor which is faithful and
externally full. However, to obtain this result the transformation which is given
yields a CFG G' in G N F which may have productions which are the same except
for their index. One may consider this as introducing semantical ambiguity (Aho
and Ullman [1]), that is, syntactical ambiguity is replaced by semantical
ambiguity.

We consider proper and non-left-recursive grammars which may have single
productions (i.e. of the form A ~ B). Such a g rammar is said to be very proper if
no single production has left-hand side S. Note that due to this condition a
situation S =g* a, S = ~ a with a e 52 and rc # p cannot occur. In this situation a
cover, for any transformation to GNF, cannot be defined.

The transformations which are used in this section are simple and only require
straightforward proofs. Therefore detailed proofs are omitted. Since the cover
relation is transitive we can obtain the cover result by composing different steps.
The first algorithm deals with single productions. After the algorithms there is a
short discussion on the grammar functor result.

In the algorithms we start with the productions of P. If A - ~ ~ is the ith
production in P then we write A---,e(i). In the subsequent steps of the
algorithm new productions are introduced. The cover-homomorphism will be
defined implicitly in the algorithm with the notation A ~ ~(rc), that is, a newly
obtained production A ~ e will be mapped on a string ~ of productions of P.

Algorithm 3.1.
Input. A very proper non-left-recursive C F G G = (N, I2, P, S).
Output. A C F G G' = (N', Z, P', S) such that G' has no single productions and G'

left covers G. Moreover, the cover is faithful.
Method. Let 15 be the subset of P which consists of all single productions.

Initially set P1 = P - P and N ' = N. Now there are three steps.
(i) Let B ~ N, B ~ C ~ 7in G, with n'4=~ and where 171 > 2 or), E 2;. Set n

=Wi. Add [Brr]--, 7(n) to PI and [B~] to N'.
(ii) Set P'=O. Define a homomorphism h: N ' U S -<, NU2;, by defining h(X)

= X for each X ~ N U S , and h([ATr])=A for each [An] ~ N ' - N . For
each production C ~ 7(re) in P1 (hence, C ~ N' and 1' ~ (N U S) +) add the
set {C ~ 7 ' (n) [C- -~ ~(Tr) in Pl and h(7')=~,} to P'.

(iii) Remove all useless symbols. I

In the following algorithm we assume that in the right-hand sides of the
productions of the input grammar a terminal symbol can only occur in the left-

GRAMMAR FUNCTORS AND C O V E R S : . . . 77

most position. This can be done without loss of generality; for example, a
production A-~.~afl(n), c~+e, can be replaced by A--'O~Hafl(n) and

H,,--~ a(e).

ALgorithm 3.2.
Input. A proper, non-lefl-recursive CFG G = (N, 22, P, S) where all productions

are of the form A --~ ~, with ~ ~ ZN* U NN +.
Output. A CFG G'= (N' ,Z,P' ,S) in GNF, G' left covers G and the cover is

faithful.
Method. Let/5 be the subset of P which consists of all productions of the form

A ~ a~, c~ ~ N*. Set P1 =/5 and N'=N. There are three steps.
(i) For each A e N and a eZ , if in G, A ~ Ca' @ a e , where n ' , e , C e N

and e',~ s N +, then add A --~ a[~l~c~n]a~r-l)(rc) to P r Here, n'i=n, tel=r,
and [~a~en] is a newly introduced nonterminal which is added to N'.

(ii) Set P ' = P1. Let [An] be a newly introduced nonterminal symbol. Then, for
each)' e ZN'* such that A ~ 7(Q) is in P~, add the production [An]
--~),(¢) to P'.

(iii) Remove all useless symbols. II

In the following Corollary the results of the two algorithms are collected.

COROLLARY 3.1. Each very proper non-left-recursive CFG G = (N, Z, P,S) is left
covered by a CFG G' in GNF. The cover is faithful.

With some simple observations we show the existence of an externally fixed and
externally full and faithful grammar functor H: S(G') -~ S(G) for any proper and
non-left-recursive CFG G which is transformed by our Algorithms 3.1 and 3.2 to a
CFG G' in GNF. Notice that faithfulness and external fullness are preserved under
functor composition. Since in each production C ~ 7(n) which appears in the
transformations n stands for a corresponding leftmost derivation in the image
grammar (notice that for less simpie left covers this is not always necessary) we
can use the notation n also to denote the corresponding morphism. To avoid
confusion we will use ~ for the morphism. For example, a leftmost derivation

A + By + coy + bey

has a corresponding left parse 123, while the corresponding morphism of S (G) is
1 ~ (2 +iD) (3 + ico). This morphism follows uniquely from the string 123.

CLAIM 3.1. Algorithm 3.1 yields a CFG G' without single productions and such
that there exists an externally fixed and externally full and faithful grammar
functor H: S(G')---, S(G).

78 A N T O N N I J H O L T

PROOF. We have to define H on the objects and the morphisms of S(G'). For the
objects it is sufficient to define H on V', which is clone by letting H (X) = X for
each X e V and H([Bn])=B for each [Bn] ~ N ' - N . For the morphisms it is
sufficient to define H on P', which is done by letting H(A --~ ~'(rc))=~ for each
production A --* ct'(n) in P'.

Notice that this is a proper definition. If A --, ct '(n) is in P' then n represents a
leftmost derivation from H(A) to H(~'), since H on N' coincides with
homomorphism h in step (ii) of the algorithm, and n runs from h(A) to h(~'). Now
the proof can proceed in a straight forward way. •

The condition mentioned before Algorithm 3.2 can also be handled functorially.
For instance, for the given example the functor H should satisfy H(Ha)=a,
H(A~Haf l)=A- -*~a f l and H (H a ~ a) = i a. This can be generalized in an
obvious way and clearly such a functor is faithful and externally full.

CLAIM 3.2. Algorithm 3.2 yields a CFG G' in G N F such that there exists an
externally fixed, externally full and faithful grammar functor H: S(G') ~ S(G).

PROOF. The method which is used in Algorithm 3.2 is functorial as well. For
each newly introduced nonterminal of the form [(1)ctn] define H([(1)~n])=(1)~.
Furthermore, define for each newly introduced production A ~ a[(l)~n]c~ ~'- 1)(re)
in step (i), H(A ~ a[(1)~n]~('-l)(n))=~. Moreover, for each production [An]

Y(0), newly introduced in step (ii), H([An] ~ y(O))=O. For all other
nonterminal symbols and productions, H is the identical functor. Now the proof
can proceed in a straight forward way. •

R E F E R E N C E S

1. A. V. Aho and J. D. Ullman, The theory of parsing, translation and compiling, Vol. 1 and 2.,
Prentice-Hall, Englewood Cliffs, N.J. 1972 and 1973.

2. D. B. Benson, Some preservation properties of normal form grammars, Siam J. of Comput. 6 (1977),
381-402.

3. J. N. Gray and M. A. Harrison, On the covering and reduction problems Jbr context-free grammars,
J. Assoc. Comput. Mach. 19 (1972), 675-698.

DEPARTMENT OF MATHEMATICS

VRLIE UNIVERSITEIT

AMSTERDAM

THE NETHERLANDS

