
Journal of Universal Computer Science, vol. 1, no. 1 (1995), 67-82
submitted: 8/11/94, accepted: 10/1/95, appeared: 28/1/95Springer Pub. Co.

Grammars Based on the Shu�e Operation

Gheorghe P�aun
Institute of Mathematics of the Romanian Academy of Sciences

PO Box 1 { 764, Bucure�sti, Romania

Grzegorz Rozenberg
University of Leiden, Department of Computer Science
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Arto Salomaa
Academy of Finland and University of Turku

Department of Mathematics, 20500 Turku, Finland

Abstract: We consider generative mechanisms producing languages by starting from a �nite set of words and
shu�ing the current words with words in given sets, depending on certain conditions. Namely, regular and �nite
sets are given for controlling the shu�ing: strings are shu�ed only to strings in associated sets. Six classes of such
grammars are considered, with the shu�ing being done on a leftmost position, on a pre�x, arbitrarily, globally,
in parallel, or using a maximal selector. Most of the corresponding six families of languages, obtained for �nite,
respectively for regular selection, are found to be incomparable. The relations of these families with Chomsky
language families are briey investigated.

Key Words: Shu�e operation, Chomsky grammars, L Systems

Categories: F4.2 [Mathematical Logic and Formal Languages]: Grammars and other Rewriting Sys-
tems: Grammar types, F4.3 [Mathematical Logic and Formal Languages]: Formal Languages: Operations
on languages

1 Introduction

In formal language theory, besides the basic two types of grammars, the Chomsky grammars and the
Lindenmayer systems, there are many "exotic" classes of generative devices, based not on the process
of rewriting symbols (or strings) by strings, but using various operations of adjoining strings. We quote
here the string adjunct grammars in [7], the semi-contextual grammars in [3], the �-grammars in [10], the
pattern grammars in [2], and the contextual grammars [8]. The starting point of the present paper is this
last class of grammars, via the paper [9], where a variant of contextual grammars was introduced based
on the shu�e operation. Basically, one gives two �nite sets of strings, B and C, over some alphabet,
and one considers the set of strings obtained by starting from B and iteratively shu�ing strings from C,
without any restriction. This corresponds to the simple contextual grammars in [8].

We consider here a sort of couterpart of the contextual grammars with choice, where the adjoining
is controlled by a selection mapping. In fact, we proceed in a way similar to that used in conditional
contextual grammars [12], [13], [14] and in modular contextual grammars [15]: we start with several pairs
of the form (Ri; Ci), Ri a language (we consider here only the case when Ri is regular or �nite) and Ci

a �nite set of strings, and allow the strings in Ci to be shu�ed only to strings in Ri. Depending on the
place of the string in Ri in the current string generated by our grammar, we can distinguish several types
of grammars: pre�x (the string in Ri appears in the left-hand of the processed string, as a pre�x of it),
leftmost (we look for the leftmost possible occurrence of a string in Ri), arbitrary (no condition on the
place where the string in Ri appears), global (the whole current string is in Ri), and parallel (the current
string is portioned into strings in Ri). An interesting variant is to use a substring as base for shu�ing
only when it is maximal. Twelve families of languages are obtained in this way. Their study is the subject
of this paper.

It is worth noting that the shu�e operation appears in various contexts in algebra and in formal
language theory; we quote only [1], [4], [5], [6] (and [11], for applications). In [1], [6] the operation is used
in a generative-like way, for identifying families of languages of the form FAM ([; �; Shuf ;FIN), the
smallest family of languages containing the �nite languages and closed under union, concatenation and
shu�e. (From this point of view, the family investigated in [9] is a particular case, FAM (Shuf ;FIN)).

67

The shu�e of the symbols of two words is also related to the concurrent execution of two processes
described by these words, hence our models can be interpreted in terms of concurrent processes, too. For
instance, the pre�x mode of work corresponds to the concurrent execution of a process strictly at the
beginning of another process, the "beginning" being de�ned modulo a regular language; in the global
case the elementary actions of the two processes can be freely intercalated.

As it is expected, the languages generated by shu�e grammars are mostly incomparable with Chomsky
languages (due to the fact that we do not use nonterminals). Somewhat surprising is the fact that in the
regular selection case the �ve modes of work described above, with only one exception, cannot simulate
each other (the corresponding families of languages are incomparable).

2 Classes of shu�e grammars

As usual, V � denotes the set of all words over the alphabet V , the empty word is denoted by �, the length
of x 2 V � by jxj and the set of non-empty words over V is identi�ed by V +. The number of occurrences
of a symbol a in a string x will be denoted by jxja. For basic notions in formal language theory (Chomsky
grammars and L systems) we refer to [16], [17]. We only mention that FIN;REG;CF;CS; 0L are the
families of �nite, regular, context-free, context-sensitive, and of 0L languages, respectively.

For x; y 2 V � we de�ne the shu�e (product) of x; y, denoted xt?y, as

xt?y = fx1y1x2y2 : : : xnyn j x = x1x2 : : : xn; y = y1y2 : : : yn;

xi; yi 2 V �; 1 � i � n; n � 1g:

Various properties of this operation, such as commutativity and associativity, will be implicitely used in
the sequel. The operation t? is extended in the natural way to languages,

L1t?L2 = fz j z 2 xt?y; x 2 L1; y 2 L2g;

and iterated,

L(0) = f�g;

L(i+1) = L(i)t?L; i � 0;

Lt? =
[

i�0

L(i):

The grammars considered in [9] are triples of the form G = (V;B;C), where V is an alphabet, B and
C are �nite languages over V . The language generated by G is de�ned as the smallest language L over V
containing B and having the property that if x 2 L and u 2 C, then xt?u � L. (Therefore, this language

is equal to Bt?Ct?).

There is no restriction in [9] about the shu�ing of elements of C to current strings. Such a control
of the grammar work can be done in various ways of introducing a context-dependency. We use here the
following natural idea:

De�nition 1. A shu�e grammar is a construct

G = (V;B; (R1; C1); : : : ; (Rn; Cn));

where V is an alphabet, B is a �nite language over V , Ri are languages over V and Ci are �nite languages
over V , 1 � i � n.

The parameter n � 1 is called the degree of G. If Ri are languages in a given family F , then we say
that G is with F choice. Here we consider only the cases F = FIN and F = REG.

The idea is to allow the strings in Ci to be shu�ed only to strings in the corresponding set Ri. The
sets Ri are called selectors.

68

De�nition 2. For a shu�e grammar G as above, a constant i; 1 � i � n, and two strings x; y in V �,
we de�ne the following derivation relations:

x =)arb
i y iff x = x1x2x3; x1; x3 2 V �; x2 2 Ri; y = x1x

0
2x3;

for some x02 2 x2t?u; u 2 Ci;

x =)pr
i y iff x = x1x2; x2 2 V �; x1 2 Ri; y = x01x2;

for some x01 2 x1t?u; u 2 Ci;

x =)lm
i y iff x = x1x2x3; x1; x3 2 V �; x2 2 Ri; y = x1x

0
2x3;

for some x02 2 x2t?u; u 2 Ci; and there is no j; 1 � j � n;

such that x = v1v2v3; jv1j < jx1j; v2 2 Rj;

x =)gl
i y iff x 2 Ri; y = xt?u; for some u 2 Ci:

These derivation relations are called arbitrary, pre�x, leftmost, and global derivations, respectively.
Moreover, we de�ne the parallel derivation as

x =)pl y iff x = x1x2 : : :xk; k � 1; y = x01x
0
2 : : :x

0
k;

for xi 2 Rji; x
0
i 2 xit?ui; ui 2 Cji; 1 � ji � n; 1 � i � k:

We denote M = farb; pr; lm; gl; plg.

De�nition 3. The language generated by a shu�e grammar G in the mode f 2M � fplg is de�ned
as follows:

Lf (G) = B [fx 2 V � j w =)f
i1
w1 =)

f
i2
: : : =)f

im
wm = x;

w 2 B; 1 � ij � n; 1 � j � m;m � 1g:

For the parallel mode of derivation we de�ne

Lpl(G) = B [fx 2 V � j w =)pl w1 =)
pl : : : =)pl wm = x;w 2 B;m � 1g:

The corresponding families of languages generated by shu�e grammarswith F choice, F 2 fFIN;REGg,
are denoted by ARB(F); PR(F); LM (F); GL(F); PL(F), respectively; by SL we denote the family of lan-
guages generated by grammars as in [9], without choice. Subscripts n can be added toARB;PR;LM;GL;PL
when only languages generated by grammars of degree at most n; n � 1, are considered.

3 The generative capacity of shu�e grammars

From de�nition we have the inclusions Xn(F) � Xn+1(F), Xn(FIN) � Xn(REG), for all n � 1,
X 2 fARB;PR;LM;GL;PLg and F 2 fFIN;REGg.

Every familyARB(FIN); PR(FIN); LM (FIN); GL(FIN); PL(FIN) contains each �nite language.
This is obvious, because for G = (A;B; (B; f�g)) we have Lf (G) = B for all f . In fact, we have

Theorem 1.
(i) Every family ARB1(REG); PR1(REG); LM1(REG); GL1(REG); PL1(REG) includes strictly the
family SL.
(ii) The family SL is incomparable with each Xn(FIN); n � 1; X 2 fARB;PR;LM; PLg:

(iii) GL(FIN) = GL1(FIN) = FIN:

Proof.
(i) If G = (V;B;C) is a simple shu�e grammar, then L(G) = Lf (G0) for each f 2M and

G0 = (V;B; (V �; C)):

69

(The only point which needs some discussion is the fact that a parallel derivation x =)pl y in G0, with
x = x1x2 : : : xk and y = x01x

0
2 : : :x

0
k; k ge2, can be simulated by a k-step derivation in G, because the

strings shu�ed into x1; : : : ; xk do not overlap each other.) Consequently, SL � X1(REG), for all X.
The inclusion is proper in view of the following necessary condition for a language to be in SL (Lemma

10 in [9]): if L 2 SL and

V0 = fa 2 V j for every n � 1 there is x 2 L with jxja � ng;

then each string in V �
0 is a subword of a string in L. This condition rejects languages such as L = a+[b+;

this language can be generated by the shu�e grammar with �nite choice

G = (fa; bg; fa; bg; (fag;f�;ag); (fbg; f�; bg))

in all modes of derivation excepting the global one. For gl we take

G0 = (fa; bg; fa; bg; (V �; fag); (b�; fbg)):

(ii) We have already seen that X1(FIN)� SL 6= ; for X 2 fARB;PR;LM;PLg: Consider now the
simple shu�e grammar

G = (fa; b; cg; fabcg; fabcg):

We have
L(G) \ a+b+c+ = fambmcm j m � 1g:

Assume that L(G) = Lf (G0) for some shu�e grammar G0 = (fa; b; cg; B; (R1; C1); : : : : : : ; (Rn; Cn))
with �nite R1; : : : ; Rn and f 2 farb; pr; lmg: Take a string z = ambmcm in L(G) with arbitrarily large

m. A derivation w =)f
i z must be possible in G0, with w = apbpcp; p < m, for some 1 � i � n: We must

have w = w1w2w3; w2 2 Ri, and z = w1w
0
2w3 for w0

2 2 w2t?u; u 2 Ci. If u = �, this derivation step can be
omitted, hence we may assume that u 6= �.

The sets Ri; Ci are �nite. Denote

r = maxfjxj j x 2 Ri; 1 � i � ng;

q = maxfjxj j x 2 Ci; 1 � i � ng:

Therefore jw2j � r; juj � q, that is p � m � q. For m > r + q we have p � m � q > r, hence either
w2 2 sub(apbp�1) or w2 2 sub(bp�1cp). In both cases, the shu�ing with u modi�es at most two of the
three subwords ap; bp; cp, hence a parasitic string is obtained. (In the pre�x derivation case we precisely
know that only ap is modi�ed.)

Consider now the parallel case. Take G0 = (fa; b; cg; B; (R1; C1); : : : ; (Rn; Cn)) such that Lpl(G0) =
L(G); Ri �nite sets. For obtaining a string a

mbmcm with large enough m we need a derivation apbpcp =)pl

ambmcm; p < m: This implies we have sets Ri containing strings ar ; r � 1 and with the corresponding
sets Ci containing strings aq; q � 1 (similarly for b and c).

Assume that we �nd in the sets Ri two strings ar1 ; ar2 and in the associated sets Ci we �nd two
strings aq1 ; aq2 . Similarly, we have pairs (br3 ; bq3) and (cr4 ; cq4). The string atbtct for t = r1r2r3r4 is in
L(G) and it can be rewritten using the same pairs of strings containing the symbols b and c and di�erent
pairs for a:

atbtct =)pl a(t=r1)(r1+q1)bscs;

atbtct =)pl a(t=r2)(r2+q2)bscs; for some s:

Consequently, we must have
t

r1
(r1 + q1) =

t

r2
(r2 + q2);

which implies
q1
r1

=
q2
r2
:

70

For all such pairs (ar; aq) we obtain the same value for q
r . Denote it by �. Rewriting some asbscs using

such pairs we obtain
s

r
(r + q) = s(1 + �)

occurrences of a. Continuing k � 1 steps, we get s(1+�)k occurrences of a, hence a geometrical progres-
sion, starting at asbscs.

Symbols a can be also introduced in a derivation apbpcp =)pl ambmcm by using pairs (aibj ; z) with
x containing occurrences of a. At most one such pair can be used in a derivation step. Let h be the
largest number of symbols a in strings z as above (the number of such strings is �nite). Thus, in a
derivation apbpcp =)pl ambmcm, the number m can be modi�ed by such pairs in an interval [m1;m2]
with m2 �m1 � h:

We start from at most g = card(A) strings of the form asbscs, hence we have at most g geometrical
progressions s(1+�)k; k � 1. The di�erence �k = s(1+�)k+1� s(1+�)k can be arbitrarily large. When
�k > gh, the at most g progressions can have an element between s(1 + �)k+1 and s(1 + �)k; each such
element can have at most h values. Consequently, at least one natural number t between s(1 + �)k+1

and s(1 + �)k is not reached, the corresponding string atbtct, although in L(G), is not in Lpl(G0). This
contradiction concludes the proof of point (ii).

(iii) As only strings in the sets Ri; 1 � i � n, of a grammar G = (V;B; (R1; C1); : : : ; (Rn; Cn)) can
be derived, we have GL(FIN) � FIN . The inclusion FIN � GL1(FIN) has been pointed out at the
beginning of this section. }

Corollary. The families Xn(REG); n � 1; X 2 fARB;LM;PR;PL;GLg, contain non-context-free
languages.

For PL(FIN); PL(REG) and GL(REG) this assertion can be strenghtened.

Theorem 2. Every propagating unary 0L language belongs to the family PL1(FIN).

Proof. For a unary 0L system G = (fag; w; P) with w 2 V � and

P = fa! ai1 ; a! ai2 ; : : : ; a! airg;

with ij � 1; 1 � j � r, we construct the shu�e grammar

G0 = (fag; fwg; (fag;fai1�1; ai2�1; : : : ; air�1g)):

It is easy to see that L(G) = Lpl(G
0). }

This implies that PL(FIN); PL(REG) contain one-letter non-regular languages. This is not true for
the other modes of derivation.

Theorem 3.A one-letter language is in ARB(F); PR(F); LM (F); F 2 fFIN; REGg, or in GL(REG)
if and only if it is regular.

Proof. Take a shu�e grammar G = (fag; B; (R1; C1); : : : ; (Rn; Cn)) with regular sets Ri; 1 � i � n.
Clearly, Larb(G) = Lpr(G) = Llm(G). Because we work with one-letter strings, a string x can be derived
using a component (Ri; Ci) if (and only if) the shortest string in Ri is contained in x, hence is of length
at most jxj. Therefore we can replace each Ri by aki , where

ki = minfjxj j x 2 Rig; 1 � i � n;

without modifying the generated language. Denote

K = maxfki j 1 � i � ng

71

and construct the right-linear grammar G0 = (VN ; fag; S; P) with

VN = fS;Xg [f[p] j 0 � p � Kg;

P = fS ! ap[p] j ap 2 B; p < Kg [

[fS ! apX j ap 2 B; p � Kg [

[fS ! ap j ap 2 Bg [

[f[p]! as[p+ s] j p � K; p+ s � K; p � ki; a
s 2 Ci; 1 � i � ng [

[f[p]! as j p � K; p � ki; a
s 2 Ci; 1 � i � ng [

[f[p]! asX j p � K; p+ s � K; p � ki; a
s 2 Ci; 1 � i � ng [

[fX ! asX j as 2 Ci; for some 1 � i � ng [

[fX ! as j as 2 Ci; for some 1 � i � ng:

At the �rst steps of a derivation in G0, the nonterminals [p] count the number of symbols a introduced at
that stage, in order to ensure the correct simulation of components of G; when this number exceeds K,
then each component can be used, and this is encoded by the nonterminalX. Thus we have the equalities
L(G0) = Lf (G); f 2 farb; pr; lmg:

For the global derivation we start froman arbitrary shu�e grammarG = (fag; B; (R1; C1); : : : ; (Rn; Cn)),
with regular sets Ri; 1 � i � n, take for each Ri a deterministic �nite automatonAi = (Qi; fag; s0;i; Fi; �i);
1 � i � n; and construct the right-linear grammarG0 = (Q1�Q2� : : :�Qn; fag; (s0;1; : : : ; s0;n); P) with
P containing the following rules:

(s0;1; : : : ; s0;n)! ar; ar 2 B;

(s0;1; : : : ; s0;n)! ar(s1; : : : ; sn); for a
r 2 B; si = �i(s0;i; a

r); 1 � i � n;

(s1; : : : ; sn)! ar(s01; : : : ; s
0
n); for s

0
j = �j(sj ; a

r); sj 2 Qj; 1 � j � n;

and ar 2 Ci; si 2 Fi; for some i 2 f1; : : : ; ng;

(s1; : : : ; sn)! ar; for sj 2 Qj; 1 � j � n; and ar 2 Ci; si 2 Fi;

for some i 2 f1; : : : ; ng:

New occurrences of a, corresponding to sets Ci, are added (it does not matter where) only when the
current string belongs to Ri, and this is checked by the simultaneous parsings of the current string in the
deterministic automata recognizing R1; : : : ; Rn. Consequently, Lgl(G) is a regular language.

Conversely, each one-letter regular language L is known to be equal with the disjoint union of a �nite
language F and a �nite set of languages of the form

Li = fam j m = pi + jq; j � 0g:

(The constant pi is associated to Li, but q is the same for all Li.) Assume we have n languages Li; denote

K = maxft j t = pi; 1 � i � n; or at 2 Fg:

Then L = Lf (G); f 2 farb; pr; lmg, for the grammar

G = (fag; fas 2 L j s � K + qg; (faK+1g; faqg));

hence we have the theorem for ARB(F); PR(F); LM (F); F 2 fFIN;REGg.

For the global case, starting from L � a� regular, written as above L = F [
Sn

i=1 Li; Li = fam j m =
pi + j � q; j � 0g, 1 � i � n; we consider the grammar

G = (fag; fas 2 L j s � K + qg; (fam j am+q 2 Lg; faqg)):

The equality L = Lgl(G) is obvious and this concludes the proof. }

In view of the previous result, it is somewhat surprising to obtain

Theorem 4. The family GL(REG) contains non-semilinear languages (even on the alphabet with two
symbols only).

Proof. Consider the shu�e grammar G = (fa; b; cg; fabcg; (R1; C1); : : : ; (R8; C8)); with the following
eight components:

72

R1 = (a2b2c2)�abc(abc)�; C1 = fag;
R2 = (a2b2c2)�a2bc(abc)�; C2 = fbg;
R3 = (a2b2c2)�a2b2c(abc)�; C3 = fcg;
R4 = (abc)�a2b2c2(a2b2c2)�; C4 = fbg;
R5 = (abc)�abab2c2(a2b2c2)�; C5 = fcg;
R6 = (abc)�abcab2c2(a2b2c2)�; C6 = fcg;
R7 = (abc)�abcabcbc2(a2b2c2)�; C7 = fag;
R8 = (abc)�abcabcabcc(a2b2c2)�; C8 = fabg:

Examine the derivations in G in the global mode. The whole current string must be in some Ri in order
to continue the derivation. Assume we start from a string w = (abc)r (initially we have r = 1). This string
is in R1 only, hence we can add one more occurrence of a. This can be done in all possible positions of w
and we obtain a string in Lgl(G), but only when we obtain aabc(abc)r�1 we can continue the derivation,
namely by using the second component of G. Now a symbol b can be added, and again the only case
which does not block the derivation leads to aabbc(abc)r�1. We can continue with the third component
and either we block the derivation, or we get a2b2c2(abc)r�1. From a string of the form (a2b2c2)+(abc)�

we can continue only with the �rst component, hence the previous operations are iterated. When all
symbols a; b; c are doubled, we obtain the string w0 = (a2b2c2)r .

Note that jw0j = 2jwj (more precisely, jw0ja = 2jwja; jw
0jb = 2jwjb; jw

0jc = jwjc), but for each in-
termediate string z in this derivation at least one of the following inequalities holds: jzja 6= jzjb; jzjb 6=
jzjc; jzja 6= jzjc.

To a string of the form of w0 above only the �fth component of G can be applied and again either the
derivation must be �nished, or it continues only in (R6; C6). The derivation proceeds deterministically
through (R6; C6); (R7; C7); (R8; C8), inserting step by step new symbols a; b; c between pairs of such
symbols in order to obtain again triples abc. In this way we obtain either strings from which we cannot
continue or we reach a string of the same form with w, namely (abc)2r. The number of a; b; c occurrences
has been doubled again, whereas in the intermediate steps we have strings with di�erent numbers of
occurrences of at least two of a; b; c.

The process can be iterated. From the previous discussion one can see that for all strings w 2 Lgl(G)
with jwja = jwjc we also have jwja = jwjb and jwja = 2n; n � 0. Consequently, denoting by 	fa;b;cg the
Parikh mapping with respect to the alphabet fa; b; cg, we have

	fa;b;cg(Lgl(G)) \ f(n;m; n) j n;m � 1g = f(2n; 2n; 2n) j n � 1g:

This set is not semilinear; the set of semilinear vectors of given dimension is closed under intersection,
therefore Lgl(G) is not a semilinear language.

Consider now the morphism h : fa; b; cg� �! fa; bg� de�ned by h(a) = bab; h(b) = baab; h(c) = baaab.
De�ne the grammar

G0 = (fa; bg; fh(abc)g; (h(R1); h(C1)); : : : ; (h(R8); h(C8))):

Shu�ing a string h(a); h(b); h(c) with a string h(z); z 2 Ri, in a way di�erent from inserting h(a); h(b); h(c)
as a block leads to strings with substrings of the forms bbb or aba. Take, for example, h(z) = z1bbabbz2
and examine the possibilities to shu�e h(b) = baab after z1. In order to not get a substring bbb we must
insert the �rst symbol of h(b) after the speci�ed occurrence of a in h(z). If we continue with the symbol
b of h(z), this is as starting after this occurrence of b, if we continue with the symbol a of h(b), then we
obtain aba. Starting after bab in h(z), after introducing one b from h(b) we either get bbb (if we continue
in h(z)), or baba (if we alternate in h(b); h(z); h(b)), or baab (hence h(b) is inserted as a block). Similarly,
take for example h(z) = z1bbaaabbz2 and shu�e the same h(b) = baab. Introducing b after z1bba we have
to continue either with a from h(z) or with a from h(b), in both cases obtaining the subword aba. The
same result is obtained in all other cases. After producing a substring bbb or aba, the derivation is blocked.
Inserting h(a); h(b); h(c) in h(z) as a compact block corresponds to inserting a; b; c in z. Consequently,
the derivations in G0 correspond to derivations in G. When a derivation is blocked, it can terminate with
a string z with jzja = jzjb only when z contains the same number of substrings bab abd baaab, with the
possible exception of such substrings destroyed by the last shu�ing, that of baaab when using the pair
(h(R3); h(C3)) or of babbaab when using the pair (h(R8); h(C8)).

Moreover,
	fa;bg(Lgl(G

0)) \ f(n; n) j n � 1g = f(6 � 2n; 6 � 2n) j n � 1g:

73

Indeed, from a string z containing 2n occurrences of every symbol a; b; c we get a string h(z) with

2n + 2 � 2n + 3 � 2n = 6 � 2n occurrences of a;

2 � 2n + 2 � 2n + 2 � 2n = 6 � 2n occurrences of b:

Conversely, if a string h(z) contains the same number of a and b occurrences, assume that it contains
� substrings bab, � substrings baab and substrings baaab. Then it contains 2�+ 2�+2 occurrences of
b and �+ 2� + 2 occurrences of b. Consequently,

2�+ 2� + 2 = �+ 2� + 2

which implies� = . As we have seen in the �rst part of the proof, when jwja = jwjc, then also jwja = jwjb,
hence � = �, too. Therefore the obtained string x corresponds to a string z (in the sense x = h(z)) such
that jzja = jzjb = jzjc. This implies jxja = jxjb and jxja = jxjb = 6 � 2n.

In conclusion, also Lgl(G
0) is not semi-linear. }

For the case of �nite selection we have

Theorem 5. PR(FIN) � REG.

Proof. Let G = (V;B; (R1; C1); : : : ; (Rn; Cn)) be a shu�e grammar with all sets Ri; 1 � i � n, �nite.
We construct a left-linear grammar G0 = (N; V; S; P) as follows.

Let
q = maxfjxj j x 2 Ri; 1 � i � n; or x 2 Bg:

Then

N = f[x] j x 2 V �; jxj � qg [fSg;

P = fS ! [x] j x 2 Bg [

[f[w]! [z] j if jwj � q; w = w1w2; w1 2 Ri for some 1 � i � n;

z = uw2; for some u 2 w1t?x; x 2 Ci and jzj � qg [

[f[w]! [z]v j if jwj � q; w = w1w2; w1 2 Ri for some 1 � i � n;

zv = uw2 for some u 2 w1t?x; x 2 Ci and jzj = qg [

[f[w]! w j jwj � qg:

The derivation proceeds from right to left; the nonterminals [w] in the left-hand side of sentential
forms memorize the pre�x w of large enough length to control the derivation in G in the pre�x mode.
Therefore, Lpr(G) = L(G0) and Lpr(G) 2 REG: }

Theorem 6. ARB1(FIN) contains non-linear languages.

Proof. Take G = (fa; bg; f�g; (f�g; fabg)). We obviously have Larb(G) = the Dyck language over
fa; bg, known to be a (context-free) non-linear language. }

Open problems.Are there non-semilinear languages in familiesARB(F); LM (F); F 2 fFIN;REGg;
or in PR(REG) ? Are there non-context-free languages in families ARB(FIN); LM (FIN) ?

We proceed now to investigating the relations among familiesARB(F); PR(F); LM (F); GL(F); PL(F)
for F as above. We present the results in the next theorem, whose proof will consist of the series of lemmas
following it.

Theorem 7. (i) Each two of the families ARB(REG); PR(REG); LM (REG);
GL(REG); PL(REG) are incomparable, excepting the case of ARB(REG); PL(REG) for which we have
the proper inclusion ARB(REG) � PL(REG).

(ii) Each pair (PL(FIN); PR(FIN)); (PL(FIN); LM (FIN)); (PR(FIN);
LM (FIN)); (ARB(FIN); PR(FIN)), (ARB(FIN); LM (FIN)) consists of incomparable families; the
following inclusions are proper: GL(FIN) � X(FIN) for allX 2 fARB; PL; PR;LMg, and ARB(FIN) �
PL(FIN).

74

Lemma 1. For each X 2 fARB;PR;LM;GLg we have PL(FIN)�X(REG) 6= ;:

Proof. Follows from the fact that PL(FIN) contains one-letter non-regular languages, but the one-
letter languages in the other families F are regular (Theorem 3). }

Lemma 2. ARB(F) � PL(F); F 2 fFIN;REGg:

Proof. For a shu�e grammar G = (V;B; (R1; C1); : : : ; (Rn; Cn)) used in the arbitrary mode of deriva-
tion, construct G0 = (V;B; (R1; C1); : : : ; (Rn; Cn); (V; f�g)).

For a1a2 : : :akx2b1b2 : : : bj =)arb
i a1a2 : : :akx

0
2b1b2 : : : bj in G, with x2 2 Ri; x

0
2 2 x2t?Ci; for some

1 � i � n; we have as = ast?�; 1 � s � k, bs = bst?�; a � s � j, hence a1a2 : : :akx2b1b2 : : : bj =)pl

a1a2 : : : akx
0
2b1b2 : : : bj in G0.

Conversely, a derivation x1 : : : xk =)pl x01 : : :x
0
k in G0 corresponds to a derivation x1x2 : : :xk =)arb

i1

x01x2 : : :xk =)arb
i2

x01x
0
2x3 : : :xk =)arb

i3
: : : =)arb

ik
x01 : : : x

0
k in G, with the steps =)arb

ij
omitted when

x0j = xj:
In conclusion, Larb(G) = Lpl(G0): }

Lemma 3.The language Lgl(G), for G = (fa; bg; fabg; (a+b+; fabg)) is not in ARB(REG); PR(REG),
or LM (REG).

Proof. We have

Lgl(G) = fanbn j n � 1g [

[fanabambn+m j n;m � 0g [

[fan+mbnabbm j n;m � 0g:

Assume that this language can be generated in one of the modes arb; pr; lm by a grammar G0 =
(fa; bg; B; (R1; C1); : : : ; (Rn; Cn)). Each string in Lgl(G) contains the same number of occurrences of
a and of b, hence for each string in Ci which is used in a derivation we must have the same property. In
the mentioned modes f of derivation, if we have a derivation x1x2x3 =)

f
i x1x

0
2x3 (for f = pr we have

x1 = �) using a string u 2 Ci, then we can obtain x1x2x3 =)
f
i x1x2ux3, too, hence the use of u can be

iterated, thus producing strings x1x2unx3 with arbitrary n. For u 6= � this is contradictory (juja = jujb).
}

Lemma 4. The language L = ab+a is in ARB(FIN)\LM (FIN) but not in GL(REG)[PR(REG).

Proof. The language L can be generated by the grammarG = (fa; bg; fabag; (fbg; fbg)) in both modes
of derivation arb and lm, but it cannot be generated by any shu�e grammar in modes gl or pr: in order
to arbitrarily increase the number of b occurrences we have to use a string br; r � 1, which is shu�ed
to a string containing the leftmost occurrence of the symbol a in the strings in L. In this way, strings
beginning with bra can be produced, a contradiction. }

Lemma 5. The language L = ab+a [bab+a is in PR(FIN) but not in GL(REG).

Proof. For G = (fa; bg; fabag; (fabg;fbg)) we have Lpr(G) = L but L cannot be generated in the gl
mode by any grammar: we need a string u which introduces occurrences of b and in the global mode this
u can be adjoined in the right hand of the rightmost occurrence of a in the strings of L. }

Lemma 6.The language Lpr(G), for the grammar G = (fa; bg; fabg; (fabg; fabg)), is not in LM (REG).

Proof. We have
Lpr(G) = (ab)+ [aabb(ab)�:

(When the leftmost two symbols are not ab, the derivation is blocked.)
Assume that Lpr(G) = Llm(G0) for some G0 = (fa; bg; B; (R1; C1); : : : ; (Rn; Cn)). For every z 2

Lpr(G) we have jzja = jzjb, hence the same property holds for all strings in sets Ci e�ectively used in
derivations. Take such a nonempty string u 2 Ci and examine the form of strings x 2 Ri. Such strings

75

cannot be pre�xes of aabb(ab)n; abb(ab)n; bb(ab)n, because otherwise we can obtain parasitic strings by
introducing u in the left of the pair bb in strings aabb(ab)m. Suppose that x is a pre�x of b(ab)n di�erent
from b. Then we can shu�e the string u in such a way to obtain a pair aa in the right of the pair bb already
existing in strings of the form aabb(ab)n. Again a contradiction, hence the strings of the form aabb(ab)n

cannot be derived. This implies that they are obtained by derivations of the form (ab)n =)lm
i aabb(ab)m.

Consequently, also aabb(ab)n =)lm aabbaabb(ab)m is possible (we have found that the pre�x aabb cannot
be rewritten, hence the derivation is leftmost). Such strings are not in Lpr(G). }

Lemma 7. The language L = Lpr(G) in the previous lemma is not in the family PL(REG).

Proof. Assume that L = Lpl(G0) for some G0 = (fa; bg; B; (R1; C1); : : : ; (Rn; Cn)).
If a derivation (ab)n =)pl aabb(ab)m is possible in G0, then also (ab)n(ab)n =)pl aabb(ab)maabb(ab)m

is possible, a contradiction. Consequently, the strings aabb(ab)q can be produced only by derivations of
the form aabb(ab)p =)pl aabb(ab)q:

Assume that there is a derivation of the form (ab)n =)pl (ab)m.
We cannot have pairs (Ri; Ci) with � 2 Ri; Ci 6= f�g. Indeed, if such a pair exists, then from a

derivation aabb(ab)p =)pl aabb(ab)q we can produce also uaabb(ab)q, for each u 2 Ci.
Examine the pairs (x; u); x 2 Ri; u 2 Ci, used in the derivation (ab)n =)pl (ab)m. We know that

x 6= �. If x contains a symbol a and also u contains an occurrence of a, then we can produce strings
having the subword aa; this is forbidden ((ab)n cannot generate strings of a form di�erent from (ab)r).
Similarly, we cannot have occurrences of b both in x and in u. Therefore, x = aj; u = bk or x = bs; u = at.
Clearly, we must have i = s = 1 (no other subwords consisting of a or of b only appear in the derived
string) and j = t = 1 (no other subwords consisting of a or of b only appear in the produced string). Such
pairs (x; u) can be clearly used for producing a parasitic string, a contradiction.

In conclusion, the strings (ab)n cannot be derived, hence such strings with arbitrarily long n must be
obtained by derivations aabb(ab)p =)pl (ab)n. Then the symbols aa and bb in the pre�x of aabb(ab)p must
be separated by an occurrence of b, respectively of a. Irrespective whether this a must be introduced after
the �rst b or before the second b, we can introduce it before the �rst b, respectively after the second b, thus
preserving the pair bb. If the pair aa in its left-hand has been correctly shu�ed with b, then we obtain a
string of the form x1bbx2 with jx1j � 3, which is not in L. The equality L = Lpl(G

0) is impossible. }

Lemma 8. There are languages in GL(REG)� PL(REG).

Proof. Consider the grammar

G = (fa; bg; fabg; ((ab)�; fabg)):

We have
Lgl(G) = (ab)+ [(ab)�a(ab)+b(ab)�;

which is not a parallel shu�e language. The argument is similar to that in the previous proof, hence it is
left to the reader. }

Lemma 9. There are languages in ARB(FIN) � LM (REG).

Proof. For the grammar G = (fa; bg; fabbag; (fag;fag)) we have

Larb(G) = a+bba+:

Assume that Larb(G) = Llm(G0) for some G0 = (fa; bg; B; (R1; C1); : : : ; (Rn; Cn)). For every u 2 Ci

e�ectively used, we must have u = ar; r � 0. No derivation can use a pair (x; u); x 2 Ri; u 2 Ci, with x
containing a symbol b, otherwise we can produce strings of the form anbapbam; p � 1. Consequently, all
selectors Ri can be supposed to contain only strings in a�. A pair (Ri; Ci) can be used in a derivation if (and
only if) the pair (fxig; Ci) can be used, for xi the shortest string in Ri; for two pairs (fxig; Ci); (fxjg; Cj),
only that with the shortest xi; xj can be used. Denote

k = minfjxj j x 2 Ri; 1 � i � ng:

From a string anbbam in B with n < k;m < k we can produce no other string; when n � k, we produce
only strings of the form atbbam without modifying the number m; when n < k and m � k, then we

76

can produce strings of the form anbbat. However, Larb(G) contains strings a
sbbat with simultaneously

arbitrarily large s; t, a contradiction. }

Lemma 10. The language generated by G = (fa; bg; fabg; (fabg; fabg)) in the leftmost mode is not in
PL(REG).

Proof. We have
Llm(G) = (ab)+ [fai((ab)�b)i(ab)� j i � 1g:

Here is a derivation in G in the leftmost mode:

ab =)lm abab =)lm ababab =)lm : : : =)lm (ab)n =)lm

=)lm aabb(ab)n�1 =)lm : : : =)lm a(ab)mb(ab)n�1 =)lm

=)lm aaabb(ab)m�1b(ab)n�1 =)lm : : : =)lm aa(ab)pb(ab)m�1b(ab)n�1:

Assume that Llm(G) = Lpl(G
0) for some G0 = (fa; bg; B; (R1; C1); : : : ; (Rn; Cn)).

Examine the possibilities to obtain the strings (ab)n with arbitrarily large n. We cannot have a
derivation w =)pl (ab)n for w a string in ai((ab)�b)i(ab)�; 1 � 1, because we must separate both the i left
occurrences of a and the i pairs bb appearing in the string; irrespective of the used strings to be shu�ed
we can do only part of these operations, letting for instance a pair aa unchanged and separating all pairs
bb; we obtain a parasitic string. Therefore we must have derivations (ab)n =)pl (ab)m; m > n. If in such
a derivation we use a pair (x; u); x 2 Ri; u 2 Ci, such that a occurs both in x and in u, then we can
produce strings with substrings aa. Starting from a string (ab)n(ab)n we can then produce strings having
aa not in the left-hand end, a contradiction. It follows that symbols a are introduced only by pairs (x; u)
with x = b (no other subword of (ab)n consists of only occurrences of b). In order to cover (ab)n we must
use also pairs (y; v) with y containing a and v not containing a. This implies v = b or v = �. The use
of (b; u) introduces at least one new occurrence of a for each b, hence, in order to keep the number of a
and b equal, we must have v = b, which implies y = a. Using such pairs we can produce again strings
containing pairs aa not in the left-hand end, a contradiction which concludes the proof. }

Let us note that in all previous lemmas the considered languages are generated by grammars with
only one component (R;C). Consequently, we have

Corollary 1. For all families X(F); X0(F) with X;X 0 2 fARB;PR;LM;GL;PLg; X 6= X0, F 2
fFIN;REGg; which are incomparable, all Xi(F); X 0

j(F) are incomparable, too, for every i; j � 1:

Corollary 2. Each family F such that REG � F � CF is incomparable with each family ARB(REG); PR(REG); LM (REG); GL(REG); PL(R

Proof. The fact that X(REG) � CF 6= ;, for each X 2 fARB;PR;LM;GL;PLg, has been already
pointed out. On the other hand, the language ab+a in Lemma 4 is not in GL(REG) or in PR(REG),
and the language (ab)+ [aabb(ab)� in Lemma 6 is not in LM (REG) or on PL(REG), hence it is not in
ARB(REG). These languages are regular, which concludes the proof. }

By a straightforward simulation in terms of context-sensitive grammars of checking the conditions
de�ning the correct derivation in a shu�e grammar and of performing such a derivation, we get

Theorem 8. All families X(F); X 2 fARB;PR;LM;GL;PLg; F 2 fFIN;REGg; are strictly in-
cluded in CS.

The properness of these inclusions follows from the previous Corollary 2.

77

4 The case of using maximal selectors

For a shu�e grammar G = (V;B; (R1; C1); : : : ; (Rn; Cn)) as in the previous sections, we can also de�ne
the following mode of derivation: for x; y 2 V � and 1 � i � n, write

x =)max
i iff x = x1x2x3; x1; x2 2 V �; x2 2 Ri;

y = x1x
0
2x3; for some x

0
2 2 x2t?u; u 2 Ci;

and

there is no decomposition of x of the form

x = x01x
00
1x2x

0
3x

00
3 ; with x001x

0
3 6= �;

x001x2x
0
3 2 Rj for some j; 1 � j � n:

(We use x2 for shu�ing only if no longer string can be used containing that occurrence of x2 as a
substring.)

We denote by Lmax(G) the language generated in this way and by MAX(FIN);
MAX(REG) the corresponding families of languages.

Lemma 11. MAX1(FIN)�X(REG) 6= ;; X 2 fPR;LM;GLg; MAX2(FIN)�ARB(REG) 6= ;:

Proof. For X 2 fPR;GLg the assertion is proved by the language in Lemma 4: in general, if G =
(V;B; (fxg; C)) (one component, with a singleton selector), then the maximality has no e�ect, the maximal
derivations in G are arbitrary derivations. This is the case with the grammar in Lemma 4.

This is also true for the grammar in the proof of Lemma 9; that language covers the case X = LM .
Consider now the grammar

G = (fa; b; cg; fcabg; (fcabg; fabg); (facab; bcabg;f�g):

Starting from a string c(ab)n (initially we have n = 1), we can shu�e the string ab in the pre�x ab in �ve
essentially di�erent ways:

(1) c(ab)n =)max abc(ab)n;

(2) c(ab)n =)max acb(ab)n;

(3) c(ab)n =)max acabb(ab)n�1;

(4) c(ab)n =)max c(ab)n+1;

(5) c(ab)n =)max caabb(ab)n�1:

In cases (2) and (5) the derivation cannot continue (all selectors contain the subword cab); in cases (1)
and (3) we cannot use the selector cab because acab or bcab are present; the latter selectors entail the
shu�e of �, which changes nothing, hence the derivation is blocked. Only case (4) can be continued.
Consequently,

Lmax(G) = c(ab)+ [abc(ab)+ [acb(ab)+ [acabb(ab)� [caabb(ab)�:

This language cannot be generated by a shu�e grammar G0 = (fa; b; cg; B; (R1; C1); : : : ; (Rn; Cn)) in the
arbitrary mode. Assume the contrary. Every string in B, in a grammar G0 as above, must contain the
symbol c and every string in Ci; 1 � i � n; must contain the same number of occurrences of a and of
b. If � 2 Ci, then this string can be ignored without modifying the language of G0. In order to generate
strings c(ab)m with arbitrarily large m we must have derivation steps w =)arb c(ab)m with w = c(ab)p

or w = caabb(ab)p; p < m (the other strings in Lmax(G) contain symbols a or b in front of c). Starting
from caabb(ab)p we have to introduce one occurrence of b between symbols a in the substring aa and one
occurrence of a between symbols b in bb, that is we need a pair (z; u) with z 2 Ri; u 2 Ci, z = z1abz2 and
u = u1bu2au3. Then from caabb(ab)p we can also produce x1z1u1bu2au3abz2x2 = x1z1u1bu2au3abbx

0
2,

a parasitic string. If c(ab)p =)arb c(ab)m uses a pair (z; u) with z 2 cfa; bg�, then usc(ab)p can be
produced, for arbitrary s � 1 (we introduce u in the left of c, thus leaving the occurrence of z in c(ab)p

unchanged). Consequently, we have to use a pair (z; u) with z 2 fa; bg�. More exactly, z is a substring

78

of (ab)p. As u contains occurrences of both a and b, we can derive c(ab)s(ab)p with arbitrary s (all such
strings are in Lmax(G)) in such a way to obtain c(ab)sy with y containing a substring aa or a substring bb.
Such a string is not in Lmax(G), hence the grammar G0 cannot generate strings c(ab)m with arbitrarily
large m. The equality Lmax(G) = Larb(G0) is impossible. }

Lemma 12. GL(F) �MAX(F); F 2 fFIN;REGg.

Proof. As GL(FIN) = FIN and, clearly, FIN � MAX(FIN), the case F = FIN is obvious.
Take now a grammar G = (V;B; (R1; C1); : : : ; (Rn; Cn)) with regular Ri; 1 � i � n; and construct

G0 = (V;B; (R1; C1); : : : ; (Rn; Cn); (Rn+1; Cn+1)) with

Rn+1 = V �(
n[

i=1

Ri)V
�; Cn+1 = f�g:

We have Lgl(G) = Lmax(G
0).

(�) If x =)gl
i y, that is x 2 Ri; y 2 xt?u; u 2 Ci, then the derivation is maximal, we also have x =)max

i y:
Consequently, if w 2 B derives z in G in the global mode, then w derives z in G0 in the maximal
mode.

(�) Take a derivation in G0, x =)max
i y. If i = n+1, then x = y. If i � n, then we have x 2 Ri, otherwise

the derivation is not allowed: for x = x1x2x3; x2 2 Ri; x1x2 6= �, we have x1x2x3 2 Rn+1; hence the
derivation in (Ri; Ci) is not allowed. By induction on the length of derivations, we can now show that
for every maximal derivation in G0 there is a global derivation in G producing the same string, hence
Lmax(G

0) � Lgl(G). }

Lemma 13. PR(FIN)�MAX(REG) 6= ;:

Proof. Consider the grammar

G = (fa; bg; fabg; (fabg; fabg)):

We obtain
Lpr(G) = (ab)+ [aabb(ab)�:

This language is not in MAX(REG). Assume the contrary, that is Lpr(G) = Lmax(G0) for some G0 =
(fa; bg; B; (R1; C1); : : : ; (Rn; Cn)).

If we have a derivation of the form aabb(ab)n =)max (ab)m, then we have to separate the symbols
in the subwords aa and bb by b or some bxb; x 2 fa; bg�, and by a or some aya; y 2 fa; bg�, respectively.
To this aim, a string of the form z1abz2 must be used as selector and a string u = u1bu2au3 must be
shu�ed. But then also aabb(ab)n =)max au1bu2au3abb(ab)n is possible, and this is not in the language
Lpr(G), a contradiction.

Assume that we have a derivation (ab)n =)max (ab)m;m > n � 2: Then we must have (ab)n =
x1x2x3; x2 2 Ri, for some i such that (ab)m = x1x

0
2x3; x

0
2 2 x2t?v; v 2 Ci: Clearly, jvja = jvjb � 1:

Then from (ab)2n we can derive (ab)n(ab)m. If x2 = � and v starts by an occurrence of a; v = av0,
then we can produce (ab)nz1aav0bz2, for some z1; z2 2 fa; bg�; if v starts by b; v = bv0, then we can
produce (ab)nz1abbv0z2, for some z1; z2 2 fa; bg�. No one of these strings is in Lpr(G), a contradiction.
Therefore we must have x2 6= �. If x2 contains the symbol a, then we can obtain (ab)nz1aaz2, for some
z1; z2 2 fa; bg�, by appropriate shu�ing of x2 and v. If x2 contains the letter b, then we can obtain
(ab)nz1bbz2, for some z1; z2 2 fa; bg�, by appropriate shu�ing. In both cases we have obtained parasitic
strings.

Consequently, the strings (ab)n cannot be generated, they must be introduced as axioms; this is
impossible, because the set B is �nite, hence Lpr(G) =2MAX(REG). }

Lemma 14. A one-letter language is regular if and only if it is in MAX(FIN).

Proof.The proof of Theorem 3 shows the fact that every one-letter regular language is inMAX(FIN).

79

Conversely, take a grammarG = (fag; B; (R1; C1); : : : ; (Rn; Cn)) and write each Ri; 1 � i � n, in the
form

Ri = Hi [
ki[

s=1

fam j m = pi;s + j � qi; j � 0g;

for Hi �nite languages, and qi associated with Ri; 1 � i � n. Denote

T = maxfqi j 1 � i � ng;

K = maxft j at 2 B or at 2 Hi; or t = pi;s; 1 � s � ki; 1 � i � ng:

Take for each Ri a deterministic �nite automaton

Ai = (Qi; fag; s0;i; Fi; �i); 1 � i � n:

We construct the right-linear grammar G0 = (N; fag; S; P) with

N = QT
1 �QT

2 � : : :�QT
n [fSg;

and P contains the following rules:

(1) S ! ar , for ar 2 L(G); r � K + T ;
(2) S ! ar(s1;1s2;1 : : : sT;1; s1;2s2;2 : : : sT;2; : : : ; s1;ns2;n : : : sT;n),

for K + T � r < K + 2T; �i(s0;i; a
r�T+j) = sj;i; 1 � j � T; 1 � i � n;

(3) (s1;1s2;1 : : : sT;1; : : : ; s1;ns2;n : : : sT;n)! ar(s01;1s
0
2;1 : : : s

0
T;1; : : : ; s

0
1;ns

0
2;n : : : s

0
T;n);

where ar 2 Ci for some i 2 f1; 2; : : :; ng such that sT�j;i 2 Fi and sm;l 2 Ql � Fl for all 1 � l � n
and T � j + 1 � m � T ; moreover, s0j;l = �l(sj;l; a

r); 1 � j � T; 1 � l � n:

(4) (s1;1s2;1 : : : sT;1; : : : ; s1;ns2;n : : : sT;n)! � for all (s1;1s2;1 : : : sT;1; : : : ; s1;ns2;n : : : sT;n) 2 N .

For every language Ri, the di�erence between the length of two consecutive strings in Ri is bounded
by qi. Therefore the di�erence between two strings in any of these languages is bounded by T . In the
nonterminals of G0 we memorize the last T states used by the automata Ai when recognizing the current
string. A prolongation to right is possible (by rules of type (3)) only according to that language Ri which
contains the largest subword of the current string (thus we check the maximality). The derivation can
stop in any moment by rules of type (4). Consequently, Lmax(G) = L(G0), hence Lmax(G) 2 REG, which
concludes the proof. }

Summarizing these lemmas and the fact that PL(FIN) contains one-letter non-regular languages, we
obtain

Theorem 9.MAX(F) includes strictlyGL(F) and is incomparable with PR(F 0), F; F 0 2 fFIN;REGg;
MAX(FIN) �X(REG) 6= ; for X 2 fARB;PR;GL;LMg:

Open problems.Are the di�erences ARB(F)�MAX(F); LM (F)�MAX(F), MAX(F)�PL(F),
for F 2 fFIN;REGg, non-empty ?

The diagram in �gure 1 summarizes the results in the previous sections (an arrow from X1 to X2

indicates the strict inclusion of the familyX1 in X2.)

The maximal derivation discussed above can be considered as arbitrary-maximal, since we are not
concerned with the place of the selector in the rewritten string, but only with its maximality. Similarly,
we can consider pre�x-maximal and leftmost-maximal derivations, when a maximal pre�x or a substring
which is both maximal and leftmost is used for derivation, respectively. We hope to return to these cases.
At least the pre�x-maximal case looks quite interesting. For instance, if the sets Ri are disjoint, then in
every step of a derivation only one of them can be used, which decreases the degree of nondeterminism
of the derivations.

80

5 Final remarks

We have not investigated here a series of issues which are natural for every new considered generative
mechanisms, such as closure and decidability problems, syntactic complexity, or the relations with other
grammars which do not use the rewriting in generating languages. Another important question is whether
or not the degree of shu�e grammars induces an in�nite hierarchy of languages. We close this discussion
by emphasizing the variety of places where the shu�e operation proves to be useful and interesting, as
well as the richness of the area of grammars based on adjoining strings.

Q
Q

Q
Q

Qk

6

6

Z
Z

ZZ}

�
�
��7

6

MAX(FIN)

MAX(REG)

GL(FIN) = FIN

ARB(FIN)

GL(REG) ARB(REG)

��
��
�*

6

��
��

��*

PL(REG)

PL(FIN)

��
��

��
��

��
��1

���
���

���
���

���
��:

vector(0,1)49.00

6

�
�
�
�
�
�
���

LM (FIN) PR(FIN)

REG

LM (REG) PR(REG)

CS

��
��

��
��

��
��

��
��1 6

B
B
B
B
B
B
BBM

@
@

@
@

@
@

@@I

Fig. 1

References

[1] B. Berard, Literal shu�e, Theoretical Computer Science, 51 (1987), 281 { 299.
[2] J. Dassow, Gh. Paun, A. Salomaa, Grammars based on patterns, Intern. J. Found. Computer Sci., 4, 1

(1993), 1 { 14.
[3] B. C. Galiukschov, Polukontekstnie gramatiki, Mat. Logica i Mat. Ling., Kalinin Univ, 1981, 38 { 50 (in

Russ.).
[4] G. H. Higman, Ordering by divisibility in abstract algebra, Proc. London Math. Soc., 3 (1952), 326 {

336.
[5] M. Ito, G. Thierrin, S. S. Yu, Shu�e-closed languages, submitted, 1993.
[6] M. Jantzen, On shu�e and iterated shu�e, Actes de l'ecole de printemps de theorie des langages (M.

Blab, Ed.), Murol, 1981, 216 { 235.

81

[7] A. K. Joshi, S. R. Kosaraju, H. M. Yamada, String adjunct grammars: I. Local and distributed adjunction,
Inform. Control, 21 (1972) , 93 { 116.

[8] S. Marcus, Contextual grammars, Rev. Roum. Math. Pures Appl., 14, 10 (1969), 1525 { 1534.
[9] Al. Mateescu, Marcus contextual grammars with shu�ed contexts, in Mathematical Aspects of Natural

and Formal Languages (Gh. P�aun, ed.), World Sci. Publ., Singapore, 1994, 275 { 284.
[10] L. Nebesky, The �-grammar, Prague Studied in Math. Ling., 2 (1966), 147 { 154.
[11] Gh. Paun, Grammars for Economic Processes, The Technical Publ. House, Bucuresti, 1980 (in Ro-

manian).
[12] Gh. Paun, Contextual Grammars, The Publ. House of the Romanian Academy of Sciences, Bucure�sti,

1982 (in Romanian).
[13] Gh. P�aun, G. Rozenberg, A. Salomaa, Contextual grammars: Erasing, determinism, one-sided contexts,

in Developments in Language Theory (G. Rozenberg, A. Salomaa, eds.), World Sci. Publ., Singapore,
1994, 370 { 388.

[14] Gh. Paun, G. Rozenberg, A. Salomaa, Contextual grammars: Parallelism and blocking of derivation,
Fundamenta Informaticae, to appear.

[15] Gh. Paun, G. Rozenberg, A. Salomaa, Marcus contextual grammars: Modularity and leftmost derivation,
in Mathematical Aspects of Natural and Formal Languages (Gh. Paun, ed.), World Sci. Publ., Singapore,
1994, 375 { 392.

[16] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic Press, New York, London,
1980.

[17] A. Salomaa, Formal Languages, Academic Press, New York, London, 1973.

82

