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ABSTRACT

The critical problem of finding efficient implementations for recursive queries with
bound arguments offers many open challenges of practical and theoretical import. In
particular, we need methods that are effective for the general case, such as non-linear
programs, as well as for specialized cases, such as left-recursive linear programs. In this
paper, we propose a novel approach that solves this problem for chain queries, i.e., for
queries where bindings are propagated from arguments in the head to arguments in the
tail of the rules, in a chain-like fashion. The method, called pushdown method, is based
on the fact that each chain query can be associated with a context-free language, and
that a pushdown automaton recognizing this language can be emulated by rewriting the
query as a particular factorized left-linear program. The proposed method generalizes
and unifies previous techniques such as the ‘counting’ and ‘right-, left-, mixed-linear’
methods. It succeeds in reducing many non-linear programs to query-equivalent linear
ones.
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1. Introduction

1.1. Motivations

In the last decade, bottom-up evaluation of logic programs has been favored by
deductive database applications over the traditional top-down approaches [31]. The
effectiveness of the bottom-up execution for bound queries is based on optimizations
techniques that transform the original program into an equivalent one that efficiently
exploits bindings during fixpoint-based computation [5, 6, 8, 14, 22, 23, 26, 31].
These rewriting techniques give the bottom-up computation a wider applicability
range than the top-down computation typical of Prolog, and have been used success-
fully in several deductive database prototypes. As discussed next, however, there
still remains room for major extensions and improvements.

In this paper, we shall deal with chain queries, i.e., queries where bindings are
propagated from arguments in the head to arguments in the tail of the rule, in
a chain-like fashion [7, 9, 35]. For these queries, general optimization methods,
such as the magic-set method [31], do not take advantage of the chain structure,
thus resulting in rather inefficient query executions. Therefore, as chain queries are
rather frequent in practice (e.g., graph applications), there is a need for specialized
optimization methods. Indeed, several specialized methods for chain queries have
been proposed in the literature (e.g., in [1, 7, 9, 11, 35, 36]). Unfortunately, these
methods do not fully exploit the query bindings. On the other hand, the counting
method is very effective for chain queries with bindings, for many chain queries
whose recursive rules are linear; however, this method, although proposed in the
context of general queries [29], looses its simplicity and efficiency [5, 31] for nonlinear
queries, and even for some linear ones.

In this paper we propose a general method that exploits the relationships be-
tween chain queries and context-free languages. We shall show that classical gram-
mar transformations can be applied to optimize our queries. Moreover, the well-
known relationships between context-free languages and pushdown automata allows
us to rewrite our queries into a form that are more suitable for a bottom-up evalu-
ation.

In this paper, we shall use the deductive database language DATALOG [31] for
the sake of simplicity and formal rigor of presentation. However, the techniques
here presented can be used as well to optimize recursive SQL queries (e.g., SQL3
queries) [21].

1.2. Contributions

In this paper, we present a new method for the optimization of bound chain
queries that reduces to the counting method in all cases where the latter method
behaves efficiently. Our approach is based on the fact that a chain query can be
associated to a context-free language and a particular pushdown automaton recog-
nizing this language can be also used to drive the query execution, thus significantly
reducing the complexity, as confirmed by the large number of experiments carried
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out in [13, 12]. The so-called pushdown method translates a chain query into a
factorized left-linear program implementing the pushdown automaton and, there-
fore, it candidates for a powerful rewriting technique for a large class of practical
DATALOG programs.

Besides to giving an efficient execution scheme to bound chain queries and
providing an extension of the counting method, another nice property of the new
method is that it introduces a unified framework for the treatment of special cases,
such as the factorization of right-, left-, mixed-linear programs, as well as the
linearization of non-linear programs. A number of specialized techniques for the
above special cases are known in the literature [16, 17, 22, 23, 30, 35, 37]. Given the
importance and frequency of these special situations in practical applications, novel
deductive systems call for the usage of a unique method that includes all advantages
of the various specialized techniques.

1.3. Related work

The analogies between chain queries and context-free languages were investi-
gated by several authors, including [7, 2, 9, 10, 25, 32, 33]. In particular, the use of
automata to compute general logic queries was first proposed by Lang [18]. Lang’s
method is based on pushing facts from the database onto the stack for later use in
reverse order in the proof of a goal. As the method applies to general queries, it is
not very effective for chain queries; besides, it does not exploit possible bindings.

Independently, Vielle proposed an extension of SLD-resolution which avoids
replicated computations in the evaluation of general logic queries using stacks to
perform a set-oriented computation [34]. Also, this method does not take advantage
of all possible chain structures but it does exploit possible bindings.

The first method that is specialized for chain queries and also based on the
properties of context-free language is due to Yannakakis [36], who proposed a dy-
namic programming technique for implementing a procedure to recognize strings
for general context-free languages that was originally due to Cocke-Younger and
Kasami [3]. This technique turns out to be efficient for unbound queries, but does
not support any mechanism to reduce the search space when bindings are available.

1.4. Plan of the paper

The remainder of this paper is organized as follows. In Section 2, we introduce
the definition of chain programs and queries. In Section 3, we study their connec-
tions with context-free grammars and we present the pushdown method. In Section
4, we show that the analogy with context-free languages can be also exploited to
use classical grammar transformations to rewrite the program in a format that is
more suitable for the application of the pushdown method. Our analysis treats the
class of left-recursive and right-recursive programs. In Section 5, we discuss the
conditions under which the pushdown store can be replaced by a simple counter so
that our method reduces to the counting method. In Section 6, we provide an im-
plementation technique for the pushdown method. Finally, in Section 7, we present
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some experimental results comparing our method with the classical magic-set and
supplementary magic-set methods.

2. Preliminaries

We shall assume that the reader is familiar with basic definitions and concepts
of logic programming [19] and of the DATALOG language [31]. We next present
only definitions and notations that are specific to this paper.

A (logic) program is a set of rules that are negation-free. The definition of a
predicate symbol p in a program P , denoted by def(p), is the set of rules having p

as head predicate symbol. A predicate symbol p is called EDB if all rules in def(p)
are facts (i.e., ground rules with empty body) or IDB otherwise.

Given two (not necessarily distinct) predicate symbols p and q, we say that q ≤ p

if q occurs in the body of some rule in def(p) or there exists a predicate symbol r

such that q ≤ r and r ≤ p; then leq(p) denotes the set of predicate symbols q for
which q ≤ p. We say that p is recursive if p ∈ leq(p) and that p and q are mutually
recursive if leq(p) = leq(q).

A rule with p as head predicate symbol is recursive if p is mutually recursive
with some predicate symbol in the body, linear if it is recursive and there is exactly
one predicate symbol in the body that is mutually recursive with p, left-recursive
(resp., right-recursive) if the first (resp., the last) predicate symbol in the body is
mutually recursive with p.

A query Q is a pair 〈G, P 〉 where G is an atom, called query-goal, and P is a
program. The answer to the query Q, denoted by A(Q), is the set of substitutions
θ for the variables in G such that Gθ is derived from P . Two queries Q = 〈G,P 〉
and Q′ = 〈G′, P ′〉 are equivalent if A(Q) = A(Q′).

Given a DATALOG (i.e., a function-symbol free) program P and a set q of IDB
predicate symbols occurring in P , a rule of P is a q-chain rule if it has the following
general format:

p0(X0, Yn) ← a0(X0, Y0), p1(Y0, X1), a1(X1, Y1), p2(Y1, X2), ...,

an−1(Xn−1, Yn−1), pn−1(Yn, Xn), an(Xn, Yn).

where n ≥ 0, each Xi and Yi, 0 ≤ i ≤ n, are non-empty lists of distinct variables,
each ai(Xi, Yi), 0 ≤ i ≤ n, is a (possibly empty) conjunction of atoms whose
predicate symbols neither are in q nor are mutually recursive with p0, and each pi,
1 ≤ i ≤ n, is a (not necessarily distinct) predicate symbol in q. We require that the
lists of variables are pairwise disjoint; moreover, for each i, 0 ≤ i ≤ n, if ai(Xi, Yi)
is empty then Yi = Xi otherwise the variables occurring in the conjunction are all
those in Xi and in Yi plus possibly other variables that do not occur elsewhere in
the rule.

When n = 0, r reduces to p0(X0, Y0) ← a0(X0, Y0), and r is called an exit chain
rule. Moreover, if a0(X0, Y0) also reduces to the empty conjunction, r reduces to
p0(X0, X0); then, r is called an elementary chain rule. Otherwise (i.e., when n > 0),
r is called a recurrence chain rule. Observe that a chain rule is linear iff it is recursive
and n = 1. A chain rule is left-recursive (resp. right-recursive) iff a0(X0, Y0) (resp.
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an(Xn, Yn)) is the empty conjunction and p1 (resp. pn) is mutually recursive with
p0.

A DATALOG program P is a q-chain program if for each predicate symbol p in
q, every rule in def(p) is q-chain and for each two atoms p(X, Y ), p(Z,W ) occurring
in the body or the head of q-chain rules, X = Z and Y = W modulo renaming of
the variables, thus the binding is passed through any atom of the same predicate
symbol in q always using the same pattern.

A q-bound chain query Q, is a query 〈p(b, Y ), P 〉, where P is a q-chain program,
p is a predicate symbol in q, b is a list bound arguments and Y is a list of variables.

In the next section, we present a method which, given a q-bound chain query
〈p(b, Y ), P 〉, constructs an equivalent left-linear query. The program, so transformed
can be implemented efficiently using the bottom-up least-fixpoint based computa-
tion favored by DATALOG [31]. In order to guarantee that the binding b is propa-
gated through all q-chain rules, we shall assume that q = {p} ∪ q′, q′ ⊆ leq(p) and
for each q in q, every q′ ∈ leq(p) for which q ≤ q′ is in q as well. Moreover, in order
to restrict optimization to those portions which depend from some recursion, we
shall also assume that for each q in q, there exists at least one recursive predicate
symbol q′ in q for which q′ ≤ q.

3. The Pushdown Method

Our method, called pushdown method is based on the analogy of chain queries
and context-free grammars [32]. Without loss of generality, we can view our pred-
icates as binary, by viewing the list of bound and unbound variables, as single
bound/unbound arguments.
Example 1 Consider the simple chain query Q = 〈sg(b, Y), P 〉, on the following
program P defining a non-linear same-generation program:

sg(X0, Y0) ← a(X0, Y0).
sg(X0, Y2) ← b(X0, Y0), sg(Y0, X1), c(X1, Y1), sg(Y1, X2), d(X2, Y2).

To this program, there corresponds a context-free language generated by the gram-
mar

G(Q) = 〈VN , VT , Π, sg〉
where the set of non-terminal symbols VN only includes the axiom sg, VT is the set
of terminal symbols {a, b, c, d} and Π consists of the following production rules:

sg → a
sg → b sg c sg d

Note that the production rules in Π are obtained from the rules of P by dropping
the arguments of the predicates and reversing the arrow.

The language L(Q) generated by this grammar can be recognized by the au-
tomaton shown in Figure 1. This automaton can in turn be implemented by the
following program Π̂

5



b c d a ε

(q0, Z0) (q, sg Z0)
(q, sg) (q, sg c sg d) (q, ε)
(q, c) (q, ε)
(q, d) (q, ε)

Figure 1: Pushdown Automaton for non-linear same generation query

q([ sg ]).
q(T) ← q([ sg | T ]), a.
q([ sg, c, sg, d | T ]) ← q([ sg | T ]), b.
q(T) ← q([ c | T ]), c.
q(T) ← q([ d | T ]), d.

We can now construct a program P̂ that is query-equivalent to P by reintroduc-
ing the variables in Π̂. Thus, both X and Y variables are added to the non-recursive
predicates. For the recursive predicate, we add the variable Y to the occurrences of
the predicate in the head, and the variable X to the occurrences of the predicate
in the body. The resulting program P̂ is:

q(b, [ sg ]).
q(Y, T) ← q(X, [ sg | T ]), a(X, Y).
q(Y, [ sg, c, sg, d | T ]) ← q(X, [ sg | T ]), b(X, Y).
q(Y, T) ← q(X, [ c | T ]), c(X, Y).
q(Y, T) ← q(X, [ d | T ]), d(X, Y).

It is easy to verify that the query 〈q(Y, [ ]), P̂ 〉 is equivalent to the original query.
Observe that the rewritten program is no longer pure DATALOG. 2

In general, let us consider a q-chain query Q = 〈p(b, Y ), P 〉. Let V be the set
of all predicate symbols occurring in the q-chain rules; we have that q is the set
VN of non-terminal symbols and VT = V − VN . We associate to Q the context-free
language L(Q) on the alphabet VT defined by the grammar G(Q) = 〈VN , VT , Π, p〉.
The production rules in Π are as follows:

For each q-chain rule rj of the form:

pj
0(X0, Yn) ← aj

0(X0, Y0), pj
1(Y0, X1), aj

1(X1, Y1), ..., pj
n(Yn−1, Xn), aj

n(Xn, Yn)

with n ≥ 0, there is the production rule:

pj
0 → aj

0 pj
1 aj

1 · · ·aj
n−1 pj

n aj
n

The language L(Q) is recognized by a two-state (q0 and q, respectively initial and
final state) pushdown automaton [24] whose transition table contains one column
for each symbol in VT , plus a column for the symbol ε. The transition table has
one row for the pair (q0, Z0), where Z0 is the starting pushdown symbol, and one
row for each pair (q, v) with v ∈ V . (Note that, for the sake of presentation,
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aj
0 aj

1 · · · aj
n ε

(q0, Z0) (q, p Z0)
· · ·

(q, pj
0) (q, pj

1a
j
1 · · · pj

naj
n)

(q, aj
1) (q, ε)

· · ·
(q, aj

n) (q, ε)
· · ·

Figure 2: Pushdown Automaton recognizing L(Q)

the pushdown alphabet is not distinct from the language alphabet.) The Figure 2
reports the entry of the first row, corresponding to the start up of the pushdown
consisting of entering the query goal symbol in the pushdown store, and the entries
corresponding to the generic q-chain rule rj shown above, one for aj

0 and one for
each aj

i , 1 ≤ i ≤ n, that is not empty. Obviously, if the rule is an exit rule (i.e.,
n = 0), the entry corresponding to aj

0 is (q, ε).
Given a string α = ak1

i1
ak2

i2
· · · akm

im
in V ∗

T , a path ing α on P is a sequence of m+1
(not necessarily distinct) constants b0, b1, b2, ..., bm such that for each j, 1 ≤ j ≤ m,
a

kj

ij
(bj−1, bj) is derived from P ; if m = 0 then the path spells the empty string ε [1].
It is well known that c belongs to A(Q) if and only if there exists a path from b

to c, spelling a string α of L(Q) on P . Therefore, in order to compute A(Q), it is
sufficient to use the automaton of Figure 2 to recognize all paths leaving from b and
spelling a string α of L(Q) on P [1]. This can be easily done by a logic program
P̂ which implements the automaton. The program P̂ can be directly constructed
using all transition rules of Figure 2. In particular we use a rule for each entry in
the table. The start-up of the automaton is simulated by a fact which sets both the
initial node of the path spelling a string of the language and the initial state of the
pushdown store. For the chain query Q = 〈p(b, Y ), P 〉, the resulting program, P̂ is
as follows:

q(b, [p]).
· · ·
q(Y, [pj

1, a
j
1, ..., p

j
n, aj

n|T ]) ← q(X, [pj
0|T ]), aj

0(X, Y ).
q(Y, T ) ← q(X, [aj

1|T ]), aj
1(X,Y ).

· · ·
q(Y, T ) ← q(X, [aj

n|T ]), aj
n(X, Y ).

· · ·

The rewritten program P̂ will be called the pushdown-program of the query Q; the
query Q̂ = 〈q(Y, [ ]), P̂ 〉 will be called the pushdown-query of Q. The technique for
constructing pushdown-queries will be called the pushdown method.
Theorem 1 Let Q be a q-chain query. Then the pushdown-query of Q is equivalent
to Q.
Proof. Let Q = 〈p(b, Y ), P 〉 be a q-chain query and Q̂ the pushdown query of
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Q. Recall that G(Q) is the grammar associated with P and L(Q) is the language
generated by G(Q). A constant c belongs to the answer set A(Q) if and only
if there exists a path from b to c spelling a string of L(Q) on P . Let PD(Q)
be the automaton associated with the grammar G(Q). It is well known that a
string generated by any grammar G is recognized by empty store by the pushdown
automata, whose transitions are of the form

δG(q, a, K) = {(q, α) | K → aα} ∈ G

δG(q, a, a) = {(q, ε)}

where a is terminal symbol and K is non terminal [24]. It is easy to see that
this automaton for G(Q) is PD(Q). Hence, the set of strings generated by G(Q)
coincides with the set of strings recognized by PD(Q). Observe now that the
pushdown query for Q implements the pushdown automata PD(Q) in such a way
that it recognizes only the strings α for which there exists a path spelling α on P

and leaving b. Then we conclude that a constant c belongs to A(Q) if and only if it
belongs to A(Q̂). 2

We point out that a naive execution of the rewritten program can be inefficient
or even non-terminating for cyclic databases. In Section 6 we shall present a tech-
nique, based on the approach of [14], where lists implementing pushdown stores,
are represented as pairs consisting of the head and a pointer to the tuple storing
the tail of the list. In this way, each possible cyclic sequence in the pushdown store
is recorded only once and, therefore, termination is guaranteed.

3.1. Right-Linear Programs

As pointed out previously, the pushdown method is based on constructing a
particular pushdown automaton to recognize a context-free language. Now, let us
consider the case of a query for which every recursive chain rule is right-linear,
i.e., both right-recursive and linear. Then, the associated grammar G(Q) is regular
right-linear and, therefore, the pushdown actually acts as a finite state automaton.
Indeed, if the program is right-linear, the pushdown store is either empty or contains
only one symbol. Therefore, it is possible to delete the pushdown store and to put
the information of the pushdown store into the state.

For a right-linear chain query, it is also possible to generate directly the push-
down query Q̂ that emulates the finite state automaton. Thus, given a chain right-
linear query Q = 〈p(b, Y ), P 〉 the pushdown query Q̂ is equal to 〈pF (Y ), P̂ 〉 where
P̂ consists of a fact of the form

q(b).

plus a rule of the form
q′(Y ) ← q(X), a(X, Y )

for each production rule of the form q → a q′ in G(Q) with q and q′ mutually
recursive, and

qF (Y ) ← q(X), a(X,Y )
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for each non-recursive production rule of the form q → a in G(Q).
Example 2 Consider the following chain query Q = 〈p(x0, Y ), P 〉, where P is:

p(X, Y) ← b(X, Y).
p(X, Y) ← a(X, Z), p(Z, Y).

The grammar G(Q) is regular right-linear and is as follows:

p → b | a p

The pushdown automaton recognizing L(Q) is as follows
a b ε

(q0, Z0) (q, pZ0)
(q, p) (q, p) (q, ε)

The pushdown query of Q is Q̂ = 〈q(Y, [ ]), P̂ 〉 with P̂ as follows:

q(x0, [p]).
q(Y, [p]) ← q(X, [p]), a(X, Y).
q(Y, [ ]) ← q(X, [p]), b(X, Y).

By deleting the pushdown store and putting its information into the state we
obtain the following query Q̂ = 〈q(Y ), P̂ 〉 where P̂ as follows:

qp(x0).
qp(Y) ← qp(X), a(X, Y).
q(Y) ← qp(X), b(X, Y).

Observe that the language L(Q) can be recognized by the finite state automaton
FA(Q) whose transition function is as follows

δ(p, a) → p
δ(p, b) → pF

where p and pF denote the initial and the final states, respectively. The new query
is 〈pF (Y ), P̂ 〉 with P̂ as follows:

p(b).
p(Y) ← p(X), a(X, Y).
pF(Y) ← p(X), b(X, Y).

2

Corollary 1 Let Q be a q-chain query such that G(Q) is right-linear. Then, the
finite-state query of Q is equivalent to Q.
Proof. This follows directly from Theorem 1 by inserting the pushdown store
information into the state symbol and deleting the pushdown store. 2

Thus, for right-linear queries the pushdown method does not use any pushdown
store; i.e., given a right-linear query Q, the pushdown query of Q reduces to the
finite state query of Q.

4. Grammar Transformations to improve Pushdown
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In this section, we show that this kind of automaton becomes more effective when
the grammar of the language has a particular structure. Furthermore, we show that
programs where the grammar does not have this structure can be rewritten so that
the corresponding grammar achieves the desired structure; also, this rewriting is
based on known techniques for transforming grammars, particularly, those used to
achieve the LL(1) format [3].

Observe that if the grammar G(Q) is regular left-linear then the pushdown
method does not emulates a finite state automaton, as for the case where G(Q) is
regular right-linear, and, therefore, it may become rather inefficient or even non-
terminating. As shown next, the problem can be removed by replacing left-recursion
with right-recursion applying well-known reduction techniques for grammars [3].

Consider a q-chain query where a predicate symbol s ∈ q is in the head of some
left-recursive chain rule—let us call such an s left-recursive. Then, the definition
def(s) consists of m > 0 left-recursive chain rules and n chain rules that are not
left-recursive (obviously we must have that n > 0 or s would not be satisfied):

s(X,Y ) ← αi(X, Y ). 1 ≤ i ≤ n
s(X,Y ) ← s′(X, Z), βi(Z, Y ). 1 ≤ i ≤ m

The productions defining the symbol s in the grammar G(Q) are:

s → αi 1 ≤ i ≤ n
s → s′ βi 1 ≤ i ≤ m

where αi and βj denote the sequences of predicate symbols appearing in αi(X,Y )
and βj(Z, Y ), respectively. We can now apply the known transformations to remove
left-recursion from the second group of rules for all left-recursive predicate symbols
s, and then we rewrite the corresponding rules accordingly. It turns out that the
resulting program, denoted by can(P ), does not contain any left-recursive q-chain
— here can(P ) stands for canonical format of P.
Example 3 Left-Linear Transitive Closure. Consider the following right-linear q-
chain query Q = 〈path(b, Y), P 〉, where q = {path} and P is:

path(X, Y) ← arc(X, Y).
path(X, Y) ← path(X, U), arc(V, Y).

The associated grammar G(Q)

path → arc | path arc

is left recursive. After one step of the procedure for removing left-recursion, we
obtain the right-recursive grammar

path → arc path′

path′ → arc path′ | ε

So, the program can(P ):
path(X, Y) ← arc(X, Z), path′(Z, Y).
path′(X, X)
path′(X, Y) ← arc(X, Z), path′(Z, Y).

is right-linear; the pushdown query can be now solved efficiently. 2
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Example 4 Non-Linear Transitive Closure. Assume now that the program P of
the query of Example 3 is defined as:

path(X, Y) ← arc(X, Y).
path(X, Y) ← path(X, U), path(V, Y).

This program is left recursive and, after the first step of the procedure for removing
left-recursion, it is rewritten as:

r1 : path(X, Y) ← arc(X, Z), path′(Z, Y).
r2 : path′(X, X).
r3 : path′(X, Y) ← path(X, Z), path′(Z, Y).

The second step removes left recursion from the rule r3 that is rewritten as
r3 : path′(X, Y) ← arc(X, W), path′(W, Z), path′(Z, Y). 2

Proposition 1 Let Q = 〈p(b, Y ), P 〉 be a chain query and let Q′ = 〈p(b, Y ), can(P )〉.
Then Q′ is equivalent to Q.
Proof. We have to show that a substitution Y/c is in A(Q) if and only if it is
also in A(Q′). The two languages L(Q) and L(Q′) are equivalent, i.e., they consist
of the same set of strings [3]. Therefore, also the set of paths starting from b and
spelling a string α ∈ L(Q) on P and can(P ) coincide. 2

We now introduce a program transformation that improves the performance of
the pushdown method for an interesting case of right-recursion.

Let us suppose that there exists a predicate symbol s in P , such that def(s)
consists of a single elementary chain rule— i.e., the rule s(X, X).—and of m > 0
right-recursive chain rules of the form:

s(X, Y ) ← αi(X,Z), s(Z, Y ). 0 ≤ i ≤ m

Then, we rewrite each recursive chain rule that is in the following format:

s(X, Y ) ← αi(X, Z), s(Z, W ), s(W,Y ).

as follows:
s(X,Y ) ← αi(X,Z), s(Z, Y ).

thus we drop the last recursive goal in the the rule. Obviously, if the resulting
rule still has multiple recursive goals at its end, we repeat the transformation. The
program obtained after performing this above transformations for all the predicate
symbols s in P is denoted by simple(P ).
Proposition 2 Given a chain query Q = 〈p(b, Y ), P 〉, Q is equivalent to Q′ =
〈p(b, Y ), simple(P )〉.
Proof. L(Q) = L(Q′) and, therefore, the sets of paths starting from b and spelling
a string α ∈ L(Q) on P and simple(P ) coincide. 2

Example 5 We have that def(path′) = {r2, r3} in the program P ′ = can(P ) of
Example 4. The program simple(P ′) is:
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r1 : path(X, Y) ← arc(X, Z), path′(Z, Y).
r2 : path′(X, X).
r3 : path′(X, Y) ← arc(X, U), path′(U, Y).

Eventually, we have linearized non-linear transitive closure. 2

We observe that the transformation simple can be applied to a larger number
of cases by applying further grammar rewriting. For instance, given the grammar:

s → a s′

s′ → b s s′ | ε

we can modify it into:
s → a s′

s′ → b a s′ s′ | ε

so that we can eventually apply the transformation simple.
Example 6 Consider the {path}-chain query Q = 〈path(b, Y), P 〉 where P is de-
fined as follows:

path(X, Y) ← yellow(X, Y).
path(X, Y) ← path(X, U), red(U, V), path(V, W), blue(W, Z), path(Z, Y).

We have that can(P ) is:

path(X, Y) ← yellow(X, Z), path′(Z, Y).
path′(X, X).
path′(X, Y) ← red(X, U), path(U, W), blue(W, Z), path(Z, T), path′(T, Y).

We now replace the two occurrence of path in the body of the last rule with the
body of the first rule and we obtain the equivalent program P ′:

path(X, Y) ← yellow(X, Z), path′(Z, Y).
path′(X, X).
path′(X, Y) ← red(X, U), yellow(U, V), path′(V, W), blue(W, Z),

yellow(Z, T), path′(T, S), path′(S, Y).

We can now apply the transformation simple to path′ and the last rule of P ′

becomes:
path′(X, Y) ← red(X, U), yellow(U, V), path′(V, W), blue(W, Z),

yellow(Z, T), path′(T, Y) 2

We now apply another transformation for the predicate symbols s for which
the transformation simple cannot be applied because of the lack of the elementary
chain rule. Let us then suppose that there exists a predicate symbol s in q such
that def(s) consists of n > 0 exit chain rules, say

s(X, Y ) ← βi(X, Y ). 1 ≤ i ≤ n

and m > 0 right-recursive chain rules of the form:

s(X, Y ) ← αi(X,Z), s(Z, Y ). 1 ≤ i ≤ m

12



We rewrite the above rules as follows:

s(X, Y ) ← s′(X, Z), βi(Z, Y ) 1 ≤ i ≤ n
s′(X,X).
s′(X,Y ) ← αi(X,Z), s′(Z, Y ) 1 ≤ i ≤ m

We now replace all atoms in αi having s as predicate symbol with the bodies of
the rules defining s. In this way, every rule will not have two consecutive recursive
predicate symbols at the end of the body.

The program obtained after performing the above transformations for all the
predicate symbols s in P is denoted by simple′(P ). As confirmed by experiments
in [13, 12], the pushdown method becomes much more efficient when applied to
simple′(P ) rather than to P .
Proposition 3 Given a chain query Q = 〈p(b, Y ), P 〉, Q is equivalent to Q′ =
〈p(b, Y ), simple′(P )〉.
Proof. As for the proof of Proposition 2, L(Q) = L(Q′) and, therefore, the sets of
paths starting from b and spelling a string α ∈ L(Q) on P and simple′(P ) coincide.
2

Example 7 Consider the {path}-chain query Q = 〈path(b, Y), P 〉 where P is de-
fined as follows:

path(X, Y) ← yellow(X, Y).
path(X, Y) ← red(X, V), path(V, W), path(W, Y).

We obtain that simple′(P ) is equal to:

path(X, Y) ← path′(X, Z), yellow(Z, Y).
path′(X, X).
path′(X, Y) ← red(X, V), path′(V, W), yellow(W, T), path′(T, Y).

As discussed in the next section, the format of simple′(P ) is very effective for the
performance not only of the pushdown method but also of the counting method. 2

5. When Pushdown reduces to Counting

In this section we describe some conditions under which the pushdown method
reduces to the counting method. Actually, the counting method can be seen as
a space-efficient implementation of the pushdown store. On the other hand, as
the pushdown method has a larger application domain, we can conclude that the
pushdown method is a powerful extension of the counting method.

Let us first observe that, given the pushdown program of a q-chain query, the
pushdown store can be efficiently implemented as follows whenever it contains
strings of the form αk(β)n, with 0 ≤ k ≤ 1 and n ≥ 0. Indeed the store can
be replaced by the counter n and the introduction of two new states qα and qβ to
record whether the top symbol is α or β, respectively. This situation arises when
the program consists of a number of exit chain rules and of linear right-recursive
chain rules and one single linear non-left recursive chain rule. The next example
illustrates that the above implementation of the pushdown store corresponds to
applying the counting method.
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Example 8 Consider the linear program defining the same-generation with the
query-goal sg(d, Y):

sg(X, Y) ← c(X, Y).
sg(X, Y) ← a(X, X1), sg(X1, Y1), b(Y1, Y).

The pushdown query is 〈q(Y, [ ]), P ′〉, where P ′ is:

q(d, [ sg ]).
q(Y, [ sg, b | T ]) ← q(X, [ sg | T ]), a(X, Y).
q(Y, T) ← q(X, [ sg | T ]), c(X, Y).
q(Y, T) ← q(Y, [ b | T ]), b(X, Y).

Observe that the pushdown store contains strings of the form sg(b)n or of the form
(b)n, with n ≥ 0. So, we replace the store with the counter n and the introduction of
two new states qsg and qb to record whether the top symbol is sg or b, respectively.
Therefore, the rules above can be rewritten in the following way:

qsg(d, 0).
qsg(Y, I) ← qsg(X, J), a(X, Y), I = J + 1.
qb(Y, I) ← qsg(X, I), c(X, Y).
qb(Y, I) ← qb(Y, J), b(X, Y), I = J− 1.

These rules are the same as those generated by the counting method. Obviously
the query goal is qb(Y, 0). 2

We now show that the above counting implementation of the pushdown store can
be also used when the pushdown strings are of the form αk (βα)n where 0 ≤ k ≤ 1
and n ≥ 0. This situation arises when the program consists of a number of exit
chain rules and of recursive linear right-recursive chain rules and one single bi-
linear (i.e., two recursive predicate symbols in the body) recursive chain rule that
is right-recursive but not left-recursive, i.e., of the form:

p(X0, Y2) ← a0(X0, Y0), p(Y0, X1), a1(X1, Y1), p(Y1, Y2)

Example 9 Red/yellow path. Consider the query Q = 〈path(b, Y), P 〉 where P is:

path(X, X).
path(X, Y) ← red(X, V), path(V, W), yellow(W, T), path(T, Y).

Using the counting implementation of the pushdown store, we obtain the following
program:

qpath(b, 0)
qyellow(X, I) ← qpath(X, I).
qpath(Y, I + 1) ← qpath(X, I), red(X, Y).
qpath(Y, I− 1) ← qyellow(X, I), yellow(X, Y).

The query goal is qyellow(Y, 0). Observe that the above program cannot be handled
by the counting method. 2
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Note that also the query of Example 6 can be optimized by using counters to
implement the pushdown store since after elimination of right recursion it has a the
same format of the query of Example 9.

6. Implementation and Termination

As pointed out in Section 3, the pushdown method could be inefficient or even
non-terminating for cyclic databases. In this section we present how the method is
implemented in order to guarantee efficiency and termination.

The basic idea is to ‘distribute’ stores among tuples and to link the tuples which
are used to memorize the same store. More specifically, the store associated with a
tuple is memorized by means of two distinct elements: a list containing a block of
elements in the top of the store and a link to a tuple which can be used to derive
the tail of the store. Thus, a tuple of the form q(x, [p1, ..., pn]) is memorized as
q(x, [p1, ..., pk], Id), where k ≤ n, and Id is a link to some tuple which permits to
determine the tail [pk+1, ..., pn] of the store. Let us now present how the pushdown
method is implemented.

Let Q = 〈p(a, Y ), P 〉 be a query and let Q̂ = 〈q(Y, [ ]), P ′〉 be the pushdown query
of Q. The pushdown implementation query of Q, denoted I(Q̂), is the pushdown
query 〈q(Y, [ ], ), P”〉 where P” is derived from P ′ as follows:

1. A fact of the form
q(b, [p]).

is substituted by the following fact where nil is a new constant

q(b, [p], nil).

2. A rule rj of the form

q(Y, [pj
1, a

j
1, ..., p

j
n, aj

n|T ]) ← q(X, [pj
0|T ]), aj

0(X, Y )

is substituted by the rule

q(Y, [pj
1, a

j
1, ..., p

j
n, aj

n], Id(X)) ← q(X, [pj
0|T ], I), aj

0(X, Y ).

where Id(X) is a unique identifier associated with the list of ground tuples
having X as first argument. In the following, for the sake of simplicity we
assume that Id(X) = X.

3. A rule rj of the following form with i < n (n is the number of base conjunction
in the rule)

q(Y, T ) ← q(X, [aj
i |T ]), aj

i (X, Y )

is substituted by the rule

q(Y, T, I) ← q(X, [aj
i |T ], I), aj

i (X,Y ).
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4. A rule rj of the form

q(Y, T ) ← q(X, [aj
n|T ]), aj

n(X, Y ).

where aj
n denotes the last base conjunction in the rule rj , is substituted by

the rule

q(Y, T, I) ← q(X, [aj
n], Id(Z)), q(Z, [p|T ], I), aj

n(X,Y ).

The following example should clarify how the pushdown implementation query
is built.
Example 10 Consider the query Q = 〈sg(b, Y), P 〉 of Example 1. The pushdown
program Q̂, presented in Example 1 of Section 3, is as follows:

q(b, [ sg ]).
q(Y, T) ← q(X, [ sg | T ]), a(X, Y).
q(Y, [ sg, c, sg, d | T ]) ← q(X, [ sg | T ]), b(X, Y).
q(Y, T) ← q(X, [ c | T ]), c(X, Y).
q(Y, T) ← q(X, [ d | T ]), d(X, Y).

The pushdown program I(Q̂) is 〈sg(Y, [ ], nil), P”〉 where the program P” is as
follows:

q(b, [ sg ], nil).
q(Y, T, I) ← q(X, [ sg | T ], I), a(X, Y).
q(Y, [ sg, c, sg, d ], X) ← q(X, [ sg | ], ), b(X, Y).
q(Y, T, I) ← q(X, [ c | T ], I), c(X, Y).
q(Y, T, I) ← q(X, [ d ], Z), q(Z, [ sg | T ], I), d(X, Y).

2

Proposition 4 Let Q be a chain query and let Q̂ be the pushdown query of Q.
Then I(Q̂) is equivalent to Q.
Proof. The query I(Q̂) is just a different implementation of the pushdown au-
tomata PD(Q) and, therefore, it recognizes only the strings α for which there exists
a path spelling α on P and leaving b. Then we conclude that a constant c belongs
to A(Q) if and only if it belongs to A(I(Q̂)). 2

Moreover, the implementation technique, besides efficiency, guarantees also ter-
mination of the evaluation process.
Proposition 5 Let Q be a chain query and let Q̂ be the pushdown query of Q. The
bottom-up computation of I(Q̂) always terminates.
Proof. The number of constants as well as the number of blocks is finite and,
therefore, the number of links to tuples is also finite. Therefore, the number of
tuples is finite and this implies that the fixpoint computation always terminates.
2

The following example shows how queries are computed in the presence of cyclic
databases.
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Example 11 Let I(Q̂) = 〈sg(Y, [ ], nil), P”〉 be the pushdown query of the previous
Example where the binding b has been substituted by the constant 1. Consider the
database pictured in the following Figure 3 where a tuple (x, y) of a relation r is
represented by an arc from x to y with label r:
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Figure 3 — Acyclic database
The evaluation of the program P” produces the following tuples q(1, [ sg ], nil),

q(2, [ sg, c, sg, d ], 1), q(3, [ sg, c, sg, d ], 2), q(4, [ c, sg, d ], 2), q(5, [ sg, d ], 2), q(6, [ d ], 2),
q(7[ c, sg, d ], 1), q(8, [ sg, d ], 1), q(9, [ d ], 1) and q(10, [ ], nil). Therefore, the answer
is Y = 10.

Consider now cyclic database pictured in Figure 4.

HHj

»»

12

1110

d

n?

nn1

2 3 4 5

6 7 8

9

6

?

?

b

a

c

d

b d

a

a

c

Figure 4 — Cyclic database
The evaluation of the program P” produces the tuples q(1, [ sg ], nil), q(2, [ sg, c, sg, d ], 1),
q(1, [ sg, c, sg, d ], 2), q(3, [ c, sg, d ], 1), q(4, [ sg, d ], 1), q(5, [ d ], 1), q(6, [ ], nil), q(6, [ c, sg, d ],
2), q(7, [ sg, d ], 2), q(8, [ d ], 2), q(9, [ c, sg, d ], 1), q(10, [ sg, d ], 1), q(11, [ d ], 1) and
q(10, [ ], nil). Therefore, the answers are Y = 6 and Y = 12. 2

We conclude this section by pointing out that when it is not possible to apply one
of the reductions presented in Sections 4 and 5, then we implement our method by
means of pointers and shared structures as described above. The implementation of
the pushdown method can be seen as a smart implementation of the supplementary
magic-set method [27] (see also [8]). Moreover, there is an important difference
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for non-linear programs since our method generates fewer non-linear recursive rules
than the supplementary magic-set method. Take, for instance, the non-linear query
of Example 1. The program obtained by applying the supplementary magic-set
method is as follows:

m sg(b).
m sg(X1) ← s sg1( , X1).
m sg(Y2) ← s sg3( , Y2).
s sg1(X, X1) ← m sg(X), b(X, X1).
s sg2(X, X2) ← s sg1(X, X1), sg(X1, X2).
s sg3(X, X3) ← s sg2(X, X2), c(X2, Y2).
sg(X, Y) ← m sg(X), a(X, Y).
sg(X, Y) ← s sg3(X, Y2), sg(Y2, Y1), d(Y1, Y).

All rules but the first one are mutually recursive but the rule defining the pred-
icate s sg2 and the second rule defining the predicate sg are by-linear, i.e., they
have two occurrences of predicates mutually recursive with the head predicate. The
program generated by the pushdown method contains only one bi-linear rule and,
therefore, its execution can be more efficient.

In the general case of a non-linear recursive rule r having n > 1 recursive pred-
icates in its body, the pushdown method generates only one bi-linear rule, whereas
the supplementary magic-set method generates n bi-linear rules. Moreover, the
space used by the pushdown method is less than that used by the supplementary
magic-set method since our method does not use magic predicates.

7. Experimental Results

To better understand the differences between the pushdown method and others
classical methods such as the magic-set and the supplementary magic-set methods,
we have performed some experiments using two different queries.

The first query is Q1 = 〈p(b, Y), P1〉 where P1 is the following bi-linear program:

p(X, X).
p(X, Y) ← a(X, U), p(U, V), b(V, W), p(W, Y).

Observe that this program is the same as the one reported in Example 9 and,
therefore, we can use counters to implement pushdown storesa.

The second query we consider is Q2 = 〈p(b, Y), P2〉 where P2 is the following
non-linear program:

p(X, Y) ← c(X, Y).
p(X, X) ← a(X, X1), p(X1, X2), a(X2, X3), p(X3, Y3), b(Y3, Y2), p(Y2, Y1), b(Y1, Y).

In this case, pushdown stores are implemented by means of pointers.

We have assumed that the base relations A, B and C, associated, respectively,
with the predicates a, b and c, have a “cylindric structure” [6]. We represent the

aWe are assuming that it is known that the database is acyclic. A database associated with a
chain query can be represented by means of a digraph and checking if a graph is acyclic can be
done very efficiently [4]
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database by means of a digraph G, called query-graph, which is partitioned into
the three sub-graphs GA, GB and GC (see Figure 4). For each tuple (x, y) in the
relation A (resp., B, C) there is an arc going up (resp. going down, flat) in G. The
sets of arcs in A (resp. B, C) identify the sub-graph GA (resp. GB , GC). The
nodes are arranged into layers and the graph G has h layers (h denotes the height
of the graph). All layers in GA and GB have the same number b (base) of nodes.
Thus, each node G is identified by a pair (i, j) where j (0 ≤ j ≤ h− 1) denotes the
layer and i (0 ≤ i ≤ b− 1) denotes the position in the layer.

Each node (i, j) in GA (resp. GB) with 0 ≤ j < h − 1 (resp. 0 < j ≤ h − 1) is
the source of g arcs, whereas each node (i, j) in GA (resp. GB) with 0 < j ≤ h− 1
(resp. 0 ≤ j < h− 1) is the sink of g arcs. In particular, for each node (i, j) in GA

such that j < h − 1 and for each integer k between 0 and g − 1, there is an arc in
GA from the node (i, j) to the node ((i + k× (b div g)) mod b, j + 1). For instance,
assuming h = 4, b = 4 and g = 2, from the node (2, 2) there are two arcs to the
nodes (2, 3) and (0, 3), respectively. Analogously, for each node (i, j) in GB such
that (j > 0) and for each integer k between 0 and g − 1 there is an arc in GB from
the node (i, j) to the node ((i + k(b div g) mod b), j − 1).

The sub-graph GC (used only in the query Q2) contains (h × c) arcs, where c

(≤ b) denotes the number of arcs connecting nodes in the level j (0 ≤ j ≤ h− 1) of
GA with nodes in the same level of GB . The c arcs connecting nodes in GA with
nodes in GB are uniformly distributed.

The binding b in the query goal denotes a node of a fixed layer in the subgraph
GA. The query graph with parameters b = 4, h = 4, g = 2 and c = 2, where only
the arcs of GC connecting nodes in the layer 3 are reported, is pictured in Figure 4.
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Figure 4: Query graph associated with a cylindric database
For the experiments reported below, we have considered a database D whose

query-graph has a “cylindric structure” with b = 15, h = 20, g = 3 and c = 4.
Thus, the query-graph G contains 300 nodes and 1350 arcs. More specifically, the
sub-graphs GA and GB have both 300 nodes and 635 arcs whereas the sub-graph
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GC (used only in the query Q2) has 60 arcs. In our experiments we have considered
different bindings (one for each layer) and a fixed database.

The results for the queries Q1 and Q2 are reported in Figures 5 and 6, respec-
tively.

The evaluation of queries has been carried out by means of programs emulating
the bottom-up computation of the (rewritten) queries. Such programs have been
implemented in Pascal and run on personal computer. The results of the experi-
ments have been performed by using a PC with CPU Intel Pentium, 16 Mbyte of
Ram and clock of 166 MHz.

Concluding, we observe that

1. For the query Q1, the counter-based implementation is very efficient and there
are, on the average, two orders of magnitude between the supplementary
magic-set and the pushdown methods.

2. The pointer-based implementation has the same performances of the supple-
mentary magic-set if we consider bindings in high layers. (As expected since
a small number of arcs in the query-graph is used for the evaluation of the
queries.) But, when we consider bindings in low layers of the query-graph,
the pushdown method is, on the average, between four and five times faster.
Thus, for large databases, the pushdown method performs significantly better
than the supplementary magic-set method.
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8. Conclusions

In this paper, we have presented a method, called pushdown method, which
transforms chain programs into programs that emulate pushdown automata. The
method build on the analogy between chain programs and context-free languages
that are recognized by a particular scheme of pushdown automata In the proposed
approach, the automaton is implemented as a factorized left-linear logic program
which uses lists to emulates pushdown stores. The pushdown method generalizes
and unifies previous techniques such as the ‘counting’ and ‘right-, left-, mixed-
linear’ methods. It also succeeds in reducing many non-linear programs that are
query-equivalent to linear ones.

The method here presented has been implemented and its performance com-
pared to those of other techniques. In our implementation, a list-term emulating
the pushdown store is split into two terms, a list-term and a constant term denot-
ing the tuple storing the tail of the list. Then, the resulting program contains one
bi-linear rule (i.e., a rule with exactly two mutually recursive predicates) for each
non-linear rule in the original program. This modified re-writing controls the data
complexity and ensures terminating computations for the case of cyclic data. Pre-
liminary experimental results obtained with this implementation are encouraging
inasmuch as it appears that the pushdown method has better performance than
classical methods, such as the magic set method. For bound queries, the pushdown
method also behaves better than Yannakakis’ method, which has a better worst-case
complexity, but cannot use bindings to narrow the search space.
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