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First-principles calculations combining density-functional theory and continuum solvation mod-
els enable realistic theoretical modeling and design of electrochemical systems. When a reaction
proceeds in such systems, the number of electrons in the portion of the system treated quantum
mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte.
A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is
therefore the ideal description of such systems that directly mimics the experimental condition.
We present two distinct algorithms: a self-consistent field method and a direct variational free
energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham
equations of electronic density-functional theory directly in the grand canonical ensemble at fixed
potential. Both methods substantially improve performance compared to a sequence of conventional
fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally
exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply
grand-canonical density-functional theory to the under-potential deposition of copper on platinum
from chloride-containing electrolytes and show that chloride desorption, not partial copper mono-
layer formation, is responsible for the second voltammetric peak. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4978411]

I. INTRODUCTION

Density-functional theory (DFT) enables theoretical elu-
cidation of reaction mechanisms at complex catalyst surfaces,
making it now possible to design efficient heterogeneous
catalysts for various industrial applications from first princi-
ples, for example, for high-temperature gas-phase transfor-
mation of hydrocarbons to a variety of valuable chemical
products.1,2 The extension of this predictive power to electro-
catalysis would be highly valuable for an even broader class
of technological problems, including a cornerstone of future
technology for renewable energy: converting solar energy to
chemical fuels by electrochemical water splitting and carbon
dioxide reduction.3 Accurately describing electrochemical
phenomena, however, presents two additional challenges.

First, the electrolyte, typically consisting of ions in a liquid
solvent, strongly affects the energetics of structures and reac-
tions at the interface. Treating liquids directly in DFT requires
expensive molecular dynamics to sample the thermodynamic
phase space of atomic configurations. Historically, a number
of continuum solvation models that empirically capture liquid
effects have enabled theoretical design of liquid-phase cat-
alysts.4,5 More recently, empirical solvation models suitable
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for solid-liquid interfaces,6–8 joint density-functional theory
(JDFT) for efficiently treating liquids with an atomic-scale
structure,9 and minimally empirical solvation models derived
from JDFT10,11 have made great strides towards reliable yet
efficient treatment of electrochemical systems.

Second, electrons can flow in and out of the electrode
as electrochemical reactions proceed. Changes in electronic
charge of electrode surfaces and adsorbates can be especially
important because the electrolyte stabilizes charged config-
urations with a counter charge from the ionic response. For
example, reduction of formic acid on platinum at experimen-
tally relevant potentials is dominated by formate ions rather
than neutral molecules at the surface.12 Proton adsorption
on stepped and polycrystalline surfaces involves displacing
oxidatively adsorbed water at relevant potentials, resulting in
non-integer charge transfers and an anomalous pH dependence
deviating from the Nernst equation.13

Accounting for the electrolyte response using our solva-
tion models,8,11 and adjusting the electron number to match
experimentally relevant electrode potentials, realistic pre-
dictions of electrochemical reaction mechanisms have now
become possible.14 In particular, application of this methodol-
ogy to the reduction of CO on Cu(111) predicts onset potentials
for methane and ethene formation with 0.05 V accuracy in
comparison to experiment, for a wide range of pH varying from
1 to 12.15 However, conventional DFT software and algorithms
are optimized for solving the quantum-mechanical problem at
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a fixed electron number, requiring extra work (both manual and
computational) to calculate properties for a specified electrode
potential.

Electric potentials and fields play an important role
in fields besides electrochemistry. Density-functional theory
approaches accounting for electric potential have been devel-
oped in special cases for field emission from metal sur-
faces using a jellium model16 and for calculating capaci-
tance in metal-insulator-metal17,18 and carbon nanotube sys-
tems.19 Calculating non-equilibrium transport of electrons
in nanoscale systems also requires accounting for potential
difference between reservoirs in a DFT calculation.20 First-
principles molecular dynamics approaches have been devel-
oped to emulate fixed potential using fluctuating numbers of
electrons between time steps.21 However, in all these cases,
each involved self-consistent DFT calculation contains a fixed
number of electrons and is carried out using a conventional
canonical-ensemble algorithm.

This paper introduces algorithms for grand canonical
DFT, where electron number adjusts automatically to tar-
get a specified electron chemical potential (related to elec-
trode potential), thereby enabling efficient and intuitive first-
principles treatment of electrochemical phenomena. Section II
summarizes the theoretical background of first-principles elec-
trochemistry using JDFT and continuum solvation models and
sets up the fundamental basis of grand-canonical DFT. Then,
Section III introduces the modifications necessary to make
two distinct classes of DFT algorithms, the self-consistent
field (GC-SCF) method and the variational free energy min-
imization using auxiliary Hamiltonians (GC-AuxH), directly
converge the grand free energy of electrons at fixed potential.
Sections IV B and IV C establish the algorithm parameter(s)
that optimize the iterative convergence of the GC-SCF and GC-
AuxH methods, respectively, while Section IV D compares the
performance of these algorithms for a number of prototypical
electrochemical systems. Finally, Section IV E demonstrates
the utility of grand canonical DFT by solving an electrochem-
ical mystery: the identity of the second voltammetric peak in
the under-potential deposition (UPD) of copper on platinum
in chloride-containing electrolytes.

II. THEORY

A. Background: Electronic density functional theory

The exact Helmholtz free energy A of a system of inter-
acting electrons in an external potential V (r) at a finite tem-
perature T satisfies the Hohenberg-Kohn-Mermin variational
theorem,22,23

A = min
n(r)

(

AT
HKM[n(r)] +

∫
drV (r)n(r)

)

, (1)

where AT
HKM is a universal functional that depends only on the

electron density n(r) (and temperature) and not on the exter-
nal potential. However, constructing approximations for this
unknown universal functional that accurately capture the ener-
gies and geometries of chemical bonds in terms of the density
alone is extremely challenging, partly because the quantum
mechanics of the electrons is completely implicit in AHKM[n]

(dropping the T labels here onward for notational simplicity;
all the functionals below depend on temperature).

Most practical approximations in electronic density-
functional theory follow the Kohn-Sham approach24 that
includes the exact free energy of a non-interacting system of
electrons with the same density n(r). The universal functional
is typically split as

AHKM[n] = Ani[n] +
∫

dr

∫
dr
′n(r)n(r′)

2|r − r′ |
︸                     ︷︷                     ︸

EH [n]

+EXC[n], (2)

where Ani[n] is the non-interacting free energy (which we
describe in detail below), the second “Hartree” term EH [n]
is the mean-field Coulomb interaction between electrons
(using atomic units e, me, ~, kB = 1 throughout), and the final
“exchange-correlation” term EXC[n] captures the remainder
which is not known and must hence be approximated. The
exact free energy of non-interacting electrons is

Ani[n] = min
{ψi(r), fi}
→ n(r)

∑

i

(
fi

2

∫
dr|∇ψi(r)|2

︸               ︷︷               ︸
Kinetic

−T S(fi)
︸︷︷︸

Entropy

)

, (3)

which includes the kinetic energy and entropy contributions of
a set of orthonormal single-particle orbitals ψi(r) with occu-
pation factors fi ∈ [0, 1]. Above, the single-particle entropy
function is S(f ) = −f log f − (1 − f ) log(1 − f ). Note that we
let the orbital index i include spin degrees of freedom as well
and therefore do not introduce factors of 2 for spin degener-
acy. For notational convenience, we also let i include Bloch
wave-vectors in the Brillouin zone (in addition to spin and
band indices) for periodic systems.

The minimization in (3) is constrained such that the
density of the non-interacting system

∑

i

fi |ψi(r)|2 = n(r), (4)

the density of the real interacting system. Performing this min-
imization with Lagrange multipliers VKS(r) (the Kohn-Sham
potential) to enforce the density constraint and εi (Kohn-
Sham eigenvalues) to enforce orbital normalization constraints
results in a set of single-particle Schrödinger-like equations

− ∇
2

2
ψi(r) + VKS(r)ψi(r) = εiψi(r) (5)

for stationarity with respect to ψi(r), and the Fermi occupation
condition

fi =
1

1 + exp εi−µ
T

(6)

for stationarity with respect to f i. Here, the electron chemical
potential µ appears as a Lagrange multiplier to enforce the
electron number constraint and is chosen so that

∑
fi = N , the

number of electrons in the system.
Optimizing the total free energy functional (1) with

AHKM[n] implemented by (2, 3) then yields the stationarity
condition with respect to electron density,

VKS[n](r) = V (r) +
δ

δn(r)
(EH [n] + EXC[n]) . (7)

Conventional density-functional theory calculations then
amount to self-consistently solving the Kohn-Sham equation
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(5) along with (7), coupled via the electron density con-
straint (4).

The Kohn-Sham potential is arbitrary up to an overall
additive constant: changing this constant introduces a rigid
shift in the eigenvalues ǫ i and the electron chemical potential
µ, but does not affect the occupations f i, electron density, or
free energy. For finite systems (of any charge) and for neutral
systems that are infinitely periodic in one or two directions, this
arbitrariness can be eliminated by requiring that the potential
vanishes infinitely far away from the system, giving mean-
ing to the absolute values of µ and ǫ i as being referenced to
“zero at infinity.” However, for materials that are infinite in all
three dimensions, such as periodic crystalline solids, there is
no analogous natural choice for the zero of potential, making
the absolute reference for µ and ǫ i meaningless.

More importantly, for systems that are periodic in one,
two, or all three directions, the net charge per unit cell must
be zero, otherwise the energy per unit cell becomes infinite.
In terms of a finite system size L and then taking the limit
L → ∞, the energy per unit cell of a system with net charge
per unit cell diverges ∝ ln L for one periodic direction, ∝L for
two periodic directions, and ∝L2 for three periodic directions.
Therefore, the number of electrons per unit cell is physically
constrained to keep the unit cell neutral in systems with any

periodicity, and only finite systems (like molecules and ions)
have number of electrons as a degree of freedom.

B. Electrochemistry with joint density-functional
theory

For describing electrochemical systems and electrocat-
alytic mechanisms, we are typically interested in adsorbed
species in a solid-electrolyte interface which exchange elec-
trons with the solid (electrode). In these systems, the solid
surface, which we would describe in a density-functional cal-
culation as a slab periodic in two directions, does have a net
charge per unit cell that depends on the electrode potential.
In contrast to the discussion at the end of Sec. II A, this is
physically possible (i.e., has a finite energy) because the elec-
trolyte contains mobile ions that respond by locally increasing
the concentration of ions of opposite charge near the surface,
thereby neutralizing the unit cell. (The charge per unit areas
of the electrode and electrolyte are equal and opposite.)

Next to an electrolyte, the charge of a partially periodic
system (one-dimensional “wires” or two-dimensional “slabs”)
is no longer constrained, allowing the number of electrons to
vary. Now, the absolute reference for the electron chemical
potential µ does become physically meaningful, and µ now
corresponds to the electrode potential that controls the number
of electrons in the electrode.

However, treating electrochemical systems using elec-
tronic density-functional theory alone is extremely challeng-
ing for a variety of reasons. First, treating liquids requires a
statistical average over a large number of atomic configura-
tions to integrate over thermodynamic phase space. For this,
techniques such as molecular dynamics typically require cal-
culations of at least 104–105 atomic configurations (instead of
just one for a solid). Second, such calculations require a large
number of liquid molecules to minimize finite size errors in the

molecular dynamics. For example, for electrolytes with a real-
istic ionic concentration of 0.1 M, there is on average one ion
for a few hundred solvent molecules. Making statistical errors
in the ion number manageable in such calculations therefore
requires >103 solvent molecules with >104 electrons, con-
trasted with typical 10–100 atoms with 100–103 electrons in
the electrode slab + adsorbate of interest. Combined, these
factors make density-functional molecular dynamics simu-
lations of electrochemical systems prohibitively expensive
computationally, in additional to being difficult to set up and
analyze.

A viable alternative to the above direct approach is to
employ joint density-functional theory9 (JDFT), a variational
theorem akin to the Hohenberg-Kohn theorem that makes it
possible to describe the free energy of a solvated system in
terms of the electron density n(r) for the solute and in terms
of a set of nuclear densities {Nα(r)} (where α indexes nuclear
species) of the solvent (or electrolyte). Specifically, the equi-
librium free energy of the combined solute and solvent systems
minimizes

A = min
n(r), {Nα (r)}

(

ÃJDFT[n(r), {Nα(r)}]

+
∫

drV (r)n(r) +
∑

α

∫
drVα(r)Nα(r)

)

, (8)

where V (r) is the external electron potential, Vα(r) is the exter-
nal potential on the liquid nuclei, and AJDFT is a universal
functional independent of these external potentials. Separating
out the Hohenberg-Kohn electronic density functional AHK[n]
for the solute, the total free energy is

ÃJDFT[n, {Nα}] = AHKM[n]
︸    ︷︷    ︸
electronic

+ Ãdiel[n, {Nα}]
︸          ︷︷          ︸

solvation

. (9)

In practice, the functional Adiel, much like AHKM, is unknown
and needs to be approximated. Importantly, the liquid is
now described directly in terms of its average density rather
than individual configurations, and the expensive quantum-
mechanical theory of the electrons is restricted to the solute
alone, thereby addressing both the sampling and system-size
problems that make density-functional molecular dynamics
prohibitively expensive.

Typically, we are interested in a situation where the
external potentials on the liquid are zero, and the liq-
uid only interacts with itself, and with the electrons
and nuclei of the solute. In this situation, we can per-
form the optimization over liquid densities and define the
implicit functional AJDFT[n] = AHKM[n] + Adiel[n], where we
define AX [n]≡ min {Nα (r)}ÃX [n(r), {Nα(r)}] for X = JDFT and
X = diel. We will work with these reduced functionals below
for simplicity.

The framework of joint density-functional theory encom-
passes an entire hierarchy of solvation theories. Further sepa-
rating the solvation term Adiel into a classical density functional
for the liquid25–27 and an electron-liquid interaction functional
unlocks the full potential of JDFT to describe an atomic-
scale structure in the liquid without statistical sampling. Start-
ing from “full-JDFT” and performing perturbation theory for
linear-response of the liquid result in the non-empirical SaLSA
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solvation model10 which continues to capture the atomic-
scale nonlocality in the liquid response and introduces no fit
parameters for the electric response of the solvent.

At the simplest end of the JDFT hierarchy, there are con-
tinuum solvation models that neglect the nonlocality of the
liquid response and replace it by that of an empirically deter-
mined dielectric cavity (optionally with Debye screening due
to electrolytes). This includes our recent CANDLE solvation
model11 that builds on the stability of SaLSA for highly polar
systems, and earlier solvation models suitable for molecules
and less-polar systems such as our GLSSA13 model7 (or its
equivalent, VASPsol8) and the comparable Self-Consistent
Continuum Solvation (SCCS) model.6,28 Even the traditional
quantum-chemistry finite-system solvation models such as the
PCM series5 and the SMx series4 can be mapped on to this class
of solvation models.

For simplicity, we will work here with this simplest class
of continuum solvation models. The theoretical considerations
and algorithms in this work focus primarily on the electronic
density-functional theory component, are largely agnostic to
the internals of the solvation model, and therefore straightfor-
wardly generalize up the JDFT hierarchy to the more detailed
and complex solvation theories. Essentially, all the simple
electron-density-based continuum solvation models6–8,11 can
be summarized abstractly as7,10

Adiel[n(r)] =
∫

drρel(r)
(K̂−1 − χ̂)

−1 − K̂

2
ρel(r) + Acav[s].

(10)
Here, the first term is the electrostatic solute-solvent inter-
action energy given by the difference between the solvent-
screened Coulomb interaction and the bare Coulomb inter-
action K̂ of the total solute charge density, ρel(r) = n(r)
+ ρnuc(r), where ρnuc(r) is the solute nuclear charge density.
The screened Coulomb interaction term above is expressed in
terms of the bare Coulomb interaction K̂ and the solvent sus-
ceptibility operator χ̂, defined for the local-response models
by

χ̂ · φ(r) ≡ ∇ ·
(

ǫb − 1
4π

s(r)∇φ(r)

)

︸                       ︷︷                       ︸
Dielectric

− κ2

4π
s(r)φ(r)

︸       ︷︷       ︸
Ionic

. (11)

Here, ǫb is the bulk dielectric constant of the solvent and

κ =

√

4π
∑

i NiZ
2
i
/T is the inverse Debye screening length in

vacuum of a set of ionic species of charge Z i with concentra-
tions N i (the net inverse Debye screening length in the presence
of the background dielectric is κ/

√
ǫb). The cavity shape func-

tion s(r) modulates the dielectric and ion response and varies
from zero in the solute region (no solvent present) to unity
in the solvent at full bulk density. Finally, the second term
of (10), Acav, empirically captures effects beyond mean-field
electrostatics, such as the free energy of cavity formation in
the liquid and dispersion interactions between the solute and
the solvent.29 Different solvation models at this level of the
hierarchy only differ in the details of how s(r) is determined
from the electron density (or even from atomic positions and
fit radii for the PCM5 and SMx4 solvation models) and in the
details of Acav.

In practice, evaluating the first term of (10) requires the

calculation of φ(r) = (K̂−1 − χ̂)
−1
ρel(r), which is the net

electrostatic potential including screening by the solvent (and
electrolyte). The second part of the first term in (10) repre-
sents the electrostatic interactions between electrons and the
nuclei in vacuum which cancels corresponding terms in the
vacuum DFT functional (specifically the Hartree, Ewald, and
long-range part of the local pseudopotential terms), so that
all long-range terms that contribute to the net free energy
are present in the first term of (10). Finally, substituting (11)
and K̂−1

= −∇2/(4π) into the definition of φ(r) results in the
linearized Poisson-Boltzmann (modified Helmholtz) equation,

− ∇ · (ǫbs(r)∇φ(r)) + κ2s(r)φ(r) = 4πρel(r). (12)

Without ionic screening (second term of (12)), the abso-
lute reference for φ(r) is undetermined and does not contribute
to the bound charge induced in the liquid, χ̂φ(r) (given by the
first term of (11) alone), because ∇(constant) = 0. However,
with ionic screening, a constant shift of φ(r) does affect the
second terms of (11) and (12), producing a charge response
in the liquid and making the absolute reference of the electro-
static potential φ(r) meaningful. In particular, integrating (12)
over space yields

∫
dr

κ2

4π
s(r)φ(r) =

∫
ρel(r). (13)

From (11), the left hand side is the negative of the total bound
charge in the liquid, while the right hand side is the total charge
of the solute system. Therefore, the continuum electrolyte
automatically compensates for any net charge in the solute
and makes the complete system neutral. As a side effect, the
absolute reference of the electrostatic potential is meaningful
and automatically corresponds to “zero at infinity.” This hap-
pens because the Green’s function of (12) is exp(−κr/

√
ǫb)/r

in the bulk liquid with finite κ (instead of 1/r), causing φ(r) to
exponentially decay to zero outside the solute region (where
ρel = 0).

Reference 30 gives a detailed version of the above dis-
cussion including rigorous proofs of the absoluteness of the
reference for φ(r), and numerical details and algorithms for
efficiently solving (12) with periodic boundary conditions in
plane-wave basis DFT calculations. The result that the elec-
trolyte neutralizes charges in the solute is true more generally,
even for solvation models with nonlinear7 and/or nonlocal
response.10 However, as Ref. 7 describes in detail, for the gen-
eral nonlinear case, unit cell neutralization is not automatic
and must be imposed using a Lagrange multiplier constraint;
this Lagrange multiplier then fixes the absolute value of φ(r)
such that it is zero at infinity.

The key conclusion of this discussion is that continuum
electrolytes present two advantages. First, automatic charge
neutralization implies that we can perform well-defined cal-
culations with net charge per unit cell in the solute. Second,
meaningful absolute reference values for potentials implies
that the electron chemical potential µ (which determines the
electron occupations in (6)) is also referenced to zero at infin-
ity. Consequently, µ is related directly to the potential U of
the electrode providing the electron reservoir in experiments.
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This potential is typically referenced to the standard hydrogen
electrode (SHE), so that

µ = µSHE − U, (14)

where µSHE is the absolute position of the standard hydrogen
electrode relative to the vacuum level (i.e., the zero at infinity
reference). Calculations can employ either the experimental
estimate µSHE = −4.44 eV to relate the absolute and rela-
tive potential scales31,32 or a theoretical calibration based on
the calculated and measured potentials of zero charge of sol-
vated metal surfaces.30 The latter approach has the advantage
of minimizing systematic errors in the solvation model since
they cancel between the calculations used for calibration and
prediction. For example, with the CANDLE solvation model
we use below, the calibrated µSHE = −4.66 eV.11

C. Grand-canonical density-functional theory

Using joint density-functional theory of continuum solva-
tion models to treat electrolytes as described above, we can cal-
culate the Helmholtz free energy and electrochemical potential
(µ, and hence U) of specific microscopic configurations of
adsorbates on electrode surfaces at a fixed number of electrons
N in the solute subsystem (electrode + adsorbates). However,
in electrochemical systems, N is an artificial constraint because
electrons can freely exchange between the electrode and an
external circuit. Instead, experiments set the electrode poten-
tial U, and hence the electron chemical potential µ, and N

adjusts accordingly as a dependent variable. Thermodynam-
ically, this corresponds to switching the electrons from the
finite-temperature, fixed-number canonical ensemble to the
finite-temperature, fixed-potential grand-canonical ensemble.
Correspondingly, the relevant free energy minimized at equi-
librium is the grand free energy Φ = A − µN , instead of the
Helmholtz free energy A.

The most straightforward approach to fixed-potential DFT
for electrochemistry is to repeat conventional fixed-charge
DFT calculations at various electron numbers N to reach a
target chemical potential µ. Using a steepest descent/secant
method to optimize N results in convergence of µ typically
within 10 iterations.14 However this approach is inefficient
since it requires multiple DFT calculations to calculate the
grand free energy and charge of a single configuration, typi-
cally taking 3 times the time of a single fixed-charge calcu-
lation (not 10 times because subsequent calculations have a
better starting point and converge quicker).14

A more efficient approach would be to directly optimize
the Kohn-Sham functional in the grand-canonical ensemble.
For a solvated system, this corresponds to a small modification
of the minimization problem (8) with AJDFT given by (9) and
with AHKM evaluated using the Kohn-Sham approach ((2) and
(3)). The only differences are that the Lagrange multiplier term
−µ(

∑

i fi − N) that enforced the electron number constraint is
replaced by −µ∑

i fi which implements the Legendre trans-
form of the Helmholtz free energy to the grand free energy,
and that the fixed-N constraint is removed. The electron occu-
pation factors are still Fermi functions (6), but µ is specified
as an input (instead of being adjusted to match a specified N).
Operationally, this amounts again to solving the Kohn-Sham

eigenvalue problem (5) self-consistently with

VKS[n](r) = V (r) +
δ

δn(r)
(EH [n] + EXC[n] + Adiel[n]) , (15)

where there is now a single extra contribution to the potential
due to the solvent (electrolyte) and with the aforementioned
changes to the Lagrange multipliers and constraints.

This conceptually simple modification, however, presents
numerical challenges to the algorithms commonly used for
solving the Kohn-Sham problem, such as the self-consistent
field (SCF) method, which solves the Kohn-Sham eigen-
value problem from an input density (or Kohn-Sham poten-
tial), adjusting this density (or potential) iteratively until self-
consistency is achieved. A common instability for metallic
systems in the SCF method is “charge sloshing”: the elec-
tron density oscillates spatially between iterations instead of
converging. Switching to the grand-canonical ensemble can
significantly exacerbate this problem: electrons can now addi-
tionally slosh between the system and the electron reservoir.
Here, we present modifications to the SCF method and an alter-
nate algorithm that allow reliable and efficient convergence for
grand-canonical Kohn-Sham DFT.

III. ALGORITHMS

A. Self-consistent field method: Pulay mixing

Given electron density n
(i)
in (r), the Kohn-Sham equation

(5) with potential VKS given by (15) defines orbitals {ψj} and
eigenvalues {εj}. At a given electron chemical potential µ,
these in turn define the occupations { f j} given by (6) and a
new electron density n

(i)
out(r) given by (4). The Self-Consistent

Field (SCF) method attempts to find n(i)(r) such that n
(i)
out(r)

= n
(i)
in (r).
There are two algorithmic ingredients to this method:

solution of the Kohn-Sham eigenvalue equations and optimiza-
tion of the electron density. The eigenvalue equations remain
unchanged between conventional and fixed-potential calcu-
lations. To solve these, we use the standard Davidson algo-
rithm.33 The difficulty in fixed-potential calculations arises in
the electron density optimization, which we discuss below.

A robust and frequently used algorithm for charge-density
optimization is Pulay mixing34 with Kerker precondition-
ing.35 Briefly, Pulay mixing assumes that the residual R[nin(r)]
≡ nout(r) − nin(r) is approximately linear in the input elec-
tron density nin(r) and calculates the optimum input electron
density as a linear combination of previous iterations,

n
opt
in (r) =

∑

i

αin
(i)
in (r). (16)

Minimization of the norm of the corresponding residual

F({αi}) =
∑

ij

αiαj

∫
drR[n(i)

in (r)]M̂R[n(j)
in (r)] (17)

with the constraint
∑

i αi = 1 yields a set of linear equations
determining the coefficients αi, where M̂ is the metric for
defining the norm of the residual. Finally, the next input den-
sity is obtained by mixing the optimum input density with its
corresponding output density,

n
(i+1)
in (r) = n

opt
in (r) + K̂R[nopt

in (r)], (18)
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where K̂ is the Kerker preconditioning operator.
The metric M̂ and preconditioner K̂ serve to balance

the influence of different components of the electron density
to the optimization procedure. These are usually defined in
reciprocal space, expanding n(r) =

∑

G ñ(G)eiG ·r, where G

are reciprocal lattice vectors. In reciprocal space, the Hartree
potential in (15) takes the form ṼH (G) = ñ(G)4π/G2, causing
small G (long-wavelength) variations of the electron density
to produce larger changes in the Kohn-Sham potential than
large G ones. Uncompensated, this makes the electron density
optimization unstable against long-wavelength perturbations
(the charge-sloshing instability). The Kerker preconditioner

K̃(G) = A
G2

G2 + q2
K

(19)

mitigates this problem by suppressing the contribution of the
problematic small G components in determining the next input
density. The metric

M̃(G) =
G2 + q2

M

G2
(20)

enhances the contribution of small G components in the resid-
ual norm, thereby prioritizing the optimization of these com-
ponents when determining n

opt
in . The wavevectors qK and qM ,

which control the balance between short and long-wavelength
components, and the prefactor A, which sets the maximum
fraction of nout that contributes to the next nin, can be adjusted
to optimize the convergence of the SCF method. See Ref. 36
for a detailed discussion of the Pulay-Kerker SCF approach
and its performance for conventional fixed electron number
(canonical) DFT calculations.

The G = 0 component of the electron density, which
equals N/Ω, where Ω is the unit cell volume, remains fixed
in canonical DFT calculations and is therefore excluded from
the metric and the preconditioner. This is no longer true in
fixed-potential DFT, where the number of electrons changes.
With the above prescriptions, the Kerker preconditioner (19)
→ 0 as G → 0 which will prevent the electron number from
changing between SCF iterations. Likewise, the G→ 0 diver-
gence of the Pulay metric (20) causes the residual norm to
become undefined when the electron number changes between
iterations.

In order to generalize the Pulay-Kerker SCF approach
for fixed-potential DFT, we therefore need to fix the G → 0
behavior of both the preconditioner and the metric. The need
for the preconditioner and the metric arose from the recipro-
cal space Coulomb operator 4π/G2 in the Hartree potential.
In a uniform electrolyte with Debye screening, the reciprocal
space Coulomb operator instead takes the form 4π/(ǫbG2 + κ2)
(from (12) in reciprocal space with s = 1). Since the elec-
trolyte is responsible for fixing the indeterminacy of the G = 0
component of the potential, a reasonable ansatz for extending
Pulay-Kerker to fixed potential calculations is replacing G2

with G2 + q2
κ , where

qκ =
κ
√
ǫb

. (21)

In Section IV B, we show that setting

K̃(G) = A
G2 + q2

κ

G2 + q2
κ + q2

K

(22)

and

M̃(G) =
G2 + q2

κ + q2
M

G2 + q2
κ

(23)

indeed makes the grand canonical self-consistent field (GC-
SCF) method function efficiently, with optimum convergence
for qκ given by (21).

B. Variational minimization: Auxiliary Hamiltonian
method

An alternate approach to solving the Kohn-Sham equa-
tions is to directly minimize the total (free-)energy functional
(1), with AHKM given by (2, 3), in terms of the Kohn-Sham
orbitals as independent variables. For joint density-functional
theory, this amounts to

A = min
{ψi(r), f i }



∑

i

(
fi

2

∫
dr |∇ψi(r)|2 − TS(fi)

)

+ EH [n] + EXC[n] + Adiel[n] +
∫

drV (r)n(r)

]
, (24)

where n(r) is now derived from {ψi} and {f i} as given by (4).
In the above minimization, the orbitals {ψi} must be orthonor-
mal, the occupation factors must satisfy 0 ≤ fi ≤ 1, and
optionally,

∑

i fi = N for the canonical fixed electron number
case.

For insulators at T = 0, the occupations f i are known
in advance. The constrained optimization over orthonormal
{ψi} is most efficiently carried out using a preconditioned
conjugate-gradients (CG) algorithm on unconstrained orbitals
using the analytically continued energy functional approach.37

Briefly, this approach evaluates the energy functional (24) on
a set of orthonormal orbitals, which are a functional of the
unconstrained orbitals used for minimization (see Ref. 37 for
further details).

The general case of metallic systems and/or finite T addi-
tionally requires the optimization of{ f i}, which is challenging
for non-linear optimization algorithms because of the inequal-
ity constraints 0 ≤ fi ≤ 1. One possibility is to update the fill-
ings from the Kohn-Sham eigenvalues using (6) after every few
steps of the CG algorithm,38 but this hinders the convergence
of CG because the functional effectively changes each time the
fillings are altered. The “Ensemble DFT” approach39 rectifies
this convergence issue by optimizing the occupation factors at
fixed orbitals in an inner loop and performing the optimiza-
tion of orbitals in an outer loop using the CG method, but this
increases the computational cost compared to the case of the
insulators. The SCF approach is typically much more compu-
tational efficient than these variants of the direct variational
minimization algorithm with variable occupations.36

An alternate strategy for direct variational minimization
with variable occupations is to introduce an auxiliary subspace
Hamiltonian matrix Haux as an independent variable40 and
setting the occupations fi = f (ηi) in terms of the eigenval-
ues {ηi} of Haux instead of the Kohn-Sham eigenvalues {εi}.
(Here, f (η) is the Fermi function given by (6), and the electron
chemical potential µ is chosen so as to satisfy the electron num-
ber constraint

∑

i f (ηi) = N .) This eliminates the problematic
inequality constraints on the occupations, and upon mini-
mization, the auxiliary subspace Hamiltonian H

ij
aux approaches
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the true subspace Hamiltonian, H
ij

sub = 〈ψi |ĤKS |ψj〉, where
ĤKS = −∇2

i /2 + VKS(r) is the Kohn-Sham Hamiltonian. By
choosing the undetermined unitary rotations of the orbitals
{ψi} to diagonalize Haux, Ref. 40 further shows that the gradi-
ent of the free energy with respect to the independent variables
simplifies to

δA

δψi(r)
= f (ηi)

(

ĤKSψi(r) −
∑

j

ψj(r)H ji

sub

)

(25)

and

∂A

∂H
ij
aux

= δij(H
ii
sub − ηi)

∂f (ηi)
∂ηi

− δij

∂µ

∂ηi

∑

k

(Hkk
sub − ηk)

∂f (ηk)
∂ηk

+ (1 − δij)H
ij

sub

f (ηi) − f (ηj)

ηi − ηj

. (26)

These gradients are used to perform line minimization along
a search direction in the space of independent variables. With
every update of the independent variables, the orbitals are re-
orthonormalized and the unitary rotations of the orbitals are
updated to keep the auxiliary Hamiltonian diagonal.

In the preconditioned CG algorithm, the next search direc-
tion is obtained as a linear combination of the current search
direction and the preconditioned gradients given by

Kψi(r) = T̂inv
δA

δψi(r)
(27)

and

K
H

ij
aux
= −K(H ij

sub − ηiδij), (28)

where T̂inv and K are preconditioners. The role of precondi-
tioning is to balance the weight of different directions in the
minimization space in the explored search directions, and ide-
ally the preconditioner equals the inverse of the Hessian (which
is difficult to compute exactly). For the orbital directions, the
standard preconditioner T̂inv resembles the inverse of the domi-
nant kinetic energy operator in the Kohn-Sham Hamiltonian.37

For the auxiliary Hamiltonian direction, the preconditioner
removes the Fermi function derivatives and finite difference
factors from (26) in order to more equitably weight all com-
ponents of Haux. The preconditioning factor K controls the
overall contribution of the Haux components relative to that
of the orbital components and is adjusted to achieve optimum
convergence.

In this auxiliary Hamiltonian (AuxH) approach, the
orbitals and occupations are continuously and simultaneously
optimized to minimize the total free energy, resulting in bet-
ter convergence and computational efficiency comparable to
the fixed-occupations insulator case, and competitive with the
SCF method even for metallic systems. See Ref. 40 for fur-
ther details on the algorithms and performance comparisons
for conventional fixed electron number calculations.

Now, for fixed potential calculations, we set the occupa-
tions to Fermi functions of the auxiliary Hamiltonian eigen-
values at a specified µ, instead of selecting µ based on the
electron number constraint. Correspondingly, the second term
of the auxiliary Hamiltonian gradient (26), which arises from
this constraint, drops out, and the algorithm requires no further
modification.

The convergence rate of this algorithm, however, is sensi-
tive to the preconditioning factor K and we propose a modified
heuristic to update K automatically and continuously. At the
end of each line minimization, the derivative of the optimized
free energy Amin with respect to K can be evaluated from
the overlap between the auxiliary Hamiltonian gradient and
search direction.40 The line-minimized energy is optimum for
∂Amin/∂K = 0. Therefore, if variation of Amin with respect to
K is convex, we should increase K if we find ∂Amin/∂K < 0
and vice versa. However convexity is often lost if K is ini-
tialized at too high a value. Therefore, our heuristic tries to
zero ∂Amin/∂K while limiting the contribution of the auxiliary
Hamiltonian gradient. In particular, we update

K ← K ×max

[
exp

(

fsat

(

−∂Amin/∂K

gtot

))

,
gtot

2gaux

]
(29)

at the end of each line minimization, where fsat(x) ≡ x/
√

1 + x2

to saturate the factor by which K can change in one iteration,
gaux is the overlap of the Haux components of the gradient
and preconditioned gradient, and gtot is the total overlap of the
gradient and preconditioned gradients (orbital + Haux). Finally,
we reset the conjugate-gradient algorithm (i.e., set the search
direction to the negative of the preconditioned gradient direc-
tion) after K has increased or decreased by a factor greater than
e2. We do this because dynamically changing the precondi-
tioner technically invalidates the strict orthogonality of the CG
search direction with previous directions. Section IV C shows
that this heuristic exceeds the convergence obtained with fixed
K, while Section IV D shows that the grand-canonical auxiliary
Hamiltonian (GC-AuxH) algorithm consistently outperforms
GC-SCF for fixed-potential calculations.

IV. RESULTS

A. Computational details

We implement all algorithms and perform all calculations
using the open-source plane-wave density-functional theory
software, JDFTx.41 Below, we specify computational and con-
vergence parameters in atomic units (distances in bohrs a0

≈ 0.529 Å and energies in hartrees Eh ≈ 27.2 eV), but present
any physically relevant properties in conventional units (Å,
eV). All calculations in this work employ the PBE42 exchange-
correlation functional with GBRV ultrasoft pseudopotentials43

at a kinetic energy cutoff of 20 Eh for Kohn-Sham orbitals
and 100 Eh for the charge density. The metal surface calcu-
lations use inversion-symmetric slabs of at least five layers,
with at least 15 Å vacuum separation and truncated Coulomb
potentials44 to minimize interactions with periodic images. For
Brillouin zone integration, we use a Fermi smearing of 0.01
Eh and a Monkhorst-Pack k-point mesh along the periodic
directions with the number of k-points chosen such that the
effective supercell is larger than 30 Å in each direction. We
use the CANDLE solvation model to describe the effect of liq-
uid water and Debye screening due to 1M electrolyte, which
we showed recently to most accurately capture the solvation
of highly charged negative and positive solutes.11 We empha-
size that the methods and algorithms described above do not
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rely on specific choices for the pseudopotential, exchange-
correlation functional, k-mesh, or solvation model; we keep
these computational parameters constant here for consistency.

B. Convergence of the GC-SCF method

The self-consistent field (GC-SCF) algorithm summa-
rized in Section III A depends on several parameters that
control its iterative convergence. All these parameters are com-
mon to the conventional fixed-charge version (SCF) and the
fixed-potential variant (GC-SCF) introduced here, except for
the low-frequency cutoff wavevector qκ that is necessary to
allow the net electron number to change in the fixed-potential
case. Figure 1 compares the dependence of GC-SCF conver-
gence on qκ for a prototypical calculation of an electrochemical
system: a Cu(111) surface treated using a five-layer inversion-
symmetric slab surrounded by 1M aqueous non-adsorbing
electrolyte treated using the CANDLE solvation model,11 at
a fixed potential of µ = −0.208Eh (1 V SHE). (The remain-
ing GC-SCF parameters are set to their default values which
we discuss below.) The best convergence is obtained with
qκ = 0.17 which corresponds to the Debye screening length of
the electrolyte (21). For small qκ , including the conventional
case of qκ = 0, the number of electrons does not respond
sufficiently quickly, stalling at about 0.1 electrons from the
converged value, correspondingly with the free energy stalling
at about 0.1 Eh (≈2.7 eV) away from the converged value.
Larger qκ causes the electron number to change too rapidly,
hindering convergence and eventually leading to a divergence
as seen for the case of qκ = 0.7. An issue remains in the
convergence independent of qκ : after initial convergence, the
free energy oscillates at the 10−6 Eh level, while the electron
number oscillates at the 10☞3 level.

Keeping qκ at this optimum value given by (21), we
next examine the dependence of GC-SCF convergence on the
remaining algorithm parameters for the same example system.
Figure 2 shows the dependence on the Kerker mixing wavevec-
tor qK , which helps stabilize the GC-SCF algorithm against

FIG. 1. Dependence of GC-SCF convergence on low-frequency cutoff
wavevector qκ. The upper panel shows the convergence of the grand free
energy Φ (towards its final value Φ0) on a logarithmic scale, and the lower
panel shows that of the electron number N (towards its final value N0). The
best convergence is obtained with qκ = 0.17a−1

0 , the inverse Debye-screening
length, which we use as the default value henceforth. Results shown here are
for a five-layer (5ML) Cu(111) slab solvated in 1M CANDLE aqueous elec-
trolyte, with potential fixed to 1 V SHE ( µ = −0.208Eh), starting from a
converged neutral calculation of the same slab in vacuum.

FIG. 2. Dependence of GC-SCF convergence on Kerker-mixing wavevector
qK . Good convergence is observed near the typical recommended value qK

= 0.8 a−1
0 (≈1.5 Å☞1). Convergence is relatively insensitive to qK near this

value, but becomes unstable for small qK approaching the low-frequency
cutoff qκ . System and remaining details are identical to Figure 1.

long-wavelength charge oscillations. Optimal convergence is
obtained for the typical recommended value36 of 0.8 a−1

0
(≈1.5 Å☞1). As expected, convergence is relatively insensi-
tive to the exact choice of qK , as long as qK does not become
so small that convergence is ruined by charge sloshing. Notice
that the final convergence beyond the 10−6 Eh and 10☞3 elec-
tron level remains an issue that is not resolved for any choice
of qK .

Next, Figure 3 shows the variation of GC-SCF conver-
gence with the wavevector qM controlling the reciprocal-
space metric used by the Pulay algorithm. The convergence
is entirely insensitive to this choice, and we henceforth set
qM = qK = 0.8 a−1

0 (the recommended value36). Again, the
final convergence issue remains unaffected by the choice of
qM .

Finally, Figure 4 compares the dependence of GC-SCF
convergence on the maximum Kerker mixing fraction A, which
effectively controls what fraction of the new electron density
is mixed into the current value. We find nominally the best
convergence for A = 0.5, but the performance of other values
is not much worse. Smaller values of A lead to greater stability
initially, but marginally slower convergence later on, while
larger values of A lead to greater oscillations initially, but faster
convergence later on. Regardless, as before, good convergence

FIG. 3. Dependence of GC-SCF convergence on Pulay-metric wavevector
qM . Convergence is relatively insensitive to qM , and we set qM = qK = 0.8 a−1

0
henceforth. System and remaining details are identical to Figure 1.
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FIG. 4. Dependence of GC-SCF convergence on maximum Kerker-mixing
fraction A. Convergence is relatively insensitive to A, except that it slows
down for small A. We henceforth set A = 0.5 which nominally exhibits the
best convergence. System and remaining details are identical to Figure 1.

is obtained until the free energy reaches the 10−6 Eh level, but
continues to oscillate at that level beyond that point.

This final convergence issue may not affect practical cal-
culations where relevant energy differences are at the 10−3 Eh

level or higher. However, smooth exponential convergence to
the final answer is desirable as this makes it easier to determine
when the target accuracy has been reached. Unfortunately,
no combination of GC-SCF parameters achieves uniformly
smooth convergence for the fixed-potential case. On the other
hand, with our qκ modification, the GC-SCF algorithm at least
converges to the 10−6 Eh level independent of system size
(Figure 5), with the number of cycles required for conver-
gence remaining mostly unchanged with increasing number of
Cu(111) layers, and with increasing thickness of the solvent
region.

Note that the standard fixed-charge SCF method con-
verges the energy smoothly and exponentially in most cases,
including in our implementation in JDFTx. Our implemen-
tation of the GC-SCF method in JDFTx uses exactly the
same code, except for the preconditioner and metric mod-
ifications (due to qκ) presented here. Therefore we believe

FIG. 5. Variation of GC-SCF convergence using the default parameters deter-
mined above with system size: both with number of slab layers ranging from
5ML to 9ML with fixed vacuum spacing 15 a0 and with vacuum spacing rang-
ing from 15 a0 to 35 a0 with the 5ML slab. Convergence slows only marginally
with increasing system size, with either vacuum spacing or layer count. Each
calculation is for solvated Cu(111) charged to 1 V SHE in CANDLE elec-
trolyte, starting from the state of the corresponding converged neutral vacuum
calculation.

that the final convergence difficulty in GC-SCF is a prop-
erty of the algorithm itself, rather than an implementation
issue.

C. Convergence of the GC-AuxH method

The grand-canonical auxiliary Hamiltonian (GC-AuxH)
approach discussed in Section III B directly minimizes the total
free energy of the system without assuming any models for
physical properties of the system (such as dielectric response
models that are built into the SCF mixing schemes). This algo-
rithm contains a single parameter K, which weights the relative
contributions of the Kohn-Sham orbital and subspace Hamil-
tonian degrees of freedom in the conjugate-gradients search
direction for free energy minimization.

Figure 6 shows the dependence of iterative convergence
of the GC-AuxH algorithm on this preconditioning parame-
ter K for the same Cu(111) test problem considered above.
If the preconditioning factor K is held fixed, the rate of con-
vergence is sensitive to the choice of K, with the optimum
choice being K ≈ 0.3 for this system. With the preconditioner
auto-adjusted using the heuristic given by (29), we find that
indeed the convergence picks up from that of the sub-optimal
K = 1 towards that of the optimal value. More importantly,
we observe smooth exponential convergence of both the free
energy and the electron number, in contrast to our experiences
with the GC-SCF method.

Figure 7 further shows that this smooth convergence sus-
tains with changing system size. In particular, the convergence
is virtually unchanged with the thickness of the solvent regions,
but slows down slightly with increasing number of copper
layers in the surface slabs.

D. Comparison of algorithms

Having analyzed and optimized the convergence of the
GC-SCF and GC-AuxH methods, we now compare the per-
formance of these algorithms for a few different cases. In this
comparison, we also include the present state of the art: the

FIG. 6. Dependence of the convergence of the GC-AuxH variational-
minimize method on K, the preconditioning scale factor for subspace rotations
generated by the auxiliary Hamiltonian. Near-optimal convergence is obtained
when K is automatically adjusted using the heuristic given by (29), which
we use by default henceforth. Calculations are for solvated 5ML Cu(111) at
1 V SHE, starting from the corresponding neutral vacuum calculation, exactly
as in Figures 1–4. Note the smooth exponential convergence (without oscil-
lations in electron number and free energy) here, in contrast to the GC-SCF
case.
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FIG. 7. Variation of convergence of the GC-AuxH variational-minimize
method with Cu(111) system size (exactly analogous to Figure 5 for the GC-
SCF method). Convergence is invariant with vacuum spacing and slows down
only marginally with number of layers.

“Loop” method which uses a secant method to adjust the
number of electrons in an outer loop to match the specified
electron chemical potential.14 For a fair comparison, we use
the fixed-charge SCF method in the inner loops, because it
achieves the fastest convergence; this algorithm works equally
well with the AuxH method in the inner loop, but is then
marginally slower. In each test case, we start all three algo-
rithms from the same starting point: the converged state of
the corresponding neutral (fixed-charge) calculation. Differ-
ent test cases effectively perturb the potential by different
amounts, thereby testing the algorithms for a range of prox-
imities between initial and final states. Also, we now com-
pare the wall time between algorithms, because there is no
straightforward correspondence between GC-SCF cycles and
conjugate-gradient iterations of the GC-AuxH method. The
relative wall-time performance of these fairly distinct algo-
rithms will depend to an extent on details of code optimization
for each. However, there is no perfect metric for comparing
these algorithms and wall time suffices for a rough qualitative
comparison.

FIG. 8. Performance comparison of the new GC-SCF and GC-AuxH methods
with the previous state of the art: a “Loop” over fixed-charge calculations
(using the secant method to adjust the charge to match the potential). Both
new methods reach 10−7 Eh free energy accuracy in half the wall time of
the Loop method, but the GC-AuxH method is the clear winner with smooth
exponential convergence. Calculations here are for the 5ML Cu(111) slab at
1 V SHE, as before. Timings are measured on a single 32-core NERSC Cori
node in all cases.

First, Figure 8 compares the performance of the algo-
rithms for the 5-layer Cu(111) slab used in all the tests so
far. The spikes in the free energy seen in the Loop method are
the points where the electron number changes in the outer loop
and a new SCF convergence at fixed charge begins. Both the
GC-SCF and GC-AuxH methods are quite competitive, cutting
the time to convergence within 10−6 Eh in half compared to the
Loop method. Given the smooth convergence beyond 10−6 Eh

however, the GC-AuxH method is preferable over GC-SCF
for fixed potential calculations. Note that in the fixed-charge
case, when SCF converges smoothly, it often outperforms the
AuxH method as mentioned above. The advantage of the AuxH
and GC-AuxH methods is their stability on account of being
variational methods: the free energy is guaranteed to decrease
at every step. Consequently, the convergence difficulties of
the GC-SCF method make the variationally stable GC-AuxH
method relatively more attractive.

Next, we compare these algorithms for more complex
text cases. Figure 9 compares the convergence for a five-layer
Pt(111) slab fixed to a potential of µ = −0.171 Eh (0 V SHE).
At this potential, the surface of Pt(111) charges negatively,
and the CANDLE solvation model brings the cavity closer to
the electrons to capture the more effective solvation of negative
charges by liquid water. Additionally, the dielectric response of
platinum is more complex than copper due to the partially filled
d shell. Both of these factors make this system harder to con-
verge than the previous test case, and therefore the convergence
of the GC-AuxH method is no longer clearly a single expo-
nential. Despite this, both the direct grand-canonical methods
converge faster than the Loop method, with the GC-AuxH
method eking out an advantage in final convergence as before.

Finally, Figure 10 compares the convergence for chloride
anions adsorbed at one-third monolayer coverage, in a

√
3×
√

3
supercell of a five-layer Pt(111) slab. Despite the increased
complexity, the direct grand-canonical methods exhibit the
best convergence, edging out the Loop method by a factor
of four in wall time now, again with the smoothest con-
vergence for the GC-AuxH method. Due to the systematic

FIG. 9. Similar to Figure 8, but for a 5ML Pt(111) slab at 0 V SHE
(µ = −0.171 Eh). Platinum is neutral at ≈0.8 V SHE, so this corresponds to
negatively charging the slab, which activates CANDLE’s asymmetry correc-
tion. Additionally, platinum has d bands crossing the Fermi level in contrast to
copper which has occupied d bands. This calculation therefore explores a more
complicated charge vs. potential landscape, causing deviations from expo-
nential convergence, but the relative performance of the algorithms remains
similar.
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FIG. 10. Similar to Figures 8 and 9, but for a 5ML Pt(111) slab decorated
with a

√
3×
√

3 partial monolayer of adsorbed chloride anions (1/3 coverage)
at 0 V SHE. The increased complexity slows down the convergence of the
GC-SCF method, which also slows down the Loop over fixed-charge SCF
calculations, while the GC-AuxH method continues to exhibit rapid near-
exponential convergence with no charge oscillations, beating the Loop method
by a factor of 4 in time. All subsequent calculations of complex metal surfaces
with adsorbates therefore use the GC-AuxH method.

convergence advantage of the GC-AuxH method, we use it
for all remaining calculations in this work and recommend
it as the default general purpose algorithm for converging
electrochemical calculations.

In Sec. II and all calculations so far, we used Fermi smear-
ing where the electron occupations are given by the Fermi
function (6). Practical k-point meshes typically require the use
of a temperature T substantially higher than room temperature
(we used 0.01 Eh which is approximately ten times higher),
which could result in inaccurate free energies. Such errors can
be reduced substantially by changing the functional form of the
occupations and the electronic entropy, with the caveat that the
smearing width T no longer corresponds to an electron tem-
perature. Common modifications include Gaussian smearing,
where the Fermi functions are replaced with error functions,
and Cold smearing,45 where the functional form is chosen to
cancel the lowest order variation of the free energy with T (see
Ref. 45 for details).

FIG. 11. Comparison of the convergence of the GC-AuxH method for the
5ML Pt(111) slab at 0 V SHE using different smearing functions. Insets
show the variation of converged properties with smearing width. Cold smear-
ing45 substantially reduces the finite-width error in the free energy, and to
a lesser extent in the electron number, compared to Gaussian and Fermi
smearing. At the same width of 0.01 Eh, the GC-AuxH method with cold
smearing converges marginally slower than Gaussian or Fermi smearing, but
still faster than when using any of the smearing methods with a smaller width of
0.001 Eh.

Figure 11 compares the performance of the preferred GC-
AuxH method for various smearing methods. The insets show
the variation of the converged free energy and electron num-
ber with smearing width T. Gaussian smearing reduces the
coefficient of the quadratic T dependence compared to Fermi
smearing, while Cold smearing cancels the quadratic depen-
dence altogether, by design. The variation of electron number
with smearing width is also reduced by Cold smearing, but to a
lesser extent. Notice that the use of Cold smearing marginally
slows down the iterative convergence of the GC-AuxH method.
However, using Cold smearing at a high width of 0.01 Eh is still
faster than using any smearing method with the lower width
0.001 Eh that is close to room temperature (because of the far
denser Brillouin zone sampling required for smaller widths).
Therefore, it is still advantageous to use Cold smearing at ele-
vated smearing widths, and so we use Cold smearing with a
width of 0.01 Eh for the final demonstration below.

E. Under-potential deposition of Cu on Pt(111)

The application of sufficiently negative (reductive) poten-
tials on an electrode immersed in a solution containing metal
ions reduces those ions and results in bulk electro-deposition
of metal on the surface. Additionally, for many pairs of met-
als, a single monolayer of one metal deposits on a surface
of the other at an under potential, that is, at a potential less
favorable than for bulk deposition. This phenomenon of under-
potential deposition (UPD) has several technological applica-
tions since it enables precise synthesis of heterogeneous metal
interfaces. It also serves as an archetype for fundamental stud-
ies of electrochemical processes (see Ref. 46 for an extensive
review), which makes it a perfect example for demonstrating
our grand-canonical density-functional theory method.

The basic reason for underpotential deposition is that the
heterogeneous binding between the two metals is stronger than
the homogeneous binding of the depositing metal to itself.
Indeed, metal pairs that exhibit underpotential deposition also
display analogous phenomena in vapor adsorption.47 How-
ever, the process in solution is far more complicated and highly
sensitive to the composition of the solution because of com-
peting adsorbates,48 as well as to the structure of the electrode
surface.49

The UPD of copper on Pt(111) in the presence of chloride
anions is particularly interesting and the subject of consider-
able debate in the literature. Voltammetry for this system50

exhibits two well-separated under-potential peaks, as shown
in the background of Figure 12. Certain LEED and in situ

X-ray scattering studies of this system51 find evidence of a
2 × 2 bilayer of copper and chloride ions co-adsorbed on the
surface at potentials between the two peaks, suggesting that
one peak corresponds to the formation of a partial layer, and
the second peak to the formation of the full monolayer. In con-
trast, other studies50,52,53 do not find this signature and propose
that the additional peak arises from adsorption and desorption
of chloride ions alone.

To address this debate, we perform grand-canonical den-
sity functional theory calculations of various configurations
of copper and chlorine adsorbed on a 5-layer Pt(111) slab in√

3 ×
√

3 and 2 × 2 supercells. We determine the most stable
configurations at each potential (µ) and the potentials at which
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FIG. 12. Underpotential deposition of Cu on Pt(111) from an aqueous solu-
tion containing 10☞3 mol/l Cu2+ ions and 10☞4 mol/l Cl☞ ions. Calculated free
energies for various adsorbate configurations as a function of electrode poten-
tial are shown as calculated by explicit fixed-potential solvated calculations
in (a), and from vacuum calculations in (b), with the experimental voltam-
mogram50 shown for comparison. Solid red lines indicate no copper, purple
dotted lines indicate 2 × 2 partial copper monolayer, and blue dotted-dashed
lines indicate full copper monolayer. Thickness of the lines indicates Cl cov-
erage, ranging from no Cl (thinnest), 2 × 2 (1/4) coverage (intermediate) to√

3 ×
√

3 (1/3) coverage (thickest). Prominent configurations are sketched in
(c)-(f). Vacuum calculations in (b) predict only a single voltammetric peak
in disagreement with experiment. Explicit potential-dependent solvated cal-
culations in (a) predict two peaks in qualitative agreement with experiment
(∼0.1 V accuracy), with the second peak due to chloride desorption.50,52,53

The partial Cu monolayer (d) proposed by some51 is not predicted to be the
most stable configuration at any relevant potential.

transitions between configurations occur by comparing their
grand free energies. The relevant grand free energy of a config-
uration α containing Nα

Pt platinum atoms in the slab with Nα
Cu

copper and Nα
Cl chlorine atoms adsorbed at the surface within

the calculation cell is

Φ̃
α(µ) =

Φ
α(µ) − µPtN

α
Pt − µCuNα

Cu − µClN
α
Cl

N surf
Pt

, (30)

normalized by the number of surface platinum atoms N surf
Pt in

order to correctly compare energies of calculations in different
supercells. (N surf

Pt = 2 for the unit cell, 6 for the
√

3 ×
√

3
supercell, and 8 for the 2 × 2 supercell, accounting for the
top and bottom surfaces in the inversion-symmetric setup.)
Since no light atoms are present, we safely neglect changes in
vibrational contributions to the free energy between adsorbate
configurations.

Above, Φα(µ) is the free energy of adsorbate configu-
ration α calculated by fixed-potential DFT, which is grand
canonical with respect to the electrons at chemical potential
µ (related to the electrode potential by (14) as discussed at
the end of Section II B). Then, (30) calculates the free energy
Φ̃
α(µ) which is additionally grand canonical with respect to all

relevant atoms with chemical potentials µPt, µCu and µCl. Sev-
eral conventions are possible in defining the electron-grand-
canonical free energy Φ, depending on what electron number
we subtract: change from neutral value, total electron number,

or number of valence electrons in pseudopotential DFT calcu-
lations. The atom chemical potentials would then respectively
correspond to neutral atoms, bare nuclei, or pseudo-nuclei
(nuclei + core electrons in pseudopotential). The full grand
canonical free energy Φ̃ does not depend on this choice. In our
JDFTx implementation, we choose the last option above (num-
ber of valence electrons and correspondingly atom chemical
potentials of the pseudo-nuclei).

The bulk of the platinum electrode sets the Pt chemical
potential, µPt = EPt(s)− µNe

Pt(s), where EPt(s) is the DFT energy
of a bulk fcc Pt calculation with a single atom in the unit cell,
and Ne

Pt(s) is the number of valence electrons in that calcula-
tion. The second term here implements the electron counting
convention discussed above. Next, copper ions in solution set
µCu, but directly calculating the free energy of such ions using
solvation models is error-prone.11 So, instead, we use the DFT
calculated energy, ECu(s), of a bulk fcc Cu calculation (contain-
ing Ne

Cu(s) valence electrons) and relate it to the free energy of
the ion via the experimentally determined standard reduction
potential UCu2+→Cu(s) = 0.342 V SHE.54 This yields

µCu =
(

ECu(s) − µNe
Cu(s)

)

+ 2
(

µ − µSHE + eUCu2+→Cu(s)

)

+ kBT ln[Cu2+], (31)

where the second term accounts for the change from Cu(s)
to Cu2+ ions, and the final term accounts for change in ionic
concentration from the standard value of 1 mol/l to the current
value of [Cu2+] (in mol/l). Similarly, chlorine ions in solu-
tion set µCl, but to minimize DFT errors, we connect to the
DFT calculated energy, ECl(at), of an isolated chlorine atom
(containing Ne

Cl(at) valence electrons), via the experimentally

determined atomization energy ECl2→2Cl(at) = 242.6 kJ/mol,55

gas-phase entropy SCl2(g) = 223.1 J/mol K,54 and reduction
potential UCl2(g)→2Cl− = 1.358 V SHE.54 Specifically,

µCl =
(

ECl(at) − µNe
Cl(at)

)

− 1
2

(

ECl2→2Cl(at) + TSCl2(g)

)

−
(

µ − µSHE + eUCl2(g)→2Cl−
)

+ kBT ln[Cl−], (32)

where the second term accounts for the change from atomic
to gas-phase chlorine, the third term for the change to chlo-
ride ions, and the final term for the change in chloride ion
concentration to [Cl☞] (in mol/l).

Figure 12(a) shows the calculated grand free energies as
a function of electrode potential for a number of Cu and Cl
adsorbate configurations on the surface of Pt(111). At high
potentials, the most stable (lowest free energy) configura-
tion is 1/4 Cl coverage (Figure 12(f)), which transitions to
a clean Pt surface (Figure 12(e)) at a potential of 0.55 V
SHE. Upon further lowering the potential, the stable config-
uration transitions to a full monolayer of copper with 1/3
Cl coverage (Figure 12(c)) at a potential of 0.46 V SHE.
Experimentally, the two voltammogram peaks are at approxi-
mately (0.63± 0.04) and (0.51± 0.02) V SHE, averaging over
the forward and reverse direction sweeps. Therefore chlorine
desorption and full-copper-monolayer formation are plausible
explanations50,52,53 of the two peaks, with our first-principles
predictions reproducing well the peak spacing (0.09 eV ver-
sus 0.12 eV in experiment), and placing the absolute loca-
tions of the peaks to within 0.07 eV. Similar accuracy has
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been achieved in comparison to experiment for onset poten-
tials and product selectivity in CO reduction on Cu(111)15,56

and the oxygen evolution reaction on IrO2(110)57 in con-
current work using exactly the same calculation protocol as
here: fixed-potential DFT in JDFTx using the PBE exchange-
correlation functional and the CANDLE solvation model. The
partial 2 × 2 monolayer of copper (Figure 12(d)) proposed
by others51 as the reason for the second peak is not the
most stable configuration in our calculations at any potential,
lying a significant 0.3 eV above the other phases at relevant
potentials.

For comparison, Figure 12(b) shows the analogous results
that would be obtained using only conventional vacuum calcu-
lations. In the above formalism, this corresponds to assuming
Φ
α(µ) ≈ Aα − µNα

e , where Aα is the Helmholtz energy from a
neutral vacuum DFT calculation of configuration α containing
Nα

e valence electrons. This approximation results in a single
transition directly from the Cl-covered Pt surface to the one
with a copper monolayer, predicting a single voltammogram
peak in disagreement with experiment. Accurate predictions
for electrochemical systems therefore require treating charged
configurations stabilized by the electrolyte at relevant elec-
tron potentials, now easily accomplished with the methods
and algorithms introduced in this work.

V. CONCLUSIONS

This work introduces algorithms for directly converging
DFT calculations in the grand-canonical ensemble of elec-
trons, where the number of electrons adjusts to maintain the
system at constant electron chemical potential, while ionic
response in a continuum solvation model of electrolyte keeps
the system neutral. We show that, with appropriate modifi-
cations, grand canonical versions of both the self-consistent
field (GC-SCF) method and direct free-energy minimization
with auxiliary Hamiltonians (GC-AuxH) method are able to
rapidly converge the grand free energy of electrons. This sub-
stantially improves upon the current state of the art of running
an outer loop over conventional fixed-charge DFT calcula-
tions. With detailed tests of the convergence of all these algo-
rithms, we show that the GC-AuxH method is the most suitable
default choice exhibiting smooth exponential convergence to
the minimum.

Grand-canonical DFT directly mimics the experimental
condition in electrochemical systems, where electrode poten-
tial sets the chemical potential of electrons, and the number of
electrons at the electrode surface (including adsorbates in the
electrochemical interface) changes continuously in response.
Describing this change in charge at the surface plays an
important role in accurately modeling several electrochemical
phenomena.12–15 Here, we showcase the new algorithms by
analyzing the under-potential deposition (UPD) of copper on
platinum in an electrolyte containing chloride ions. We resolve
an old debate about the identity of a second under-potential
peak, showing that partial copper monolayers are not plausible
and that the second peak is due to desorption of chloride ions.
We expect the new methods presented here to substantially
advance the realistic treatment of electrochemical phenomena
in first principles calculations.
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