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Abstract

This paper presents a brief review of grand challenges of Smoothed Particle Hydrodynamics (SPH) method. As a meshless

method, SPH can simulate a large range of applications from astrophysics to free-surface flows, to complex mixing problems

in industry and has had notable successes. As a young computational method, the SPH method still requires development to

address important elements which prevent more widespread use. This effort has been led by members of the SPH rEsearch

and engineeRing International Community (SPHERIC) who have identified SPH Grand Challenges. The SPHERIC SPH

Grand Challenges (GCs) have been grouped into 5 categories: (GC1) convergence, consistency and stability, (GC2) boundary

conditions, (GC3) adaptivity, (GC4) coupling to other models, and (GC5) applicability to industry. The SPH Grand Challenges

have been formulated to focus the attention and activities of researchers, developers, and users around the world. The status

of each SPH Grand Challenge is presented in this paper with a discussion on the areas for future development.
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1 Introduction

The smoothed-particle hydrodynamics (SPH) numerical

method was originally introduced in 1977 for astrophys-

ical simulations [41,60]. Since then, SPH has progressed
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significantly and it is now a numerical technique adopted

in numerous different fields from astrophysics, to engineer-

ing applications to biological flows. Its meshless Lagrangian

nature, where the particles move according to the governing

dynamics, has enabled it to be applied relatively easily to

a large range of areas. Its particle–particle interactions with

compact support mean that it is well suited to parallelisa-

tion for acceleration [17,25,75,86,88,106]. This has led to

the development and release of numerous SPH simulation

codes that are now widely used. With its basis in Lagrangian

and Hamiltonian mechanics, the meshless formulation has

enabled progress in its fundamental mathematical analy-

sis [99]. Despite this, SPH can be still considered a young

numerical method and it presently suffers of some draw-

backs in comparison with classical Eulerian mesh-based

schemes such as Finite Difference Method (FDM), Finite

Element Method (FEM) or Finite Volume Method (FVM).

These drawbacks include complete proofs of convergence,

standardisation of techniques, and use of parameters to run

simulations. With SPH using smoothing kernels, and multi-

ple formulations to represent media such as fluids and solids

(for example, from weakly compressible to incompressible),

the method has multiple features that require intensive inves-

tigation.

The SPH rEsearch and engineeRing International Com-

munity (SPHERIC), https://spheric-sph.org, was founded in

2005 with the aim of fostering collaboration and to push

the development of the SPH method providing a network

of researchers and industrial users around the world as a

means to communicate and collaborate. Since then, it has

continually strived to develop the fundamental basis of SPH,

discuss current and new concepts, foster communication

between research and users, provide access to existing soft-

ware and methods, define benchmark test cases, and to

identify the future needs of SPH. The annual international

workshops, attended by over 130 delegates, have frequently

been the events that have highlighted the gaps in our under-

standing and development needs. It is from these events

that an awareness of key challenges in SPH has emerged.

Conceived in 2012, the SPHERIC Steering Committee for-

mulated five grand challenges (GCs) https://spheric-sph.org/

grand-challenges to focus the attention of researchers, devel-

opers and users around the world.

The SPH Grand Challenges were initiated to bring the

SPH community’s attention to areas of SPH that prevent

its more widespread development and use. The GCs, and

this paper specifically, do not aim to cover all fields where

research in SPH is needed, for example fields such as turbu-

lence modelling, multiphase flows (including the treatment of

sharp interfaces) clearly need further investigation. Instead,

the issues highlighted by the SPH Grand Challenges are gen-

eral and must be addressed for SPH to compete with more

established methods, such as FDM, FEM and FVM, whose

theoretical foundations have been secured and whose state-

of-the-art simulation packages are mature.

SPHERIC has defined the SPH Grand Challenges as:

– GC1: Convergence, consistency and stability

– GC2: Boundary Conditions

– GC3: Adaptivity

– GC4: Coupling to other methods

– GC5: Applicability to industry.

It is essential that the SPH community around the world

collaborates and addresses these SPH Grand Challenges.

Without being able to demonstrate characteristics, behaviour

and applicability that are fundamental to any numerical

method, SPH will continue to be overlooked by some sci-

entific and user communities. With the enormous range of

applications, this is unacceptable. In the past decade, SPH

has made massive progress, and this is evidenced by the

increasing interest and uptake of the method, by developers

and users in both industry and research and the expo-

nentially increasing number of publications. In the years

2016–2019, there have been 5 review papers on SPH alone

[44,83,102,105,110]. The SPH Grand Challenges have there-

fore been formulated to focus the worldwide developmental

efforts in taking SPH to a point where the fundamental the-

ory and practical use are mature so that SPH takes its rightful

place in the range of methods at the disposal of scientists and

engineers.

To incentivise this process, the SPHERIC Steering Com-

mittee inaugurated The Monaghan prize, https://spheric-sph.

org/joe-monaghan-prize, named in honour of Prof. Joseph

Monaghan, who has played such a key role throughout the

entire life of SPH. The Monaghan Prize has been instigated

to highlight and reward outstanding work that helps address

and progress the SPH Grand Challenges. The first two Mon-

aghan Prizes were awarded in 2015 to Colagrossi et al. [23]

for their paper on free-surface boundary conditions and in

2018 to Marrone et al. [62] for their 2012 paper on develop-

ing the density diffusion technique now so widely used.

Despite progress, there is still much work to do. Hence,

the SPHERIC Steering Committee considered it timely to

ask the leaders and leading figures of each GC to summarise

the current state of the art in their respective challenge. This

paper presents a precis of each SPH Grand Challenge iden-

tifying progress, and most importantly the challenges that we

face and must solve. Researchers and developers are strongly

encouraged to focus attention on helping this collaborative

effort.

123

https://spheric-sph.org
https://spheric-sph.org/grand-challenges
https://spheric-sph.org/grand-challenges
https://spheric-sph.org/joe-monaghan-prize
https://spheric-sph.org/joe-monaghan-prize


Computational Particle Mechanics (2021) 8:575–588 577

2 Grand Challenge 1: Convergence,
consistency and stability (Lind, Hu)

The notions of convergence, consistency and stability are

fundamental and underpin all numerical methods, with these

concepts easier to formalise in some methods than others.

SPH is a method where there remains a significant lack of

understanding and formalism concerning all three and, quite

rightly, addressing this is a Grand Challenge. This view-

point mentions some recent works in the literature that shine

more light on these issues in SPH, as well as posing a few

philosophical questions to stir debate. The above 3 proper-

ties are of course interlinked, after all the Lax Equivalence

theorem proves that consistent finite difference schemes for

well-posed linear problems are stable if and only if they are

convergent: a method may be stable, but not converge; it may

also be consistent to some level but not converge as expected.

Regarding stability, we have always been fortunate in

SPH in comparison with other methods by being able to

obtain physically meaningful results for time steps or reso-

lutions where other methods often break down. Historically,

the pairing and tensile instabilities have been a concern, but

our understanding has much improved in recent years. For

example, consider the pairing instability and the benefits of

using the Wendland kernels [107] with nonnegative Fourier

transforms [30]. Similarly, the use of a background pressure

is beneficial in preventing the tensile instability, although

excessive numerical dissipation can arise. Note the very fact

that adding a constant background pressure affects SPH at all

relates to issues around conservation and consistency, which

we will mention shortly.

Clearly, particle distribution is key to maintaining stability

and additional numerical treatments that improve distribu-

tions, such as particle number-density constraint [48], par-

ticle shifting [57,69,108] and transport formulation [2,111],

have increased in popularity in recent years given their effi-

cacy and relative ease to implement. Practically speaking,

in weakly compressible SPH (WCSPH) stability can also be

maintained through diffusion (physical or numerical), and

following the earliest uses of artificial viscosity, we now

have some sophisticated approaches including, for example,

delta-SPH [62] and its more recent variant deltaplus-SPH

[90], which combines diffusive terms in the conservation of

mass equation with shifting for improved particle distribu-

tions. Indeed, formulations incorporating artificial viscosity,

delta-SPH [5,62], and Riemann solvers [98] can all be seen

as different stabilisation alternatives for the explicit spatially

centred SPH scheme. An alternative SPH formulation is

the so called Incompressible SPH (I-SPH), which is based

on a divergence-free projection [27] of the velocity field,

[48,51,57,84]. I-SPH models generate smoother pressure

fields, avoiding the introduction of additional explicit dif-

fusive terms. We are still a long way from formalising much

of this—important headway is being made regarding sta-

bility in time stepping in weakly compressible SPH [100]

and in incompressible SPH [49,101]—but a continued goal

should be the determination of well-defined stability regions

with bounds that have a known dependence on discretisation

and kernel parameters, physical parameters, and numeri-

cal treatment parameters (e.g. shifting coefficients, delta

parameters). The opportunity for further input from math-

ematicians/numerical analysts here is great.

Like stability, convergence depends critically on particle

distributions. For example, Quinlan et al. [79] have pro-

vided important guidance on convergence, with dependence

seen on smoothing length, particle spacing, kernel smooth-

ness, and particle disorder. Two key contributions to the

error include the error due to the smoothing operation and

the numerical integration (or discretisation) error (due to

the splitting of our domain into particles). The former is

commonly second order in smoothing length, and the lat-

ter can be quantified if we split our integral into equi-spaced

rectangular particles as per the rectangle or trapezoid rules.

Consequently, as we refine and decrease smoothing length,

the number of neighbours should also be increased appro-

priately. However, for practical reasons, this is often not

done, resulting in the smoothing error eventually becoming

saturated. If we take care in refinement over uniform (e.g.

Cartesian) arrays of particles, SPH can be shown to con-

verge in numerical experiments with rates of convergence

matching theoretical error measures extremely well. Evers

et al. [32] derived the rate of convergence of SPH numerical

scheme using the least action principle. Franz & Wendland

have recently provided a mathematical proof of convergence

of SPH for a specific barotropic fluid and under certain prop-

erties of the underlying kernel [39]. However, as soon as

some level of particle disorder is introduced, things become

far more difficult. Errors and convergence rates are much

more difficult to quantify, with convergence flat-lining, even

diverging, once particles become sufficiently disordered—

not ideal when your particles are Lagrangian.

This close dependence of convergence on particle dis-

tribution seems to have motivated a growing number of

researchers to explore Arbitrary Lagrangian Eulerian (ALE)

formulations of SPH [74,98]. The fully Eulerian SPH method

can converge readily and to high orders of spatial accuracy

[56] (see Fig. 1), while ALE-SPH (for example, [74]) permits

study of a greater class of flows while also allowing control

over particle distributions in order to improve accuracy and

convergence. There is some really promising ongoing work

here [7,47,71,112], and this is an encouraging pathway, after

all, even if one strongly values the Lagrangian nature, of clas-

sical SPH, a legitimate question is whether the determined

particle velocity is indeed the Lagrangian velocity. Of course,

mathematical formalism is lacking here also, and quantifica-
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Fig. 1 High-order convergence of an SPH gradient for different kernels

see [56] for more information

tion of error and convergence rates for irregular distributions

in particular should be a key goal.

Consistency and convergence are closely linked, and while

consistent formulations may be constructed for arbitrary par-

ticle distributions, this can be costly and convergence is not

necessarily ideal. The SPH discretisation of derivatives has

two typical formulations: the anti-symmetric and symmetric

formulations. The numerical errors due to these two for-

mulations are quite complex and are strongly dependent on

particle distribution [79]. With the anti-symmetric formula-

tion, the SPH discretisation for computing pressure forces

on a particle implies that with momentum conservation of

the particle system we cannot estimate correctly the van-

ishing gradient of a constant scalar field, in practice there

is a non-vanishing total force acting on a particle in a field

with constant pressure. On the other hand, with the symmet-

ric formulation, the SPH discretisation for computing the

density variation of a particle provides zero-order consis-

tency, and a uniform velocity leads to a vanishing density

variation. One may expect to cancel inconsistency error for

the pressure field by applying the symmetric formulation to

the discretised momentum equation. The dilemma is that the

conservation of momentum, one of the most important prop-

erties of the original SPH method [66,67], is not satisfied

any more. Again, particle distributions remain key here, and

recent investigations have focused on iterative redistribution

procedures based on transport velocities ( [58]) or shifting

[52,93]. Such approaches have shown promise in recovering

consistency without correction for SPH schemes which may

also want to retain conservation. Importantly, with both con-

sistency and conservation in place, there could be a route to

formalising convergence in SPH via the Lax–Wendroff the-

orem, with convergent conservative schemes for hyperbolic

equations providing at least weak solutions.

Thermodynamic consistency of SPH numerical schemes

has been analysed by different authors, showing that

Hamiltonian-consistent formulations ensure also total energy

conservation [78]. For weakly compressible SPH, Antuono

et al. [6] have shown how different energy terms evolve dur-

ing the numerical simulation, and the same analysis has been

extended to fluid–solid interaction in [18]. Khayyer et al. [53]

have also investigated the energy conservation in incompress-

ible SPH schemes showing that better energy conservation

is achieved when corrected SPH interpolation is adopted.

In summary, a key goal of this grand challenge remains

in improving the mathematical formalism around quantifi-

cation of error, convergence, and stability. Hence, there are

significant challenges going forward:

1. The final objective of GC1 is to develop a rigorous frame-

work where we understand the numerical mechanisms

in SPH, the theoretical reasons explaining how SPH

works, its limitations and the need for modifications to

the methodology and accompanying analysis.

2. This analysis is made extremely difficult by the flow

being Lagrangian, as well as by the fact that particle vol-

umes have no explicit spatial shape (no faces, cells) and

do not form a partition of unity during the time evolution.

Nevertheless, further research on these topics will enable

us to run informed simulations with confidence, and will

inspire confidence in SPH in external fields and in indus-

try. However, we should also not be afraid to pose questions

and to highlight nuance. For example, what do we mean by

convergence? If we are solving a partial differential equa-

tion, assuming there is a solution, then convergence becomes

meaningful. If, however, we are working at the mesoscale,

where many fashionable problems reside and where the con-

tinuum hypothesis starts to break down, the discrete particle

system (that was always underlying) becomes apparent, and

our usual notion of convergence loses meaning (i.e. we do

not want �x to go to 0!). Of course, it is in such examples of

the versatility and flexibility of SPH that we find the reasons

for the method’s great appeal.

3 Grand Challenge 2: Boundary conditions
(Souto-Iglesias)

In order to close the fluid dynamics equations, initial (ICs)

and boundary conditions (BCs) are necessary. BC includes

solid boundaries (free slip, no slip, pressure normal deriva-

tive), free surface, inlet/outlet (aka open BCs—OBCs), stress

conditions in structural mechanics, those related to the cou-

pling with other models, etc., and ICs are included in this
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challenge since they usually require special treatment in SPH,

e.g. when a hydrostatic condition is needed. This need arises

mostly due to unfeasibility to exactly link mass and volume

in SPH. Due to the meshless nature of the method, impos-

ing boundary conditions is far from trivial in SPH, leading

to intense related research since the first applications of the

method to bounded flows by Monaghan [64] in the nineties.

It is relevant to mention that in recent SPH review papers

[42,43,65,67,102], there are specific review sections on BCs.

The influential review by Price [78] does not, however, con-

tain any reference to BCs as, in astrophysics, they are less of

an issue than in typical engineering scales.

To include ICs and BCs in SPH, researchers use various

techniques. There are a number of key issues that remain to

be fully addressed, such as:

1. How to include BCs without loosing intrinsic SPH con-

servation properties?

2. How to include BCs consistently and without compro-

mising stability? This is directly related with the role of

boundary integrals.

3. How to include solid wall BCs for actual geometries with

complex shapes (2D, 3D)?

4. How to provide an initial distribution of particles which

avoids the onset of shocks once the time-integration

starts?

5. How to treat contact lines between free surfaces and solid

boundaries?

6. How to treat backflows (aka recirculation) when imple-

menting OBCs?

7. How to implement BCs in the interface between subdo-

mains solved with different methods?

8. How to accurately impose BCs in Incompressible SPH

(ISPH) in complex flows?

9. How to accurately impose BCs when particle shifting

(within a consistent ALE framework or not) is used?

Some recent interesting references have looked into these

questions: Ni et al. [70] implemented a wave flume with

SPH using OBCs but did not look into recirculation issues.

Along the same line, Bouscasse et al. [11] used OBCs for

simulating the viscous flow around a submerged cylinder.

In order to avoid backflow, they had to significantly extend

the flow domain upstream and downstream, as well as limit-

ing the simulation time (see Fig. 2). Back flow is held in

FVM-VOF methods by indicating the physical properties

of the incoming fluid, applying to it the local flow proper-

ties (velocity, temperature, etc.), but it is not clear how to

implement it a Lagrangian approach. Tafuni et al. [91] have

recently extended OBC algorithms to the popular GPU HPC

implementation DualSphysics, and Wang et al. [104] have

proposed a novel OBC implementation based on the method

of characteristics using timeline interpolations.

Long-time-duration simulations of free-surface flows

have been traditionally an issue in SPH due to the onset of sta-

bility problems. However, Green and Peiró [45] have recently

been able to carry out long and accurate simulations of

flows inside tanks by using fixed/prescribed motion dummy

particles developed by Adami et al. [1], and by perform-

ing a good selection of simulation parameters. Extending

flow fields outside of the boundaries to force BCs has been

recently investigated by Fourtakas et al. [38]. They claim their

locally uniform stencil-based formulation is able to model

solid boundary conditions in complex 2-D and 3-D geome-

tries, with improvements over existing techniques based on

dummy particles (e.g. [1,26]) partially achieved by using

δ−SPH [62] to reduce spurious pressure oscillations. How-

ever, validation with non-orthogonal geometries was not yet

pursued. The flow field extension techniques have also been

recently used in heat transfer applications by Wang et al.

[103].

Regarding BCs affecting consistency of the operators,

Fougeron and Aubry [36] have proposed a novel method

based on non-boundary fitted clouds of points; they redefine

the Lagrangian nature of the model by creating a set of nodes

on the boundary, which then use to approximate the differ-

ential operators. They use this approach in elliptic equations,

and though appealing ideas can be found, the application to

typical SPH problems, such as wave-body interactions, is not

evident to us.

Intrinsic good conservation properties are an asset of the

SPH method. How these are affected by BCs has been inves-

tigated by Cercos-Pita et al. [18] in the presence of fluid–solid

interactions, when these are modelled using ghost particles.

They showed that due to the solid BCs, the energy equation

of the particle system contains some extra terms that tend to

vanish when the spatial resolution is increased (very slowly),

and that affect the energy conservation of the system. Based

on the test cases they run, they conjectured that the contribu-

tion is dissipative, but no rigorous proof was provided.

As for boundary integrals (see [35] for a fundamental

reference on this kind of BC implementation, where for-

mulae for first and second derivatives with a semi-analytic

formulation with boundary integrals are proposed and vali-

dated), they provide consistent formulations and are a first

choice in extremely fragmented flows, such as those found

in hydroplaning simulations [19]. For this type of technique,

Calderon et al. [13] have recently developed a formulation

that improves the computation of the renormalisation factor

in two and three dimensions. One main problem of boundary

integrals is that the intrinsic good conservation properties of

SPH are affected by the use of renormalised operators.

Looking into incompressible SPH and BCs, Takahashi et

al. [92] provided an interesting discussion on the difficulties

of imposing Dirichlet and Neumann BCs, including some

improvements. Regarding ALE formulations, Oger et al. [74]
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Fig. 2 Flow around a cylinder in the presence of a free surface at

Reynolds number equal to 180 (see Bouscasse et al. [11] and Cola-

grossi et al. [24] for more details on this type of particular flows). The

color code represents the streak-lines by identifying the vertical posi-

tion in the unperturbed inlet. The horizontal and vertical coordinates are

made non-dimensional with the cylinder diameter. (Color figure online)

reported the need to remove shifting when close to the free

surface, defining in turn the ghost fluid properties without

requiring any specific ALE-related correction and Khayyer

et al. [52] applied the iterative shifting, originally proposed in

[93] to multiphase and free-surface flows in the ISPH frame-

work.

Looking ahead, there are some clear challenges going for-

ward:

1. Identifying and validating BCs that are robust for arbi-

trarily complex non-orthogonal geometries for the vast

range of SPH applications.

2. Extending the behaviour of SPH BCs to possess higher-

order convergence properties.

3. Maintaining the intrinsic conservation properties of SPH

while retaining the consistency of operators.

4. Supplementing the emerging proofs of convergence of

GC1 with the added complication of BCs.

4 Grand Challenge 3: Adaptivity (Vacondio,
Rogers)

Adaptivity is the capability of a numerical scheme to use a

domain discretisation based on elements with different size.

For Eulerian mesh-based methods such as finite volume,

finite elements or finite differences those elements are the

grid cells, whereas in Lagrangian meshless-based numerical

methods they are the computational nodes that move with the

fluid velocity. Adaptivity is a crucial feature for numerical

schemes. It allows us to increase the number of computa-

tional nodes (cells or particles) only in the portions of the

domain where the flow features require higher resolution.

In this way, the total number of computational nodes (and

so the computational cost for the simulation) used to dis-

cretise a domain can be dramatically decreased, for a given

level of error. In mesh-based methods, variable resolution

is a common feature and it has been introduced in several

different ways. Often referred to as Adaptive Mesh Refine-

ment (AMR), the most common approaches are unstructured

grids or quadtree grids. Moreover, several different algo-

rithms have been used successfully to dynamically adjust

the mesh resolution, accordingly to some measures of the

discretisation error or smoothness indicators for the numer-

ical solutions (see, for example, [31,50]). Despite the need

to introduce variable resolution in SPH numerical schemes

for fluids, almost all SPH codes are based on uniform reso-

lution and this prevents the use of SPH models to simulate

all engineering problems which are inherently multiscale.

For compressible fluids and astrophysical simulations, a

consistent formulation which considers the space variability

of the smoothing length has been derived many years ago [41,

46,78], and in this approach, the conservation of fundamental

properties is ensured and the resolution implicitly increases

in high-density region (and decreases it in low-density one).

Effectively, this creates particles with different volume but

constant masses. Unfortunately, the same approach cannot

be used for weakly compressible (or strictly incompressible)

fluids where density remains (approximately) constant and

so particles with different volumes have to have also different

masses. Similar to astrophysical applications, in engineering

the Lagrangian characteristics of SPH can lead to sparse or

condensed distributions of particles, which can be addressed

by merging/splitting particles to preserve a good interpola-

tion accuracy. When the competing demands of adaptivity

across phases with different distributions of particles are con-

sidered, one phase with a different distribution of particles

might generate errors of a greater magnitude and therefore

can have the opposite effect to the unified goal of targeting a

local refinement and minimised error.

Initial efforts have been made for weakly compressible

SPH models by introducing regions with different resolu-

tion at the beginning of the simulations [9,10,72,76,77].

Afterwards, with the aim of dynamically varying the par-

ticle resolution, some authors proposed some procedures

to dynamically increase and reduce the particle resolution
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[8,80,94,95]. Very recently, Sun et al. [89] simulated flow

past different bodies in the presence of a free surface by

using the Adaptive Particle Refinement (APR) methodology

proposed in [21]. Spreng et al. [87] proposed a criterion to

automatically adjust the particle resolution accordingly to

some measure of the SPH spatial discretisation error. Despite

the progresses in developing dynamic particle adaptivity, we

think that some major challenges have still to be addressed

in order to obtain a methodology that is sufficiently robust

to be adopted by practitioners and industry. Looking far into

the future, from the users’ perspective, dynamic adaptivity

should be fully automated and activated only when needed.

Full automation requires criteria to be developed that control

the activation. A question then arises as to what these crite-

ria should be and how they should operate? While this has

been well investigated in adaptive mesh refinement (AMR),

the same concepts do not necessarily apply in SPH since the

nature of the discretisation is different. Most importantly, it is

presently unclear what is the best general approach, and this

requires (i) a focused research effort from the SPH commu-

nity and (ii) an understanding from users that implementing

and using adaptivity in SPH faces some key challenges and

is far from straightforward. However, it is already clear that

there are at least three key objectives:

1. Error minimisation: it is impossible to avoid the intro-

duction of error, but any form of SPH adaptivity should

guarantee that the error has been minimised. To date,

limited attention has been given to this [33,94,95]. Too

often, schemes simply split particles into an arbitrary

number (for example, 4) of so-called daughter particles

(motivated by simplicity or ease-of-coding) with little

consideration of the error and how it propagates through-

out the solution. Similar to mature AMR schemes, error

minimisation is a natural candidate as a criterion for APR.

2. Uniform error distribution for a given resolution: the

dynamic adaptation of particles should not generate addi-

tional error or inconsistencies due to the violation of

conservation properties, in comparison with a uniform

particle distribution configuration with the same resolu-

tion

3. Robust schemes for all applications: due to its flexibil-

ity, the range of SPH applications is huge with highly

complex processes. This naturally presents a challeng-

ing question—how to develop particle adaptivity that is

widely applicable and robust? If certain types of adap-

tivity only work for a restricted number or type of

applications, this calls into question the validity of the

approach—in practice this means ensuring consistency

and convergence.

In addition to the theoretical considerations and develop-

ments, there are multiple challenges going forward:

1. Implementation with HPC and emerging technology:

Even with APR, with its discretisation SPH will need

some form of hardware acceleration for the foreseeable

future. In the past decade, there has been a funda-

mental shift from faster clock speeds to different types

of parallelism. For adaptivity, this poses the challenge

of implementation. With different types of hardware

continually appearing, developing implementations of

adaptivity that are future-proofed will avoid costly recod-

ing.

2. Multi-phase implementations: Applications involving

multiple phases can be extraordinarily complex, and to

date, only simple cases or applications have been simu-

lated in SPH. Developing robust adaptivity schemes for

multi-phase flows whose properties can evolve represents

a formidable challenge.

5 Grand Challenge 4: Coupling to other
models (Marrone, Altomare, Le Touzé)

The SPH method is naturally able to resolve multi-mechanics

problems and include different physical models in its mesh-

less formalism. As with other Lagrangian meshless methods,

SPH is very accurate and efficient when dealing with mov-

ing boundaries and complex interfaces, which are generally

addressed with difficulties by conventional numerical meth-

ods (e.g. FVM, FEM). However, for problems where the

latter methods are currently used and well established SPH

is generally less effective and, for the same level of attained

accuracy, results are more costly.

In several contexts, it can be much more effective to couple

an SPH solver to another numerical solver, thus enhancing the

capabilities of both methods within their specific application

fields. In this way, a wider range of problems is efficiently

addressed. The coupling algorithm and the related imple-

mentation complexity can largely vary depending on several

aspects:

1. One-way (offline) or two-way coupling;

2. Heterogeneity of the modelled physics (e.g. potential

flow/Navier-Stokes, fluid/solid, compressible/

incompressible, etc.);

3. Lagrangian or Eulerian approach adopted in the method

coupled to SPH;

4. Discrete coupling interfaces between solvers (mesh/

meshless, sharp interface/blending region, etc.);

5. Time stepping and stability of the coupled algorithm (e.g.

explicit/implicit time integration, multiple time step);

6. Preservation of conservative quantities by the coupling.

Besides, the complexities related to the coupling of very

different solvers can be counterbalanced by impressive gains
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in terms of efficiency [20]. Most of the works regarding

SPH coupling address fluid–structure interaction (FSI) prob-

lems for which the solid structure is generally solved by

Finite Element Methods (FEM) and Discrete Element Meth-

ods (DEM). The Lagrangian character of those model has

allowed a quite fast development of this kind of coupling and

has been targeted in the first attempts of coupling the SPH

method (see Attaway et al. 1994). In particular, SPH-FEM

coupling is reaching maturity and has been used in several

recent works addressing hydro-elasticity problems (see, e.g.

[37,55,59,109]) proving that this coupling paradigm can be

highly competitive in FSI problems [85].

SPH-DEM coupling has been mostly used for problems

in which several solid rigid bodies interact with a fluid flow

[15,81] including granular flows [16,61]. Very recently cou-

pling with open source multi-mechanics libraries has been

implemented to simulate fluid-mechanism interactions by

modelling frictional and multi-restriction-based behaviours

[14].

Furthermore, SPH coupling has been largely developed

for coastal engineering purposes. In this case, SPH is cou-

pled with non-linear shallow water equation models [3,4] or

potential flow solvers in the form of spectral methods [73] or

finite difference [96] for solving wave propagation in the far

field and restraining SPH in the region where wavestructure

interactions and wave-breaking are expected. In Fig. 3, one

example of a coupling scheme between OceanWave3D and

DualSPHysics [25] is shown. This includes the simulation

of ship motions and the associated sloshing dynamics in the

internal tanks as recently done in [82] and Bulian and [12].

Finally, a recent and growing branch is the coupling between

Finite Volume Schemes (FVM) and SPH (see, for example,

Fig. 4). In this case, the coupling strategy aims at flow simu-

lations in which the accuracy and the ability of grid stretching

of the FVM can be usefully coupled with the SPH properties

in modelling complex interfaces [34,54,63,68].

To summarise, coupling SPH models with other numerical

solvers is a clear effective strategy to expand the intrinsic

capabilities of SPH-based models to solve complex physics

and hydrodynamics, while reducing the computational cost

related to the meshfree nature of the method.

1. Coupling algorithms are of complex implementation and

generalisation due to the different nature of the coupled

models: from one side a fully Lagrangian SPH method,

from the other FEM, DEM, FVM, or finite difference

schemes.

2. In addition to the differences in formulations, there is the

additional challenge of coupling methodologies that are

suited, or have been highly optimised, to very different

types of hardware acceleration and coding constructs.

This is non-trivial.

Fig. 3 Principle of 2D coupling between OceanWave3D and Dual-

SPHysics around a structure under wave action from Verbrugghe et al.

[96]. The top part shows the complete domain in OceanWave3D. The

bottom part illustrates the DualSPHysics zone

Fig. 4 Coupled SPH-FVM simulation of a sloshing flow in a tank with

a corrugated bottom from Chiron et al. [20]. Top: SPH particles (blue)

and FVM grid (black). Bottom: a time instant of the evolution showing

vorticity contours and the free surface profile crossing the coupling

interface. (Color figure online)

Note, however, that the coupling task is eased by the meshless

nature of the SPH method compared to couplings between

heterogeneous mesh-based methods (e.g. FVM with FEM)

where mesh interpenetration is a difficult issue. The achieved

efficiency and first encouraging results justify the increasing

use of coupling algorithms for practical applications and real

engineering problems

6 Grand Challenge 5: Applicability to
industry (de Leffe, Marongiu)

Industry has been slow to accept the SPH method as a

“serious” CFD method. Apart from some very specific

applications, such as bird strike or high-pressure water jets
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impacting pelton turbine blades, it is only very recently that

we can note a growing interest in the SPH method in the

industrial world. The main reasons for this recent change are

the research progress by the scientific community on Grand

Challenges 1 and 2 has convinced engineers of the ability of

the SPH method to solve applications with highly distorted

complex interfaces with applications such as gearbox or tire

aquaplaning becoming more frequent.

As the door of the industry begins to open, it is essential

that the method continues to progress to maximise oppor-

tunities to demonstrate its suitability for future application.

One of the first questions asked by an industrialist that is keen

to use SPH for a specific application is related to the elapsed

time of the simulation. The progress in High-Performance

Computing (HPC) in accelerating SPH software on dif-

ferent architectures (CPU or GPUs), enables SPH to be

competitive with conventional mesh-based methods. How-

ever, methods such as FVM and FEM have also progressed

in capturing complex interfaces, so the challenge remains

open and the fields where the SPH method is more efficient

could be further reduced. Two fundamental characteristics

make SPH inherently more expensive than classical mesh-

based methods: (i) the much larger number of neighbours

for a given computational point, and (ii) the smaller com-

putational time step that has to be adopted due to the

weakly compressible explicit formulation. For the first point,

to date a mature technical solution has not yet emerged.

However, work has been done to increase the order or con-

vergence of SPH schemes for a given number of neighbours

(see Grand Challenge 1). Nevertheless, this generates addi-

tional calculation, and the gain in terms of accuracy is not

yet demonstrated for industrial applications. For the sec-

ond point, an important work has been done to develop

semi-implicit incompressible SPH (ISPH) schemes based on

divergence-free projection [27]. The GPU implementation

of ISPH, as reported in [22], will probably reinforce its effi-

cacy.

The gain on the time step raises interesting questions if

there is a loss of accuracy on the description of the free

surface. A vital point to note here is that progress in HPC

should not be pursued to the detriment of the accuracy of

the numerical scheme. For example, when porting on GPU,

the temptation of introducing simplifications in the adopted

numerical scheme is to further increase its efficiency, losing

the interest of hard-won gains in Grand Challenges 1 and

2. If the SPH method is not able to progress on the HPC

objectives compared to other methods, SPH should be used

in portions of the domain characterised by strong dynam-

ics and complex interfaces. The complete simulation can be

obtained by coupling SPH with other numerical methods (see

Grand Challenge 4) [20].

The second question asked by an industrialist is the abil-

ity of the SPH method to simulate phenomena characterised

by complex physics as turbulence, boundary layer, phase

change, thermal diffusion and convection, surface tension,

etc. Industrial SPH codes cannot simulate all the aforemen-

tioned phenomena (with the exception of thermal ones).

It is now crucial for the SPH method to include addi-

tional physical processes to simulate the full complexity

of industrial cases. This is best illustrated with an exam-

ple: the rocket or satellite tank in microgravity. The liquid

phase is subjected to an important sloshing with a com-

plex interface. The case therefore seems very promising for

the SPH method. Except that there are competing dom-

inating effects of surface tension with the contact angle

and thermal physics due to the sun’s radiation. The fuel

or oxidant is in equilibrium between its gaseous phase and

liquid phase, causing significant phase changes. Another

example is the water impact during slamming or ditching

event. The case is dynamic with a complex free surface.

The case therefore seems also very promising for the SPH

method. Except that if the case has strong dynamics oper-

ating at different scales there is the dominating effect the

gas phase, where the real compressibility of the gas must

be considered. In some extreme cases, phenomena of cavita-

tion may appear. The SPH method must progress to propose

robust physical models to simulate these physical phenom-

ena.

Many exciting challenges are waiting for the SPH method

whether in HPC or in terms of modelling complex physics, if

SPH wants to convince the industry on a long-term basis and

not remain confined to a small application core. The progress

made by the traditional volume-of-fluid (VOF) method or

more recent method such as Lattice–Boltzmann Method

(LBM), Material Point Method (MPM), Moving Particle

Simulation (MPS), Particle Finite Element Method (PFEM)

must serve as a motivation and a source of inspiration for the

SPH community.

The recent contributions from the SPH research com-

munity have brought significant progress likely to foster

the adoption of SPH among industry. The appearance of

tools with Graphical User Interfaces (GUIs) for the pre-

and post-processing of SPH simulations is noticeable (see,

for example, Figure 5). DesignSPHysics [97] and Visual-

SPHysics [40] provide a complete simulation tool chain

dedicated to SPH simulations. An alternative has been devel-

oped based on ParaView [29]. Advanced analysis of flow

features still relies mainly on the projection of the parti-

cles data onto a grid. For the creation of the initial particle

distribution in complex geometries, the particle packing algo-

rithm has gained popularity as in [28]. The ease of use of the

method will probably benefit from the recent improvements

of the dynamic and adaptive particle refinement techniques.

Significant contributions in this field have been given by

[94] and [21]. A further development of these techniques

will relieve simulation engineers from the burden of set-
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Fig. 5 Picture of floating boat done with VisualSPHysics

ting of the appropriate particle size for their application

cases.

To summarise, the applicability to industry of the SPH

method has been demonstrated on some applications with

free surface, complex interface, and dynamic flow. To remain

competitive with other methods and extend its field of

application, especially in certain areas where at present no

numerical method is relevant, the SPH method must continue

to progress in order to:

1. reduce the elapsed time,

2. take into account complex physical phenomena (such as

turbulence, surface tension, phase change)

3. obtain effective coupling with other methods

The combined progress of all the GCs will enable SPH to

rise these challenges.

7 Conclusion

A brief review of SPH grand Challenges of Smoothed-

Particle Hydrodynamics (SPH) method has been presented in

this paper. These SPH Grand Challenges have been identified

to focus the development efforts of the SPH community and

to advance the present state-of-the-art such that SPH com-

petes with more established simulation techniques. SPH has

made great progress over the past 15 years, and its attraction

as a computational technique is clear from the increasingly

large body of published work, SPH simulation packages

and applications. The effort has been led by members of

the SPH rEsearch and engineeRing International Commu-

nity (SPHERIC). The SPH community, however, must focus

on solving the SPH Grand Challenges to ensure that SPH

becomes more accessible and is robust, reliable and adheres

to the highest possible standards of academic rigour. The

SPH Grand Challenges have been identified by SPHERIC as:

(GC1) convergence, consistency and stability, (GC2) bound-

ary conditions, (GC3) adaptivity, (GC4) coupling to other

models, and (GC5) applicability to industry. In this paper,

the state of each SPH Grand Challenge has been assessed.

Examples of recent references have been discussed for each

grand challenge, and future work threads proposed. From

this paper, it is clear that the SPH Grand Challenges are not

straightforward to solve and will require dedication and col-

laboration.
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