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PREPARED FOR SUBMISSION TO JCAP

GRAMSES: a new route to general
relativistic N -body simulations in
cosmology - I. Methodology and
code description

Cristian Barrera-Hinojosaa and Baojiu Lia

aInstitute for Computational Cosmology, Department of Physics, Durham University,
Durham DH1 3LE, UK

E-mail: cristian.g.barrera@durham.ac.uk, baojiu.li@durham.ac.uk

Abstract. We present GRAMSES, a new pipeline for nonlinear cosmologicalN -body simulations in
General Relativity (GR). This code adopts the Arnowitt-Deser-Misner (ADM) formalism of GR, with
constant mean curvature and minimum distortion gauge fixings, which provides a fully nonlinear and
background independent framework for relativistic cosmology. Employing the fully constrained for-
mulation, the Einstein equation is reduced to a set of ten elliptical equations solved using multigrid
relaxation on adaptive mesh refinements (AMR), and three hyperbolic equations for the evolution of
dynamical degrees of freedom. The current version of GRAMSES neglects the evolution equations for
the gravitational sector by using the conformal flatness approximation, which allows it to compute the
two scalar and two vector degrees of freedom, while extensions to include these evolution equations
are ongoing. In this paper we describe the methodology, implementation, code tests and first results
for cosmological simulations in a ΛCDM universe, while the generation of initial conditions and
physical results will be discussed elsewhere. Inheriting the efficient AMR and massive parallelisa-
tion infrastructure from the publicly-available N -body and hydrodynamic simulation code RAMSES,
GRAMSES is ideal for studying the detailed behaviour of spacetime inside virialised cosmic structures
and hence accurately quantifying the impact of backreaction effects on the cosmic expansion, as well
as for investigating GR effects on cosmological observables using cosmic-volume simulations.ar
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1 Introduction

The challenge of implementing cosmological simulations based on General Relativity (GR) for study-
ing structure formation in our Universe has received increasing attention in the last few years, not only
as a more accurate counterpart to Newtonian simulations in the era of precision cosmology, but also
as a natural framework to study phenomena beyond the Newtonian approximation. Large upcoming
surveys, such as LSST [1], Euclid [2] and DESI [3], aim at mapping billions of galaxies with un-
precedented precision and will open up the possibility of detecting new general relativistic effects in
cosmological observables, whose precise modelling might require a new generation of cosmological
simulations based on GR. As an example, the long-standing issue of the back-reaction effect [4], i.e.,
the impact of matter inhomogeneities on the cosmic expansion rate, requires a unified GR treatment
for spacetime and matter. While the Newtonian approximation offers an intuitive description for grav-
ity, and simulations based on it enjoy a remarkable success in explaining the observable Universe so
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far [5–7], the assumption of a Friedmann-Lemaître-Robertson-Walker (FLRW) background turns the
Hubble parameter into an external input that is dissociated from the structure formation process that
might take place. Furthermore, attempts to include this back-reaction in Newtonian simulations result
in null contributions by construction [8–10]. Even if back-reaction may not fulfill its original purpose
of explaining the observed accelerated cosmic expansion, it can still contribute to our understanding
of dark energy and possibly to alleviate the current 3σ tension between the Hubble constant determi-
nation from the local [11] and distant [12] Universe. Recent attempts to study back-reaction effects
in a GR framework show that local deviations from the average expansion rate of the Universe can be
substantial in underdense regions [13] and might impact our estimation of cosmological parameters
in a ΛCDM model even at the percent level [14]. In any case, a fully non-linear, general relativistic
framework is needed in order to reach conclusive answers to this problem in the late-time Universe.

The rise of modern N -body cosmological simulations taking a leap beyond the Newtonian ap-
proximation was first achieved by the GEVOLUTION code [15–20]. This is based on a weak-field
expansion around a FLRW background, which allows to linearise the equations for the gravitational
sector while keeping the nonlinearities in the energy-momentum tensor, whose components become
‘dressed’ by the weakly perturbed metric. Following the standards set by state-of-the-art Newtonian
simulations, in GEVOLUTION the dark matter content of the Universe is described as a particle en-
semble, which allow to track them even after trajectory-crossing occurs. The latter is crucial to get
a realistic structure formation history since such phenomenon appears in the formation of virialised
dark matter haloes.

Another interesting path for implementing general relativistic cosmological simulations is to re-
sort to numerical relativity which condenses the theoretical and numerical tools needed for modelling
relativistic systems. Even if the first applications of numerical relativity to study cosmological space-
times were explored during the 80’s [21], modern developments in this direction arguably started
with the COSMOGRAPH code [22] and the work of Betivegna & Bruni [13], followed by that of
Macpherson et al. [23]. Some of these GR codes based on numerical relativity share a common fea-
ture of being developed upon the Einstein Toolkit [24], an open-source community infrastructure for
relativistic astrophysics. These implement the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) for-
mulation for a numerically stable spacetime evolution [25–27] – one of the cornerstones in modern
numerical relativity – and general relativistic hydrodynamics for the matter sector. This latter aspect,
however, is different from standard cosmological simulations and the approximation of treating dark
matter as a fluid means that particle trajectories after shell crossing in bound structures are not exactly
followed during the simulation. For instance, a comparison of fully non-linear GR simulations with
pressureless dark matter fluid and Newtonian N -body simulations shows partial discrepancies inside
the (Newtonian) dark matter haloes where the weak field condition is violated [28], but the different
treatments for matter make the results difficult to assess and demands a fully GR N -body simulation.
More recently, Daverio et al. [29] has made an attempt in this direction, by implementing full GR
solutions in an N -body system.

In this paper we introduce a new code, GRAMSES, which combines the advantages of the above
state-of-the-art GR cosmological codes while also adding new features specially relevant for structure
formation simulations. Based on the Arnowitt-Deser-Misner (ADM) formalism [30], it implements a
fully non-linear and background-independent set of elliptic-type partial differential equations (PDEs)
for the gravitational sector which are solved using multigrid Gauss-Seidel relaxation. Meanwhile,
GRAMSES offers an N -body description for non-relativistic dark matter particles, as well as support-
ing adaptive mesh refinement (AMR) to increase force resolution in high-density regions, so that the
cosmic web formed in the simulations can be resolved to a high degree of details even after shell
crossing. Our code is based on the publicly-available N -body and hydrodynamical simulation code
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RAMSES [31], which is efficiently parallelised using Message Passing Interface (MPI). Particles are
evolved along geodesics using a leapfrog method, and the particle-to-mesh projection and force in-
terpolation is performed in a Cloud-In-Cell (CIC) scheme.

In order to deal with the nonlinear general relativistic equations for the gravitational sector in
an optimal way for cosmology, GRAMSES implements the so-called fully constrained formulation
(FCF) of GR [32, 33]. It is well known that the evolution equations for the gravitational sector in
the ADM formalism are only weakly-hyperbolic and hence numerically unstable [34], a problem that
is fixed by the BSSN formalism with the introduction of additional dynamical variables. However,
assuming that gravitational waves (GW, which are the only dynamical degrees of freedom in GR) do
not play a significant role in the cosmological dynamics and its back-reaction on the spacetime, we
can neglect these so that time evolution is only due to the matter sector. This is very much in the
similar spirit as the ‘waveless theories of gravity’ developed by Isenberg [35] and latter by Wilson &
Mathews [36], who sought the natural generalisation of Newtonian gravity within GR. Then, in the
resulting formulation only elliptic-type equations are solved to reconstruct the spacetime in absence
of gravitational waves [37] and particles are evolved along geodesics. We stress, however, that this
‘waveless approximation’ does not constitute a fundamental limitation of GRAMSES, as gravitational
waves can still be implemented in the simulations [38] straightforwardly, a task which will be left for
future work.

The rest of the paper is organised as follows. In Section 2 we introduce the equations for the
gravitational sector in the fully constrained ADM formulation of GR, while in Section 3 we describe
the matter sector. In Section 4 we discuss the code structure and the numerical implementations of
the GR equations in GRAMSES. In Section 5 we show some test results for the calculation of the
relativistic source terms as well as for the multigrid solvers. Finally, in Section 6 we present some
first results for cosmological simulations in a ΛCDM universe, although the generation of initial
conditions and physical implications will be addressed in subsequent papers.

Throughout this paper we adopt the (−,+,+,+) signature for the spacetime metric. Geometric
units, where G = c = 1, are used in the theory part of the paper for brevity, but this are restored in
Section 4 in order to introduce code units (which are used in the actual equations solved in GRAMSES).
Greek indices run from 0 to 3, whereas Latin ones from 1 to 3 only, with repeated indices implying
summation.

2 Field equations for the gravitational sector

In this section we review some fundamental aspects of numerical relativity that are at the core of this
work. For a comprehensive discussion on these topics we refer the reader to [39–41].

2.1 The Arnowitt-Deser-Misner formalism

In the ADM (3+1) formalism [30], the 4-dimensional spacetime is foliated into 3-dimensional hy-
persurfaces of constant times characterised by some unit vector nµ, with which we can write a set of
evolution and constraint equations for the variables (γij ,Kij), representing the (induced) spatial met-
ric of the 3-dimensional embedded manifold and its extrinsic curvature, respectively. The spacetime
metric in the ADM formalism is given by

ds2 = gµνdx
µdxν = −α2dt2 + γij(β

idt+ dxi)(βjdt+ dxj), (2.1)

in which the lapse function α and shift vector βi represent gauge (or coordinate) degrees of freedom.
The projection of the Einstein equations into the 3-dimensional hypersurfaces yields the Hamiltonian
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constraint and the momentum constraint, respectively given by

R+K2 −KijK
ij = 16πρ , (2.2)

Dj(K
ij − γijK) = 8πSi , (2.3)

where K = γijKij is the trace of the extrinsic curvature, Di the covariant derivative associated with
the spatial metric γij and R the Ricci scalar. Here, we have introduced the energy density ρ and the
momentum density Si measured by a normal observer nµ, which are calculated by projecting the
energy-momentum tensor as

ρ ≡ nµnνTµν , (2.4)

Si ≡ −γiµnνTµν , (2.5)

where nµ = (−α, 0). In addition to the constraint equations (2.2) and (2.3), which offer no dynamics,
the evolution equations for (γij ,Kij) are

(∂t − Lβ)γij =− 2αKij , (2.6)

(∂t − Lβ)Kij =−DiDjα+ α(Rij − 2KikK
k
j +KKij)− 8πα

[
Sij −

1

2
γij(S − ρ)

]
, (2.7)

where
Lβγij = Diβj +Djβi , (2.8)

and
LβKij = βk∂kKij +Kik∂jβ

k +Kkj∂iβ
k , (2.9)

correspond to Lie derivatives along βi. In addition to the matter source terms (2.4) and (2.5), in
Eq. (2.7) we have defined the spatial stress Sij ≡ γiµγjνTµν , with S = γijSij its trace.

In order to disentangle the physical and gauge degrees of freedom at the nonlinear level we can
resort to decompose (γij ,Kij). As a method to single out a particular degree of freedom in the spatial
metric γij , we use the conformal transformation [42]

γij = ψ4γ̄ij , (2.10)

where ψ = γ1/3 is the conformal factor, γ̄ij the conformal metric, and γ ≡ det (γij) the determinant
of the metric γij . We also introduce a conformal transformation for the traceless part of the extrinsic
curvature Aij ≡ Kij − γijK/3 as

Aij = ψ−10Āij .

Notice that for raising and lowering indices of the conformal (overbarred) quantities we use γ̄ij and
γ̄ij , respectively. Then, the Hamiltonian (2.2) and momentum (2.3) constraints can be rewritten as

8D̄2ψ − ψR̄− 2

3
ψ5K2 + ψ−7ĀijĀ

ij = −16πψ5ρ , (2.11)

D̄jĀ
ij − 2

3
ψ6γ̄ijD̄jK = 8πψ10Si . (2.12)
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2.2 The conformal transverse traceless decomposition

By applying the Conformal Transverse Traceless (CTT) decomposition [43] (also known as York-
Lichnerowicz formulation), we can further isolate degrees of freedom in the extrinsic curvature by
decomposing the traceless, symmetric tensor Āij into a transverse-traceless (TT) part which is diver-
genceless, and a longitudinal part that is written in terms as the vector gradient of a vector potential,
namely

Āij = ĀijTT + ĀijL , (2.13)

with D̄jĀ
ij
TT = 0 and

ĀijL = D̄iW j + D̄jW i − 2

3
γ̄ijD̄kW

k ≡ (L̄W )ij , (2.14)

where W j can be regarded as a vector potential and L̄ is the longitudinal operator (also known as
vector gradient or conformal Killing operator). Then, the momentum constraint (2.12) can be written
in terms of the vector potential as

(∆̄LW )i −
2

3
ψ6D̄iK = 8πψ6Si , (2.15)

where (∆̄LW )i ≡ D̄jĀ
ij is the vector Laplacian, and we have used that γ̄ij γ̄jk = δki . A convenient

feature about the previous equation is that we can decouple it from the rest in some particular cases,
e.g., if we take K = 0 (a maximal slicing) and identify the conformal source term as

si ≡ ψ6Si. (2.16)

Notice that the TT part of Āij is not constrained by (2.15); in fact ĀijTT are dynamical degrees of
freedom connected with gravitational waves. Then, if we want to find a solution in the absence of
GW for a given 3-dimensional hypersurface at t = t0 we might take ĀijTT = 0, but since this is a
dynamical quantity, we do not have the freedom to fix this again at a t > t0 time slice but we would
need to solve the evolution equations to propagate them. We will come back to this point in the next
section when we introduce the ‘waveless approximation’.

2.3 Gauge fixing

As discussed in the previous subsection, the conformal decomposition and the CTT approach recast
the constraint equations in a convenient form without any assumption about the way that the system
evolves, and then the lapse function α and shift vector βi remain completely unspecified. Even if we
have complete freedom to choose them as they correspond to picking a coordinate system, in practice
not all options are physically or numerically convenient. For instance, the simplest option α = 1 and
βi = 0, known as geodesic slicing (or synchronous gauge) is not always suitable since coordinates
can become ill-defined at some point during the evolution of the system, e.g., when shell crossing (or
orbit crossing) occurs, as it is expected for collisionless particles.

In order to study cosmological (i.e., expanding/contracting) spacetimes, a convenient prescrip-
tion to choose α is by applying the so-called Constant Mean Curvature (CMC) slicing condition [44],
in which we can set

K = −3H(t) , (2.17)

where a fiducial Hubble parameter H ≡ ȧ/a has been introduced (being a a fiducial scale factor).
Then, the lapse function can be found by solving the following constraint arising from (2.2) and the
trace of (2.7) in terms of conformal variables,

D̄2(αψ) = αψ

[
7

8
ψ−8ĀijĀ

ij +
5

12
ψ4K2 +

1

8
R̄+ 2πψ4(ρ+ 2S)

]
− ψ5K̇ . (2.18)
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Notice that in this scheme H (or a) is just a prescribed function for fixing the gauge, and in principle
does not represent average (or background) properties of the universe. Nonetheless, we can still fix it
by demanding that this satisfy the ‘reference’ (or ‘background’) Friedmann equations

H2 =
8π

3
(ρ̂m + ρΛ) , (2.19)

H2 + Ḣ = −4π(ρ̂m + ρΛ + 3P̂ ) , (2.20)

where ρ̂m and ρΛ are the homogeneous1 matter and dark energy densities in the reference spacetime,
respectively, and P̂ = Ŝ/3. The advantage of introducing the fiducial Friedmann equations (2.19)
and (2.20) is that we can subtract ‘background’ quantities from the full GR equations, which is more
numerically convenient than to solve them directly. A similar idea is also exploited in [45], where a
reference FLRW spacetime is conveniently subtracted (but under geodesic slicing), and the applica-
tion of a fiducial Hubble parameter as part of the CMC slicing condition is later considered in [46].
We remark that, on itself, this ‘background’ subtraction does not constitute an approximation nor a
perturbative approach, but rather it is simply a reformulation of the equations using a cosmologically
motivated slicing condition.

On the other hand, to fix the remaining gauge freedom let us consider the Minimal Distortion
(MD) condition, in which βi is chosen such that it minimises the time rate of change of γ̄ij during
the propagation of spatial coordinates from one hypersurface to the next one. From the traceless part
of (2.6) in terms of conformal quantities, we find

Āij =
ψ6

2α

[
(L̄β)ij + ∂tγ̄

ij
]
, (2.21)

and the MD condition corresponds to demand [44, 47]

Di(γ1/3∂tγ̄ij) = 0 . (2.22)

Let us remark here that, contrary to the decomposition (2.14) discussed in the CTT approach, in
(2.21) Āij has both longitudinal and transverse components even when the MD condition (2.22) is
satisfied. Then, using the MD condition (2.22) the momentum constraint (2.12) translates into the
following elliptic equation for the shift vector

(∆̄Lβ)i + (L̄β)ijD̄j lnψ6 = 2ψ−6ĀijD̄jα+ 16πψ4αSi, (2.23)

where we have also used the CMC condition to simplify the momentum constraint. In the rest of the
paper the gauge is fixed by the MD condition and the CMC condition, so that (2.17), (2.18) and (2.23)
are satisfied, although the latter is simplified by the approximation introduced in the next subsection.
In addition, we use the reference FLRW equations (2.19) and (2.20) to determine K and K̇.

2.4 The fully constrained formulation of GR

One of the fingerprints of GR is that gravity is no longer a static field as in Newton’s theory, where
the gravitational potential ΦN is completely ‘slaved’ by the matter distribution, but it hosts two dy-
namical degrees of freedom representing ripples in the spacetime. Due to their faint nature, the
existence of these GW has been only recently confirmed by LIGO [48, 49] – about a century after

1Note that we use an overhat to denote the homogeneous matter quantities in order to avoid confusion with the overbars
used above to denote geometric quantities constructed from the conformal metric γ̄ij . For ρΛ, on the other hand, we omit
the overhat for brevity because it does not have an inhomogeneous part.
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its theoretical prediction [50] – and has opened up a plethora of new possibilities for exploring our
Universe. However, in the context of cosmological structure formation and its back-reaction these
play a subdominant role, and then one might try to reconstruct the spacetime in absence of GW while
retaining all other virtues of GR. Therefore, as a natural extension of NewtonianN -body simulations,
we propose to use a formulation of GR featuring only elliptic equations as a first step.

In order to achieve this within the CTT approach, the first step would be to construct the initial
data by choosing a conformally flat metric γ̄ij = δij as well as ĀijTT = 0. However, after we fix the
gauge assuming the MD condition (2.22), there is no remaining freedom to enforce these conditions
for t > 0 since hij ≡ γ̄ij − δij and ĀijTT actually satisfy evolution equations. Then, as a possible
way to have a fully constrained system of GR equations where the effect of GW in the cosmological
dynamics is neglected, following [32, 33] we make the approximations

γ̄ij = δij , ĀijTT = 0 ∀t . (2.24)

This approach follows the same spirit as the ‘waveless theories of gravity’ developed originally by
Isenberg [35] and later by Wilson and Mathews [36], and its application is supported by previous
works from both theoretical and numerical standpoints. In [37] it has been explicitly shown, by using
post-Newtonian expansions, that the conformal flatness approximation and the neglect of the TT term
(2.24) are accurate even in highly relativistic regimes (further details on this point are discussed the
in Appendix of [37]). However, let us remark that these approximations are mainly used to simplify
the programming, and they do not represent a fundamental limitation to GRAMSES. As an example,
in [38] the authors discuss a ‘passive’ method to compute the GW emission within this formulation by
solving the hyperbolic evolution equations, but without including its back-reaction onto the dynamics
of the system, as well as the so-called fully constrained formulation [FCF, 32, 33] in which the
latter is properly included. These approaches to go beyond the simple approximations in (2.24)
can be particularly well-suited for cosmological applications and straightforwardly implemented in
GRAMSES, but these will be left for a future version.

Due to the conformal flatness assumption intrinsic to this scheme, using that ∂tγ̄ij = 0 in (2.21)
it can be shown that the momentum constraint (2.23) reduces to [33]

(∆̄Lβ)i = 2∂j

(
αψ−6ĀijL

)
. (2.25)

Then, under this fully constrained formulation of GR the gravitational sector equations can be conve-
niently solved following the next sequence of steps:

1. Using the CTT decomposition, we solve the momentum constraint (2.15) as an elliptic equation
for the longitudinal part of Āij ,

(∆̄LW )i = 8πsi, (2.26)

where si ≡ ψ6Si = γ1/2Si is the conformal momentum density. After this, we construct the
traceless part of the extrinsic curvature as

ĀijL = (L̄W )ij ≡ Āij , (2.27)

where in the last step we have neglected ĀijTT due to the approximation (2.24).

2. We solve the Hamiltonian constraint (2.11), with (2.19) subtracted, as an elliptic equation for
the conformal factor ψ

∇̄2ψ = −2πψ−1s0 −
1

8
ψ−7ĀijĀ

ij + 2πψ5ρ̂m , (2.28)
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where s0 ≡ ψ6ρm = γ1/2ρm is the conformal matter density. Here ∇̄ is D̄ with γ̄ij = δij due
to the conformal flatness approximation.

3. We determine the lapse function from the CMC slicing condition (2.17)

∇̄2(αψ) = α

[
2πψ−1(s0 + 2s) +

7

8
ψ−7ĀijĀ

ij + ψ5

(
5K2

12
+ 2πρΛ

)]
− ψ5K̇, (2.29)

where we have used (2.19)-(2.20) as well as defined s ≡ ψ6S =
√
γSii .

4. Finally, we determine the shift vector from the momentum constraint (2.25).

5. Then, the current state of the gravitational field is characterised by the spacetime metric

ds2 = −α2dt2 + ψ4δij(β
idt+ dxi)(βjdt+ dxj) . (2.30)

6. The metric (2.30) is used to solve the equations of motion (EOM) for particles, and evolve the
system.

Notice that in this scheme (2.29) plays the role analogous to the Poisson equation in Newtonian
gravity as it determines the g00 metric component α ∼ 1 + Φ. However, (2.29) includes a term that is
linearly proportional to α and therefore it formally resembles a finite-range (Yukawa-like) potential,
which means that the gravitational force appears ‘screened’ in the CMC gauge. This seems to indicate
that it would translate in a suppression of the matter power spectrum at large scales. However, as we
will discuss in the cosmological simulation section below, this ‘screening’ simply represents the effect
by the choice of gauge on the simulated matter or velocity power spectrum.

3 The matter sector

In GRAMSES we implement a fully general relativistic N -body system for dark matter following the
ADM formalism, with which we can describe the matter content in the 3-dimensional hypersurface
and its time evolution, rather than dealing directly with 4-dimensional quantities. In GR the equation
of motion for collisionless particles is the geodesic equation

uµ∇µuν = 0, (3.1)

which for the spatial components reads

dui
dt

= −αu0∂iα+ uj∂iβ
j − ujuk

2u0
∂iγ

jk , (3.2)

where the time-component u0 is determined from the normalisation condition uµuµ = −1 as

u0 = α−1
√

1 + γijuiuj . (3.3)

The relation between uj and the 3-velocity (coordinate velocity) vi ≡ dxi/dt = ui/u0 is

dxi

dt
=
γijuj
u0
− βi. (3.4)

Naturally, the Newtonian limit is recovered with ui � 1, γij → δij , α → (1 + ΦN ) and βi → 0,
where ΦN is the Newtonian gravitational potential, in which case (3.2) reduces to Newton’s second
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law (in a comoving coordinate system) and dxi/dt = ui. Eq. (3.4) shows the nontrivial relationship
between the velocities ui and ui. To be clear, in the code implementation below we shall only use ui
with a lower index, and similarly we always use βi with an upper index.

After we evolve particles with (3.2) and (3.4) we can calculate the matter source terms appear-
ing in the equations for the gravitational sector (2.26)-(2.29). For this purpose, it is convenient to
introduce a set of conformal source terms defined as

s0 =
√
γρ , (3.5)

si =
√
γSi , (3.6)

sij =
√
γSij . (3.7)

We will show below that these quantities are analogous to the usual ‘comoving’ ones and correspond
to those actually determined numerically in the CIC scheme. For example, the ‘density’ contrast for
s0, defined as δs0/s0, corresponds to the local fluctuation of the particle number count rather than
the relativistic energy density. This is more convenient in practice because we naturally would like to
follow ‘particles’ rather than the ‘density field’ in simulations: a same particle can contribute different
energy densities at different places, and the relativistic correction effect can be calculated according
to the local metric γij . We will discuss the implication of this on the generation of initial conditions
in a forthcoming paper.

4 Numerical implementation

Let us now describe the actual implementation of the fully constrained formulation of GR and the
matter evolution equations in GRAMSES. For this purpose, we recast the GR equations using the code
units detailed next. Notice that these are derived from the GR equations in physical units rather in
geometric units, i.e., accounting for all G and c factors.

4.1 Code units

4.1.1 The gravitational sector
In order to implement the GR equations in GRAMSES we introduce a set of dimensionless quantities
that are based on H−1

0 for measuring time, the box size L for spatial coordinates, the critical density
ρc = 3H2

0/8πG and the fractional matter density Ωm ≡ ρ̂m,0/ρc (today’s values satisfying the
fiducial FLRW equations (2.19) and (2.20)):

x̃ =
x

L
, dt̃ = H0

dt

a2
, s̃0 =

s0

Ωmρc
, s̃i =

si
Ωmρcc

s̃ =
s

Ωmρcc
, (4.1)

c̃ =
c

LH0
, K̃ = a2c̃LK, ˜̄Aij = a−1c̃LĀij , Ũ = ac̃2L−1U, Ṽi = ac̃2Vi , (4.2)

β̃i = a2c̃βi, b̃ = a2c̃L−1b, B̃i = a2c̃Bi . (4.3)

Notice that, in order to simplify the equations in code units, we have introduced the supercomoving
coordinate time t̃ [51], and for s̃i and s̃ we have introduced a c−1 factor that’s not present in s̃0. In
addition, rather than solving the nonlinear equations for the conformal factor and the lapse function,
it is more convenient to reparametrise them by definining new variables Φ̃ and Ψ̃ as

α ≡ 1 +
Φ̃

a2c̃2
, (4.4)

ψ ≡ a1/2

(
1− Ψ̃

2a2c̃2

)
, (4.5)
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where c̃ is the speed of light in code units. This way, both Φ̃ and Ψ̃ are quantities measuring deviations
from their reference FLRW values (but no linearisation on Φ̃ or Ψ̃ is carried out). Using this scheme,
we can write the momentum constraint (2.26) as

( ˜̄∆LW̃ )i = 3Ωmas̃i. (4.6)

The Hamiltonian constraint (2.28) can be written as(
1− Ψ̃

2a2c̃2

)
˜̄∇2

Ψ̃ =
3

2
aΩm

s̃0 −
(

1− Ψ̃

2a2c̃2

)6
+

˜̄Aij
˜̄Aij

4

(
1− Ψ̃

2a2c̃2

)−6

. (4.7)

Next, using the the 2nd Friedmann equation (4.12) and the Hamiltonian constraint (4.7), the CMC
condition (2.29) in code units becomes

˜̄∇2

[
Φ̃

(
1− Ψ̃

2a2c2

)]
=

Q

a2c2
Φ̃ +

3aΩm

2

(
1− Ψ̃

2a2c2

)−1
s̃0 −

(
1− Ψ̃

2a2c2

)6

+ s̃m

 (4.8)

+ ˜̄Aij
˜̄Aij

(
1− Ψ̃

2a2c2

)−7

,

where

Q =
3

4
aΩm

(
1− Ψ̃

2a2c2

)−1
s̃0 + 5

(
1− Ψ̃

2a2c2

)6

+ 2s̃m

+
7 ˜̄Aij

˜̄Aij

8

(
1− Ψ̃

2a2c2

)−7

.

(4.9)
Finally, the MD condition (2.25) in code units is

( ˜̄∆Lβ̃)i = 2a3∂̃j

(
αψ−6 ˜̄Aij

)
. (4.10)

In addition, the Friedmann equations (2.19) and (2.20) in code units are

1

a4

K̃2

12
=

3

4
Ωm

(
a−3 ˆ̃ρm,0 +

ΩΛ

Ωm

)
, (4.11)

1

a4

K̃2

3
− 1

a2

d(a−2K̃)

dt̃
= −3Ωm

2

(
a−3 ˆ̃ρm,0 +

ΩΛ

Ωm
+ ˆ̃S

)
, (4.12)

where ˆ̃ρm,0 ≡ ˆ̃S0 = 1 is the homogeneous (comoving) density field in code units, ΩΛ ≡ 8πGρΛ/3H
2
0 ,

and ˆ̃S = 3 ˆ̃P (with s̃ = ψ6S̃).

4.1.2 The matter sector

For writing the EOM for particles in code units, we introduce the following dimensionless quantities
for the particle’s 4-velocity and mass:

ũα =
uα

LH0
, m̃ =

m

ΩmρcL3
. (4.13)
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Then, the system consisting of Eqs. (3.2)-(3.4) becomes

dũi

dt̃
= −W̃ c̃a2∂̃iα+ ũj ∂̃iβ̃

j − αũj ũk
2W̃

c̃a2∂̃iγ
jk , (4.14)

ṽi ≡ dx̃i

dt̃
=

c̃

W̃
αa2γij ũj − β̃i , (4.15)

where
W̃ 2 ≡ (αũ0)2 = c̃2 + γij ũiũj , (4.16)

is the Lorentz factor in code units.
Finally, for the numerical implementation of the matter source terms in Eqs. (3.5)-(3.7) we need

to specify a prescription to calculate them. For this we consider an ensemble of N identical particles
of rest massm treated in a Cloud-in-cell (CIC) scheme. Then, the contributions to each matter source
term in Eqs. (3.5)-(3.7) due to a particle at position (x̃p, ỹp, z̃p) can be calculated [52] as

(s̃0)i+1/2∓1/2,j+1/2∓1/2,k+1/2∓1/2 =
f̃±x f̃

±
y f̃
±
z

∆Ṽijk

m̃W̃

c̃
, (4.17)

(s̃l)i+1/2∓1/2,j+1/2∓1/2,k+1/2∓1/2 =
f̃±x f̃

±
y f̃
±
z

∆Ṽijk

m̃ũl
c̃
, (4.18)

(s̃lm)i+1/2∓1/2,j+1/2∓1/2,k+1/2∓1/2 =
f̃±x f̃

±
y f̃
±
z

∆Ṽijk

m̃ũlũm

W̃ c̃
, (4.19)

where

f̃+
x ≡ (x̃i+1 − x̃p)/∆x̃i,
f̃+
y ≡ (ỹi+1 − ỹp)/∆ỹi, (4.20)

f̃+
z ≡ (z̃i+1 − z̃p)/∆z̃i,

represent the relative position of the particle inside the i-th cell in the x, y and z direction, respectively,
with f̃−y = 1− f̃+

y , f̃−y = 1− f̃+
y , f̃−z = 1− f̃+

z , and ∆Ṽijk = ∆x̃∆ỹ∆z̃ is the cell volume.
In the remainder of this paper we will only deal with quantities in code units and the tilde will

be dropped to avoid cluttered notation.

4.2 Code structure

Let us now describe the logic flow of the global solution scheme implemented in GRAMSES. We recall
that in this code time evolution is only due to particles, and these are evolved in a leapfrog scheme
detailed in Appendix A. At a given timestep n, using the positions and velocities {xn, un−1/2} for
particles and the GR fields values {Ψn,Φn, βi

n} the code takes the following main steps:

1. Optional (gr_newtonian): Solve Newtonian gravity to get Φn+1
N .

2. Optional (gr_newtonian): Temporarily synchronise velocities with Φn+1
N : un−1/2 7−→ unN .

3. Calculate the source terms of the GR equations using the currently-available velocity and GR
potential fields.

4. Optional (gr_newtonian): Revert the temporary synchronisation done in step 5: unN 7−→
un−1/2.
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5. Solve the ten GR field equations: {Ψn,Φn, βi
n} 7−→ {Ψn+1,Φn+1, βi

n+1}.

6. Synchronise velocities (last ‘Kick’ from previous timestep: un−1/2 7−→ un).

7. Update velocities (first ‘Kick’ of the current timestep: un 7−→ un+1/2).

8. Update positions using un+1/2 (‘Drift’: xn 7−→ xn+1).

9. Go to step 1 with the replacement n+ 1 7−→ n and repeat the process for the next timestep.

We address these points in detail in the next subsections.

4.3 Multigrid solver for the gravitational sector

Let us now discuss the main points of the multigrid [53] implementation of the GR equations for the
gravitational sector. For this purpose, it is convenient to first split the equations into the Poisson-like
ones and the non-Poisson-like ones.

4.3.1 Poisson-like equations

In the solution scheme for the gravitational sector we have eight linear Poisson-type equations arising
from the vector Laplacians (4.6) and (4.10) respectively, i.e.,

∇2Vi = 3Ωmasi, (4.21)

∇2U = −1

4
∂jV

j , (4.22)

∇2Bi = 2∂j

[(
1 +

Φ

a2c2

)(
1− Ψ

2a2c2

)−6

Āij

]
, (4.23)

∇2b = −1

4
∂jB

j , (4.24)

where Wi ≡ Vi + ∂iU and βi ≡ Bi + ∂ib have been used to cast these equations in the form of a
standard Poisson equation.

In order to solve the above equations numerically, we need to represent them in a discrete form.
If we consider a uniform grid with cubic cell size h, these equations are formally equivalent to

Lh(ϕh) = fh , (4.25)

where Lh is the Laplacian operator and fh a source term. The former is discretised using the standard
second order formula

∇2ϕ =
1

h2
(ϕi+1,j,k + ϕi−1,j,k + ϕi,j+1,k + ϕi,j−1,k + ϕi,j,k+1 + ϕi,j,k−1 − 6ϕi,j,k) , (4.26)

where ϕl,m,n is the value of the field ϕ in the grid cell with index (l,m, n).
The actual discretisation method for fh depends on the particular source term under considera-

tion. In our implementation, the source fh for Eq. (4.21) is calculated using the CIC scheme, while
the sources for the rest of these equations correspond to divergences which are calculated using finite
differences with a 3-point stencil, e.g.,

∂lV
l =

1

2h
(V x
i+1,j,k + V y

i,j+1,k + V z
i,j,k+1 − V x

i−1,j,k − V y
i,j−1,k − V z

i,j,k−1) , (4.27)

∂lĀ
′lm =

1

2h
(Ā′xmi+1,j,k + Ā′ymi,j+1,k + Ā′zmi,j,k+1 − Ā′xmi−1,j,k − Ā′ymi,j−1,k − Ā′zmi,j,k−1) , (4.28)

– 12 –



where Ā′lm ≡
(
1 + Φ

a2c2

) (
1− Ψ

2a2c2

)−6
Ālm. The extrinsic curvature term itself is calculated as

Āij = ∂iVj + ∂jVi −
1

2
δij∂kV

k + 2∂i∂jU . (4.29)

Notice that for the non-diagonal components of Āij we need to calculate cross-derivatives of U that
depend on the diagonal neighbours of the central cell, for which we use a second-order-accuracy for-
mula. Then, for a cross-derivative in the xy plane (contributing to Āxy) we use the discrete expression

∂x∂yU =
1

4h2
(Ui+1,j+1,k + Ui−1,j−1,k − Ui−1,j+1,k − Ui+1,j−1,k) , (4.30)

and equivalent ones for cross-derivatives in the xz and yz planes.
As a side point, we note that the left-hand sides of Eqs. (4.21)-(4.24) have the ‘cyclic’ property,

e.g., if one sums up the values of∇2U from all cells with the same y, z (but different x) coordinates,
the result is zero, which is guaranteed by the nature of finite difference. The same periodic property
is also held by the right-hand sides of Eqs. (4.22)-(4.24) by default, which means that these equations
are numerically ‘self-consistent’. For Eq. (4.21), however, its right-hand side does not automatically
satisfy the ‘cyclic’ property, which could potentially lead to the situation where the two sides of the
equation cannot be numerically identical. To prevent this issue, for Eq. (4.21) we have redefined its
source term fh as fh−〈fh〉, where 〈fh〉 is the mean value of fh on the whole domain grid (the finest
grid with uniform resolution that covers the whole simulation box).

The discrete version of Eq. (4.25) is then solved using a Gauss-Seidel (pseudo-time) relaxation
method, which after a given number of iterations converges to a solution ϕ̂h. Then, the residual at the
fine level is defined as

εh ≡ Lh(ϕ̂h)− fh . (4.31)

In order to improve the accuracy of the solution found using relaxation on the fine grid h (and hence
reduce εh), instead of keeping iterating on the same grid we can accelerate the process by moving to
a coarser grid with cell size H = 2h, which is then associated with the multigrid level ` − 1 (with `
representing the finest grid). Since in Eq. (4.25) the operator Lh(ϕh) is linear, the coarsified equation
is

LH(ϕH)− LH(Rϕ̂h) ≡ LH(δϕH) = −Rεh , (4.32)

where R is the restriction operator and δϕH ≡ ϕH −Rϕ̂h. The coarse-level equation (4.32) is then
solved using Gauss-Seidel relaxation and the solution ˆδϕH found after a given number of iterations
is used to correct the fine solution ϕ̂h by means of a prolongation step

ϕ̂h ← ϕ̂h + P( ˆδϕH) , (4.33)

where P is the prolongation operator that maps the information from coarse to fine grids. In practice,
we use all coarse levels from (`−1) down to 1 (the level at which the whole simulation box is divided
into 8 cells) for our multigrid implementation, and arrange them in a ‘V-cycle’: instead of correcting
the level-` solution immediately after solving the equation on level-(` − 1), the process of solving
coarser-level equations goes all the way down to level 1, and the correction process then goes all the
way up to level `. This has greatly improved the speed at which a solution with acceptable accuracy
is achieved.

4.3.2 Non-Poisson-like equations

Let us now discuss the implementation of the Hamiltonian constraint and the CMC condition, which
correspond to the nonlinear PDEs solved in the code.
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4.3.2.1 Hamiltonian constraint

In the multigrid language, the Hamiltonian constraint (4.7) at the fine level can be formally written as

Lh(Ψh) = fh , (4.34)

where

Lh(Ψh) ≡
(

1− Ψh

2a2c2

)
∇2Ψh +

3

2
aΩm

[(
1− Ψh

2a2c2

)6

− 1

]
− ĀijĀ

ij

4

(
1− Ψh

2a2c2

)−6

,

fh ≡ 3

2
aΩm(s0 − 1) . (4.35)

Notice that by keeping the density term s0 in the source fh (rather than absorbing it in the definition
of Lh) we avoid restricting s0 from fine to coarse level, and we only need to restrict the operator co-
efficient ĀijĀij ⊂ Lh(Ψh). However, as we discussed above for the case of Poisson-like equations,
since our solution needs to satisfy periodic boundary condition, we need to regularise this equation to
ensure that the numerical self-consistency condition 〈Lh

(
Ψh
)
〉 = 0 is satisfied2. Then, dividing both

sides of Eq. (4.34) by
(

1− Ψh

2a2c2

)
and taking the mean on both sides, we identify the regularisation

term

F h =
3

2
aΩm

(
1− Ψh

2a2c2

)−1
[
s0 −

(
1− Ψh

2a2c2

)6
]

+
ĀijĀ

ij

4

(
1− Ψh

2a2c2

)−7

, (4.36)

and the regularised version of (4.7) solved in the code reads

L̃h(Ψh) ≡ Lh(Ψh) + 〈F h〉
(

1− Ψh

2a2c2

)
= fh , (4.37)

which corresponds to a redefinition of our differential operator at the fine level. Then, the residual at
the fine level is defined as

εhΨ ≡ L̃h(Ψ̂h)− fh . (4.38)

Next, at level `− 1 the coarsified version of this nonlinear equation has the generic form

L̃H(ΨH) = L̃H(RΨ̂h)−RεhΨ , (4.39)

where Ψ̂h is the solution obtained at the fine level,R is the restriction operator. In principle we could
also regularise the equation at the coarse level, but in practice this is not needed if the fine level is
already regularised.

4.3.2.2 The CMC condition

In order to optimally solve the CMC condition (4.8) in the multigrid scheme we introduce the com-
bination

ξ ≡ Φ

(
1− Ψ

2a2c2

)
, (4.40)

2Note that in this case 〈fh〉 is guaranteed to be zero by the periodic boundary condition of s0 and the subtraction of 1
in Eq. (4.35).
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which allows to avoid the usage of additional arrays for storing the restricted field Ψ while solving
for Φ on coarse levels. Then, in terms of ξ the CMC equation (4.8) at the fine level can be written
formally as

Lh(ξh) = fh , (4.41)

where

Lh(ξh) ≡ ∇2ξh −
(

1− Ψ

2a2c2

)−1 Q

a2c2
ξh , (4.42)

fh ≡ 3aΩm

2

(
1− Ψ

2a2c2

)−1
[
s0 −

(
1− Ψ

2a2c2

)6

+ sm

]
+ ĀijĀ

ij

(
1− Ψ

2a2c2

)−7

,

andQ is given by (4.9). After subtracting the mean from both sides, the regularised equation becomes

Lh(ξh) = fh −
〈
fh
〉
−
〈(

1− Ψ

2a2c2

)−1 Qh

a2c2
ξh

〉
≡ f̃h. (4.43)

This means that for solving this equation at the coarse level it is sufficient to restrict the operator
coefficient

(
1− Ψ

2a2c2

)−1 Q
a2c2

⊂ Lh(ξh). Further, similar to the Poisson-like equations, the regu-
larisation term in (4.43) is absorbed in the source term, so there is no redefinition of the differential
operator but of fh. Then, the residual at the fine level in this case is

εhξ ≡ Lh(ξ̂h)− f̃h . (4.44)

On the other hand, at `− 1 the coarsified equation is

LH(ξH) = LH(Rξ̂h)−Rεhξ , (4.45)

where ξ̂h is the solution obtained at the fine level. As in the case of the Hamiltonian constraint, there
is no need to regularise this equation at the coarse level.

4.4 Particles evolution

After having reconstructed the spacetime by computing the metric components (γij , α, β
i) in a fully

nonlinear fashion, we can then solve the EOM for particles. Drawing the analogy with the Newtonian
case, the geodesic equation can be rewritten effectively as

dui
dt

= Fi , (4.46)

dxi

dt
=

(
1 +

Φ

a2c2

)(
1− Ψ

2a2c2

)−4 c

W
δijuj − βi , (4.47)

Fi = −W
c
∂iΦ + uj∂iβ

j − W 2 − c2

Wc

1 + Φ
a2c2

1− Ψ
2a2c2

∂iΨ , (4.48)

where

W 2 ≡ (αu0)2 = c2 + a−2

(
1− Ψ

2a2c2

)−4

δijuiuj . (4.49)

In the Newtonian limit the ‘force term’ given by (4.48) reduces to Fi → −∂iΦ, but in the GR case this
depends not only on gradients of the various gravitational fields (and on the fields themselves), but
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also on ui. In practice, this means that we cannot compute all the contributions to (4.48) in the same
way as the default RAMSES code (or any standard Newtonian code) does. Therefore, in GRAMSES we
divide the Kick step (4.46) into a sequence of 5 substeps, each one updating the particle velocity using
one force contribution on the right hand side of (4.48), which is decomposed as Fi =

∑
j cj(fj)i with

cj = −uj (fj)i = −∂iβj , j = 1, 2, 3 (4.50)

c4 =
W 2 − c2

Wc

1 + Φ
a2c2

1− Ψ
2a2c2

(f4)i = −∂iΨ , (4.51)

c5 =
W

c
(f5)i = −∂iΦ . (4.52)

Notice that in doing this we are using the (partially) updated velocity during each substep. Of these
five substeps, (4.52) is the dominant one in most realistic situations as it corresponds to the standard
Newtonian force in the Newtonian limit.

As an attempt to preserve the Stormer-Verlet scheme as best as we can, the last Kick in the KDK
scheme is done following (4.50) to (4.52), i.e., with the largest contribution to Fi included at last (see
Appendix A). In contrast, for the first Kick step (before updating the particles’ positions) we use the
reverse order, i.e., with the largest contribution included first. Again, this is because that, according to
the Stormer-Verlet scheme, during the first Kick the ‘force’ should be evaluated using un+1/2, which
implies an implicit equation for the latter (since this is the very velocity that we want to update to).
Hence, as an approximation we use the synchronised velocity un and the largest contribution during
the first substep of the Kick, which then yields a velocity un+1/2

∗ that will be the close to un+1/2, and
this is then used in the next substeps to calculate the corrections. Finally, the positions are updated in
the Drift step (4.47) in a single calculation once the velocities have been fully updated by the previous
prescription.

4.5 Calculation of matter sources

A key difference in the calculation of the general relativistic matter source terms in Eqs. (3.5)-(3.7)
with respect to the Newtonian case is that the former depend not only on ui but also on Ψ through the
Lorentz factor Eq. (4.49). For calculating these we use the already-known values Ψn, with which the
GR equations are solved to get the updated metric components {Ψn+1,Φn+1, βi

n+1}. This is equiv-
alent to the numerical implementation in the GEVOLUTION code, where the geometric corrections in
the energy-momentum tensor at a given timestep are calculated using the values from the previous
timestep [19]. More explicitly, the CIC quantities depend on these as

s0 ∝W (Ψn, un+1/2) , (4.53)

si ∝ un+1/2
i , (4.54)

sij ∝
u
n+1/2
i u

n+1/2
j

W (Ψn, un+1/2)
. (4.55)

Note that as the second ‘Kick’ step – which takes particle velocities from un+1/2 to un+1 and there-
fore ‘synchronises’ particle velocities – is done after we solve the GR equations, at the time when
the code calculates the matter source terms for the GR equations what are available are the fully up-
dated positions at timestep (n+ 1), xn+1, and the partially-updated velocities un+1/2 (which are still
delayed by half a timestep). This issue is not present in the Newtonian case since the gravitational
potential (and hence the force) is independent of the particle velocities, and we expect that the use
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of un+1/2 instead of un+1 in the matter source calculation should be a good approximation given the
generally small timesteps for simulations.

Nevertheless, GRAMSES has an option to remedy the fact that we only have un+1/2 to calculate
the GR source terms, by using a temporary ‘Newtonian’ synchronisation from solving the standard
Newtonian gravity. With this option switched on, the code uses the Newtonian gravitational potential
ΦN to temporarily update the velocities un+1/2 7−→ un+1

N , which are then used to calculate the source
terms as a better approximation than using un+1/2 directly in Eqs. (4.53)-(4.55). Then, after the GR
equations are solved, we can exactly revert the velocities back to un+1/2, before carrying the Kick
step normally (see appendix A).

5 Code tests

We have performed several code tests for GRAMSES, particularly aimed to test the implementations
of the linear and nonlinear solvers of the ten GR potentials as well as the subroutines that calculate
new GR quantities used in both field equations and particle evolution equations. The results shown
in this Section correspond to simulations with a box size L = 256 Mpc/h and Np = 2563 particles,
and since no cosmological evolution is needed for these tests we set the fiducial scale factor to a = 1.
The discussion on the cosmological GRAMSES runs is presented in Section 6.

5.1 Matter and geometric source terms

While in Newtonian N -body simulations the matter density field is the only source term feeding the
gravitational potential, in GRAMSES the picture is more intricate: the Poisson-like equations (4.21)-
(4.24) feature the momentum density si, the divergence of GR potentials and also that of the traceless
part of the extrinsic curvature, i.e., ∂jĀij . Furthermore, for the non-Poisson-like equations, (4.7) and
(4.8), we also need to calculate terms such as the contraction ĀijĀij , the density s0 and the trace
s = γijsij . Clearly, the calculation of the last two quantities is more complicated than that of si since
they depend nonlinearly on ui through the Lorentz factor W as can be seen from (4.17)-(4.19). Since
in the CIC scheme particles may contribute to different cells depending on their positions, in order to
assess the calculation of these quantities, in the tests we fix the particle positions and velocity values
by hand, as well as Ψ, so we can compare against analytical expressions for the matter source terms.

Figure 1 shows the results for the CIC calculation of s0 and two si components when using a
uniform particle distribution, a velocity field ui = 0.3c sin 2πxi and Ψ = c2 sin 2πx sin 2πy sin 2πz,
where c is the speed of light in code units. We find good agreement since the difference with respect
to their analytical counterparts remains below 10−5, and the structures observed for this in the bottom
panels of Figure 1 stem from the shape of the functions on the top panels.

Regarding the geometric source terms, in Figure 2 we show the calculation of ∂iĀyi and ĀijĀij

which involve the discrete formulae, (4.28), (4.29) and (4.30). In order to compare with analytical
expressions for this quantities we use Vi = U = sin 2πx sin 2πy sin 2πz as an input for the relevant
code subroutines. The agreement found from Fig 2 is roughly one order of magnitude worse than for
the matter source terms in Fig 1 but is still nonetheless stays around 10−4 for both ∂iĀyi and ĀijĀij .
Naturally, the accuracy in the calculation of these quantities is expected to be different as they depend
on how fine is the mesh used to perform the finite differences involved in their calculations, and the
agreement shown in Fig. 2 is consistent with the grid used for these tests. Similar to Fig. 1, the
structure of the difference observed in the bottom panels of Fig. 2 follows from the shape of the
testing functions.
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Figure 1: GRAMSES calculation of the relativistic matter density s0 (left panel) and momentum den-
sity components sy,z (right panel). The values are plotted along a circle with radius r =

√
x2 + y2 =

0.1 (in code units) measured from the box center in the y-z plane, for θ ∈ [−π, π]. In the upper panels
the blue and red symbols respectively show the code result and the analytical prediction (see the main
text for details), while the lower panels show their difference.

Figure 2: The same as Figure 1 but shows the code calculation of the geometric source terms ĀijĀij

(left panel) and ∂iĀyi (right panel).

We have done similar tests as in Figures 1 and 2, using different choices of particle velocities,
and different functional forms for Ψ,U and Vi. For all these tests we found similar agreement between
the code results and the analytical predictions. For simplicity, the extra tests are not shown here.
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Figure 3: Numerical solutions for the GR potentials Ψ(x) (left panel) and Φ(x) (right panel) obtained
through the Gauss-Seidel relaxation method starting from two different sets of initial random guesses
(red circles and green triangles) in a FRW (Einstein-de Sitter) universe. The x coordinate spans
the whole simulation box in the range [0, 1] in code units. The GRAMSES solutions for both initial
guesses (blue circles and orange squares) after relaxation agree well with the analytical solution,
which is identically zero (black solid line).

5.2 Homogeneous density field

We next show some test cases for the linear and nonlinear equation solvers implemented in GRAMSES.
The simplest possibility of such tests for the gravitational sector is to reconstruct the spacetime due to
a homogeneous density configuration which corresponds to an FRLW (Einstein-de Sitter) solution.
In our test, we set s0 = 1 and si = s = 0.

Recall that the CMC gauge condition is fixed with the aid of the fiducial Friedmann equations
(4.11) and (4.12) and hence the Hamiltonian constraint (4.7) and CMC condition (4.8) have the ‘back-
ground’ solutions Ψ = Φ = 0. Likewise, it is also straightforward to find that the linear GR equations
(4.21)-(4.24) are trivially solved, i.e., Vi = U = Bi = b = 0, in this case. In Figure 3 we show the
numerical solutions for Ψ and Φ that are obtained by the nonlinear Gauss-Seidel relaxation solver3

implemented in GRAMSES after performing the relaxation starting from two sets of random initial
guesses (green triangles and red circles). As the figure shows, there is a very good agreement in the
numerical solutions to both GR potentials regardless of the initial guess from where the relaxation is
started.

We have tested the solutions to the other GR potentials, and found similarly good agreements.
To save space, here we only show the results for the two most complicated equations.

5.3 Point-like, sinusoidal and spherically symmetric sources

In order to add some nontrivial features to the test (as opposed to the case with a homogeneous matter
field), we have also tested GRAMSES’s relaxation solvers for the Poisson-type and non-Poisson-type
equations individually by using various configurations for the source terms. For instance, for the

3While technically speaking the CMC gauge condition (4.41) is a linear equation, in GRAMSES it is solved using the
same nonlinear relaxation solver as in the Halmiltonian constraint (4.34).
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Poisson-type equations (4.22)-(4.24) we know that the solution for a point-like source located at xp
is simply given by Green’s function

ϕ = − 1

4π

1

|x− xp|
. (5.1)

We test this point-like source scenario by initialising the value of the source in a single cell of the
simulation box (at position xp) to a constant: in the case of (4.21) this is equivalent to having a single
particle in the center of a cell so that it contributes only to that same cell in the CIC scheme, while
for the other linear equations this corresponds to having a non-zero value for their geometric source
terms in a single cell of the domain grid.

The left panel of Figure 4 shows the numerical solution to (4.22) in such case and its comparison
with the exact analytical solution, (5.1). We note that the numerical solution deviates from the exact
one towards the center of the simulation box as well as towards the box boundary. Both discrepancies
can be understood in terms of the discrete nature of the numerical simulation: on the one hand, when
approaching the source position resolution effects become important and the isotropy respected by
the exact solution is broken. On the other hand, towards the box boundary the effect of the finite box
size and the periodic boundary conditions imposed on the numerical solution causes deviations from
the exact solution (5.1) which decays at infinity. Analogue results for the case of a Schwarzschild
spacetime in isotropic coordinates are found in [19] and for point-like mass tests of modified gravity
codes, e.g., [54].

The non-Poisson-type equations (4.7) and (4.8) do not have exact analytical solutions for config-
urations such as point mass to compare against. As an alternative, we have used an inverse approach
in which we choose some functional form for Ψ or Φ by hand and solve (4.7) and (4.8) for some of
the source terms under certain simplifications, which can be then used as input to GRAMSES, to check
the agreement of its resulting numerical solutions to Ψ,Φ with the above choices.

In Figure 4 we show the results of such procedure using Ψ with two different functional forms:
Ψ(x) = 10−2 sin 2πx and Ψ(r) = exp [−(r − 0.5)2/102] which are then used in Eq. (4.7) to analyt-
ically solve for s0 = s0(x) and ĀijĀij = ĀijĀ

ij(r), respectively, assuming all other source terms to
be zero (here r is measured from the center of the box). These are used as inputs for the GRAMSES

nonlinear solver. For the sinusoidal test (middle panel of Figure 4) we find that the numerical solution
deviates less than 10−5 from the exact solution (we also include the initial random guess for the re-
laxation in that plot), while deviations for the spherically symmetric test (right panel of Figure 4) are
larger but still better than those for the point-like test. Similar to the latter case, the numerical solution
in the spherically symmetric test also suffers from the effects of periodic boundary conditions which
depends on the rate at which the tail of the exponential function decays.

Like before, we have tried more test settings and carried out similar tests for other equations as
well. As all the tests result in similar agreement between numerical and exact solutions, we shall not
show those tests here to save space.

6 Cosmological simulations

In this section we present some of the first results of GRAMSES cosmological simulations in a ΛCDM
universe. For the analyses of the matter and velocity divergence power spectra we use a setup with a
box size L = 4h−1Gpc and Np = 10243 dark matter particles, and we compare against a Newtonian
simulation run using the default RAMSES code with identical specifications. In addition, we consider
a smaller simulation using L = 512h−1Mpc and Np = 5123, with the AMR option switched off, to
generate the different maps shown in Fig. 5 for visualisation. The initial conditions (IC) for both the
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Figure 4: Tests of GRAMSES’s numerical solutions for the GR potentials obtained through the multi-
grid Gauss-Seidel relaxation method. Left panel: point-like source test for a Poisson-type equation.
Here x represents the distance to the point-like source, which is placed in the central cell of the simula-
tion box, in code unit. Middle panel: test of the Ψ equation with analytical solution Ψ = 10−2 sin 2πx
(see the main text for a description of how the test configuration s0 = s0(x) is set up). Right panel:
similar to the middle panel, but for a test configuration for which the Ψ field has a spherically sym-
metric solution Ψ(r) = exp [−(r − 0.5)2/102] (using a source ĀijĀij = ĀijĀ

ij(r) as described in
the main text); the horizontal coordinate spans half of the simulation box along the x direction, in the
range [0.5, 1] in code units. In all cases, the blue and red symbols in the upper subpanel are respec-
tively the numerical and exact analytical solutions, while the lower subpanel shows their difference.
The orange symbols in the middle panel are the random initial guess for the relaxation.

GR and the Newtonian simulations are generated using the same random number sequence as seed in
order to suppress the effect of realisation scatter in our results. Because GRAMSES works in a different
gauge, the generation of IC is nontrivial; here we simply mention that the ICs were generated using a
new technique specifically developed for GRAMSES, and will defer a detailed description of that to a
forthcoming paper.

Figure 5 is a visual illustration of the maps of three GR matter source terms, s0 (top row),
θ = ∇ · u (middle row) and s = γijsij (bottom row), in a slice of constant z coordinate randomly
selected from the smaller GRAMSES simulation. The three columns correspond to three different
redshifts, z = 9, 4, 1 (in the reference cosmology) from left to right. One can see that as time advances
and structure formation progresses, finer features start to appear in all three quantities, and their
amplitudes also increase. These are as expected. In addition, the main features in all three quantities
have good correspondences, with high-density regions having larger values of s0, θ and s, and vice
versa. Note the amplitude of s, which has a maximum of order 10−4 at z = 1 that is much smaller
than the perturbation in s0; according to Eq. (4.19), this indicates that (u/c)2 = (ũ/c̃)2 . O(10−4)
because in code units m̃ = 1.

Figure 6 presents maps from the same slice as Figure 5, but for various GR quantities or their
scalar combinations. From top to bottom the rows show respectively α, ψ, |β| (the amplitude of βi)
and ĀijĀij . A logarithmic colour scale is used for α, ψ and ĀijĀij , while a linear colour scale is
used for |β|, in order to make the features in the maps clearer. To avoid the plot getting too cluttered,
we have not shown the colour bars. In all cases, the same colour scheme in Python (the ‘jet’ scheme)
is used, but is ‘regulated’ such that the reddest (bluest) colour represents the maximum (minimum) of
the field values in all pixels of a given map. This is done deliberately: had we used a fixed maximum
and minimum value for a quantity at all redshifts, the z = 9 maps would appear uniform and almost
completely erased of details. In contrast, the ‘regulation’ not only makes the features at high redshifts
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clearer, but also demonstrates that, apart from amplitudes, the qualitative patterns of these features
barely evolve in time: indeed, there is hardly any visual difference between the left and the middle
columns. This is because the GR potentials usually satisfy a Poisson-like equation4, which in Fourier
space takes the form k2 × field = source, so that the field value scales as k−2 and so is dominated
by the large-scale modes (the reason why the maps in Figure 6 generally lack the much finer details
present in the maps of Figure 5). These modes remain linear over time, so that their amplitudes grow
quickly while the qualitative patterns change much more slowly. The maps for α and ψ are almost
identical, with their colours flipped, which is what is expected from Eqs. (2.28) and (2.29).

Having displayed some visualisation of the simulation outputs from GRAMSES, we next show a
few more quantitative results to illustrate that the code works properly.

Figure 7 shows the matter power spectra from the 4h−1Gpc simulations mentioned above, for
six outputting redshifts from z = 49 (initial redshift, top left panel) to z = 1 (bottom right panel).
Within each panel, the top subpanel shows the absolute power spectra and the bottom subpanel shows
the relative difference between GRAMSES (CMC-MD-gauge spectrum for the particle number count
perturbations, δs0/s0) and RAMSES (synchronous-gauge spectrum for the energy density perturba-
tions, δρ/ρ). For comparison, we also show the linear theory predictions for these two spectra using
a modified version of the CAMB code [55]: these are respectively the blue and black solid lines in
the top subpanels, while the solid lines in the bottom subpanels denote their relative differences. The
magenta symbols in the top subpanels show the GRAMSES results as measured using the power spec-
trum code POWMES [56]: while they agree with linear theory rather well on intermediate and small
scales, for the largest scale probed at z = 49 POWMES fails to recover the upturn predicted by linear
theory (the blue solid line). The orange and red symbols, on the other hand, are the power spectra
for the GRAMSES and RAMSES simulations measured using the DTFE code5 [57], which does capture
the upturn. Therefore, in the bottom panels we show the relative differences between the spectra
measured using DTFE (red symbols). This comparison poses an interesting question regarding the
applicabilities of the different methodologies to calculate the power spectrum when it deviates signif-
icantly from the usual behaviour observed in the synchronous gauge6 (e.g., on large scales due to the
gauge difference).

From Figure 7 we see that on large scales the simulation result agrees with linear-theory predic-
tion very well for all redshifts shown. Note that the relative difference between the two power spectra
at the largest scale probed by DTFE starts from∼ 1500% at z = 49 and decreases to . 20% at z = 1,
which is a very large range of change that is properly reproduced by GRAMSES. Towards low redshift
a small discrepancy from linear theory appears: this is partly because of the smaller differences be-
tween the power spectra in the CMC-MD and synchronous gauges, and partly because of the coarse
time resolution in our simulation (which has fewer than 50 time steps between z = 49 and z = 1).
Due to the low resolution of the simulation we shall not focus on the results at small scales.

Figure 8 is similar to Fig. 7, but shows the power spectrum of the velocity divergence (θ defined

4The deviations from Poisson, such as the inclusion of nonlinear source terms or, like the case of ᾱ, the addition of an
extra Yukawa term (i.e., the term linear in ξ in Eq. (4.42)), do not affect the qualitative discussion here.

5The DTFE code tessellates the simulation volume following the Delaunay triangulation scheme, where the 3D space is
decomposed into tetrahedrons whose vertices are simulation particles. The (density or velocity divergence) field value in
each tetrahedron is determined by the corresponding particle quantities (mass and velocity) on its four vertices. The values
in the tetrahedrons are then interpolated to a regular grid to give the field values on the latter, from which the corresponding
power spectra can be measured using normal fast Fourier transform. This is particularly useful for the velocity field, since
it can help to avoid the numerical problem of directly interpolating to a regular grid, which often leads to certain grid cells
having zero velocity. See [57] for more details.

6Note that at the largest scale probed by POWMES the CMC-MD-gauge power spectrum is nearly two orders of magni-
tude larger than that in the synchronous gauge.
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Figure 5: The evolution of the three matter sources in GR – the density field s0 (top row), velocity
divergence θ = ∇ · u (middle row) and the trace of the anisotropic stress s ≡ Trsij = γijsij (bottom
row) – for three redshifts, z = 49 (left column), 4 (middle column) and 1 (right column). Each panel
shows a 2D slice map with constant z coordinate selected from the 512 Mpc/h GRAMSES simulation
box.

above). The blue and black solid lines in the upper subpanels are respectively the velocity conver-
gence power spectra in the CMC and Newtonian gauge calculated by a modified version of the CAMB

code, and the solid lines in the lower subpanels are their relative differences. Here all the simulation
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Figure 6: As Fig. 5, but for the GR potentials or their scalar combination, α (top row), ψ (second
row), |β| ≡

√
β2

1 + β2
2 + β2

3 (third row) and ĀijĀij (bottom row). See the main text for more details.
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Figure 7: The comparison of the matter power spectra from our GRAMSES (GR) and RAMSES (New-
tonian) simulations in the 4 Gpc/h box, at 6 redshifts, from z = 49 (upper left) to z = 1 (lower right).
In each panel, the upper subpanel shows the absolute power spectrum measured using POWMES and
DTFE, while the lower subpanel shows the relative difference between GRAMSES and RAMSES. Note
that the GRAMSES result is the power spectrum of the particle number count field in the CMC gauge
(PCMC), while the RAMSES result is that of the energy density field in the synchronous gauge P S.
The solid lines are the corresponding linear theory predictions for these power spectra obtained using
a modified version of CAMB.

spectra have been measured by the DTFE code. A similar level of agreement between the linear theory
predictions and simulations to what is shown in Figure 7 can be found here, where at the largest scale
probed by DTFE the relative difference between the GRAMSES and RAMSES results changes strongly
from∼ 1000% at z = 49 to∼ 20% at z = 1. While the matter power spectra from the GRAMSES GR
simulations are consistently higher than those from the RAMSES Newtonian simulations, the velocity
power spectra show the opposite trend (this is in agreement with the findings of [58], whose uniform-
expansion gauge corresponds to our CMC gauge) – this is partially why the difference between the
matter power spectra in the two simulations decreases over time.

Let us remark here that neither the matter power spectrum Pδδ(k) nor the velocity divergence
power spectrum Pθθ are gauge invariant quantities and the differences on large scales seen in Figures 7
and 8 are therefore not physical effects. However, being able to reproduce the expected gauge effects
in our simulations is a useful test of the numerical implementation itself. We have stated briefly above
that the Pδδ measured from the GRAMSES simulations are the power spectra for the particle number
count perturbations in the CMC-MD gauge, while the Pδδ measured from the RAMSES simulations
are for the energy density field in the synchronous gauge. We have also compared Pθθ from RAMSES

with the Newtonian gauge results from linear theory. These issues are indeed intricately related to the
fact that the initial conditions in our GR simulations have to be generated in a way compatible with
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Figure 8: The same as Figure 7, but shows the velocity divergence power spectra predicted by the 4
Gpc/h GRAMSES (GR) and RAMSES (Newtonian) simulations. The former makes use of the CMC-
MD gauge, while the latter follows the velocity field in the Newtonian gauge. All simulation results
are measured using DTFE, and the solid lines are the linear-theory predictions obtained using a mod-
ified version of CAMB.

our gauge choice (see, e.g., [59–61]), and as mentioned above these topics will be discussed in depth
in a forthcoming paper.

7 Discussion and conclusions

In this work we have presented GRAMSES, a new implementation of general relativisticN -body AMR
simulations in cosmology. This code brings together the advantages of current Numerical Relativity
codes, in particular the decomposition of the Einstein equations using the 3+1 ADM formalism, and
the N -body particle methods for standard cosmological simulations, so that it can accurately solve
the nonlinear Einstein equations all the way down to deeply nonlinear scales on which particle orbit
crossing is frequent. We have discussed the relevant theoretical background upon which this is based
as well as its numerical implementation in detail. The current implementation of GRAMSES does not
include the evolution equations of the dynamical degrees of freedom in the gravitational sector, the
omission of which is expected to have negligible impact on cosmological simulations. However, we
emphasise that this is not a fundamental limitation of our framework, and indeed the implementation
of the evolution equations in GRAMSES is currently undergoing.

Multigrid relaxation, adaptive mesh refinement and efficient MPI parallelisation are three of
the key features of GRAMSES, which are inherited from its parent code – the publicly-available N -
body and hydrodynamical simulation solver RAMSES [31]. These are what will enable GRAMSES to
run large simulations for cosmological volumes while at the same time resolving scales well within
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virialised structures. In this paper we have opted to not devote much space to the description of these
features, as they are well-established techniques nowadays and a lot of details can be found from the
RAMSES code paper, references therein and its derived literature. However, let us briefly mention that
the computation of geometric source terms for the Einstein equations in the ADM formalism – such
as ĀijĀij and ∂iĀij – are actually nontrivial at the boundaries of refined meshes, which is largely due
to the fact that Āij itself already involves up to second-order derivatives of the GR potentials Vi and
U . Furthermore, the use of AMR increases the memory requirement of the code: without AMR, the
different GR potentials, for a given time step, can be calculated sequentially so that a same array can
be recycled for storing them; with AMR and the associated adaptive timestepping, the GR potentials
must be kept for longer because they are needed to set up the boundary conditions for the refinement
in all subtimesteps, and so we opt to create a separate array for each GR potential.

We have conducted various code tests to verify that all the source terms are computed correctly
and that the multigrid relaxation solvers implemented are giving the correct solutions for test cases
where the exact solutions are known or can be derived in alternative ways. We also successfully run
a cosmological simulation for a ΛCDM universe in a general relativistic setting. The maps produced
in this GR simulation show expected features, and a more detailed quantitative analysis shows that
the matter and velocity power spectra from the GR simulation display the expected behaviour for the
CMC-MD gauge on large scales.

The generation of initial condition for GRAMSES simulations will be addressed in a forthcoming
paper. Nonetheless, we can mention here that in order to generate initial conditions in the CMC-MD
gauge we have modified the CAMB and 2LPTic [62] codes. The former is used to generate the matter
power spectrum implementing the gauge transformations at the initial redshift zini of the simulation,
but also on two neighbouring ones (one at a slightly higher while the other a slightly lower redshift).
Then, our modified 2LPTic code realizes this power spectrum to calculate the particle positions in the
standard way, but the velocity is calculated by finite differencing the particle displacements of the two
neighbouring snapshots. This has the advantage of being independent of an explicit parameterisation
of the growth factor (and growth rate) which can become scale-dependent in certain gauges and dark
energy/modified gravity models and thus violate a basic assumption (scale-independent linear growth
rate) of the default 2LPTic code.

The code can be particularly useful for capturing relativistic effects in large-scale simulations as
well as for studying problems beyond the Newtonian approximation such as the effect of large density
contrasts on the surrounding spacetime and its impact on the estimation of cosmological parameters.
Due to perturbed photon geodesics, distant objects can have observed redshifts, angular positions and
fluxes which deviate from the true values. This can lead to various effects in observations such as in
the galaxy density field [63–65]. While subtle, these effects are detectable using suitable estimators,
and their detectability varies with redshift, scale and estimator [e.g., 66–72]. To fully accurately study
such effects in future galaxy surveys and how they could impact on the estimation of cosmological
parameters and constraints on models, realistic mock galaxy catalogues based on cosmological simu-
lations are needed [69]; such simulations should ideally have large volumes to capture the very large
scale effects, but also resolve nonlinear scales and even virialised objects to more accurately predict
the nonlinear effects [e.g., 73, 74]. Another interesting topic is the back-reaction effect of space-time
averaging on the expansion rate [4], an effect the exact size of which is still being debated and which
can have important implications on the understanding of the cosmic acceleration or cosmological pa-
rameter estimations, which is a nonlinear effect that cannot be fully captured by linear perturbation
theory [13] and is therefore better to be quantified using N -body simulations that solve the nonlinear
Einstein equations inside the most nonlinear virialised objects.

As mentioned above, GRAMSES can be extended to implement the GR evolution equations in
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the FCF formulation, which will allow for the addition of gravitational wave propagation, for specific
astrophysics models of the GW source distribution, into large cosmological simulations. In addition,
the implementation of scalar field dark energy or modified gravity models in GRAMSES is potentially
interesting as it would allow to study the evolution of the new degrees of freedom inside virialised
dark matter haloes and their impact on the GR effects [75, 76].
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A Leapfrog scheme for time evolution of particles

GRAMSES uses the usual leapfrog or Stormer-Verlet scheme for particle movements. In this scheme,
the position and momentum (or velocity) of a given particle from step n to step (n+ 1), with a time
interval ∆t, are updated using the following prescription,

pn+1/2 = pn − ∆t

2
Hx

(
xn, pn+1/2

)
, (A.1)

xn+1 = xn +
∆t

2

[
Hp(x

n, pn+1/2) +Hp(x
n+1, pn+1/2)

]
, (A.2)

pn+1 = pn+1/2 − ∆t

2
Hx

(
xn+1, pn+1/2

)
, (A.3)

where n+1/2 is the middle between the two neighbouring timesteps tn and tn+1, p is the conjugated
momenta to the canonical variable x, H(x, p) is the Hamiltonian of the system, and Hx, Hp are the
partial derivatives of H(x, p) with respect to x and p respectively. In the case of Newtonian gravity
H = p2/2m + ΦN (x), where p = mv and ΦN (x) is the Newtonian gravitational potential, the
Hamiltonian H is completely separable for x and v, and the above operations reduce to the standard
Kick-Drift-Kick (KDK) scheme

vn+1/2 = vn − ∆t

2
∂xΦN (xn) (A.4)

xn+1 = xn + ∆t · vn+1/2 (A.5)

vn+1 = vn+1/2 − ∆t

2
∂xΦN (xn+1) (A.6)

Apparently, this makes the system explicit, i.e., the right-hand sides of Eqs. (A.4)-(A.6) do not depend
on the quantities (which are at step (n + 1)) on the left-hand sides. Although from Eqs. (A.4) and
(A.6) it would seem that we need to do two force calculations per time step, this is not actually the
case since ∂xΦN (xn+1) in (A.6) is the same as the force in (A.4) in the next step, so the second Kick
(A.6) operation can wait until the following (i.e., the (n + 1)th) timestep when ΦN (xn+1) has been
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solved. In other words, in practice the second Kick operation (A.6) for the nthe timestep is done after
the Newtonian potential is solved in the (n+ 1)th timestep; in RAMSES this is called synchronisation
as it finally ‘synchronises’ all particle velocities to the correct time before these velocities can be used
to move (Drift) the particles.

In the case of GR, the Hamiltonian of a free particle,in the 3+1 formalism is

H = α
√
m2 + γijpipj − βipi (A.7)

where pi = mui is the (spatial) momentum. Using Hamilton’s equations

dxi

dt
=
∂H

∂pi
, (A.8)

dpi
dt

= −∂H
∂xi

, (A.9)

we can derive the equation of motion for this system, i.e., the geodesic equations (4.46)-(4.48). We
note that in this case the Hamiltonian (A.7) is not separable, because there is the multiplication of γij

(which depends on x) and pipj under the square root. Therefore, the leapfrog system (A.1)-(A.3) is
implicit and not straightforward to implement as in the Newtonian case. The simplest approximation
to make the system explicit is to evaluate the Hamiltonian derivatives at the wrong phases, i.e.,

un+1/2 = un +
∆t

2
F (xn, un), (A.10)

xn+1 = xn + ∆tV(xn, un+1/2), (A.11)

un+1 = un+1/2 +
∆t

2
F (xn+1, un+1/2), (A.12)

where

Fi = −W
c
∂iΦ + uj∂iβ

j − W 2 − c2

Wc

1 + Φ
a2c2

1− Ψ
2a2c2

∂iΨ , (A.13)

V i =

(
1 +

Φ

a2c2

)(
1− Ψ

2a2c2

)−4 c

W
δijuj − βi. (A.14)

Notice that here, for evaluating V(xn, un+1/2) used in (A.11) according to (A.14), we use the current
value of the gravitational fields (Φ,Ψ, α and βi) and only the quantities depending on uj (including
W ) are updated (to tn+1/2). Likewise, in (A.12) the force term F (xn+1, un+1/2) uses the updated
velocities for the explicit dependence on un+1/2 as well as for the source terms for the fields at the new
timestep. Finally, for repeating the process, in (A.10) we use the updated velocities for the explicit
dependences on un and geometric fields based on the updated particles positions (with sources at
un+1/2).

Let us remark that even if in the Hamiltonian formalism the variables (x, p) are independent
(conjugated) variables, and in the second Kick step (A.12) the various gravitational fields appearing in
F (xn+1, un+1/2) are solved at the final positions, e.g. Φ(xn+1), the source terms for their equations
have used the velocities un+1/2 because we have not yet synchronised by the time we evaluate these
sources at timesteim (n + 1), and thus the fields carry a delayed information about the velocities by
half a timestep. Again, this issue is not present in the Newtonian case since the gravitational field ΦN

is only sourced by the mass density field which depends only on the particles position but not on their
velocities. A possible way to get around this is to temporarily update the velocity before carrying
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(A.12) using Poisson equation for the Newtonian gravitational potential ΦN , giving us an estimated
updated velocity, namely

un+1
N = un+1/2 − ∆t

2
∂xΦN , (A.15)

which can be used (as an approximation) in the source terms for the GR potentials. After solving the
field equations for these the velocity is then reverted back to un+1/2, after which ‘true’ synchronisa-
tion (A.12) is performed.

In principle, the above scheme could be further improved by introducing an extra step to update
the position in such a way that the symplecticity of the scheme is restored (although time-reversal
invariance is still broken). However, since for simulations with AMR the adaptive timesteps render
the KDK scheme non-symplectic even in the Newtonian case, we shall not explain these alternatives,
which are more complicated, in detail here.
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