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ABSTRACT

Properties of solid-liquid interfaces are of immense importance for electrocatalytic and electrochemical systems, but modeling
such interfaces at the atomic level presents a serious challenge and approaches beyond standard methodologies are needed.
An atomistic computational scheme needs to treat at least part of the system quantum mechanically to describe adsorption
and reactions, while the entire system is in thermal equilibrium. The experimentally relevant macroscopic control variables are
temperature, electrode potential, and the choice of the solvent and ions, and these need to be explicitly included in the compu-
tational model as well; this calls for a thermodynamic ensemble with fixed ion and electrode potentials. In this work, a general
framework within density functional theory (DFT) with fixed electron and ion chemical potentials in the grand canonical (GC)
ensemble is established for modeling electrocatalytic and electrochemical interfaces. Starting from a fully quantum mechanical
description of multi-component GC-DFT for nuclei and electrons, a systematic coarse-graining is employed to establish vari-
ous computational schemes including (i) the combination of classical and electronic DFTs within the GC ensemble and (ii) on
the simplest level a chemically and physically sound way to obtain various (modified) Poisson-Boltzmann (mPB) implicit solvent
models. The detailed and rigorous derivation clearly establishes which approximations are needed for coarse-graining as well
as highlights which details and interactions are omitted in vein of computational feasibility. The transparent approximations
also allow removing some of the constraints and coarse-graining if needed. We implement various mPB models within a linear
dielectric continuum in the GPAW code and test their capabilities to model capacitance of electrochemical interfaces as well as
study different approaches for modeling partly periodic charged systems. Our rigorous and well-defined DFT coarse-graining
scheme to continuum electrolytes highlights the inadequacy of current linear dielectric models for treating properties of the
electrochemical interface.

Published by AIP Publishing. https://doi.org/10.1063/1.5047829

I. INTRODUCTION

Electrochemical reactions take place at the inter-
face between electronic and ionic conductors (electrolyte).
Together these two macroscopic conductors form an

electrode, and electrochemical experiments probe the prop-
erties of this interface under the influence of applied volt-
age and current between electrodes. A typical current-voltage
response obtained from an electrochemical experiment is
often difficult to interpret from an atomistic perspective and
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modeling is at the core of electrochemical analysis. Besides the
reaction under study, the outcome of electrochemical experi-
ments is controlled by the temperature, choice of electrolyte,
and the electrode potential which determine the thermody-
namic state of the system.1 This scenario is depicted in Fig. 1.

The experimental setup sets the stage for a computa-
tional approach where macroscopic variables like the temper-
ature and chemical potentials of the electrolyte and the elec-
trode need to be controlled similarly as in the experiments.
For macroscopic systems, the most natural thermodynamic
ensembles at the thermodynamic limit are either the Gibbs
G(N, T, P) or the Helmholtz A(N, T, V). The large number of
species ensures that the, e.g., overall chemical potential of
the electrolyte or electrode does not change during a reac-
tion. For a small number of atoms as typically treated in a
microscopic, atomistic simulation of the grand-canonical (GC)
ensemble Ω(µ, T, V) is a natural choice to allow treatment of
a system at fixed chemical potentials with fluctuating particle
numbers. Combining the experimental variables with the most
widely used electronic structure method, density functional
theory (DFT), motivates the development of grand canoni-
cal DFT (GC-DFT) to enable calculations at fixed chemical
potentials and temperatures as performed in experiments.

GC-DFT offers a way to study electrochemical micro-
scopic systems in thermodynamic equilibrium characterized
by long time and length scales. If some parts of a system
are prone to charge transfer events and chemical reactions,
short time and small length-scales need to be included in
the model. Thus, a general electrochemical model requires
a quantum mechanical treatment of the electrode and reac-
tants combinedwith a statistical treatment to capture changes
in the interfacial charge distribution from the formation of

FIG. 1. The electrode-solvent interface in a grand-canonical picture where the
solvent/electrolyte chemical potentials are fixed to µ̃s and at the electrode the
chemical potential of electrons is fixed to µ̃n.

the double-layer and liquid structure, for example. As the
potential distribution controls reaction kinetics and thermo-
dynamics, the electrolyte and its effect on the reacting system
cannot be ignored. The mixture of several time scales and
length scales and the need for a grand canonical description
present serious challenges for the atomistic DFT models.

Need for constant ion and electrode potentials (grand
canonical) rather than constant particle number treatment
(canonical) is problematic for atomic-scale modeling and
requires advanced simulation schemes.2 In electronic GC-
DFT, the electrode potential is controlled by the Fermi-level
of the electrode which equals chemical potential of electrons,
while the electrolyte chemical potential depends on the elec-
trolyte solution and its concentration. Thus, a well-defined
DFT model of an electrochemical interface calls for a GC
ensemble with a fluctuating number of electrons and ions at a
given temperature rather than the commonly applied canon-
ical DFT where the particle number is fixed, but the chemical
potentials are allowed to fluctuate.

To obtain equilibrium ensemble quantities from atomistic
simulations, the most straight-forward solution is to adopt a
statistical treatment of the system by using [ab initio or quan-
tummechanical/ molecular mechanical (QM/MM)] molecular
dynamics (MD) where the reactants, electrode, and electrolyte
are treated explicitly. To reach an equilibrium state, both the
ionic and electronic degrees of freedom need to be sampled
extensively. While this approach is well established3–6 and jus-
tified, reaching equilibrium requires long simulations on large
systems, making MD applicable to small systems and limited
amount of reactions.

Another formally exact approach to model the thermo-
dynamic ensemble effects is to use density functional theory
where free energy of the entire system is defined in terms
of the nuclear and electronic densities. After coarse-graining,
classical parts can be fully described by atomic density dis-
tributions of different species.7–9 Classical DFT is naturally
formulated in the GC ensemble where the chemical poten-
tials are fixed by the (pure) bulk phase. Like the classical DFT,
also electronic GC-DFT can be realized.10,11 By combining GC
electronic and classical DFT, a unified DFT can be devised;
previously this approach has been used to connect classical
DFT with canonical DFT.12–15

In recent work, a classical/quantum DFT hybrid method
suitable for periodic systems was obtained by combining elec-
tronic DFT with the reference interaction site method (RISM)
of classical DFT.15 When combined with the effective screen-
ing method (ESM),16 the ESM-RISM was introduced. Using
ESM-RISM with a potentiostat scheme17 to control the elec-
tronic chemical potential within a few SCF cycles, a GC-DFT
is achieved. Recently,18 grand canonical electronic DFT has
been combined with classical grand canonical description of
the electrolyte. However, the steps needed to arrive in the
separation between quantum and classical subsystems in the
GC ensemble have not been addressed. In this work, we extend
multi-component canonical electronic and nuclear DFT19 to
the grand canonical ensemble to provide a detailed route from
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a fully quantum mechanical description to coarse-grained
classical and continuumGC-DFTmodels of the electronic sys-
tems in contact with an electrolyte. This allows assessing the
implications and omissions of different grand canonical DFT
schemes.

The most elegant practical approach to electronic GC-
DFT is to fix the Fermi-levels and allow the fluctuation of
electrons during an SCF calculation. While stable algorithms
for a constant electron potential (or Fermi-level) calculations
have been developed recently,18,20 the fluctuating number of
electrons usually causes significant difficulties in practical cal-
culations due to poor convergence. Another and equivalent
way to obtain grand canonical averages is to perform calcu-
lations at several points using a fixed number of electrons
and interpolate to the desired Fermi-level.2,16,21–26 A more
refined scheme based on constant number SCF calculations
connects the electronic system to an additional degree of
freedom, mimicking an artificial potentiostat which changes
on the number of electrons in the system in order to achieve a
predefined electrode potential.17 Besides fixing the chemical
potential of the electrons, also the chemical potential due to
the solvent and ions needs to remain constant22,23 which can
be included in the quantum either mechanically or classically.

Changing the Fermi-level corresponds to changes in the
electron chemical potential which is obtained by altering
the charge state of the electrode. This presents a challenge
for actual computations because electrocatalytic systems
are usually partially periodic and periodic systems need to
be charge neutral to avoid divergence of the electrostatic
interactions. Typically a homogeneous back-ground charge
is introduced, and various correction schemes have been
devised21,27,28 to relate charged and charge-neutral systems
to a common reference. An elegant solution is provided by
joint DFT (JDFT)12,18,25 and (modified) Poisson-Boltzmann
(mPB) implicit solvation models29–31 where the charge neu-
trality can be maintained by the ionic distribution in the
double-layer region. However, unlike commonly assumed, the
charge neutrality constraint is not automatically fulfilled in
non-linear mPB models,32 which is most likely due to the
over-simplified form of the mPB equations and the presence
of the cavity exclusion function. Therefore, in practice, even
the mPB models combined with electronic DFT as applied to
charged periodic systems need to either enforce charge neu-
trality by using Lagrange multipliers,32 use simple background
charges,33 or allow treatment of charged partially periodic
systems by using modified mPB boundary conditions,16 mim-
icking neutralization by image charges. These different ways
of simulation charged periodic systems are investigated and
compared in this work.

ThemPBmodels present the simplest level of fixed poten-
tial GC-DFT of solid-liquid interfaces. Typically23,25,29,31,34–36

the mPB models combine a linear dielectric implicit solva-
tion model with an ion continuum following mPB distribution.
The combination of DFT with mPB has been pursued by sev-
eral groups, and various flavors of the methodology have been
developed, implemented, and tested to treat electrochemical

interfaces.12,23,29,31 Most of these methods have been uti-
lized in a linear dielectric to represent the liquid, while lin-
earized, standard, and size-modified PB models have been
used for describing the ions.12,23,29,31 Typically, these models
give reasonable agreement with solvation energies of neu-
tral species but cannot reproduce electrochemically impor-
tant experimental observables such as the double-layer capac-
itance. While it seems that the use of a non-linear dielectric
improves the description of the solid-liquid interface,37 the
effect of adding more complexity to the description of the
ion distribution has not yet been assessed; besides the gen-
eral GC-DFT framework, one central question to answer in
this work is to understand whether ion-specific interactions
can improve the mPB description of solid-liquid interfaces.

In this paper, we present a formal way to study the prop-
erties of solid-liquid interfaces at fixed electrode and elec-
trolyte chemical potentials by combining nuclear and elec-
tronic DFT within the grand canonical ensemble. The the-
ory is turned into practical computational schemes by grad-
ually coarse-graining the initially fully quantum mechanical
description of both nuclei and electrons to (i) classical nuclei
and (ii) eventually a continuum description of the solvent and
ions. Besides a general framework, the detailed derivation
of the electrochemical GC-DFT makes transparent approxi-
mations for particular computational models and highlights
which details and interactions are omitted at different levels of
theory. Understanding the details, omissions, and limitations
of different GC-DFT models is highly important as the grand
canonical approaches, especially the mPB models, are becom-
ing more and more utilized in the computational studies of
electrocatalytic reactions.

Within mPB models, we consider a general reference
electrode to allowmodeling at fixed absolute electrode poten-
tials. We also review and develop practical computational
schemes for modeling charged periodic systems. Finally, sev-
eral standard and advancedmPBmodels within a linear dielec-
tric approximation are implemented in the GPAW software
and tested toward double layer capacitances and interfacial
potential distributions. We show that adding varying amounts
of ion-specific details in mPB models based on a linear
dielectric does not improve the modeling of the double-layer
capacitance nor significantly affect the potential distribution.
Therefore, future work should concentrate on the develop-
ment of non-linear dielectric mPB models or more refined
classical DFT approaches. The developed GC-DFT hierarchy
serves a basis for further developments of DFT approaches
treating the electrochemical interfaces. In the future, the gen-
eral framework will be extended to study electrochemical
reactions and kinetics—work in this direction is already being
made.

II. THEORY

A. Multi-component GC-DFT
for electrochemical systems

Multi-component DFT (MCDFT)19,38 provides a rigor-
ous way to treat combined nuclear and electronic quantum
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systems using DFT. In this work, MCDFT is extended into
the grand canonical ensemble. The essential ingredients of
the canonical MCDFT are presented in the supplementary
material. While the canonical MCDFT approach is exact for
the Helmholtz canonical free energy, typical systems treated
within (electronic) DFT are very small due to the computa-
tional burden of such calculations. Even if the environment
formed by the nuclei is treated classically, the systems are
far from the thermodynamic limit. Therefore, in a microscopic
simulation, the thermodynamic state characterized by macro-
scopic variables (such as the chemical potentials and temper-
ature) of the system can change due to chemical reactions
or fluctuations of the environment.39 To describe equilibrium
quantities of a small system in contact with an environment at
fixed chemical potentials, it is more natural to fix the chemical
potential of the environment rather than the particle number
of the system. For a large enough system, both choices are
naturally equivalent.

Fixing the chemical potential corresponds to a grand
canonical ensemble. Performing a Legendre transformation in
terms of the chemical potential on the canonical free energy
gives the grand canonical Hamiltonian,3

Ω̂ = Ĥtot − TŜNn −
∑

i

µ̃iN̂i, (1)

where total Hamiltonian is used and Ĥtot = T̂n + V̂nn + T̂N

+ V̂Nn + V̂NN +
∑

N V̂N +
∑

n v̂n with N for nuclei and n for electrons
so that the grand canonical free energy is Ω = Ω[T,V, {µ̃i }]
specified by the (electro)chemical potentials µ̃i and particle
number operator N̂i. Now the particle number can fluctuate
which leads to the following density operator:3

ρ̂GC =
exp[−β(Ĥtot −

∑

i µ̃iN̂i)]

Tr
[
exp[−β(Ĥtot −

∑

i µ̃iN̂i)]
] . (2)

We also define the partition function Ξ=Tr
[
exp

[
− β

(

Ĥtot

−
∑

i µiN̂i

)] ]
from which Ω[T, V, µ] = −kBT lnΞ = E − TS

−
∑

iµiNi. The probability of being in microstate i is

pGCi =

exp
[
−β〈Ψi |Ĥtot −

∑

j µ̃jN̂j |Ψi〉
]

Ξ
. (3)

In the above equation, —Ψi〉 is the total wave function
of both the electrons and nuclei so that the particle number
operators N̂i correspond to electrons or the nuclear identities
as specified below.

In the considered electrocatalytic framework as applied
to a typical DFT calculation, the number of atoms at the elec-
trode, number of solvent molecules as well as the number of
reactants are fixed and we do not consider the DFT system
to be open to these species. We therefore require that only
the chemical potentials of ions are fixed by the bulk solution
and that the chemical potential of electrons is fixed by the
electrode. These constraints lead to a partial grand canoni-
cal DFT in terms of the ions and electrons with fixed chemical
potentials.

Before advancing further, it needs to be noted that the
particle number operators of the nuclear degrees of freedom
correspond to only nuclei, not electrons attached to it form-
ing an ion. Still, one can simplify the treatment of the nuclear
chemical potentials as only a mean ion chemical potential is
needed. This is because experimentally the concentration of
ions in the bulk solution needs to respect electroneutrality,
and thus, the concentration of a nucleus corresponding to an
ion cannot be changed independently.40 Due to this restric-
tion, chemical potentials in two phases (here the bulk b and
interface η) are bound by the constraint for cationic nuclei
(+) and anionic nuclei (−). For a binary electrolyte, it holds
that

µ̃b± = v−µ̃
b
− + v+µ̃

b
+ = v+µ̃

η

+ + v+µ̃
η

− = µ̃
η

± , (4)

where vi is the stoichiometric coefficient and µ̃i = µ0i + qiφ(r)
with qi as the charge and φ(r) as the Galvani (inner) potential.
φ of the two phases are different, leading to an imbalance in
concentrations between different phases. In the liquid phase,
we can take φb = 0 as will be discussed in Sec. II E. Follow-
ing Guggenheim,40 the mean activity coefficient for η phase is
γ
v++v−
± = γ

v+
+ γ

v−
− = γα± for phase α. The mean absolute activ-

ity is defined in terms of the concentration c and standard
chemical potential µ0 = β lnλ0 where λ0 depends on the sol-
vent, temperature, ions, etc. (later it will be realized that λ0

is related to the thermal de Broglie wavelength). The chem-
ical potential of nuclei for the ions forming the electrolyte
is

µ̃
η

± = β
−1 ln[γη± (λ

0
±)

v++v− (cη− )
v− (cη+ )

v+ ] = µb±. (5)

For this reason, the relevant chemical potential of the
ionic nuclei forming the electrolyte is the bulk chemical
potential µb± = µ

N
± where N reminds that at the point, the ionic

chemical potential is only for the nuclei of the ions, not ions
with a nucleus and electrons related to a specific nucleus. The
grand canonical free energy for an electrochemical system
with fixed ionic nuclear (±) and electron (n) chemical potentials
is

Ω(T,V, µ̃N± , µ̃n) = Tr[ρ̂Ω̂] ≡ Ω[ρ̂]

=

∑

i

pGCi

Tkb lnpGCi +
〈

Ψi |Ĥtot

−µN± (N̂+ + N̂−) − µ̃nN̂n |Ψi
〉

 , (6)

where Tkbpi lnpi = −TS as pi lnpi = −S is the von Neumann
entropy.41

Now we turn to the minimization of the partial grand
canonical energy. This is performed following Levy’s con-
strained search11,42 with the grand canonical Hamiltonian. To
specify the external potential in a chemically meaningful way
and for future convenience, we split the total nuclear density
from all the nuclei N in the system to well defined contribu-
tions of nuclei comprising the solvent S, nuclei of ions in the
solution I, nuclei in the electrode M, and nuclei of possible
reactants R. Similarly, the total electron density n can be split
into contributions from the electrolyte ions n±(r), electrode
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ne(r), and solvent molecules ns(r). Furthermore, the positions
of the atoms constituting the electrode and the reactants
are fixed and considered explicitly. Thus, we choose that the
external potential v(r) is defined by the electrode and reactant
nuclei and given by

v(r) =
M,R
∑

a

∫
dr′

ρa(r′)
|r − r′ |

≈
M,R
∑

a

Za(Ra)
|r − Ra |

. (7)

The first definition corresponds to an effective nuclear
potential due to a quantum nucleus a which is approximated
by the classical point like nuclei having the charge Za. By
specifying the external potential this way, the correspond-
ing quantity needs to be removed from Ĥtot. By this choice,
part of the system is to be considered fixed providing a static
external potential to the electrons and rest of the nuclei. This
is reminiscent of a Born-Huang (BH) approximation for fixed
nuclei with positions R̄M,R [in the absence of non-adiabatic
effects, the Born-Oppenheimer (BO) approximation is suffi-
cient]. Thus, the total wave function is approximated as a
product of the fixed (not yet classical) nuclei of the reac-
tants/electrode and the mixed wave function of ionic nuclei,
solvent nuclei, and the electrons of the entire system,

ˆ̄ρ =
∑

i

pi
∑

kj

|ψij(rn,RI,S; R̄M,R)Φj(R̄M,R)
〉

×
〈

ψik(rn,RI,S; R̄M,R)Φk(R̄M,R) |,

with

|Ψi
〉

=

∑

j

|ψij(rn,RI,S; R̄M,R)Φj(R̄M,R)
〉

, (8)

where the nuclear-electronic wave functions are written using
the BH expansion to factor the wave function with Φ as the
nuclear wave function for the reactants/electrode and ψ for
the combined electronic and solvent/ion nuclear wave func-
tion. As a result, the electrons and solvent/ion nuclei move
on the potential energy surface generated by the nuclei of
the electrode and reactants. While the BH separation has
been assumed, the adiabatic theorem (see, for example, Sec.
5.1 in Ref. 43) has not been invoked and therefore nonadia-
batic effects are still present. Finally, either diabatic or adia-
batic ion/electron wave function can be utilized in the above
expansion; the latter is more suitable for general chemical
reactions, while the former may prove to be convenient for the
study of electron and proton transfer reactions, for example.

To further simplify the situation, the nuclei of the elec-
trode and reactant are assumed classical. Such a division is
obtained by splitting the total partition function as a restricted
partition function Ξ̄44 with fixed classical nuclei with momen-
tum P̄ and subsequently sampling the phase space of the clas-
sical nuclei. Thus, the total quantum grand canonical ensemble
is approximated as a system where the open quantum system
interacts with the fixed, classical nuclei. For this system, the
grand partition function is

Ξ(T,V, µ̃±, µ̃n) ≈
1

NM!NR!h
3
(

NM+NR
)

∫
dR̄M,RdP̄M,R exp

−β
M,R
∑

N

P̄
2
N

2MN

Ξ̄(T,V,µ
N
± , µ̃n;NM,NR, R̄M,R)

=

1

NM!NR!λ
3
(

NM+NR
)

∫
dR̄M,R exp

[
−βΩ(T,V,µN± , µ̃n;NM,NR, R̄M,R)

]

=

1

NM!NR!λ
3
(

NM+NR
)

∫
dR̄M,R exp

−βTr

ˆ̄ρ*.,Ĥtot − T̂

M,R
N

+ Tkb ln[ ˆ̄ρ] −
∑

j

µ̃jN̂j
+/-



=

1

NM!NR!λ
3
(

NM+NR
)

∫
dR̄M,R exp

[
−βTr

[
ˆ̄ρΩ̂BH

] ]
, (9)

where the quantum mechanical nuclear kinetic energy has
been replaced by its classical equivalent and λ is the ther-
mal de Broglie wavelength unique for a given nuclear type.
The grand free energy from above is for classical nuclei of
the electrode and reactants interacting with the quantum
system of electrons, solvent, and ionic nuclei. The classical
mechanics for reactant and electrode nuclei is implied by
the use of a classical partition function for these degrees

of freedom. The free energy contributions from the classi-
cal part can be obtained by thermal sampling of the R, M
degrees of freedom, while free energy of the quantum part
is obtained directly from density functional theory. It is also
worth noting that electronic nonadiabatic effects are still
included and can be computed schemes frommixed quantum-
classical dynamics,45 but then one does not integrate out the
momenta.
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The formal quantum/classical separation leads to an
external potential which is defined by the last quantity in
Eq. (7). If some nuclei of the reactants or electrode need to
be treated quantum mechanically (e.g., in tunneling calcula-
tions), these selected nuclei can bemodeled using the nuclear-
electron orbital DFT (NEO-DFT),46 for example. Also the zero

point energies for the reactant and electrode nuclei can be
approximated by, e.g., solving the nuclear wave functions on
the GC-BH potential energy surface. After the BH separa-
tion with fixed classical nuclei, the minimum grand canonical
energy for the quantum system of electrons, ions, and the
solvent reads

Ω(T,V,µN± , µ̃n;NM,NR, R̄M,R) = Tr[ ˆ̄ρΩ̂BH]

= min
n(r),{NI,S(R)}

F
τ [n(r), {NI,S(R)}] +

∫
dr

v(r)
*,
M,R,I,S
∑

a

Na(r) − n(r)+- − µ̃nn(r) −
I

∑

i

µNi Zi(r)

, (10)

where

Fτ [n(r), {NI,S(R)}] ≡ min
ˆ̄ρ→[n(r),{NI,S(R)}]

Tr[ ˆ̄ρ(Ω̂BH − v̂(r))]. (11)

The above yields the exact grand canonical energy for
a grand canonically treated quantum subsystem interacting
with classical nuclei setting the external potential. Together
Eqs. (9) and (10) form the general GC-DFT expression for
electrochemical systems at fixed electron and ion chemical
potentials.

B. Classical/electronic GC-DFT for electrocatalytic
systems: Joint GC-DFT

Of course the exact functional in Eq. (11) is highly com-
plex and needs further simplification. In order to simplify the
functional, we assume that also the ion and solvent nuclei
are classical. Then, we seek to combine the electronic sys-
tem using quantum mechanical DFT with a classical descrip-
tion of the electrolyte, both with fixed chemical potentials. In
the canonical ensemble, this is achieved using joint DFT12,25

(for convenience, the canonical JDFT is presented in the
supplementary material). While the canonical JDFT approach
offers a fully DFT way of computing Helmholtz canonical free
energies, typical systems treated within (electronic) DFT are
very small due to the computational burden of such calcula-
tions and fluctuations in the chemical potentials may occur
during, e.g., reactions. Therefore, we seek a fixed poten-
tial version of canonical JDFT and derive a general GC-JDFT
starting from the multi-component GC-DFT presented in
Sec. II A.

Computational methods based on classical DFT use
classical force-fields for describing both inter- and intra-
molecular interactions (see, e.g., Ref. 47). One specific aspect
of the classical force field models is the assignment of partial
charges to atoms in order to simulate electrostatic interac-
tions. While polarization can be included, the partial charges
typically remain unchanged and are spatially invariant. Parti-
tion of charges is conceptually and practically inconvenient in

the view of the above DFT formulation; according to Eq. (10),
the electrons are completely smeared throughout the entire
system and the electron chemical potential acts on all elec-
trons. Thus, the total electron density needs to be separated
to “quantum” and “classical” contributions.

Such a separation is closely related to the partial charge
transfer at the electrochemical interface.48 The charge state
of an ion or a solvent molecule at the interface can dif-
fer from its bulk value. The charge transfer is indicative of
covalent bonding or specific adsorption both of which war-
rant a quantum mechanical description.48 Charge transfer is
not confined to only adsorbed species but can take place
also in the outer Helmholtz layer.49 While a fully quantum
mechanical treatment naturally includes the covalent bond-
ing and charge transfer, including such phenomena in clas-
sical DFT and thermodynamics needs extrathermodynamic
or modelistic assumptions regarding how the total charge of
the interface is partitioned between the metal and the liquid
electrolyte.48,50

The above considerations call for a formal way to identify
how changing concentration or particle number at a specific
position changes the energy. Such spatially resolved energy
dependence can be achieved by introducing a position depen-
dent chemical potential which measures how a change in the
local concentration ci(r) changes the grand energy. A posi-
tion dependent chemical potential also allows defining regions
with different electrophilicity or ionophilicity.51 Accordingly,
the position dependent chemical potential density is

µ̃i(r) =
(

δA

δNi(r)

) ������v(r),T, (12)

with ∫ Vdrµi(r) = µi. Here the integration volume V is a point
in a solvent volume for continuum ion models such as the
Poisson-Boltzmann model, the effective ion volume in explicit
particle simulations, or the electrons at the electrode surface
in contact with the bulk, for example. By integrating the chem-
ical potential density over the effective volume, one obtains a
constant chemical potential for the species everywhere, and
thus, thermochemical equilibrium is maintained.52 However,
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the choice of the effective volume introduces an additional
assumption as in the quantum system, only the electron and
nuclear chemical potentials are specified; partitioning of the
chemical potential in order to identify species is based on
chemical or physical intuition. A specific case for the ions is
further clarified below.

Such a formal definition allows local partition of the
nuclear and electronic densities to chemically meaningful
quantities such as molecules as performed in molecular
grand-canonical ensemble theory.53 We utilize the spatial
dependence of the chemical potential density to partition the
total electron density to electrons at the electrode and ions
with a specified charge confined in the solution. To allow the
electrochemical potential of electrons to be treated indepen-
dently of the ion chemical potential, the electron density is
partitioned to well defined contributions from the electrode
and reactants as well as from the ions and solvent. This sepa-
ration is achieved by splitting the total nuclear and electronic
densities to the electrode/reactant and ion/solvent contribu-
tions. We also demand that the partitioned densities sum up to
the densities as performed in subsystem DFT:54 n(r) = n±(r) +
ne(r) + ns(r) and NE(r) = NR(r) + NM(r) + NI(r) + NS(r).

The GC free energy in the presence of charge transfer is
naturally obtained from minimization of Eq. (10). If we are to
exclude charge transfer between the M, R and N, I subsystems,
the grand energy is also altered. Making the constituents of
N, I subsystem bear the same charge as they do in the bulk
phase means that we are changing the molecular nature of
these species. The GC free energy change for such process is
written as53

dΩ = dE −

∫
V
dr[µn(r)dn(r) + n(r)dµn(r)

)

]

−

∫
V
dr[µN± (r)dNI(r) +NI(r)dµN± (r)

)

]. (13)

We are interested only in the case where the chemi-
cal potentials stay fixed and allow the number of species.
Because the chemical potential densities are spatially defined,
we can confine them to specific regions. We use this free-
dom to partition the total volume to quantum Vq (compris-
ing of the electrode and reactants) and classical Vc volumes
(comprising of the ions and solvent). While this not necessary,
the partition to “quantum” and “classical” regions reflects the
choice of treating the electrons from the electrode and reac-
tants as quantum mechanically and ions/solvent classically
with confined electron densities and helps if the two sub-
systems are to be treated separately. Also with this choice,
one can define an ion chemical potential µ± which corre-
sponds to electrons and ionic nuclei bound together. Ionic
nuclei and electrons in equilibrium form an ion with a specific
charge Z+ or Z− for cations and anions, respectively. In partic-
ular, for the chemical potential of cations µ+ in equilibrium we
have

µn(r) + µN+ (r) = µ+(r) (14)

such that ∫Vion
dr(µn(r) + µN+ (r)) = ∫Vion

drµ+(r) = µ+ and
∫Vion

dr(n(r) + N+(r)) = ∫Vion
drρ+(r) = Z+. This allows one

to specify ions with a well-defined charge. A similar split-
ting can be performed for the solvent molecules as well. Note
that we have chosen the effective volume of a species in
order to obtain the charges of ions/solvent based on chem-
ical intuition. Per this choice, the integration volume/shape
depends spatially on the chemical potential density related
to our choice of an “ion.” This choice also changes the GC
free energy according to Eq. (13), and the GC-JDFT energy will
differ from the GC-MCDFT energy.

Finally, we introduce the split densities and volumes
with the spatial chemical potential densities in Eq. (10) and
obtain

Ω(T,V,µ±, µ̃n;NM,NR, R̄R,M) ≈ min
n(r),{NI,S(r)}

F
τ [n(r), {NI,S(R)}] +

∫
Vq

dr

v(r)
*.,
M,R
∑

a

Za(r) − ne(r)
+/- − µ̃nne(r)


+
∫
Vc

dr
(v(r) − µ±)ρ±(r) + v(r)

*,
∑

S

ZS(r) − ns(r)+-

, (15)

with the ionic charge density ρ±(r).

The chemical potential density enables us to separate classical species and regions from the quantum mechanical system
and specify charges of different species and subsystems. Then, taking inspiration from the JDFT approach,12 the electron density
due to the solvent and ions can be integrated out,

Ω(T,V,µ±, µ̃n;NM,NR, R̄) = min
n(r),{NI,S(r)}

G
τ
[
n(r),NI,S(r)


]
+
∫
Vq

dr
v(r)

∑

a∈M+R

Za(r) + (v(r) − µ̃n)n(r)


×

∫
Vc

dr[(v(r) − µ±)ρ±(r) + v(r)ρS(r)]
, (16)
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where the solvent charge density ρS has been introduced and

Gτ ≡ min
n±(r),ns(r)

F
τ [n, {NI,S }] +

∫
drv(r)*.,

S
∑

a

Za(r) − ns(r)
+/- +

∫
drv(r)*,

I
∑

a

Za(r) − ni(r)+-
 . (17)

The last two equations yield the grand free energy
of a microscopic electrode-electrolyte interface where the
ion and electron chemical potentials can be explicitly con-
trolled independently and where the solvent and ions have
well-defined charges needed for classical simulations of the
electrolyte.

The goal of the minimization was to obtain separation of
electrons belonging to the electrode and the electrolyte in
order to manipulate the electrode potential and ion chemi-
cal potentials separately. Furthermore, the solvent and ions
were constructed so that the ion and solvent molecules have
well-defined charges. Care was also taken to partition the con-
straints due to chemical potentials in chemically meaningful
entities.

It is important to stress that integrating out the solvent
and ion electrons prevents exchange of electrons between the
solvent/ions with the electrode/reactants and prevents the
formation of a covalent bond between the ions/solvent with
the quantum region; only electrostatic, polarization, and
dispersion-like interactions can be captured with the pre-
sented partitioning. Also, the enforced constraint that all
species have the same charge independent of the position
excludes all charge transfer effects. Note that a similar situ-
ation is encountered whenever effective (atomic) charges are
predefined for ions or solvent molecules. Prominent exam-
ples of such are classical DFT within the RISM approach15

discussed below and detailed in the supporting information
of Ref. 15 or in the force fields used in classical molec-
ular dynamics simulations. This has direct implications on
the applicability mixed classical/quantum systems. In the
current setting, the most important restriction is that spe-
cific adsorption of the solvent/ions cannot be captured with
confidence.

C. Classical continuum/electronic GC-DFT
for electrocatalytic systems

The next (still formidable) challenge is to find the free
energy functionals for the quantum subsystem, classical
electrolyte, and their interactions. While the quantum part
is available from electronic DFT, the electrolyte density
can be obtained from the classical theories such as clas-
sical DFT.7 Currently, the most sophisticated approaches
combine electronic DFT with RISM.13–15 The combina-
tion of DFT and RISM yields a highly complicated set
of coupled equations to be solved self-consistently. Yet,
even in the DFT-RISM approach, the solvent and ions
are treated using “equilibrium classical statistical mechanics
applied to thermodynamics of surface phenomena. Quantum

mechanical approaches to surface phenomena are excluded. . ..
Therefore, all aspects related to chemisorption and catalytic
processes at surfaces are not considered” as discussed on p.
883 of Ref. 55. In the current setting specifically adsorbed
species forming covalent bonds or exchanging charge with
the surface need to be treated as reactant, as discussed in
Sec. II B.15,33

To obtain a computationally feasible method, we simplify
the situation, and for a moment, consider the electrode and
electrolyte interacting only via a static field created by the
other component. The setup is similar (but simpler) to frozen-
density embedding where one system is kept frozen, while the
other one is relaxed in the field of the frozen subsystem. In
the simplest case, the electrolyte will feel electrostatic poten-
tial set by the electrons and nuclei in the electrode. Within the
classical GC-DFT framework, the free energy of the electrolyte
is written as56

Ω({ρi }) =
∑

i

∫
Vc

drρi(r)(Vext(r) − µi)

+ β−1
∑

i

∫
Vc

drρi(r)[ln(λ3ρi(r)) − 1] − Fex[{ρ }], (18)

where Vext is the external potential due to ions, solvent as well
as a genuine external potential (in our case from the quan-
tum subsystem) and λ is the thermal de Broglie wavelength.
The first term accounts for the Coulomb interactions of the
pure component, the second is the ideal gas entropy, while Fex
accounts for excess free energy due to additional interparticle
interactions. Also note that Fex is a universal functional of the
classical densities.

We adopt the classical DFT and further assume that the
solvent can be treated as a (non-homogeneous) dielectric. At
this level of theory, the dielectric presents how the liquid
responds to an electric field. In general, this response is a
non-local and non-linear function.57,58 The general response
between displacement field (D) is connected to the elec-
tric field and polarization by D = E + 4πP. If the polariza-
tion depends linearly on the electric field, one obtains D(r)
= ǫ (r)E(r), where ǫ (r) is the dielectric function. At interfaces,
the dielectric function is a tensorial quantity as perpendic-
ular and parallel contributions as polarization depends on
the direction. Both components can exhibit complex, non-
monotonous behavior reflecting the interaction between the
surface and the solvent.58

The dielectric approximation to classical DFT can be
obtained by following Sluckin.9 In this situation, the free
energy of the electrolyte can be written as
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Ωi =

∫
Vc

drρ±(r)(φ(r) − µ±) −
1
8π

∫
Vc

drǫ (r) |∇φ(r) |2

+ β−1
∑

i

∫
Vc

drρi(r)[ln(λ3ρi(r)) − 1] + Fex[{ρ }], (19)

where φ = Vext(r) + Vions is the effective electrostatic due to
the external potential Vext(r) induced by the charge density
of the electrode and charge density of the ionic distribution
Vions. Presented in this form, it would be possible to sample
the ionic distribution in a dielectric solvent in the presence of
an external potential formed by the electrode. We will, how-
ever, look for the minimum of the free energy functional. This
is effectively the derivation of the Poisson-Boltzmann equa-
tion which fixes the chemical potential of the ions combined
with the grand canonical electronic DFT developed by Mer-
min.10 Similar derivations have been performed before in the
literature, and the interested reader may found our derivation
in the supplementary material,

Ω[T,V,µ̃n,µ±]=min
n,ρ±

[
min

ρ̂→n,ρ±

(

AKSM[n]−
1
8π

∫
drǫ (r) |∇φ(r) |2

+G[n(r), ρ±(r)]
)

+
∫

dr(φ(r) − µ̃n)n(r)

+
∫

dr(φ(r) − µ±)ρ±(r)
]
. (20)

An important difference compared to usual mPB mod-
els is that electrocatalytic systems are usually partly periodic.
Since we are not allowing the number of nuclei or electrons
from the solvent, nuclei from the electrode, or reactant to
fluctuate, electroneutrality sets a constraint that the electron
density from the quantum system must always be compen-
sated by the ionic charge density: ∫Vq

dr(
∑

a∈M,R Za(r) − n(r))
= ∫Vc

drρ±(r). This aspect is extensively discussed in Sec. II
F below. To arrive at the equation above, we have invoked
the BO and adiabatic approximations and terms coupling the
nuclear motion to the electronic density have been removed
and the equation is a modified Kohn-Sham-Mermin (KSM)
embedded in the dielectric environment with continuum
ions.

D. Generalized Poisson-Boltzmann equation
for the electric double-layer: Including
Stern layer and ionic hydration

The GC-DFT approach introduced in Sec. II C puts
implicit solvent models on a firm theoretical basis. The gen-
eralized Poisson equation and the derived potential are the
working equations in the common implicit solvation models,
such as the one implemented in GPAW.59 However, electro-
chemical systems add yet another layer of complexity since
the solvent contains mobile ions which form a double-layer at
the electrochemical interface.

To include the electrolyte and the double-layer, an ionic
density is added to the generalized Poisson equation.25,30

To obtain a self-consistent scheme for the inclusion of the
solvation effects, Eq. (20) needs to be minimized with respect

to φ and then with respect to the solute electron density n(r)
as well as the ionic density. Before carrying out the mini-
mization, we need to decide which interactions to include
in the model. While the non-linear polarization of the fluid
can be important for treating electrochemical interfaces,37

we assume as a first approximation that the polarization
response of the fluid to the electrostatic potential is linear and
consider only a linear dielectric. However, we consider sev-
eral non-linear and ion-specific interactions in the ion free
energy:

1. It has been shown in Refs. 60 and 61 that dielectric decre-
ment due to ion solvation leads to salt-specific interac-
tions and improves the description of the double-layer
in classical simulations. The simplest way to include the
solvated ion effects is a linear dependence between the
dielectric constant and the ion density,

ǫ [c±(r)] = ǫ0 − α±c±(r), (21)

where ǫ0 is the dielectric constant of the pure solvent
and α± is an ion specific parameter which is available for
a range of ions. The model also changes the dielectric
constant of the bulk solution as observed for several sim-
ple electrolytes (see Ref. 62 and references therein). The
ionic concentrations ci and charges q are related to ionic
charge densities via

ρ±(r) =
∑

i

qzici(r). (22)

2. Mean field chemical interactions between the electrolyte
and quantum system need to be included. These inter-
actions between the solvent and the quantum subsystem
include cavitation, dispersion, and (Pauli) repulsion in the
following form:35

Gchem = γ

∫
dr |∇S(r) |, (23)

where ∇S is the solvent accessible area of the quantum
system and γ is an effective surface tension term to be
fitted to experiments.

3. Finite size of the ions is included to account for steric
effects and avoid unphysically large ion concentrations
near the electrode surface which can also be seen as
formation of the Stern layer due to specific adsorption.
These are entropic effects due to charge organization
and can be accounted for using the Bikerman-Freise
approach63 (also often cited as Borukhov’s method64),

−TSions =
β−1

a3

∫
drc±(r)a3 ln(c±(r)a3)

+ (1 − c±(r)a3) ln(1 − c±(r)a3), (24)

where it is assumed that all ions have the same effective
size a3.

4. In recent studies,29,37 electronic DFT has been com-
bined with mPB which includes a separate Stern exclu-
sion layer. This simple approach has been shown to lead
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to improved description differential capacitance,37 radial
distribution functions, and free energy of solvation in
electrolytes.29 The exclusion width is linked to the ion
hydration number29 and therefore its size a.

These effects are included either in the dielectric con-
stant or in the free energy in Eq. (20). The additional free
energy is written as G[n(r), ρ±] = Gchem − TSions. Under these
assumptions, the minimization of Eq. (20) with respect to the
ionic concentration under the boundary conditions c±(bulk) =
cb and φ(bulk) = 0 (see also the discussion in Sec. II E related
to the boundary conditions) gives the ionic distributions
as60,61

c±(r) =
C±(r)

1 + 2cba3 + a3±(C+(r) + C−(r))
, (25a)

C±(r) = cb exp
[
∓βzeφ +

β∂ǫ

8π∂ρ±
|∇φ |2

]
, (25b)

and cb = exp[β−1µ±]/a3. Note that the last quantity of Eq. (25b)
is the dielectric decrement which is related to the water dipole
rearrangement in the Kralj-Iglic model,65 in a microfield
model Garish and Promislow,62 and in Booth’s66 dielectric
model where the water dipole orientation is proportional to
∼exp[∇φ]. The ion decrement affects both the bulk dielec-
tric constant and the double layer where the (counter) ion
concentration is high.

Because additional “chemical terms” are independent of
electron density, minimization of Eq. (20) against the electron
density leads to the KSM equation presented in Eq. (13) in the
supplementary material. The only modification to this equa-
tion is that in practice, no separate Hartree, external, or elec-
trostatic potential terms are needed as the total electrostatic
potential is obtained from the Poisson-Boltzmann equation
resulting from theminimization of (20) against the total charge
density,

∇[ǫ (r)∇φ(r)] = −4π[−N(r) + n(r) + ρ±(r)], (26)

where ρ±[φ](r) is the spatial density of concentration of ions
in the dielectric given by Eq. (22). Finally, the free energy
and effective potential for the coupled KSM-electrolyte sys-
tem are obtained after a partial integration of the electrostatic
terms

Ω = −
1
2

∑

i

〈ψi |∇
2 |ψi〉 −

∫
drvxc(r)n(r)

+
1
2

∫
drφ(r)[n(r) + ρ±(r) −N(r)] −

∫
drµ̃nn(r)

−

∫
drµ±ρ±(r) − TSions +Gchem, (27a)

Veff,Ω(r) = vxc(r) +
1
2
φ(r) −

∂ǫ (r)
8π∂n(r)

|∇φ(r) |2 − µ̃n, (27b)

where the electron and ion densities are given by the
equation for electron density in grand canonical ensemble

[supplementary material, Eq. (14)] and (22), respectively. The
above set of equations offers a feasible approach to include
the electrolyte and the presence of a double-layer in the sim-
ulations. From a computational point of view, inclusion of
the ionic density can also simplify the treatment of charged
periodic systems; in the best case scenario, the electrolyte
neutralizes the simulation cell and the use of artificial back-
ground charge can be avoided. However, the absolute neu-
tralization is achieved automatically for linear PB models.32

For other mPB models, the charge neutrality needs to be
enforced as discussed in detail in Sec. II F. Coupling mPB
with Fermi-level control from electronic GC-DFT provides
powerful machinery for modeling electrocatalytic reactions at
electrochemical interfaces under constant electrode and ionic
potentials.

E. Electrode potential

Upon deriving the Poisson-Boltzmann distributed ion
concentration, a boundary condition for electrostatic poten-
tial was chosen as to approach zero in the bulk liquid phase.
This provides a very convenient reference electrode corre-
sponding to electrons solvated in the electrolyte. To appre-
ciate this, one can consider the definition of the absolute
electrode potential by Trasatti,67

EM(abs) = EM(red) + K, (28)

where K is a constant depending on the absolute reference
choice and EM(red) is the reduced absolute potential,

EM(red) = ∆φM
S − µ

M
n , (29)

where ∆φM
S

is the Galvani, i.e., electric potential difference
between the electrode and bulk liquid and µMn is the chem-
ical potential of electrons, i.e., the Fermi-level. One possible
choice for the reference K is an electron interacting electri-
cally but not chemically with the environment corresponding
to K = µSn.68 While this choice for the reference cannot be
realized experimentally, this is exactly produced by the PB-
model for a given model electrolyte and choice of PB boundary
conditions.

Making the approach even more transparent, we consider
the electrode potential under equilibrium conditions using the
solvated electron reference which yields

E(abs)PB = µ̃Sn − µ̃
M
n = µ

S
n − µ

M
n − (φ

S − φM)

= −µMn + φM
= −µ̃Mn , (30)

where µ̃in is the electrochemical potential of electrons in
phase i. From the above choice of PB-boundary condi-
tions, we know that φS → 0 in the fluid and that PB-
model accounts only for the electrostatic interactions from
which µ̃Sn = 0 follows. Therefore the absolute electrode
potential within the PB-solvation model is given in the two
right-most form of Eq. (30), i.e., the Fermi-energy EF. A
similar conclusion was made earlier25 for the linearized
Poisson-Boltzmann mode, but as shown, the φS → 0 is
obtained from the correct choice of boundary conditions
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and can be used for all mPB models, the effective screening
method (ESM) method by Otani and Sugino,16 or the mod-
ified boundary condition method of the present work (see
Sec. II F 2 and the supplementary material).

In practice, the absolute electrode potential needs to
be presented on an experimentally relevant reference scale,
e.g., against the standard hydrogen electrode (SHE). While
µ̃Sn = 0 in the PB-model, this choice depends on the actual
implicit solvation model used for the electrolyte, and there-
fore, a connection between the model fluid and an experi-
mental reference electrode needs to established. While sev-
eral alternatives exist for the absolute potential,68 the most
viable reference is an electron at rest in vacuum close to
the surface of the solution—this absolute potential of SHE
varies between 4.2 and 4.8 V. One therefore needs to con-
vert E(abs)M from the PB-solvent reference to this vacuum
reference. For this, we refer again to the absolute potentials
by Trasatti67 and all relevant quantities are summarized in
Fig. 2.

A practical way to connect the PB fluid with a real sol-
vent compute the potential of zero charge (PZC) using PB and
compare it to experimental results for the same electrode and
the same electrolyte. Formally, this is obtained by equating
the absolute PZCs of the electrodes in the PB-solvent with
the solvent reference and real electrolyte with a vacuum ref-
erence; the constant off-set could, in principle, be obtained
from

∆χS = χ
PB
S − χS = EPB

PZC(abs) − EPZC(abs), (31)

which is highly dependent on the implementation and calcula-
tion details.69 This off-set can be used to convert the PB-scale
to SHE-scale by

∆E(SHE) = EPB(abs) − ∆χS − ESHE(abs), (32)

which, in practice, requires knowing the PZC against the
absolute SHE.

Another plausible approach which directly gives the
E(abs)PB referenced directly against the vacuum reference67,68

was introduced and applied by Otani.70 Here an asymmetric
surface with vacuum on the other and solvent on the other
side can be used to compute contact (Volta) potentials of both
the electrode and solvent as well as the surface potentials.
These could be used to convert the PB-solvent reference to a
vacuum reference without any experimental input on PZC, but
in practice, some experimental data are needed.

FIG. 2. Schematic of inner potential φM , outer potential φS, surface potential χS,
work function Φ, vacuum potential on the solvent side φs

V , and vacuum potential

on the metal side φs
V .

F. Charge neutrality within continuum models

When modeling periodic systems, the simulation cell
needs to be charge neutral to avoid the divergence of elec-
trostatic contributions. In partially periodic systems, it is also
possible to mimic image charges by changing the bound-
ary conditions of the Poisson equation. The ionic distribution
obtained by solving the mPB equation provides a physically
and chemically sound method to neutralize the cell, making
mPB models highly attractive. However, in practice, the neu-
tralization from mPBs is incomplete and significant charges
can remain in the simulation cell even after the mPB dis-
tributed ions are added.32 The charge neutrality constraints
are not built in the mPB models and their simple form does
not guarantee charge neutrality even if large simulation cells
are used in typical mPB simulations.71 While a physically cor-
rect model should yield charge neutrality automatically, the
restricted form of the mPB necessitates the use of additional
constraints. The traditional way of neutralizing the cell is to
add a homogeneous background charge, which will create
spurious interactions and incorrect energetics unless cor-
rections are applied.21 To avoid the use of homogeneous
background charges, two alternatives are presented.

1. The Lagrange multiplier approach

Modifying the ion distribution provides a chemically jus-
tified approach to the overall charge neutrality. The over-
all neutrality condition is ∫ drρ(r) = ∫ n(r) + ρ± − N(r)dr
= ∫ ndft(r) + ρ±dr = 0. For the models considered in this work,
the charge neutrality condition has the form

Qdft +
∫

g(r)
∑

i

zici(r)dr = 0, (33)

where g(r) is an exclusion (cavity) function determined in
Sec. III. An additional Stern exclusion layer within Simple Con-
tinuum Model based on Volumetric Data (SCMVD) is simply
cex
i
= (g(r) + f(a))ci using experimentally defined ion radii a.

In general, the ion concentration can also be written
in terms of the ion chemical potential which is obtained
by minimizing the grand potential with respect to the
ion density resulting Eqs. 10(a)–10(c) of the supplementary
material. For example, in the Gouy-Chapman model, µi(r)
= β−1 ln[λ3ci(r)] exp[−ziβφ(r)]. The cavity factor g(r) can be
interpreted as the effective pair-density functional which
depends on the total interactions between the DFT subsystem
and the liquid (see Sec. III). Keeping this analogy, we can write
the total number of ions to fulfill the neutrality constraint as

−Qdft =

∫
g(r)

∑

±

z exp[µ±β] exp[∓β |z |qφ(r)]dr

=

∫
exp[ueff (r)β

)

]
∑

±

z exp[µ±β] exp[∓β |z |qφ(r)]dr

=

∫
exp[ueff (r)β

)

]
∑

±

z exp[β(µPB± + µ0±(r))]

× exp[∓β |z |qφ(r)]dr. (34)
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The µPB± term accounts for assumptions of the interac-
tions used for deriving the ion distributions in the (modi-
fied) PB models. It can also be seen as a Lagrange multi-
plier to enforce the bulk concentrations as φ → 0. The addi-
tional term µ0±(r) can be considered as a Lagrange multiplier to
enforce charge neutrality32 or interpreted as an excess chem-
ical potential corresponding to the interaction between the
ions and the DFT subsystem. It is stressed that this additional
chemical potential can be an ion-dependent local function
affecting either the effective potential, cavity function, or the
chemical potential of the PB ions.

The simplest choice for the neutralizing Lagrange multi-
plier would be µ0±(r) ≈ µ

0, and the multiplier would be the scal-
ing factor µ0 = ln[−Qdft/Q±]. A second option is µ0±(r) ≈ µ

0
± =

µ0± , the simplest choice being µ0+ = −µ
0
− . Then, the neutrality

constraint results in

Qdft +Q+ exp[µ0β] +Q− exp[−µ0β] = 0, (35a)

µ0 = β−1 ln



√

Q2
dft
− 4Q+Q− −Qdft

2Q+


, (35b)

which was also derived and applied in Ref. 32 and subsequent
work.

The physicochemical implications of the neutralization
conditions above can be understood by studying the behav-
ior of charge neutralized PB-equation deep in the liquid and
to meet the conditions set by µPB± . The ionic charge density
should be zero in order to respect charge neutrality in bulk
electrolytes. The choice of boundary conditions for the PB
equation guarantees that electrostatic potential approaches
zero. Also, g approaches unity by construction of the cavity
function. Then ion concentrations for position independent
excess chemical potential follow

ρ∞± =
∑

i

cbzi exp[β(µ
0
± ∓ φ)] ≈

∑

i

cbzi exp[βµ
0
±] = 0. (36)

If µ0± = µ0, the ion density from above approaches zero
correctly. However, the ion concentrations do not yield the
correct bulk values and instead ci = expµ0cb is obtained. For
the asymmetric constraint µ0+ = −µ

0
− , the above results in

equation will give ρ± = −2 sinh[µ0] and c± = exp |µ0∓ |. Thus
the bulk electrolyte is not reached even far away from the
electrode, and situations are not ideal for the electrochemical
setup.

Instead, such a situation is encountered when the
electrode and nearby electrolyte solution would be iso-
lated from the bulk liquid by a semi-permeable mem-
brane which allows exchange of ions but not the elec-
trode or reactant nuclei.71,72 This corresponds to an elec-
trochemical equilibrium of ions across the membrane such
that the ion and potential gradient is formed; this is the
Donnan equilibrium where a potential difference φDonnan =
(RT/zF) ln[cin/cout] builds over the membrane.73 In Don-
nan equilibrium, the ion concentrations have the form

of Eq. (36) which are determined by the difference ϕ(x)
= µ0± ∓ φ(x) (called gauge-invariance in Ref. 71). In the elec-
trochemical setup, this is problematic as ϕ(∞) = 0 is guar-
anteed, but the choice of absolute values of µ0± and φ(x) is
arbitrary. As an example, if one chooses µ0 = 0 and imposes
the charge neutrality condition, φS = φDonnan, and the ref-
erence electrode discussed in Sec. II E should be φS +
φDonnan = φ(∞) = 0 and φDonnan would be the boundary con-
dition for the PB equation. If φS = 0 is taken as the ref-
erence, the bulk ion densities are not obtained and the
free energies would be affected. Thus, enforcing the posi-
tion independent Lagrange multiplier for the neutrality con-
dition destroys either the reference electrode in the liq-
uid, the ion density constraint of bulk charge neutrality, or
both.

In Ref. 74, it was concluded that the charge-neutrality
condition leads to breaking the spatial independence charge
distribution. In other words, only a position-dependent mul-
tiplier can satisfy the correct ion density and concentra-
tion as well as electrostatic potential limits far from the DFT
region. Choosing a local ion independent constraint, µ0±(r)
≈ µ0(r), will effectively result in an ionic cavity function
which depends on the charge state of the DFT subsystem.
This would likely allow the ions to penetrate deeper in the
DFT region. Thus, ions would reside within the solvent cavity
resembling specific adsorption which is outside the applica-
bility of PB-like approaches as highlighted while deriving the
continuum GC-DFT approach. Also large ion concentrations
would be observed close to the nuclei. These considerations
apply also to ionic exclusion models presented in Refs. 37
and 29.

Still, such ion-independent spatial correction approaches
were suggested in Ref. 75 to account for specific adsorp-
tion and in Ref. 74 to derive a charge-conserving Poisson-
Boltzmann equation by including a “charge-trap region” near
the electrode surface. Bound ions can also be considered as
an effective way to renormalize the surface charge by ion
adsorption to enforce global charge neutrality.76

Phenomenologically, the above methods where the neu-
tralizing charge is confined near the electrode can be seen as a
Stern layer-type correction with tightly bound ions. However,
the underlying mPB models are derived for classical nuclei, as
discussed in Sec. II C, and no real bonds can form between
classical and quantum parts of the system. Thus, the strong
chemisorption is not within the assumptions included in mPB
models and the applicability of this neutralization approach is
questionable. Also for a heterogeneous system, the neutraliz-
ing charge should not be homogeneous or lie in the low dielec-
tric region but rather reside in the regions of high dielectric
to correctly describe the gradient of the electrostatic poten-
tial correctly.77 In the above methods, the ion density mim-
icking strongly bound ions in the Stern layer would result in
ions inside the cavity (g(r) < 1, ǫ (r) < ǫ (bulk)) where dielectric
constant is low. Thus, the artificial Stern layer might have an
adverse effect on the description of the interfacial potential
distribution.
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Capturing the interfacial potential drop is important for
an electrochemical experiment, and therefore ion distribution
close the interface should remain unaffected by enforcing the
neutrality. Far away from the electrode, the ion concentra-
tion is small and the potential profile is rather flat, making
it safer to place the neutralizing ions in the high dielectric
region. A simple form for an augmenting potential fulfilling
these properties is

µβ = ln(γ±c±(r)) = ln(γ±λ3(cb + c
0
±(r)))

= lnγ±λ3(cb + c
0
±θ(r)), (37)

where γ is the activity coefficients accounting for finite-size
effects, interactions beyond electrostatics, etc., which can
be used to arrive at different modified PB models. Setting
γ = 1 corresponds to an ideal ionic liquid which can be treated
with the Gouy-Chapmann model. Using these definitions, we
obtain

∆Q =

∫
∑

±

z±γ±c
0
±g(r)θ(r) exp[∓β |z± |qφ(r)]dr

→ c0± =
∆Q

V±
. (38)

To arrive at the final expression, we write ion distribution
as

ρ±(r) = g(r)
∑

±

z

(

exp[µPB± β] +
∆Q

V±

)

λ3
exp[∓β |z |qφ(r)]

= g(r)
∑

±

(cb + ccor(r)) exp[∓β |z |qφ(r)]. (39)

When the volume of the ion density is large, the correc-
tion term becomes small. The function can be interpreted as
either locally increasing the concentration or charge of the
ions. Also, the function defining the excess chemical poten-
tial leading to neutralizing ion density θ(r) needs to approach
zero far away from the DFT subsystem in order to yield bulk
ion density and concentrations. Probably, the simplest choice
is to make θ(r) a smooth step function to equal zero at the
boundaries, but this choice is rather arbitrary.

The neutralization condition can also be extended to
the solvent mimicking solvated ions, leading to a uniform
neutralizing charge outside the solute cavity residing only
in the high dielectric region.77 Such an assumption seems
nonphysical as the neutralizing “ions” would not feel the
electrostatic potential of the solute. Surprisingly, such an
approach has been successfully applied to the computation
of potential of mean force profiles which are directly linked
to the interaction of the solvent and ions with the surface.
A comparison of classical molecular dynamics with homo-
geneously distributed charge in the high dielectric regions
mimicking charging of water molecules has shown to yield
potential of mean force profiles comparable to explicit ion
simulations.77

Given that such a simple homogeneous neutralization
successfully mimics explicit ions, a simple way of simulating

charged cell is obtained by homogeneous neutralization of
the solvent region. Indeed, in very recent independent work
by Pettersson,33 such an approach, called the solvated-jellium
model (SJM), was developed, utilized, and implemented in the
GPAW code used also in this work. SJM provides neutraliza-
tion and also establishes a convenient reference electrode as
detailed in the present work, but the ad hoc nature of the jel-
lium counter charge requires testing and comparison to other
methods.

2. Modified boundary condition approach

An alternative way to study charged partially periodic
cells is to modify the underlying electrostatic problem by
selecting convenient boundary conditions for the PB equation.
A common computational setup in model systems used for
studying the double-layer behavior is a parallel-plate capac-
itor where both plates are placed at z = ±L carrying oppo-
site but otherwise equal charge densities. Also, in the absence
of ion-specific effects, the double-layer densities are iden-
tical but carry opposite charges. Thus, the overall system is
naturally charge neutral.

In a practical DFT calculation, the presence of two elec-
trodes is not feasible due to the increased computational
cost nor desirable as one is usually only interested in half-
cell reactions. A convenient work-around is to treat the
total system using the method of images and to use the
image as a neutralizing charge. By imposing a condition that
φS(z = 0) = 0 between the plates, a reference electrode can
be restored. For simple model systems where analytic solu-
tions are available, the electrostatic potential from the image
charge method (in the relevant regions) is equal to placing
a perfect conductor at z = 0 as an imaginary electrode.57

The system polarizes the imaginary electrode, and the charge
polarization restores charge neutrality of the simulation cell.
Also the electrostatic potential at the imaginary electrode
is φS = 0.

The imaginary electrode method is equal to the effec-
tive screening method (ESM) pioneered by Otani and Sug-
ino16 to remove periodic boundary conditions in one direction
in otherwise periodic plane-wave calculations. The essential
outcome from the ESM is a derivation of analytic boundary
conditions for the Poisson equation in charged systems. If an
asymmetric simulation cell is used, as usually performed in the
presence of adsorbates or reactants, the imaginary electrode
needs to be placed on the “active side” of the real electrode
to obtain the correct zero electrostatic potential reference on
the correct side. To internally reference against the vacuum
potential, the gradient of the electrostatic potential is taken
to approach zero on the inactive side (see discussion at the
end of Sec. II E). Also care needs to be taken that the elec-
tron/ion density is vanishingly small at the ESM boundary and
that enough vacuum is inserted at the cell boundary.

In real-space approaches, such as the grid-base in
GPAW78,79 utilized in this work, the unit cell can be truly
non-periodic and zero electrostatic boundary conditions in
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non-periodic directions are commonly employed when solv-
ing the Poisson equation. In the supplementary material, we
detail how ESM-like schemes can be implemented in real-
space codes by numerically approximating the ESM Green
functions to enable calculations of charged unit cells. In asym-
metric systems, the dipole correction80 is applied to give
asymmetric electrostatic potentials, leading to the different
work functions on different sides of the slab. In the original
dipole correction scheme, a correcting potential is introduced,

Vdip(z) = 4πm
(

z − z0

zm

)

, (40)

where m = ∫
∞
−∞ dz′ρav (z′)(z′ − z0) is the surface dipole density

referenced to z0 which in the present case is chosen to be on
the active side of the system to satisfy either φ(z0 = 0) = 0 or
φ(z0 = zm) = 0. Although undocumented, GPAW uses a mod-
ification of the original dipole method and a potential Vdip(r)
∼m erf(r) is used instead of a saw-tooth potential of the origi-
nal dipole correction. As shown in the supplementary material,
the dipole correction combined with the standard multi-grid
Poisson solver can be used to numerically (and accurately)
approximate the ESMGreen functions. In the presence of mPB
ions, the only modification needed is the inclusion of ion den-
sities in the total charge density with ion density restricted to
exist only on the active side.

Ideally both the electrostatic potential and its gradient
should be zero on the active side of the electrode to obtain
the correct behavior of the ionic distribution, but such Cauchy
boundary conditions do not give a unique solution of the PB
equation,57 and thus the correct gradient is sacrificed in the
boundary condition approach. Note that true non-periodicity
is exclusive to real-space methods because the potential does
not have to be periodic in the desired direction. In plane-wave
calculations, z0 = zm/2 needs to be chosen to make the poten-
tial periodic in all directions and extrapolation of the potential
is needed as discussed in Ref. 16.

III. IMPLEMENTATION

The theoretical concepts derived above for the classi-
cal continuum electrolyte are implemented as part of the
GPAW code78,79 which uses the projector augmented wave
(PAW) method81 for replacing the rapidly oscillating KS wave
functions by smooth pseudo-wave functions near the nuclear
regions. More specifically, the Simple ContinuumModel based
on Volumetric Data (SCMVD)59 already implemented in GPAW
is augmented with new features for treating charged periodic
systems using modified Poisson-Boltzmann models and the
boundary condition method closely related to the ESM.16

A. Poisson-Boltzmann model with SCMVD

SCMVD belongs to a class of implicit solvation mod-
els where a quantum subsystem (often called the solute) is
immersed in a dielectric continuum. For completeness, the
original SCMVD method is detailed in the supplementary
material, while here only the modifications needed for mPB
simulations are needed. SCMVD utilizes a linear dielectric

function of the form

ǫ [g(r)] = 1 + (ǫ∞ − 1)g(r), (41)

where g(r) is the effective pair distribution function of the
solvent in the presence of the solute. g(r) is zero close to
the solute and increases smoothly to unity. Since our focus
is to combine classical continuum and electronic GC-DFT for
describing electrochemical interfaces, it is appealing that the
dielectric is a functional of the cavity function which can be
interpreted as pair-density function used widely in the DFT of
classical fluids.7

We modify the original SCMVD dielectric to account for
local screening by the ions in solution and to include changes
in the water dipole orientation due to the external potential
created DFT region. Together these terms can be accounted
by the ionic decrement,60,61,65

ǫ [ρ±(r)g(r)] = 1 + (ǫ [ρ±(r)] − 1)g(r), (42)

where ǫ [ρ±] replaces ǫ∞ to account for the dielectric treat-
ment due to ion accumulation,∫

dr(1 − g(r)) = v∞M − κβ. (43)

The effective potential in the original SCMVD implemen-
tation was chosen to have the form

g(r) = exp[−βu(r)], (44a)

u(r) = u0
∑

a


RvdW
a

|r − Ra |


12

, (44b)

where u(r) is the effective pair-potential. We stress that ǫ [g(r)]
does not depend on the electron density which circum-
vents numerical instabilities and makes electrostatic poten-
tial particularly simple. This point was also stressed in the
recently developed soft-sphere continuum method34 and its
adaptation.37 SCMVD and the soft-sphere cavities are very
similar.34 The form of the cavity guarantees that the com-
putation of non-electrostatic terms consisting of cavitation,
repulsion, dispersion, and changes in rotational/translation
free energies of, i.e., the chemical interactions presented in
Eq. (23) is straightforward, as shown in the supplementary
material.

The next step toward treating an electrolyte in contact
with a surface is to add the ions to the solution. We note that
the implicit solvation model of an electrolyte is best suited for
situations where specific adsorption of the ions does not occur
as has been discussed in Sec. II. In this case, the electrolyte
forms a diffuse double layer, also called the Gouy-Chapman
layer. In Sec. III, we showed how the Gouy-Chapman model
can be made more general by including the finite size effects,
the Stern layer, and ion solvation terms. The effect of both
terms is to prevent unphysical charge build-up near the sur-
face and also account for ion specific interactions. Still they
are not capable of treating specific adsorption of ions, and to
account for this, the ionic density of the electrolyte is excluded
from the cavity. Ion exclusion is efficiently achieved by multi-
plying the ion distribution with a function that goes to zero
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within the cavity.35,37,59 In the absence of a separate Stern
exclusion layer, natural choice is the effective potential g(r).
If a Stern layer is present, it is simple to make the replacement
g(r) → (g(r) + f(a)). Without further specifying whether or
not the Stern layer is accounted for, the ion concentration
including the exclusion is

cexi (r) = g(r)ci(r). (45)

If ion solvation effects are neglected, ion distributions
have the form of the Gouy-Chapman,

ci(r) = cb exp(−βziqφ(r)). (46)

For small potentials, the GC model can be linearized to
yield

clini (r) = βcbqziφ(r). (47)

Gouy-Chapman and its linearized form are the most
widely used and simplest approaches for including the elec-
trolyte in implicit solvation models.25,31 Both are based on
the assumption that the ions are point-like, which can lead
to overestimation of ionic concentration close to the charged
surface at high potentials and/or high (>1M) concentra-
tions. The simplest way to account for the finite-size effects
is the Bikerman-Freise equation63 for a symmetric binary
salt,

cBF± (r) =
cb exp[∓β |z |qφ(r)]

1 + 4a3cb sinh
2(βziqφ(r)/2)

. (48)

Ion specific effects can also be incorporated using the ion
decrement model of Eqs. (25). Inserting the decrement term
from Eq. (21) and utilizing Eq. (42) lead to a mPB equation with
both ion decrement and finite size effects,

C±(r) = cb exp
[
∓βzeφ −

βg(r)α±
8π

|∇φ |2
]
, (49)

which is inserted in (25).

B. Solving the generalized Poisson-Boltzmann
equation

The non-linear character of the mPB equation places
pressure on the Poisson solver. In GPAW, all potentials and
wave functions are presented on a real-space grid and the
Poisson equation is solved using multigrid techniques.78,79 As
GPAW works in real-space, the simulation cell can be cho-
sen to be either truly periodic or non-periodic. All calculations
where the mPB models are applied are at least partially non-
periodic; slab, wire, and molecule calculations are 2D, 1D, and
0D periodic, respectively.

To meet the increased complexity arising from the non-
linearity of the PB differential equation, the standard Poisson
solver in GPAW was augmented with the recently developed
algorithms of Ref. 30. Specifically, we have implemented the

self-consistent PB algorithms with self-consistent (SC) iter-
ative procedure (algorithms 1 and 3 of Ref. 30). We used a
mixing parameter of 0.6. To connect with the boundary con-
dition method for solving the Poisson equation, we note that
all the mPB calculations use method (i) of the supplementary
material. In these mPB calculations, a symmetric unit cell and
the dipole are zero.

Following the discussion in Sec. II F, a charged sys-
tem can be modeled either by enforcing charge neutral-
ity using a (chemically motivated) Lagrange multiplier or
by modifying the boundary conditions of the underlying
Poisson solver. When using the Lagrange method, Dirichlet
boundary conditions with φ(boundary) = 0 are chosen in the
non-periodic directions. In the modified boundary condition
method, Dirichlet boundary conditions with φ(boundary) =
0 are chosen for the active side and the other boundary is
determined from the dipole correction.80

We use the modified boundary condition method for sim-
ulating a charged unit cell in the presence of a dielectric liquid
but without the presence of mPB ions. The purpose is to com-
pare mPB models with a model where the charge neutrality is
obtained by image charges obtained from themodified bound-
ary conditions of the Poisson equation. In the calculations,
we utilized the boundary condition iii of the ESM16 in the
presence of a dielectric. The practical implementation of the
boundary condition method is detailed in the supplementary
material.

IV. COMPUTATIONAL DETAILS

All calculations are carried out using the GPAW
code78,79,82 and the PBE83 functional. The grid-spacing is set
to 0.18 Å, and the geometry of all systems is fully optimized
until the force is <0.05 eV/Å. The convergence criterion for
the electronic SCF is 10−5 eV/atom. An mPB model is consid-
ered converged when the maximum difference between ionic
density and successive iterations is below 10−12 Å−3. 4 × 4 × 1
k-point sampling was used in all calculations. The z-direction
of the simulation cell is 3κ−1D , where κ−1D is the Debye screen-
ing length. Parameters for the ion decrement and finite ion
size mPB models were taken from Ref. 60: the ion diameter for
Na (F) is 7.16 (7.04) Å, while the linear decrement coefficient is
8. (5.) dm3/mol. When including the Stern layer, the reported
values used an ionic exclusion radius smaller than the ion
diameter: 3.5 Å. Smaller and larger exclusion radii were also
tested, but the results were similar and therefore not shown.
The chosen Stern radius used for NaF is close to that of NaCl,
as determined from ab initio molecular dynamics (AIMD) in
Ref. 29. For all but the modified boundary condition method, a
symmetric simulation cell with dielectric/electrolyte on both
sides was used. This is accounted for in the calculation of the
capacitance.

The cavity shape parameters to form g(r) and the effec-
tive surface tension are taken from Ref. 59. The parameters
are fitted for main group elements and might not be suit-
able for the metallic surfaces considered in this work. The
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computational focus of this work is not on the quantitative
description of energetics but on the qualitative performance
of the mPB models. The main parameter affecting the elec-
trostatic potential and double layer capacitance considered in
this work is the van der Waals (vdW) radius used for defin-
ing the cavity. In the original SCMVD implementation and
the recent SJM model, the vdW radii by Bondi84 were used,
and the Au radius is 1.66 Å. However, the Bondi vdW radii
are determined for non-metallic compounds or metal-organic
molecules andmight therefore be unsuitable for the treatment
of the metal-water interface. Indeed, crystallographic data on
metallic Au systems indicate that the vdW radius is larger and
around 1.9 Å.85 During this study, we found that the double-
layer capacitance sensitively depends on the used vdW radius.
We therefore determined the distance between the metal and
water from a planar distribution function (PDF) obtained from
an ab initio molecular dynamics simulation, as detailed in the
supplementary material. From the PDF, we can conclude that
the Au–H half-peak is found at distance of 2 Å. For compari-
son, all data were computed using vdW radii of 1.66 and 2.00
Å. A more complete parameterization for metallic surfaces is
currently in process.

Two different cavity radii were tested: (i) 1.66 Å Bondi
vdW radius as performed in the original SCMVD article59 and
in the recent SJM model33 and (ii) 2.00 Å obtained in this
work from AIMD simulations. Several different methods for
treating the continuum ion distribution models, namely, lin-
earized, Gouy-Chapmann, Bikerman-Fraise, and ion-decrement
mPB were utilized. For all the models, different neutraliza-
tion schemes were also studied and we used the Donnan
Lagrangian method of Eq. (35a), uniform neutralization in the
dielectric, and modified double layer scheme of Eq. (39) with a
smooth step function in order to reach the bulk ion concen-
tration at the cell boundary. Also simplified ion distributions,
namely, the uniform jellium in the dielectric in the spirit of
SJM33 and Gaussian charge sheets as performed in Ref. 86,
were tested. The modified boundary condition method with-
out neutralizing ions in the spirit of ESM16 was studied for
comparison.

All calculations are naturally grand canonical for the ions
while the electronic degrees of freedom have been treated
within the canonical ensemble. A simple grand canonical cal-
culator for the electronic system in the spirit of SJM33 was
also implemented. Also, a constant-µ method by Otani17

was implemented in the ASE code.82 Testing efficiency and
performance of different constant electrode potential meth-
ods is the subject of ongoing work, but here we focus on
the description of the electrode-electrolyte interface under
various computational schemes in the electronic canonical
ensemble.

V. STUDIED SYSTEMS

Using the outlined classical continuum grand canonical
scheme for electrons and the electrolyte, we study the dif-
ferential capacitance (Cd) of well-defined single crystal metal
electrodes in aqueous solutions. Specifically, we study the

surface capacitances and interfacial potentials of the Au(210)
surface in a 0.5M NaF solution.

The differential capacitance is a sensitive but indirect
measure of the electrode-electrolyte interaction. As shown in
Fig. 1 of the supplementary material, both the magnitude and
shape of the experimentally measured differential capacitance
curves of Au(210) in NaF electrolyte solutions depend sen-
sitively on the surface charge and electrolyte concentration.
The differential capacitance is defined as

Cd =

(

∂σm

∂E

)

µ
S
i
,T,V

, (50)

where σm is the surface charge density of the metal. A par-
ticular point where σm = 0 is the PZC. Now it must be noted
that the capacitance is specific to a given electrolyte and as
such also PZC depends on the electrolyte and its concentra-
tion. Since the mPB model is suitable for treating the diffuse
electrical double layer, an electrolyte without specific adsorp-
tion should be chosen to avoid issues related to partial charge
transfer (see Sec. II B for related discussion. Using experimen-
tal values for PZC in different solvents and electrolytes allows
one to connect the PB solvent with a real electrolyte by finding
∆χS of the electrolyte.

It is important to bear in mind that in linear and Gouy-
Chapman mPB models, all ions are point-like, while in the
BF-model, the ions have a finite size but neither model
affects the dielectric and only the pure solvent dielectric con-
stant is utilized. Therefore it is expected that ∆χS is equal
for all ions in the Gouy-Chapman and BF models. On the
other hand, in the dielectric decrement mPB, the dielec-
tric constant does not equal that of the pure solvent but
depends linearly on the ion concentration. Thus, ∆χS in the
dielectric decrement model is, in principle, ion and con-
centration dependent. The effect of ion density and dielec-
tric decrement on surface potentials is of the order ∼±10
mV for 1:1 electrolytes when the concentration is under 6
mol/dm3.87 Therefore, ∆χ and the reference electrode are
equal for all solvent models considered in this work (how-
ever, the value may depend on the used vdW radii defining the
cavity).

In addition to capacitances, we also study the interfacial
electrostatic potentials obtained from different schemes. Cor-
rect behavior of the electrostatic potentials at different elec-
trode charges and potentials is paramount for describing the
electrochemical cell.

VI. RESULTS AND DISCUSSION

A. Differential capacitance of Au(210) in 0.5M NaF

Here we focus on the most important features of the
computed surface capacitance profiles from different meth-
ods. The detailed surface-charge–electrode potential plots
for several tested combinations are presented in the supple-
mentary material. A representative example is presented in
Fig. 3.
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FIG. 3. The Fermi-level plotted at different surface charges σm using different
mPB models. The dots present the computed data points, and the black line is a
linear fit. The differential capacitance Cd is obtained from the slope of the linear fit.

The Donnan neutralization method is used, and the Au vdW radius is set 2.00 Å.

The main finding is that, regardless of the mPB model,
only constant capacitances are obtained from the calcula-
tions. This is in contrast to the experimentally obtained curve
which has a distinct bell-like shape peaking at the PZC around
65 µF/cm2 and declining to 25 µF/cm2 at around ±0.5 V
from PZC, as shown in Fig. 1 of the supplementary material.
It is unlikely that the differences are caused by the choice of
the F-anion as almost identical differential capacitances are
obtained for Au(210) in NaBF4 solutions.88 The constant value
for the simple models such as the Gaussian and jellium33 as
well as linearized,31,37 point-like Gouy-Chapman is expected
in a linear dielectric model. However, the quantitatively simi-
lar linear behavior for the finite-size Bikerman-Freise model
has not been shown before. Also the inclusion of the Stern
layer does remedy the linear behavior in the linear dielectric
model used. It is surprising that the ion-decrement model also
predicts constant differential capacitance when coupled with
SCMVD and DFT as this model can produce both maxima and
minima of the capacitance in simple classical models.60,61 A
plausible reason for poor performance of the dielectric decre-
ment model is the need to enforce charge neutrality as dis-
cussed below and the use of a cavity function. Even if the
capacitance is not improved by increasing the complexity and

including more ion-specificity, the energetics are expected to
be improved in the more complicated mPB models.29

While the shape of the differential capacitance does not
depend on the chosen method, the absolute values of the
capacitance are more sensitive. When using the Bondi ion
radius of 1.66 Å, the capacitance is ∼65 µF/cm2 for the Gaus-
sian sheet and linearized, Gouy-Chapman, and Bikerman-
Fraise PB models. In the jellium and ion decrement mod-
els, the ion distribution is more diffuse and the differential
capacitance is ∼55 µF/cm2. Capacitance from the modified
boundary condition is much lower: 30 µF/cm2. When using
a larger Au radius (2.00 Å) determined from AIMD simulations,
smaller capacitances are observed. As before, smaller capac-
itances are obtained from jellium and ion decrement models,
but the spread is smaller, and the capacitance is within 34–40
µF/cm2. The boundary condition method is still an outlier giv-
ing the capacitance of 22 µF/cm2. Finally, we note that capac-
itances as obtained using the larger vdW radius are within
20–30 µF/cm2 in agreement with other mPB models25,31,37

and explicit ice-like–water structures.24,89

From the study of different neutralization schemes, one
can conclude that the obtained capacitances depend mildly on
how the system is neutralized. The modified double-layer and
Donnan Lagrange neutralization methods give nearly identi-
cal results, while the uniform dielectric neutralization pro-
duces slightly smaller capacitances. There is an important
exception, though: in the ion decrement model, the neu-
tralization method changes the overall ion distribution and
therefore affects the dielectric in an unexpected way: even
for the modified double-layer and Donnan method, the neu-
tralization introduces a smooth ion density in the simulation
cell. Also changes in the dielectric due to decrement exhibits
an almost constant decrease instead of pronounced spatial
dependence. An example is shown in Fig. 4.

B. Electrostatic potentials from different
schemes for Au(210) in 0.5M NaF

The interfacial potential is an important factor in elec-
trochemical systems affecting both reaction thermodynam-
ics and kinetics. To relate the electrostatic potential and

FIG. 4. From top-to-bottom: (1) Dielectric profile without decrement, (2) dielectric
profile with dielectric decrement in 0.5M NaF using the uniform neutralization, and
(3) dielectric profile with dielectric decrement in 0.5M NaF using the scheme. The
color scale at the bottom varies from ǫ = 1 (blue) to ǫ = 78.36 (dark red) of normal
bulk water.
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FIG. 5. The interfacial electrostatic
potentials from different schemes. Above
the PZC, the potential is set to 0.5 V
and below to −0.5 V vs. PZC. The inset
highlights the long-range behavior. The

top most atom is located at 16.5 Å. The
Donnan charge neutralization was used,

and the vdW radius is 2.00 Å. The bulk
electrolyte is reached at z = 0.

electrochemical potential of electrons from the computa-
tional models to experimentally utilized reference electrodes,
schemes from Sec. II E need to be used. Instead of refer-
encing the potential against reference electrodes, compu-
tational studies36,37 of electrochemical systems have used
PZC as an internal reference which is afterwards25,31–33 cal-
ibrated to the SHE reference via the experimental PZC on the
SHE scale. The calibration value depends on the used sol-
vent model: for models where the dielectric cavity depends
on the electron density as ∼erfc[log(n(r)/nc)] such as CAN-
DLE,32 VaspSOL,31 and linear PCM,25 absolute SHE is cal-
ibrated to be between −4.4 and −4.7 V, but for the soft-
sphere or SCMVD type of models, such a calibration is not
available.

The experimental value90 for PZC of Au(210) in a 0.5M
NaF is 0.144 V vs. SHE. In our modified SCMVD model, the
absolute potential is simply −EF, as discussed in Sec. II E. By
studying the two different radii for the dielectric/cavity (at
which the dielectric and ionic density difference also start
differing from zero), we notice that the Fermi-level of the
neutral Au(210) depends sensitively on the used radius. For
R = 1.66 Å, EF(σm = 0) = −4.27 V, and for R = 2.00 Å, EF(σm =
0) = −4.71 V. Thus, calibration for R = 1.66 Å is −4.41 V and for
R = 2.00 Å is –4.84 V. Both are close to the values obtained
from electron density dependent cavities and the experimen-
tally determined absolute SHE value which varies from −4.4
to −4.85 V.91 As discussed, the calibration is closely linked
to the used cavity radius which in turn determines the com-
puted differential double layer capacitance. Therefore a judi-
cious choice would to choose the vdW radius for the dielec-
tric/cavity which reproduces the experimentally obtained
capacitance and afterwards fix the calibration between
the Fermi-level and PZC from comparison experiment and
computations.

Given the dependence of the absolute potential on the
used vdW radius, we report on the electrostatic potential pro-
files in Fig. 5 with respect to the PZC of a given model. First,
the electrostatic potential obtained from the boundary condi-
tion method decreases to zero slower than all other methods
and the gradient is nonzero, as expected. Similar behavior was
observed also with the similar ESM.16 Of the usedmPBmodels,
linearized PB, Gouy-Chapman, and Bikerman-Fraise produce
almost identical and overlapping potential curves. When the
Stern layer is added (shown for Bikerman-Fraise), screening is
delayed but is otherwise similar to the underlying mPB. The
electrostatic potential from Gaussian charge sheet depends
sensitively on the position and width of the sheet. Here, it
is seen to screen the charge faster than the mPB methods,
whereas the uniform jellium screens the charge slower.

As discussed above, the charge distribution from the
ion decrement is rather homogeneous and also the resulting
potential is rather similar to the one obtained from the jel-
lium models or when the Stern layer is included. However,
the ion decrement approach is the only model for which the
interfacial electrostatic potentials are not symmetric for pos-
itive and negative potentials vs PZC. At positive potentials,
the ion decrement model predicts slightly stronger screen-
ing which reflects the higher dielectric, i.e., smaller dielectric
decrement, of the fluoride anions building at the surface at
positive potentials.

VII. CONCLUSIONS

We have presented a general density functional the-
ory framework for modeling electrochemical interfaces at
fixed electrode and ion potentials. Our approach provides a
rigorous ion/electron grand canonical ensemble DFT rele-
vant to electrochemical systems. This allows one to perform
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atomistic simulations of electrochemical interfaces using
experimentally meaningful control variables, namely, the elec-
trode and ion chemical potentials, solvent, and temperature.
Such simulations will advance the understanding and opti-
mization of electrochemical interfaces.

Besides the general framework, a systematic coarse-
graining from a fully quantum mechanical nuclei and elec-
trons to classical nuclei of the electrode, ionic and solvent
nuclei interacting with electrons, and continuum electrolyte
is presented. The detailed derivation of the coarse-graining
on different levels shows transparently the approximations
involved. This allows straight-forward assessment of the capa-
bility, validity, and applicability of various schemes for model-
ing the electrochemical interfaces. The performed derivation
enables also the removal of the coarse-graining if needed; this
freedom can be utilized to study, e.g.,, nuclear tunneling and
specific adsorption at a fixed electrode potential. Another spe-
cific example of the general applicability of the theory is an
extension to treat adiabatic and nonadiabatic electron trans-
fer kinetics as a function of the electron and ion chemical
potentials currently under development by us.

On the simplest level of theory, the presented coarse-
graining provides a well-defined approach to continuum
solvent models and Poisson-Boltzmann models of the ionic
double layer. To compare different continuummodels, several
mPB models, including the Stern layer, finite-size effects, and
dielectric decrement, were implemented in the GPAW code
and tested. As detailed, other mPB models can be motivated
and implemented by using functional minimization of the DFT
grand free energy functional. We present an extensive dis-
cussion and development of simulating charged systems in
contact with a continuum dielectric and mPB double-layer.

The tested mPB models vary from simple homoge-
neous jellium models33 and neutralizing Gaussian background
charges to common point-like PB and to mPB models with
specific ion contributions including the ion size and dielec-
tric decrement effects. All the included mPB approaches are
based on the linear dielectric SCMVD59 model of the liquid.
Calculations for the interfacial electrostatic potential distribu-
tions show that the jellium model screens less than other mPB
models, while the mPB models apart from ionic decrement
produce almost identical electrostatic potentials. The ionic
decrement model screens the charge rather slowly but intro-
duces slight asymmetry between positive and negative poten-
tials. The long-range behavior of the ESM16-like boundary
condition method differs significantly from the mPB models.

Computed double-layer capacitance profiles for Au(210)
in a NaF electrolyte show that the mPB models with a
linear dielectric are incapable of capturing the shape of
experimentally determined double layer capacitance curve
even when several factors accounting for ion-specific
effects are accounted for. All the utilized mPB mod-
els including linearized, point-like Gouy-Chapmann, finite-
ion Bikerman-Freise, and the ion decrement model yield
almost constant double layer capacitances rather than an
experimentally obtained bell-shaped capacitance within the

tested potential range in a 0.5M NaF solution. Furthermore,
the absolute capacitance values are very sensitive to the
details on the underlying solvent cavity.

Thus, the overall outcome is that a linear dielectric model
even when combined with more complex mPB electrolyte
description cannot qualitatively reproduce the experimentally
measured capacitance; at this level, already jellium-like elec-
trolytes result in almost identical double-layer capacitances
and interfacial electrostatic potential similar to the more com-
plicated mPB models. On the other hand, non-linear contin-
uum solvents32 have shown promising results for describing
the double-layer capacitance.37

Our results show that even addition of ion-specific inter-
actions into simple continuum electrolyte models is unable
to provide a fully satisfactory description of electrolyte-
electrode interfaces. Instead, approaches beyond linear
dielectric continuummodels such as including explicit solvent
molecules/ions or the dipolar response of the liquid to exter-
nal potentials should be investigated. The presented theoreti-
cal framework allows a natural way to include important inter-
actions within GC-DFT and to develop better computational
models for electrocatalysis. Finally, while we have presented
a rigorous and well-defined GC-DFT coarse-graining scheme
and applied it to continuum electrolytes, there are serious
caveats that need to be recognized and addressed as the use
of linear continuum models for modeling the electrochemical
interfaces keeps increasing.

SUPPLEMENTARY MATERIAL

See supplementary material for the (1) experimentally
measured differential capacitance of Au(210) in NaF solu-
tions, (2) general structure of canonical electronic DFT and
Helmholtz free energy, (3) general structure of joint DFT,
(4) derivation of modified Poisson-Boltzmann equations, (5)
details of original SCMVD method, (6) calculation details for
obtaining the cavity parameters from AIMD, (7) differential
capacitance plots, (8) implementation details of the boundary
condition method, and (9) list of symbols.
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