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Abstract

Background: Single-cell RNA sequencing (scRNA-Seq) is an increasingly popular platform to study heterogeneity at
the single-cell level. Computational methods to process scRNA-Seq data are not very accessible to bench scientists
as they require a significant amount of bioinformatic skills.

Results: We have developed Granatum, a web-based scRNA-Seq analysis pipeline to make analysis more broadly
accessible to researchers. Without a single line of programming code, users can click through the pipeline, setting
parameters and visualizing results via the interactive graphical interface. Granatum conveniently walks users through
various steps of scRNA-Seq analysis. It has a comprehensive list of modules, including plate merging and batch-
effect removal, outlier-sample removal, gene-expression normalization, imputation, gene filtering, cell clustering,
differential gene expression analysis, pathway/ontology enrichment analysis, protein network interaction
visualization, and pseudo-time cell series construction.

Conclusions: Granatum enables broad adoption of scRNA-Seq technology by empowering bench scientists with
an easy-to-use graphical interface for scRNA-Seq data analysis. The package is freely available for research use at
http://garmiregroup.org/granatum/app

Keywords: Single-cell, Gene expression, Graphical, Normalization, Clustering, Imputation, Differential expression,
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Background

Single-cell high-throughput RNA sequencing (scRNA-

Seq) is providing new opportunities for researchers to

identify the expression characteristics of individual cells

among complex tissues. From bulk cell RNA-Seq,

scRNA-Seq is a significant leap forward. In cancer, for

example, scRNA-Seq allows tumor cells to be separated

from healthy cells [1], and primary cells to be differenti-

ated from metastatic cells [2]. Single-cell expression data

can also be used to describe trajectories of cell differenti-

ation and development [3]. However, analyzing data

from scRNA-Seq brings new computational challenges,

e.g., accounting for inherently high drop-out or artificial

loss of RNA expression information [4, 5].

Software addressing these computational challenges

typically requires the ability to use a programming lan-

guage like R [5, 6], limiting accessibility for biologists

who only have general computer skills. Existing work-

flows that can be used to analyze scRNA-Seq data, such

as Singular (Fluidigm, Inc., South San Francisco, CA,

USA), Cell Ranger (10x Genomics Inc., Pleasanton, CA,

USA), and Scater [7], all require some non-graphical in-

teractions. They also may not provide a comprehensive

set of scRNA-Seq analysis methods. To fill this gap, we

have developed Granatum, a fully interactive graphical

scRNA-Seq analysis tool. Granatum takes its name from

the Latin word for pomegranate, whose copious seeds

resemble individual cells. This tool employs an easy-to-

use web browser interface for a wide range of methods

suitable for scRNA-Seq analysis: removal of batch ef-

fects, removal of outlier cells, normalization of expres-

sion levels, imputation for dropout events, filtering of

under-informative genes, clustering of cells, identifica-

tion of differentially expressed genes, identification of
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enriched pathways/ontologies, visualization of protein

networks, and reconstruction of pseudo-time paths for

cells. Our software empowers a much broader audience

in research communities to study single-cell complexity

by allowing the graphical exploration of single-cell

expression data, both as an online web tool (from either

computers or mobile devices) and as locally deployed

software.

Implementation

Overview

The front-end and the back-end of Granatum are writ-

ten in R [8] and built with the Shiny framework [9]. A

load-balancer written in NodeJS handles multiple con-

current users. Users work within their own data space.

To protect the privacy of users, the data submitted by

one user is not visible to any other user. The front-end

operates within dynamically loaded web pages arranged

in a step-wise fashion. ShinyJS [10] is used to power

some of the interactive components. It permits viewing

on mobile devices through the reactivity of the Bootstrap

framework. To allow users to redo a task, each process-

ing step is equipped with a reset button. Bookmarking

allows the saving and sharing of states.

Interactive widgets

Layout and interactivity for the protein–protein inter-

action (PPI) network modules is implemented using the

visNetwork package [11]. Preview of user-submitted data

and display of tabular data in various modules is imple-

mented using DataTables [12]. The interactive outlier-

identification step uses Plotly [13]. Scatter plots, box

plots, and pseudo-time construction in Monocle are

done by the ggplot2 package [3, 14].

Back-end variable management

The expression matrix and the metadata sheet are stored

separately for each user. The metadata sheet refers to

groups, batches, or other properties of the samples in

the corresponding expression matrix. All modules share

these two types of tables. Other variables shared across

all modules include the log-transformed expression

matrix, the filtered and normalized expression matrix,

the dimensionally reduced matrix, species (human or

mouse), and the primary metadata column.

Batch-effect removal

Batch effect is defined as the unwanted variation intro-

duced in processing or sequencing in potentially differ-

ent conditions [15]. To remove batch effects, we

implement two methods in Granatum: ComBat and

Median alignment.

ComBat

This method adjusts the batch effect using empirical

Bayes frameworks, and is robust in the presence of out-

liers or for small sample sizes [16]. It is originally de-

signed for batch-effect removal of microarray gene

expression datasets but is commonly used in scRNA-Seq

studies [17–19]. It is implemented by the “ComBat”

function in the R package “sva” [20].

Median alignment

First, this method calculates the median expression of

each sample, denoted as medi for sample i. Second, it

calculates the mean of medi for each batch, denoted as

batchMeanb for batch b:

batchMeanb ¼ geometricMeani∈batchb medið Þ:

Finally, it multiplies each batch by a factor that pulls

the expression levels towards the global geometric mean

of the sample medians. When i ∈ batchb and m is the

number of samples:

sample afteri ¼ sample beforei⋅
geometricMeani∈1; ::;m medið Þ

batchMeanb
;

where sample_beforei and sample_afteri denote the ex-

pression levels for all genes within sample i before and

after batch-effect removal.

Outlier detection and gene filtering

Z-score threshold is used to automatically detect out-

liers. The z-score of a cell is calculated by calculating the

Euclidean norm of the cell’s vector of expression levels,

after scaling all genes to have unit standard deviation

and zero mean [21]. Over-dispersion gene filtering is

done as recommended by Brennecke et al. [4]. The out-

put of the Monocle package [3] is modified to calculate

dispersion and fit a negative binomial model to the

result.

Clustering methods

The following description of clustering algorithms as-

sumes that n is the number of genes, m is the number of

samples, and k is the number of clusters.

Non-negative matrix factorization

The log-transformed expression matrix (n-by-m) is fac-

torized into two non-negative matrices H (n-by-k) and

W (k-by-m). The highest-valued k entry in each column

of W determines the membership of each cluster [22, 23].

The non-negative matrix factorization (NMF) computa-

tion is implemented in the NMF R-package, as reported

earlier [22, 24].
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K-means

K-means is done on either the log-transformed expression

matrix or the 2-by-m correlation t-SNE matrix. The algo-

rithm is implemented by the kmeans function in R [25].

Hierarchical clustering

Hierarchical clustering (Hclust) is done on either the

log-transformed expression matrix or the 2-by-m correl-

ation t-SNE matrix. The algorithm is implemented by

the hclust function in R [26]. The heatmap with dendro-

grams is plotted using the heatmap function in R.

Dimension reduction methods

Correlation t-SNE

The method assesses heterogeneity of the data using a

two-step process. First, it calculates a distance matrix

using the correlation distance. The correlation distance

Di,j between sample i and sample j is defined as:

Di;j ¼ 1−Correlation Si; Sj
� �

;

where Si and Sj are the i-th and j-th column (sample) of

the expression matrix. Next, Rtsne R package [27] uses

this distance matrix to reduce the expression matrix to

two dimensions.

PCA

The principal component analysis algorithm, imple-

mented as “prcomp” function in R, decomposes the ori-

ginal data into linearly uncorrelated variables

(components) using orthogonal transformation. The

components are then sorted by their variance. The two

components with the largest variances (PC1 and PC2)

are extracted for visualization [28].

Elbow-point-finding algorithm in clustering

This method is inspired by a similar approach imple-

mented in SCRAT [29]. In the clustering module with

automatic determination of the number of clusters, the

identification of the optimum number of clusters is done

prior to presenting the clustering results. For each num-

ber of clusters k = 2 to k = 10, the percentage of the

explained variance (EV) is calculated. To find the elbow-

point k =m where the EV plateaus, a linear elbow func-

tion is fit to the k-EV data points. This piecewise

function consists of a linearly increasing piece from 0 to

m, and a constant piece from m to 10. The algorithm it-

erates from m = 1 to 10 and identifies m which gives the

best coefficient of determination (R2) of linear regression

as the “elbow point”.

Differential expression analysis

We include four differential expression (DE) algorithms

in Granatum: NODES [30], SCDE [31], EdgeR [32], and

Limma [33]. Among them, NODES and SCDE are de-

signed for scRNA-Seq specifically. EdgeR and Limma are

conventional bulk cell RNA-Seq DE tools that have also

been used in scRNA-Seq studies [34, 35]. When more

than two clusters are present, we perform pairwise DE

analysis on all clusters. We use default parameters for all

packages. Their versions are: NODES (0.0.0.9010), SCDE

(1.99.2), EdgeR (3.18.1) and Limma (3.32.2).

Gene set enrichment analysis

The fgsea R-package implements the gene set enrich-

ment analysis (GSEA) algorithm with optimizations for

speedup [36, 37]. GSEA calculates an enrichment score,

which quantifies the relevance of a gene set (for ex-

ample, a KEGG pathway or a Gene Ontology (GO)

term) to a particular group of selected genes (e.g., DE

genes called by a method). The p value is calculated for

each gene set according to the empirical distribution,

followed by Benjamini–Hochberg multiple hypothesis

tests [38].

Pseudo-time construction

We use Monocle (version 2.2.0) in our pseudo-time

construction step. When building the CellDataSet

required for monocle’s input, we set the expressionFam-

ily to negbinomial.size(). We use reduceDimension func-

tion to reduce the dimensionality by setting

max_components to 2.

Results

Overview of Granatum

Granatum is by far the most comprehensive graphic-

user-interface (GUI)-based scRNA-Seq analysis pipeline

with no requirement of programming knowledge

(Table 1). It allows both direct web-based analysis

(accessible through either desktop computers or mobile

devices), as well as local deployment (as detailed in the

front-page of http://garmiregroup.org/granatum/app).

The project is fully open source, and its source code can

be found at http://garmiregroup.org/granatum/code.

We have systematically compared Granatum with 12

other existing tools to demonstrate its versatile functions

(Table 1). Popular packages such as SCDE/PAGODA and

Flotilla are developed for programmers and require ex-

pertise in a particular programming language. In contrast,

Granatum with its easy-to-navigate graphical interface re-

quires no programming specialty. The current version of

Granatum neatly presents nine modules, arranged as steps

and ordered by their dependency. It starts with one or

more expression matrices and corresponding sample

metadata sheet(s), followed by data merging, batch-effect

removal, outlier removal, normalization, imputation, gene

filtering, clustering, differential expression, protein–pro-

tein network visualization, and pseudo-time construction.
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Besides the features above, a number of enhanced

functionalities make Granatum more flexible than other

freely available tools (Table 1). (1) Unlike tools such as

SCRAT (https://zhiji.shinyapps.io/scrat/), ASAP [39],

and Sake (http://sake.mhammell.tools/), it is the only

GUI pipeline that supports multiple dataset submission

as well as batch effect removal. (2) Each step can be

reset for re-analysis. (3) Certain steps (e.g., batch-effect

removal, outlier removal, and gene filtering) can be

bypassed without affecting the completion of the

workflow. (4) Subsets of the data can be selected for

customized analysis. (5) Outlier samples can be identi-

fied either automatically (by setting a pre-set threshold)

or manually (by clicking/lassoing the samples from the

PCA plot or the correlation t-SNE plot). (6) Multiple

cores can be utilized in the differential expression mod-

ule for speed-up. (7) Both GSEA and network analysis

can be performed for the differentially expressed genes

in all pairs of subgroups, following clustering analysis.

(8) Pseudo-time construction is included, giving insights

into relationships between the cells.

Testing of the software

In this report, we mainly use a previously published data

set as an example [18]. This renal carcinoma dataset con-

tains a total of 118 cells from three groups: patient-

derived xenografts derived from the primary tumor (PDX

primary), PDX metastatic cells, and patient metastatic

cells [18]. We abbreviate this dataset as the K-dataset.

To estimate the total running time of Granatum (with

default parameters) with different sizes of datasets, we

first simulated expression matrices with 200, 400, 800,

or 1600 cells using the Splatter package, based on the

parameters estimated from the K-dataset [40]. Addition-

ally, we also used a down-sample approach (200, 400,

800, 1600, 3200, and 6000 cells) on a dataset (P-data-

set) provided by 10x Genomics, which comprises 6000

peripheral blood mononuclear cells (PBMCs; https://

support.10xgenomics.com/single-cell-gene-expression/

datasets/1.1.0/pbmc6k). When the imputation step is

not included, the running time scales linearly with the

number of cells, regardless of platform (Additional file

1: Figure S1), among which Monocle based pseudo-

Table 1 Comparison of existing single-cell analysis pipelines

* The three components (SCRAT, TSCAN and GSCA) are not integrated.

** Results can be shown interactively using a web interface. However, the results themselves have to be pre-computed in R.

*** For the interactive interface only

Zheng et al. 2017 [60]; Satija et al. 2016 [61]; Juliá et al. 2015 [62]; Guo et al. 2015 [63]
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time construction is most time consuming (taking up

80% of all computing time).

There are ten main steps in Granatum (Fig. 1). In the

following sections, we use the K-dataset to elaborate the

details of each step in chronological order, unless noti-

fied otherwise.

Upload data

Granatum accepts one or more expression matrices as

input. Each expression matrix may be accompanied by a

metadata sheet. A metadata sheet is a table describing

the groups, batches, or other properties of the samples

in the corresponding expression matrix. Users may up-

load multiple matrices sequentially. Currently, Granatum

accepts either human or mouse species for downstream

functional analysis. After uploading the input files, users

can preview the matrix and metadata tables to validate

that the dataset is uploaded correctly.

Batch-effect removal

Samples obtained in batches can create unwanted tech-

nical variation, which confounds the biological variation

[15]. It is therefore important to remove the expression

level difference due to batches. Granatum provides a

batch-effect removal step where two methods are in-

cluded, namely ComBat [16] and median alignment. If

multiple datasets are uploaded, by default, each dataset

is assumed to be one batch. Alternatively, if the batch

numbers are indicated in the sample metadata sheet,

the user may select the column in which the batch

numbers are stored. For datasets with a large number

of cells, the box plot shows a random selection of 96

sub-samples for the visualization purpose and can be

re-sampled freely.

To show that median alignment can effectively remove

the batches, we randomly select half of the cells in

K-dataset and multiply the expression levels by 3, thus

creating two artificial batches 1 and 2. The PCA plot

shows that, due to the batch effect, cells of the same type

are separated by batch (the two colors; Fig. 2a). After

performing median alignment, the batch effect is mini-

mized, and cells from the same type but in two colors

(batches) are now intermingled (Fig. 2b).

Outlier identification

Computationally abnormal samples pose serious prob-

lems for many downstream analysis procedures. Thus, it

is crucial to identify and remove them in the early stage.

Granatum's outlier identification step features PCA and

t-SNE [41] plots, two connected interactive scatter plots

that have different computational characteristics. A PCA

plot illustrates the Euclidean distance between the sam-

ples, and a correlation t-SNE plot shows the associative

distances between the samples. Granatum generates

these two plots using top genes (default 500). Using the

Plotly library [13], these plots are highly interactive. It is

an example of thoughtful tool design that empowers

users to explore the data. Outliers can be identified

automatically by using a z-score threshold or setting a

fixed number of outliers. In addition, each sample can

be selected or de-selected by clicking, boxing, or draw-

ing a lasso on its corresponding points.

The original K-dataset has one sample with an abnor-

mally low expression level. This potential outlier sample

Outlier Identification
Identify and remove abnormal samples 

automatically or manually

Batch-effect Removal
Remove the confounding factors created by 

sequencing batches

Normalization
Normalize the data using various methods 

to remove unwanted variation

Gene Filtering
Remove low-expressed genes and filter out 

over-dispersed genes

Pre-processing

Clustering
Find computational clusters of the samples 

using various algorithms

Differential Expression
Find genes that are highly differentially 

expressed (DE) between any two clusters

Protein Network Visualization
Super-impose the DE results on the 

protein-protein interaction network

Pseudo-time Construction
Find genes that are highly differentially 

expressed between any two clusters
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Fig. 1 Granatum workflow. Granatum is built with the Shiny framework, which integrates the front-end with the back-end. A public server has been
provided for easy access, and local deployment is also possible. The user uploads one or more expression matrices with corresponding metadata for
samples. The back-end stores data separately for each individual user, and invokes third-party libraries on demand
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can affect downstream analyses. Using Granatum, users

can easily spot such outliers in the PCA plot or in the

correlation t-SNE plot (Fig. 3a, b). After removal of the

outliers, the top-gene-based PCA and correlation t-SNE

plots are more balanced (Fig. 3c, d).

Normalization

Normalization is essential to most scRNA-Seq data be-

fore the downstream functional analyses (except those

with the UMI counts). Granatum includes four com-

monly used normalization algorithms: quantile

normalization, geometric mean normalization, size-

factor normalization [42, 43], and Voom [44]. A post-

normalization box plot helps illustrate the normalization

effect to the median, mean, and extreme values across

samples.

The box plots allow observation of various degrees of

stabilization (Fig. 4). The original dataset has high levels

of variation among samples (Fig. 4a). Quantile

normalization unifies the expression distribution of all

samples, thus rendering the box plots identical (Fig. 4b).

Mean alignment tries to unify all means of the samples

by multiplying the expression levels in each sample by a

factor; thus, all means (the red dots) are visually the

same (Fig. 4c). Size-factor and Voom normalization use

more sophisticated procedures to normalize the data,

but the variation of distribution across samples is evi-

dently reduced (Fig. 4d, e). According to our and others’

experience [45, 46], quantile normalization is

recommended.

Imputation

A unique challenge in analyzing scRNA-Seq data is the

dropout events, which introduce large number of false

zeros in the expression matrix [4]. These erroneous zeros

might affect many downstream analyses such as

a b

Fig. 2 Batch-effect removal. The PCA plots show the before/after median alignment comparison. The colors indicate the two batches 1 and 2,
and the shapes indicate the three cell types reported from the original data. a Before batch-effect removal; b after batch-effect removal

a b

Fig. 3 Outlier removal using PCA plot. a Before outlier removal. b After outlier removal
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dimension reduction, clustering, and differential expres-

sion [47]. To resolve this issue, we include an “imputation”

step to infer the true expression level of zero values in the

input matrix. We choose the scImpute package [48] since

it is the fastest among the imputation methods we have

tested [48, 49]. It takes about 1 minute on K-dataset using

four cores of an Intel Xeon CPU E5-2695 v3 (2.3 GHz).

However, the running time grows exponentially and it

took more than 15 h to impute the 6000-cell 10x Genom-

ics dataset (Additional file 1: Figure S1).

Gene filtering

Due to high noise levels in scRNA-Seq data, Brennecke

et al. [4] recommended removing lowly expressed genes

as well as lowly dispersed genes. To this end, Granatum

includes a step to remove these genes. Both the average

expression level threshold and the dispersion threshold

can be adjusted interactively. Granatum displays the

threshold selection sliders and the number-of-genes

statistics message to enhance integration with the other

components. On the mean dispersion plot, a point

represents a gene, where the x-coordinate is the log

transformed mean of the expression levels of that gene

and the y-coordinate is the dispersion factor calculated

from a negative binomial model. The plot highlights the

preserved genes as black and the filtered genes as gray

(Additional file 1: Figure S2).

Clustering

Clustering is a routine heuristic analysis for scRNA-Seq

data. Granatum selects five commonly used algorithms:

non-negative matrix factorization [22], k-means,

k-means combined with correlation t-SNE, hierarchical

clustering (Hclust), and Hclust combined with correl-

ation t-SNE. The number of clusters can be set either

manually or automatically using an elbow-point-finding

algorithm. For the latter automatic approach, the algo-

rithm will cluster samples with the number of clusters

(k) ranging from 2 to 10, and determine the best number

as the elbow-point k, the starting point of the plateau for

explained variance (EV). If Hclust is selected, a pop-up

window shows a heatmap with hierarchical grouping

and dendrograms.

Next, the two unsupervised PCA and correlation

t-SNE plots superimpose the resulting k cluster labels on

the samples (Additional file 1: Figure S3). Users can also

chose to use their pre-defined labels provided in the

sample metadata. By comparing the two sets of labels,

one can check the agreement between the prior meta-

data labels and the computed clusters. We perform the

K-means clustering (k = 2) on the correlation t-SNE plot,

using K-dataset. The generated clusters perfectly corres-

pond to the original cell type labels in this case.

Differential expression

After the clustering step, Granatum allows DE analysis

on genes between any two clusters. It currently includes

four commonly used DE methods, namely NODES [30],

SCDE [31], Limma [33], and edgeR [32]. The DE analysis

is performed in a pair-wise fashion when more than two

clusters are present. To shorten the computation time,

the number of cores for parallelization on multi-core

machines can be selected. When the DE computation is

complete, the results are shown in a table with DE genes

sorted by their Z-scores, along with the coefficients. As

another feature to empower the users, the gene symbols

are linked to their corresponding GeneCards pages

(http://www.genecards.org/) [50]. The “Download CSV

table” button allows saving the DE results as a CSV file.

Next, gene set enrichment analysis (GSEA) with either

KEGG pathways or Gene Ontology (GO) terms [37, 51–53]

can be performed to investigate the biological functions of

these DE genes. The results are plotted in an intuitive

bubble plot (Fig. 5d). In this plot, the y-axis represents the

enrichment score of the gene sets, the x-axis shows gene

a b c d e

Fig. 4 Box-plot comparison of normalization methods. The cell size is down-sampled to representatively show the general effect of each method.
The colors indicate the three cell types reported from the original data. a Original data (no normalization). b Quantile normalization. c Geometrical
mean normalization. d Size-factor normalization. e Voom normalization
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a

b

c

d

Fig. 5 Comparison of DE genes identified by Granatum or ASAP pipeline. a MA plot. Blue color labels DE genes, and gray dots are non-DE genes.
b Venn diagram showing the number of DE genes identified by both methods, as well as those uniquely identified by either pipeline. c Bar chart
comparing the number of genes up regulated in primary cells (red) or metastasized cells (green). d Bubble plots of KEGG pathway GSEA results for
the DE genes identified by either pipeline. The y-axis represents the enrichment score of the gene sets, the x-axis shows gene set names, and the
size of the bubble indicates the number of genes in that gene set
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set names, and the size of the bubble indicates the number

of genes in that gene set.

Comparison with other graphical web tools for scRNA-

Seq data

To evaluate the differences between Granatum and a

similar graphical scRNA-Seq pipeline, ASAP [39], we

compare the DE genes (primary vs. metastasized patient)

in K-dataset obtained by both pipelines (Fig. 5). While

Granatum uses quantile normalization, ASAP uses

Voom normalization as the default method. We used

SCDE as it is the common DE method for both

pipelines.

Both pipelines agree on most DE genes called (Fig. 5a)

but each identifies a small number of unique DE genes

(Fig. 5b). The numbers of up- or down-regulated DE

genes detected by Granatum are closer, whereas in

ASAP a lot more genes are more highly regulated in

the primary cells compared to those in metastasized

cells (Fig. 5c). Further, KEGG pathway-based GSEA

analysis on the DE genes shows that Granatum identi-

fied more significantly (enrichment score > 1.5)

enriched pathways than ASAP (Fig. 5c). The top path-

way enriched in Granatum’s DE genes is the NOD-like

receptor signaling pathway, corresponding to its known

association with immunity and inflammation [54]. In

ASAP “African trypanosomiasis” is the top pathway,

which describes the molecular events when the parasite

Trypanosoma brucei passes through the blood–brain

barrier and causes neurological damage by inducing cy-

tokines. Despite the differences, some signaling path-

ways are identified by both pipelines with known

associations with tumorigenesis, such as the PPAR sig-

naling pathway [55] and the epithelial cell signaling

pathway [56].

Granatum-specific steps: protein network visualization

and pseudo-time construction

Unlike ASAP, SAKE, and SCRAT, Granatum implements

a protein–protein interaction (PPI) network to visualize

the connections between the DE genes (Fig. 6a). By de-

fault, up to 200 genes are displayed in the PPI network.

We use visNetwork to enable the interactive display of

the graph [11], so that users can freely rearrange the

graph by dragging nodes to the desired locations. Uses

can also reconfigure the layout to achieve good

visualization via an elastic-spring physics simulation.

Nodes are colored according to their regulation direc-

tion and the amount of change (quantified using

Z-score), where red indicates up-regulation and blue in-

dicates down-regulation. As an example, Fig. 6a shows

the PPI network result from PDX primary to metastatic

cells in the K-dataset. A large, closely connected module

exists in the PPI network, which contains many heat

shock protein genes, including down-regulated

HSP90AB1, HSPA6, HSPA7, HSPA8, HSPA1A, HSPA1B,

and HSPA4L, as well as up-regulated HSP90AA1 and

HSPH1 in metastasized cells. Heat shock genes have

been long recognized as stress response genes [57], and

inhibiting heat shock protein genes can control metasta-

sis in various types of cancers [58, 59].

Lastly, Granatum has included the Monocle algorithm

[3], a widely used method to reconstruct a pseudo-

timeline for the samples (Fig. 6b). Monocle uses the

a b

Fig. 6 Protein–protein interaction network and pseudo-time construction steps. a The PPI network derived from the DE results between PDX primary
and metastasized cells in the K-dataset. The color on each node (gene) indicates its Z-score in the differential expression test. Red and blue indicate
up- and down-regulation in metastasized cells, respectively. b The pseudo-time construction step. The Monocle algorithm is customized to visualize
the paths among individual cells. Sample labels from the metadata are shown as different colors in the plot
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reversed graph embedding algorithm to learn the struc-

ture of the data, as well as the principal graph algorithm

to find the timelines and branching points of the sam-

ples. The user may map any pre-defined labels provided

in the metadata sheet onto the scatter plot. In the

K-dataset, the three (PDX primary, PDX metastasized,

and patient metastasized) types of cancer cells are

mostly distinct (Fig. 6b). However, small portions of cells

from each type appear to be on intermediate trajectories.

Discussion

The field of scRNA-Seq is evolving rapidly in terms of

both the development of instrumentation and the

innovation of computational methods. However, it be-

comes exceedingly hard for a wet-lab researcher without

formal bioinformatics training to catch up with the latest

iterations of algorithms [5]. This barrier forces many re-

searchers to resort to sending their generated data to

third-party bioinformaticians before they are able to

visualize the data themselves. This segregation often pro-

longs the research cycle time, as it often takes significant

effort to maintain effective communication between wet-

lab researchers and bioinformaticians. In addition, issues

with the experimentations do not get the chance to be

spotted early enough to avoid significant loss of time and

cost in the projects. It is thus attractive to have a non-

programming graphical application that includes state-of-

the-art algorithms as routine procedures, in the hands of

the bench scientists who generate the scRNA-Seq data.

Granatum is our attempt to fill this void. It is, to our

knowledge, the most comprehensive solution that aims to

cover the entire scRNA-Seq workflow with an intuitive

graphical user interface. Throughout the development

process, our priority has been to make sure that it is fully

accessible to researchers with no programming experi-

ence. We have strived to achieve this by making the plots

and tables self-explanatory, interactive, and visually pleas-

ant. We have sought inputs from our single-cell bench-

side collaborators to ensure that the terminologies are

easy to understand by them. We also supplement

Granatum with a manual and online video that guide

users through the entire workflow, using example datasets.

We also seek feedback from community via Github pull-

requests, emails discussions, and user surveys.

Currently, Granatum targets bench scientists who have

their expression matrices and metadata sheets ready.

However, we are developing the next version of

Granatum, which will handle the entire scRNA-Seq data

processing and analysis pipeline, including FASTQ qual-

ity control, alignment, and expression quantification.

Another caveat is the lack of benchmark datasets in the

single-cell analysis field currently whereby the different

computational packages can be evaluated in an unbiased

fashion. We thus resort to empirical comparisons

between Granatum and packages such as ASAP. In the

future, we will enrich Granatum with capacities to

analyze and integrate other types of genomics data in

single cells, such as exome-seq and methylation data.

We will closely update Granatum to keep up with the

newest development in the scRNA-Seq bioinformatics

field. We welcome third-party developers to download

the source code and modify Granatum, and will continu-

ously integrate and improve this tool as the go-to place

for single-cell bench scientists.

Conclusions

We have developed a graphical web application called

Granatum which enables bench researchers with no pro-

gramming expertise to analyze state-of-the-art scRNA-

Seq data. This tool offers many interactive features to

allow routine computational procedures with a great

amount of flexibility. We expect that this platform will

empower bench-side researchers with more independ-

ence in the fast-evolving single cell genomics field.
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