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Single-layer materials represent a new materials class with properties that are potentially transfor-
mative for applications in nanoelectronics and solar energy harvesting. With the goal of discovering
novel two-dimensional (2D) materials with unusual compositions and structures, we have developed
a grand canonical evolutionary algorithm that searches the structure and composition space while
constraining the thickness of the structures. Coupling the algorithm to first principles total energy
methods, we show that this approach can successfully identify known 2D materials and find novel
low-energy ones. We present the details of the algorithm, including suitable objective functions, and
illustrate its potential with a study of the Sn-S and C-Si binary materials systems. The algorithm
identifies several new 2D structures of InP, recovers known 2D structures in the binary Sn-S and
C-Si systems, and finds two new 1D Si defects in graphene with formation energies below that of
isolated substitutional Si atoms.

I. INTRODUCTION

Two-dimensional (2D) materials posses properties that
are distinct from those of their bulk counterparts. For
example, single-layer MoS2 exhibits a wider and direct
band gap than bulk MoS2,

1,2 and single-layer SnS2 has
interesting photocatalytic properties lacked by the bulk
material.3,4 Such unique physical properties motivate in-
tense research interest in the field of 2D materials in the
last decade. Proposed applications for 2D materials in-
clude optical sensors,1 nanoelectronics,5 and photocata-
lysts for water splitting.3,4,6

Several new single-layer materials have been computa-
tionally predicted in recent years.7–10 In one common ap-
proach to 2D structure prediction, which relies on chem-
ical intuition and substitution, the lattice sites of known
2D crystal structures are decorated with different atomic
species.9 Another method involves mining databases of
bulk crystal structures to identify those with layered mo-
tifs, from which a single layer could potentially be exfoli-
ated.10 These approaches are quite useful, but since they
are based on previously known structures, they make as-
sumptions about the structures and compositions of 2D
materials. These assumptions may unnecessarily con-
strain the search, leaving other potentially synthesizable
single-layer materials awaiting discovery.
Recently, much practical success in the prediction of

the structures of clusters and three-dimensional crystals
has been achieved with global optimization techniques,
such as evolutionary algorithms11–17 and particle swarm
optimization.18 Some of these methods have been ex-
tended to search for 2D materials. Bahmann and Kortus
developed an evolutionary algorithm that can search for
2D crystals,19 and Zhou et al. extended an evolutionary
algorithm to search for 2D structures.20 Both search for
structures with fixed stoichiometry and number of atoms
per cell. Luo et al. extended a particle swarm opti-
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FIG. 1. Layer thicknesses of several 2D structures: (a)
graphene with a thickness of zero, (b) MoS2, (c) PbO, and
(d) the slightly thicker structure of Bi2Te3. The structures
are shown from the side, and the layer thickness is the maxi-
mum vertical distance between atoms in the cell.

mization algorithm to search for fixed stoichiometry 2D
structures that are both completely planar21 and have
finite layer thicknesses.22 In this work, we extend our
grand canonical evolutionary algorithm13 to enable un-
biased searching for the compositions and structures of
novel 2D materials with low formation energies and finite
layer thicknesses.

The details of the grand canonical evolutionary algo-
rithm for 2D materials are described in Sec. II. In Sec. III
we demonstrate that the algorithm enables the predic-
tion of novel 2D materials structures by applying it to a
system at fixed composition (2D-InP) in Sec. III A and
then to the composition space of the binary Sn-S and
C-Si materials systems in Sec. III B and III C. The al-
gorithm successfully identifies the known low-energy 2D
structures in these materials systems. In addition, it dis-
covers several new 2D structures of InP and a novel 2D
structure of C6Si with formation energy below that of
previously known 2D structures in this system.
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II. METHODS

A. Search Space and Objective Function

The search for novel 2D materials requires the defi-
nition of a search space and an objective function. We
define a 2D material to be a crystal with a structure
that is periodic in two dimensions and has a finite ex-
tent in the third dimension. The layer thickness of a
2D material is the maximum vertical distance between
atoms in the structure, as illustrated in Fig. 1. Two-
dimensional materials display a range of layer thick-
nesses, from completely planar structures like graphene
and hexagonal boron nitride to thicker structures with
multiple sublayers, such as metal dichalcogenides (three
sublayers), group-IV monochalcogenides (four sublayers),
and Bi2Te3 (five sublayers).1,2,23,24 To include 2D struc-
tures with different layer thicknesses in our search, we
employ a finite-thickness constraint. Hence, the search
space for 2D materials consists of the configuration space
of all materials that are periodic in two dimensions and
exhibit a finite thickness in the third dimension.
For the objective function, we propose the formation

energy of a 2D material relative to the bulk ground state
phase, as defined by

∆Ef =
E2D

N2D

−
E3D

N3D

, (1)

where E2D and E3D are the total energies of the 2D and
3D structures, respectively, and N2D and N3D are the
numbers of atoms in the 2D and 3D unit cells.25 Com-
mon to all synthesized free-standing 2D materials is a low
formation energy with respect to the bulk ground state
phase. Three well-known 2D materials illustrate this
point: the formation energy of graphene is only about
56 meV/atom relative to graphite,26 that of single-layer
MoS2 is 77 meV/atom,27 and we calculated the forma-
tion energy of phosphorene to be 112 meV/atom relative
to bulk phosphorous.
Fig. 2 summarizes the formation energies of many

2D materials, both predicted and synthesized. We ob-
serve that all 2D materials that have been synthesized
as free-standing films posses formation energies less than
200 meV/atom.6 Therefore, we take this as an empir-
ical rule of thumb to determine whether a 2D material
has a realistic chance of being experimentally synthesized
without the need for stabilization by a substrate.28,29 In
Sec. III A, we discuss an alternative choice of objective
function for 2D structure prediction.

B. 2D Evolutionary Algorithm

To search for low-energy 2D crystal structures, we
modify our grand canonical genetic algorithm for struc-
ture and phase prediction (GASP)13 code by constrain-
ing the layer thickness of the crystal structures consid-
ered by the algorithm. In the following, we provide a

FIG. 2. Calculated formation energies relative to the bulk of
several 2D materials, both predicted and synthesized. All 2D
materials that have been synthesized as free-standing films
have formation energies below 200 meV/atom, illustrated by
the horizontal dashed line. The formation energies were cal-
culated as follows: graphene26 and phosphorene30 with quan-
tum Monte Carlo; BN,31 MoS2,

31 MoSe2,
31 WSe2,

31 NbTe2
31

and PbO31 with the RPA method; GaSe,32 CrS2,
33 SnS2

4 and
SnSe23 with the vdW-DF-optB88 van der Waals functional;
CdO,34 CaO,34 ZnO,34 GaAs,35 GaSb,35 InAs,35 GaN35 and
AlN35 with the PBE functional, and silicene25 with the LDA
exchange correlation functional.

brief description of the general evolutionary algorithm,
and then focus in detail on the changes made for the 2D
search. For a complete description of GASP and some
of its applications, see Refs. 13, 17, 36, and 37. The
GASP code is freely available under the GPL v3 license
at http://gasp.mse.ufl.edu.

Overview. The evolutionary algorithm starts by gen-
erating a population of random structures that repre-
sent a broad sampling of the solution space. Structures
are evaluated based on their relative formation energies
per atom, with lower energy solutions being more fa-
vorable.14 An offspring generation is then populated by
probabilistically selecting lower energy structures to “re-
produce” through biologically inspired operators such as
mutation and mating. The mutation operator randomly
perturbs the atomic positions and lattice vectors of the
parent to create an offspring structure, and the mating
operator combines spatially coherent pieces of two par-
ent structures,12,15,16,38–41 as illustrated in Fig. 3. When
enough child structures have been created, they are eval-
uated for their fitness and then make an offspring gener-
ation of their own using the same evolutionary operators.
This process continues until some user-defined stopping
criteria are met. Since better solutions are selected more
frequently to reproduce, structural traits associated with
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FIG. 3. Illustration of the mating operator. Sections are
sliced from each parent structure, shown on the left, and com-
bined to form an offspring structure. Supercells are shown for
clarity.

low-energy crystals are propagated in subsequent gener-
ations.

Constraints. It is generally advantageous to apply some
loose constraints to the parameters of structures consid-
ered by the algorithm. Constraints can guide the search
for structures with particular characteristics of interest,
and they can apply prior knowledge about which struc-
tures are likely to have good objective function values.
For example, we know that crystal structures with atoms
quite near to each other (less than about 75% of the equi-
librium bond length) will have very high formation en-
ergies, and this knowledge is put to use by enforcing a
constraint on the minimum interatomic distance. Con-
straints on the maximum and minimum lattice vector
lengths can help prevent structures with unphysically
short lattice vectors or unusually large or small aspect
ratios from entering the population.42 The composition,
number of atoms in the unit cell, lattice vector angles
and symmetries may also be constrained.

Structure representation. An evolutionary structure
search will be more successful if structures are repre-
sented in the computer in a standardized fashion. This
is because the mating operator is more likely to produce
viable offspring if the parent structures are represented
similarly.13 In addition, it is easier to identify duplicate
structures if each structure has a unique representation.
The application of constraints (discussed above) to the
lattice vector lengths and angles is one way to help stan-
dardize how structures are represented. Another useful
method is the Niggli cell reduction algorithm,43 which
essentially transforms the representation of a structure
such that its unit cell is closest to a cube.

Modifications for 2D structure search. To facilitate
searching for 2D structures, we make three modifications
to our evolutionary algorithm: (i) We impose a constraint
on the layer thickness of structures, (ii) we modify the
structure representation to be suitable for 2D materials,
and (iii) we add a vacuum layer to the structures for the
energy evaluation. Fig. 4 illustrates these modifications
made to GASP to search for 2D structures.

First, a new constraint is imposed on the layer thick-
ness of structures, which limits the search to the 2D
regime. This constraint is an input parameter, so the
user may change it to search for thinner or thicker struc-
tures as considered appropriate for the given material
system. The algorithm checks all structures it generates

against this new constraint, both before and after struc-
tural relaxation.
The second modification involves how 2D structures

are represented. Once a new structure is created, the
algorithm rotates the cell such that lattice vector ~a is

parallel to the Cartesian x-axis and lattice vector ~b lies
in the (x, y) plane. Since 2D materials are not periodic in
the third dimension and have a finite thickness, no lattice
vector along the third dimension is required. However,
for compatibility with energy codes that are designed for
3D crystal structures, it is convenient to select a ~c lattice

vector that is normal to the (~a,~b) plane. This is achieved
by replacing the ~c lattice vector with its component along
the Cartesian z axis. The ~c lattice vector is fixed during
structural relaxation to reduce the computational cost of
the relaxation, avoid collapse of the vacuum region, and
to prevent a sheet from sliding relative to its periodic
images during relaxation, which could lead to spurious
minima.
Our choice of the ~c lattice vector also improves the suc-

cess of the mating operator, which combines slices of unit
cells that are taken parallel to one of the cell facets.13,17

When the ~c lattice vector is normal to the 2D material
structure, the slice plane is always either parallel or per-
pendicular to the plane of the 2D sheet in both parent
structures, increasing the chances that the result will also
correspond to a valid 2D structure.
When applying the Niggli cell reduction43 to 2D struc-

tures, the reduced cell must correspond to a 2D structure.
This means that the algorithm should only transform the

~a and ~b lattice vectors and, furthermore, ~a and ~b should
remain in the x-y plane. To achieve this in practice, we
simply increase the magnitude of the ~c lattice vector to
an arbitrary large value before passing the cell to the
Niggli reduction algorithm. After reduction, the ~c lattice
vector is returned to its original magnitude.
The final modification is related to the evaluation of

the energy of the 2D structures using codes that are de-
signed for 3D bulk structures and employ periodic bound-
ary conditions. Before passing a newly created 2D struc-
ture to an external code for relaxation and energy calcu-
lation, the algorithm sets the ~c lattice parameter of the
unit cell such that the spacing between periodic images
of the 2D material are sufficiently separated by vacuum
to prevents spurious interactions between the periodic
images.

C. Density Functional Calculations

To accurately relax the 2D candidate structures and
determine their energy, we perform density functional
theory (DFT) calculations with the Vienna ab initio sim-
ulation package (VASP).44,45 The interactions between
valence electrons and ionic cores are described by the
projector augmented-wave (PAW) method.46,47 The core
electron states described by the PAW potentials are 1s2

for C, 1s22s22p6 for Si, P, and S, [Kr]4d10 for Sn, and
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FIG. 4. Modifications made to GASP to prepare a candidate 2D structure for an energy calculation. First the structure is
rotated to lie within the x-y plane and a ~c lattice vector normal to the plane is chosen. The algorithm then applies Niggli cell
reduction to obtain the most cubic representation of the structure. The reduced structure is checked against the constraints,
including the layer thickness constraint. If it passes, vacuum padding is added to the cell before it is relaxed and its energy
evaluated by an external code. Afterwards, the vacuum padding is removed from the relaxed cell, Niggli cell reduction is
applied, and the constraints are checked again before it is added to the offspring generation.

TABLE I. DFT parameters to converge the energy to within
1 meV/atom for the three materials systems under consider-
ation.

System Cutoff energy k-points density Vacuum padding
(eV) (Å) (Å)

InP 300 35 16
Sn-S 550 55 12
C-Si 500 50 12

[Kr] for In. Tab. I summarizes the values of the DFT pa-
rameters used for the three considered materials systems.
For each system, the energy was converged to within 1
meV/atom for each parameter relative to the energy ob-
tained with a maximum reference value of the parame-
ter. The maximum reference values for the cutoff energy,
plane-wave basis set and vertical vacuum padding were
700 eV, a k-point density of 70 per Å−1, and 30 Å, re-
spectively.
All structural relaxations during the evolutionary al-

gorithm search used the Perdew-Burke-Ernzerhof (PBE)
approximation for the exchange-correlation functional.48

Following the structure search, we perform structural
relaxations and calculate the energies of all 2D struc-
tures found by the algorithm, as well as of the known
ground-state bulk structures, using the computationally
more demanding non-local vdW-DF-optB88 exchange-
correlation functional.49–51 This accurately accounts for
the dispersion interactions that are important for the lay-
ered bulk structures of some of the materials. The ~c lat-
tice vector is kept fixed during all structural relaxations.
For all structure searches, the number of atoms in

the simulation cell was allowed to vary. Equilibrium
bond lengths for the minimum interatomic distance con-
straints, as discussed in Sec. II B, are obtained from the
relaxed ground state bulk structures in each system.
For the InP 2D structure searches, we fixed the stoi-

chiometry of all structures encountered in the search to
In:P = 1:1 and employed an upper bound of 12 atoms
in the cell to limit the size of the search space and the

computational cost of the DFT calculations. To explore
the energy landscape as a function of layer thickness, we
carried out a total of five evolutionary algorithm struc-
ture searches for InP, each with a successively larger
layer thickness constraint, ranging from 2 to 6 Å. In
each search, the algorithm was stopped after 500 suc-
cessful structural relaxations and subsequent energy cal-
culations.
For the Sn-S and C-Si structure searches, we allowed

the stoichiometry to vary between the pure elements, and
1000 relaxations and energy calculations were performed
in the structure search for each of these materials sys-
tems. For the Sn-S search, we chose a layer thickness
constraint of 4 Å, which is slightly larger than the layer
thicknesses of the known 2D structures in this system.
Structures were permitted with up to 15 atoms in the
cell.
For the C-Si search, we used a fairly conservative layer

thickness constraint of 2 Å because the previously pre-
dicted 2D structures in this system have all been nearly
or completely planar. The known elemental 2D struc-
tures of planar hexagonal graphene and buckled hexago-
nal silicene, with layer thicknesses of 0.00 Å and 0.45 Å,
respectively, were provided to the algorithm in the initial
generation. Up to 12 atoms per cell were allowed in the
C-Si search.

III. RESULTS AND DISCUSSION

A. Indium Phosphide

Bulk indium phosphide is a direct gap semiconductor
and occurs in the zincblende crystal structure.53 A novel
tetragonal structure of 2D InP was recently proposed by
Zhuang et al., and its formation energy was calculated
to be comparable to that of the 2D buckled hexagonal
structure previously proposed by Şahin et al.35,54 Tong
et al.55 predicted a new 2D structure of InP to be lower
in energy than both the buckled hexagonal and tetrag-
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FIG. 5. Structure search for 2D InP. In both plots, the small blue diamonds indicate 2D structures found by GASP, and the
larger red symbols correspond to 2D structures that were obtained by taking slabs from high symmetry planes of the bulk InP
structure. The large red star near the center of each plot represents the previously proposed tetragonal structure.35 In (a), the
formation energies of the 2D structures with respect to the bulk phase is plotted versus their layer thicknesses. The blue line
connects the lowest energy structures found by the algorithm at various thicknesses. Several structures that lie on this line are
labeled (i) through (v) in both plots. In (b), the surface energies of the 2D structures are plotted versus their area densities.
The three horizontal dashed lines designate the calculated surface energies of three facets of the bulk material. Top and side
views of the low-energy 2D structures (i) to (vi) found by the algorithm are shown below the plots.

onal structure, and Susuki56 recently reported a novel
2D structure of InP with the same layer thickness as the
structure reported by Tong et al. and nearly degenerate
formation energy. To determine if other low-energy 2D
InP structures exist, we employ the evolutionary algo-
rithm to do several 2D structure searches with varying
layer thickness constraints. Fig. 5 displays the results of
these 2D structure searches.
Since we are searching for 2D materials, we can treat

the layer thickness as a second objective function that we
seek to minimize (that is, in addition to the formation
energy). The set of solutions that optimize the trade-
off between layer thickness and formation energy form
the Pareto front for this system. These structures are
connected by a blue line in Fig. 5(a), which shows the
formation energy versus layer thickness.
Several low formation energy structures that lie on the

Pareto front are shown in Fig. 5 below the plots, labeled
(i) through (vi). The buckled hexagonal structure shown
in (i) was previously proposed by Şahin et al.54 and was
also recovered by relaxing a monolayer from the (111)
plane of the bulk crystal. The orthorhombic structure
shown in (ii) has been reported by Tong et al.55 and is

also obtained by relaxing a bilayer from the (110) plane
of the bulk crystal. The structure labeled (iii) has or-
thorhombic symmetry and 8 atoms in the cell, and the
hexagonal bilayer structure in (iv) is equivalent to two
stacked buckled hexagonal structures, with one inverted.
The triclinic structure shown in (v) has 8 atoms per cell,
and (vi) is a more complex bilayer structure with mono-
clinic symmetry and 12 atoms in the cell. Table II con-
tains the parameters for these six structures. The previ-
ously proposed tetragonal structure35 is also shown, and
it is located above the Pareto front.

We compare the results of the structure searches with
an alternative approach to generating candidate 2D ma-
terials, in which thin slabs from the bulk structure are
relaxed. Slabs of the bulk zincblende structure from the
(100), (110) and (111) planes were padded with vacuum
and relaxed, and the resulting 2D structures are shown
as red symbols in Fig. 5. The low energy of several of the
relaxed slabs of the bulk material shows that this simple
approach can efficiently provide useful candidates for the
prediction of novel 2D structures – it recovered two low
formation energy structures lying on the Pareto front of
this system. However, this technique misses the lowest
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TABLE II. Structural parameters and formation energies of six low-energy 2D InP materials and the lowest energy C-Si material
found by the evolutionary algorithm. We have used 3D space groups to describe these finite-thickness 2D structures that lack
periodicity in the direction normal to the 2D sheet. In the representations given here, the ~c lattice vector is normal to the plane
of the 2D sheet. Symmetry information was obtained with the FINDSYM software package.52

Space group a (Å) b (Å) c (Å) Atomic positions ∆Ef (meV/atom)
InP (i) P3m1 (156) 4.209 4.209 3.146 In 1(b) z = −0.413 571

P 1(c) z = 0.413
InP (ii) Pmn21 (31) 4.095 6.057 5.210 In 2(a) y = 0.290, z = −0.447 484

P 2(a) y = −0.388, z = 0.250
InP (iii) Abm2 (39) 4.902 6.770 5.547 In 4(c) y = 0.214, z = 0.299 421

P 4(c) y = 0.340, z = −0.234
InP (iv) P 3̄m1 (164) 4.240 4.240 6.317 In 2(d) z = 0.322 356

P 2(d) z = −0.206
InP (v) P -1 (2) 5.039 5.979 7.414 In 2(i) x = 0.459, y = −0.316, z = −0.175 322

In 2(i) x = 0.461, y = 0.179, z = −0.186
P 2(i) x = −0.047, y = 0.424, z = −0.374
P 2(i) x = −0.209, y = 0.165, z = −0.488

InP (vi) C2/m (12) 7.115 12.572 8.278 In 8(j) x = 0.322, y = 0.351, z = −0.343 310
In 4(i) x = 0.375, z = −0.244
P 8(j) x = 0.311, y = 0.341, z = 0.335
P 4(i) x = 0.289, z = 0.157

C6Si (ii) Cmm2 (35) 16.600 2.456 2.842 C 4(d) x = 0.400, z = 0.404 414
C 4(d) x = −0.229, z = 0.282
C 4(d) x = −0.142, z = 0.346
Si 2(b) z = −0.282

energy structures available at higher thicknesses, labeled
(iii) - (vi) in Fig. 5(a).
As can be seen in Fig. 5(a), the lowest formation en-

ergy found by the algorithm continuously decreases as
the layer thickness increases. In other words, thicker
slabs tend to be thermodynamically favored, and the
bulk structure is the thermodynamic ground state. We
expect most materials systems to follow this general pat-
tern. For this reason, formation energy relative to the
bulk is not an ideal objective function when searching for
physically-realizable 2D materials, and we must enforce
a layer thickness constraint (see Sec. II B) to prevent the
algorithm from finding ever-thicker structures.
A possible solution to this issue is to use the surface

energy of 2D structures as the objective function. We
define the surface energy of a 2D material relative to the
energy of the lowest-energy bulk material with the same
composition,

γ =
N2D

2A
∆Ef , (2)

where N2D is the number of atoms in the 2D cell, A =

|~a×~b| is area of the (~a,~b) facet of the 2D cell and ∆Ef is
the formation energy relative to the bulk of the 2D ma-
terial. Our definition of surface energy is motivated by
considering slabs cut from a bulk crystal. For thick slabs,
γ corresponds to the surface energy of the bulk material.
For thinner slabs (with layer thickness less than about 10
Å), surface reconstructions are no longer constrained to
match the underlying bulk structure, and additional re-
constructions can occur through the interactions between
the top and bottom surfaces. The 2D structure with

the most optimal objective function value, as defined in
Eq. 2, corresponds to the lowest energy reconstruction.
Fig. 5(b) shows the surface energies of all 2D InP struc-

tures found by the algorithm versus their area densities.
The choice of area density is motivated by experimen-
tal considerations as it is an experimentally accessible
growth parameter, in contrast to the layer thickness. For
this reason, and to provide an additional perspective of
the 2D InP structures, we plot the surface energy as a
function of area density rather than layer thickness. First
of all, the six low-energy structures, (i) - (vi), also display
low surface energies. Second, as can be seen in the figure,
there are two minimums in surface energy with respect to
area density, one around 0.14 atoms/Å2 and a second one
at about 0.27 atoms/Å2. The structures near the low-
density minimum correspond to single-layer structures,
while the higher-density minimum is composed of struc-
tures that are better described as bilayer structures.
We observe that the lowest surface energies in Fig. 5(b)

are about 40 meV/Å2, which is roughly four times the
values calculated by Björkman et al. for many transition
metal dichalcogenides, whose bulk structures comprise
weakly bonded layers.31 The structure of bulk InP forms
a 3D bonded network and lacks layered motifs, leading to
the high surface energies of the 2D structures. The high
formation and surface energies of the 2D InP structures
considered here indicate that it is unlikely that these 2D
materials could be synthesized as free-standing films,6

although stabilization on substrates may be feasible.28

Overall, the surface energy provides an alternative ob-
jective function that does not require imposing a thick-
ness constraint during the evolutionary algorithm search



7

(iv) SnS2!

(iii) SnS!(i) LB Sn! (ii) HB Sn!

(v) S!

FIG. 6. Results of the search for 2D structures in the Sn-S
system. The black circles denote the ground state bulk struc-
tures, and the lines connecting them form the convex hull for
the bulk system. The light blue shading indicates the region
less than 200 meV/atom above the bulk convex hull. The
blue diamonds denote 2D structures found by the evolution-
ary algorithm, and the blue line segments form the convex
hull for the 2D structures. The red diamonds, labeled (i) -
(iv), denote 2D structures that have previously been reported
in the literature. Top and side views of the structures labeled
in the plot are shown below.

for 2D materials. This new objective function could be
extended to variable composition 2D structure searches
as well.

B. Tin-Sulfur 2D Phase Diagram

The grand canonical evolutionary algorithm enables
the search for both composition and structure of un-
known materials. To test this capability, we apply the
algorithm to the binary Sn-S system, which exhibits two
previously studied 2D materials, SnS and SnS2, at in-
termediate composition. A two-dimensional structure
of SnS2 with potential application as a photocatalyst
for water splitting has recently been synthesized by Sun

et al.3 and computationally characterized by Zhuang et

al.4 Tritsaris et al. and Singh et al. predicted the
electronic properties of single-layer SnS, and calculated
the binding energy between adjacent layers to be only
56 meV per unit cell57 and the formation energy to be
144 meV/atom.23

To find the lowest energy structures across the compo-
sition range, we use the phase diagram searching mode
of the evolutionary algorithm, as described by Tipton et

al.13 Two main modifications to the algorithm are re-
quired to search for low-energy structures and composi-
tions across a phase diagram. First we permit structures
with arbitrary stoichiometries in the search. Second, the
objective function is replaced; instead of using the en-
ergy per atom, the objective function is now defined as a
structure’s vertical distance from the lowest convex hull
known to the algorithm.
Fig. 6 shows the energies of the 2D structures in the

Sn-S system found by the evolutionary algorithm rela-
tive to the energies of the ground state structures of bulk
Sn and S. To visualize the formation energy of the 2D
structures with respect to the bulk Sn-S phases at all
compositions, the convex hull of the bulk structures is
shown as well. The evolutionary algorithm recovers both
the high58 and low59,60 buckled hexagonal structures of
stanene, labeled (i) and (ii), respectively. The known 2D
structures of SnS and SnS2 were also recovered by the al-
gorithm. 2D SnS occurs in the distorted rocksalt struc-
ture23,57 and 2D SnS2 displays the 1T structure com-
mon to many transition-metal dichalcogenides.4 These
two structures have the lowest formation energy relative
to the bulk phase of any of the 2D structures found by the
algorithm in this system. The lowest energy structure of
pure S found by the algorithm is not a 2D structure at
all, but rather consists of rows of 1D polymeric chains
lying in a plane. This structure is labeled (v) in Fig. 6.

C. Carbon-Silicon 2D Phase Diagram

Graphene has been the subject of intense research since
it was first successfully synthesized by Novoselov et al.61

Two-dimensional silicon, or silicene, has also garnered
attention more recently.62–65 In addition, nanosheets of
SiC have been experimentally reported,66 and two dif-
ferent structures of buckled SiC monolayers have been
predicted by Menon et al.67 Li et al.68 and Zhou et al.69

have predicted completely planar structures of single-
layer SiC2. Because of the potential existence of several
2D structures in the C-Si system, we studied it using a
2D phase diagram search. We seeded the algorithm only
with the known structures of planar hexagonal graphene
and buckled hexagonal silicene in the initial generation.
No other known 2D structures were provided.
Fig. 7 shows the energies of the 2D structures in the

C-Si system found by the evolutionary algorithm relative
to the energies of the ground state structures of bulk C
and Si. Similar to Fig. 6 for the Sn-S system, we show the
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(i) C! (ii) C6Si! (iii) C2Si!

(iv) C2Si! (v) CSi! (vi) CSi! (vii) Si!

FIG. 7. Results of the search for 2D structures in the C-Si
system. The symbols have the same meanings as in Fig. 6.
The structures labeled (i) - (vii) in the plot are illustrated
below. For the completely planar structures (i) and (iii)-(vi),
side views are omitted.

convex hull of the bulk and 2D C-Si structures. Planar
hexagonal graphene is labeled (i). The lowest energy C-
Si structure found by the algorithm, labeled (ii), consists
of nanoribbons of graphene joined by rows of Si atoms.
The parameters for this structure are given in Table II.

The structures labeled (iii) - (vi) have all been previ-
ously reported in the literature and were all recovered by
our evolutionary algorithm. Labeled (iii) is a structure of
C2Si, which consists of Si atoms bonded to four C atoms
in a plane; this structure was predicted by Li et al.68 A
lower energy planar hexagonal structure of C2Si, labeled
(iv), was predicted by Zhou et al.69 A planar hexagonal
structure of CSi is labeled (v); Menon et al.67 predicted a
slightly buckled version of this structure. We found that
the buckled version does not correspond to a local mini-
mum in the energy landscape defined by the Hamiltonian
(VASP-PBE) used in our study. Another lower energy
planar hexagonal structure of CSi, consisting of alternat-
ing C and Si atoms, is labeled (vi); Lin66 reported the
synthesis of nanoflakes consisting of a few layers of this
structure. The structure of buckled hexagonal silicene is
labeled (vii).

(a)! (b)! (c)!

FIG. 8. Examples of three types of Si defects in graphene
found by the evolutionary algorithm. The structures in
(a) and (b) are completely planar and can be described as
graphene with substitutional Si atoms. In (a), the substitu-
tional Si atoms are located as far from each other as possible,
while in (b) they are arranged in rows. In (c), the defect con-
sists of 1D chains of four-fold coordinated Si atoms that are
bonded to each other and two C atoms, with a slight distor-
tion of the planarity of the graphene sheet.

With the exception of graphene, all of the 2D struc-
tures shown in Fig. 7 lie at least 400 meV/atom above the
convex hull of the bulk system. We also note that the con-
vex hull for 2D structures in this system is significantly
skewed with respect to the bulk convex hull. Compar-
ing the calculated formation energies of the structures at
the endpoints of the 2D convex hull illustrates this point:
graphene has a formation energy of only 69 meV/atom,
while silicene has a formation energy of 754 meV/atom.
Due to this gradient in thermodynamic instability across
the composition range, we predict that carbon-rich 2D
structures in this system hold the most promise for ex-
perimental synthesis.
Examining more closely the carbon-rich 2D structures

found by the evolutionary algorithm, we identify three
families of low-energy structures in this region of the
phase diagram; representative members are illustrated in
Fig. 8. Each of the three families corresponds to a differ-
ent Si defect in graphene, with the members of a family
having different defect densities. Fig. 8(a) and (b) shows
that the first two defects are substitutional Si atoms, ei-
ther isolated or arranged in rows. Fig. 8(c) shows that
the third defect consists of 1D chains of four-fold coordi-
nated Si atoms; each Si atoms is bonded to two other Si
atoms along the straight chain and two C atoms. This de-
fect interrupts the hexagonal graphene lattice and leads
to out-of-plane distortions.
To analyze the formation of these defects, we consider

the defect formation reaction

Cn + Sim ⇋ CnSim, (3)

where Cn represents n carbon atoms forming graphene,
Sim represents m silicon atoms forming bulk diamond cu-
bic silicon, and CnSim stands for the defective graphene
structure, containing n carbon atoms and m silicon
atoms. Given the reaction above, we determine the de-
fect formation energy per Si atom as

∆E
f
def =

E(CnSim)−mE(Si)− nE(C)

m
, (4)
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FIG. 9. Defect formation energies per Si atom for three types
of defects found by the evolutionary algorithm in graphene,
as a function of Si concentration.

where E(CnSim) is the total energy of the defective
graphene structure, E(Si) is the energy per atom of bulk
silicon, and E(C) is the energy per atom of graphene.
Fig. 9 shows the formation energies per Si atom as a

function of Si fraction for the three types of defects in
graphene identified with the evolutionary algorithm. Us-
ing the leftmost two data points in each curve, we esti-
mate the formation energies of the isolated defects by lin-
early extrapolating to zero Si fraction. The resulting es-
timates of the defect formation energies are 4.4 eV/Si for
an isolated substitutional Si atom, 3.6 eV/Si for a row of
substitutional Si atoms, and 1.8 eV/Si for a chain of four-
fold coordinated Si atoms. Interestingly, the formation
energies of both 1D Si defects are lower than that of iso-
lated Si substitutions, confirming the previously observed
tendency of Si defect atoms to cluster in graphene.70 In
addition, the 1D defect formed by a chain of four-fold co-
ordinated Si atoms exhibits significantly lower formation
energy than the substitutional Si defects. These results
demonstrate that the evolutionary algorithm can be em-
ployed to discover defect structures in 2D materials.

IV. CONCLUSION

We developed a grand canonical evolutionary algo-
rithm for discovering low-energy structures in the emer-
gent class of 2D materials. The algorithm enables both
fixed and variable composition structure searches for 2D
materials with finite thickness. The constraint on the
layer thickness of the 2D structures in the search is tun-
able by the user. We applied the algorithm to search for
2D structures of InP, and it recovered the known buck-
led hexagonal structure, as well as several novel bilayer
structures with lower formation energies. We further car-
ried out variable composition searches on the Sn-S and
C-Si binary systems, and the algorithm recovered the
previously reported 2D structures in both of these sys-
tems. For the C-Si system, the algorithm also finds sev-
eral structures corresponding to Si defects in graphene,
including two new 1D defects with formation energies be-
low that of a substitutional Si atom in graphene. Based
on these successes, we believe the evolutionary algorithm
for structure prediction is a useful tool to take the first
step toward the computational discovery and design of
novel 2D materials.
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46 P. E. Blöchl, Physical Review B 50, 17953 (1994).
47 G. Kresse and D. Joubert, Physical Review B 59, 1758

(1999).
48 J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Re-

view Letters 77, 3865 (1996).
49 M. Dion, H. Rydberg, E. Schröder, D. C. Langreth,
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50 G. Román-Pérez and J. M. Soler, Physical Review Letters
103, 096102 (2009).
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