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INTRODUCTION

Biosensors are devices to provide the information on the presence or/and the concentration of an
analyte in a biological or chemical reaction. Biomolecular electronics, instead, focus on the study of
biological materials or biomolecules using electronic devices. Thus biosensors and biomolecular
electronics (BBE) involve in the highly multi-disciplinary research within physics, chemistry,
bioengineering, advanced materials, nanotechnology, biotechnology, and the clinical science.
They are in the spotlight of biomedical sciences and healthcare. With the continuous threaten of
the COVID-19 pandemic to global health, the role of BBE is becoming more and more essential in
medical diagnostics and disease monitoring. Advances of technologies in the fields of chemistry
(Kwok et al., 2015), biomaterials (Jiang et al., 2020), engineering (Qiao et al., 2020a),
nanotechnology (Wang et al., 2018), biotechnology (Li et al., 2019a; Li et al., 2019b), have
significantly boosted the development of this interdisciplinary forum BBE evidenced by the
appearance of advanced sensing technologies in both academia and industry. The first biosensor
was developed for oxygen detection in the 1950s. Since then, BBE has witnessed remarkable
achievements in terms of sensing capability, sensing modality, sensing adaptability, sensing
applications, et al. Being different from the traditional biosensing platforms on the bulk
surface, the current biosensors are more versatile and compatible, such as disposable paper
based biosensing devices (Dincer et al., 2019), printable biochips (Mikami et al., 2021), wearable
biosensors (Sempionatto et al., 2019), implantable biosensors (Gray et al., 2018), ingestible
biosensors Beardslee et al. (2020), and artificial intelligence assisted biosensing (Jin et al.,
2020). These advanced biosensing platforms are paving the way to the era of digital health
towards better health. Additionally, a biosensor can reach a sensitivity of a single cell level and even
a single molecule level (Bhumkar et al., 2021). The commercially available nanopore technology
for detecting a single molecule of DNA or RNA has made a significant breakthrough in BBE and
played a pivotal role in battling the COVID-19 pandemic (Bull et al., 2020). A recent study shows a
single molecule can be detected by a mobilephone microscope, which opens up a massive
opportunity for point-of-care diagnostics with greatly enhanced sensitivity (Trofymchuk et al.,
2021). SARS-CoV-2 infection can be screened by the traditional paper lateral flow assays with
desirable sensitivity with the aid of the Clustered Regularly Interspaced Short Palindromic
Repeats/Cas enzymes (CRISPR/Cas) technology (Broughton et al., 2020) and even in a
wearable platform (Nguyen et al., 2021).

The increasing prevalence of chronic and lifestyle diseases (such as diabetes) boosts the
applications of BBE in various industries. Besides the popular point-of-care devices such as
oximetry, pregnancy test strips, and glucose test strips, continuous glucose monitoring systems
are available in the market. BBE keeps on demonstrating its success in biomedical science and
healthcare with its attractive features such as desirable sensitivity, high specificity, portability, end-
user accessibility, fast result delivery, and adaptability to other technologies and devices. Because of
the improved performance of biosensors and also the increasing demand for rapid point-of-care
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testing in a cost-effective fashion, the global biosensors market
grows very fast (a compound annual growth rate (CAGR) of 7.9%
from 2021 to 2028 is expected) (Liu et al., 2019; Liu et al., 2021).
Despite the exciting future of BBE, the comprehensive clinical
applications of BBE towards effective healthcare are on the way to
be mature due to the below grand challenges.

SENSITIVITY

It is extremely challenging to detect analytes (such as cytokines,
protein post-translational modifications, circulating cancer cells)
due to the high background signal in clinical samples (Liu et al.,
2021). To enhance sensitivity, nanomaterials-based signal
amplification is one of the most popular strategies by taking
advantages of a big surface area to load the maximum number of
biorecognition molecules (Liu et al., 2019). Nanozymes are the
rising star in this aspect with benefits in terms of stability, cost,
sensitivity and reaction speed although their specificity needs to
be further improved (Liang and Yan, 2019). Being different from
nucleic acid-based signal amplification extensively used for
detection of nucleic acids or other analytes, CRISPR/Cas
technology has made a breakthrough in the field of BBE since
2017 due to its extremely high sensitivity and specificity (Li et al.,
2019a). A CRISPR/Cas12a autocatalysis-driven feedback
amplification network enables the effective detection of
genomic DNA in clinical samples with attomolar sensitivity
(Shi et al., 2021). Besides sensitive assay development, in some
cases, sampling is difficult, and sample volumes of body fluids
(such as human breath, tears, cerebrospinal fluid) are small (Beale
et al., 2017). Thus the joint efforts between sampling, assay
development and device engineering are required to reach
desirable detection. For example, cytokines are the trace
amount of small proteins present in cerebrospinal fluid. The
nature of cytokines under biological conditions can be affected by
cytokine-binding proteins, inhibitors and soluble cytokine
receptors (Liu et al., 2021). Interferences in the matrix of
biological samples can cause false positive signals. Therefore,
to make measurement accurate, methods or conditions related to
sample collection and handling should be considered and
specified. In order to achieve a reliable cytokine assay for in
situ analysis in the brain or spinal cord, we developed a
deployable device for sensitive detection of cytokines directly
in brain space or spinal cord, which excluded the sampling
process and could work in vivo (Zhang et al., 2018). Thus,
besides the signal amplification strategies applied in bioassays,
device engineering is also essential to increase sensitivity.

MULTIPLEX CAPABILITY

The multiplexing assays play a pivotal role in clinical practice
towards precision diagnostics because they provide a
comprehensive mapping of disease features and precise
biological signature (Dincer et al., 2017). An assay capable of
doing simultaneous detection of multiple analytes provides high-
throughput sample information, requires less assay time and

sample input, and reduces variations between singleplex
assays. Challenges associated with the multiplex capability of
BBE include limited signal readouts, cross-reaction, and
sensitivity. Multiplex bead binding assays (such as Luminex
multiplex assays) are the most popular multiplex assays in
biomedical science and clinical. They are capable of doing the
simultaneous analysis of multiple analytes in a clinical sample.
How to make the assay to be cost-effective and instrument free is
the driving force for developing the next generation of beads
based multiplex analysis. It is challenging for electrochemical
biosensors to achieve the simultaneous analysis of more than
three analytes without signal overlap (Shen et al., 2021). Optical
biosensors provide a better opportunity for multiple analysis by
integrating with different optical tags such as SPR, SERS and
upconverting nanoparticles (Pei et al., 2020). Additionally,
advances in printing technologies powered bioassays with
multiplex capability (Li et al., 2019b). Combining with
advances in microfluidic technology and assay development, a
lateral flow assay was able to detect seven pathogenic single
nucleotide polymorphisms in a single test strip with the
sensitivity of 0.04 pg ml−1. (Anfossi et al., 2019), (Liu et al.,
2018) Although lots of opportunities for multiplexed analysis
exist, few high-throughput platforms won the practical
application in point-of-care detection, and the challenges lie in
the lack of detection repeatability and device robustness.

CONTINUOUS MONITORING IN VIVO

Effective healthcare relies on technologies for real-time
monitoring of physiological conditions in order to
continuously guard the state of health. While the modern
biosensing technologies need to be powered with
multiplexing capability, fast response, small sample volume,
and high sensitivity, and achieving in situ real-time monitoring
is another challenge associated with BBE. Advances in the fields
of electronics and microfabrication techniques have
significantly facilitated the interest in the use of wearable
devices and implantable chips to realise the continuous
monitoring of multiple health conditions (Yang and Gao,
2019). The trend for bioelectronics is to make the device
biocompatible, flexible and multimodality. Over the past
years, many wearable and implantable technologies are
commercially available healthcare by sensing physical signals
such as heart rate, muscle action, electrocardiography, etc. How
to enable these sensors to simultaneously measure both physical
properties and underlying biochemical processes is critically
important for BBE.

A continuous real-time biosensing device is capable of
providing the reversible signals of the analyte when the
analyte concentration varies. And thus it can differentia
signals between the analyte and the interferants in a complex
sample environment (Cao et al., 2018). Meanwhile, it can directly
provide the real-time signal of the analyte without additional
operation steps. The existing challenge in the application of
biosensors to continuous molecular monitoring is how to
convert specific analyte information to measurable continuous
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output signals in vivo without background signal drift (Kang
et al., 2017; Plaxco, 2020). This will require powering the
detection device with functional units, for example, adding a
component on the sensing interface with the antifouling
capability to largely reduce nonspecific adsorption and thus
enhance the signal-to-noise (Jiang et al., 2020). Meanwhile,
radiometric measurement is helpful to eliminate the
background drifting to realize the calibration-free biosensing
devices for continuous molecular monitoring in vivo (Ni et al.,
2020). Glucose continuous monitoring system is a symbolic
example of BBE in achieving continuous molecular
monitoring. The goal of reagentless, real-time biosensors for
continuous monitoring of a spectrum of bioanalytes such as
hormones, drugs, peptides, and proteins, that can be deployed
directly in clinical samples providing real-time healthcare,
remains largely unmet. In additional to realise continuous
monitoring by chemistry, advances in wireless/Bluetooth signal
readout are also essential to continuous monitoring in vivo (Qiao
et al., 2020b). The interdisciplinary collaboration between fields
of biomaterials, biosensors, bioelectronics, bioengineering, and
the internet of things.

BIOSENSING DEVICE INTEGRATION AND
COMMERCIALIZATION

The current COVID-19 pandemic has significantly increased the
demand for affordable and reliable laboratory diagnostics,
especially in resource-limited countries. It is challenging to
make these laboratory-developed biosensors to be qualified for
commercial application as there is a huge gap between scientific
knowledge and dailymedical practice. Assay and device integration
is essential to make them adaptable to real applications. Two
hurdles exist for benchtop technologies walking out of the lab
to the market (Burd, 2010): 1) the translation of laboratory-based
technologies into clinical studies; 2) to translate clinical studies into
medical practice. Current scientific research is focusing on passing
the first hurdle as it can bemanaged through laboratory technology
optimization. The second hurdle depends on the market effect
since the new assays/devices need to be acceptable to the end-users/
payers. Before entering the product market, any laboratory-
developed assays or devices need to meet regulatory
requirements, such as Food and Drug Administration (FDA), to
ensure the accuracy, reliability, and appropriateness of clinical test
results, regardless of where the test is performed (Genzen et al.,
2017). Required performance characteristics of laboratory-
developed technologies before implementation of FDA-
approved/cleared tests include reportable range, analytical
sensitivity, precision, analytical specificity, accuracy, and
reference interval.

To cross the second hurdle, market specialty needs to be
considered. For example, in the limited resources settings, in
addition, to be accurate, robust, and easy to use, it requires the
detection system to be affordable to end users. Current advances
in paper-based microfluidic analytical devices, and mobile-phone
based diagnosis have greatly contributed to this aspect. A
disposable paper-based test strip can significantly low the

detection cost and make it invasive by using a body fluid such
as saliva or urine (Luo et al., 2020). By integration with personal
equipment such as a mobile phone or a glucose test meter, self-
quantitative detection can be performed by end-users without
visiting the hospital. These simplified and integrated detection
platforms are desirable for translating sensing technology into
commercialization. But they face challenges (such as accuracy)
Shrivastava et al. (2020), and require reliable assay/device
standardization for these in vitro diagnostics (Lippi et al.,
2016). Thus, extensive joint efforts between chemists,
engineers, biologists, and clinicians, are necessary before
clearing up the hazy road from bench to bedside for BBE.

SUSTAINABILITY TO THE ECOSYSTEM

Disposable sensors are inexpensive and are in extremely high
demand because nowadays people are well connected and
expecting fast, accessible, and reliable information on our
health conditions (Dincer et al., 2019). Meanwhile, the need
for single-use sensors is crucial for avoiding contamination.
While disposable biosensors bring us convenience and speed,
they also cause concerns to our ecosystem. It requires introducing
electronics to make biosensing devices smart. How to make our
biosensors/biochips biodegradable is a big question to ask. Recent
discoveries in the emerging space of sustainable sensing systems,
including wearable devices, paper-based biochips, smartphone-
based detection, recyclable biosensors, etc, have highlighted the
necessity to develop a smarter, more user-friendly, cost-efficient,
and environmentally friendly biosensing system. Researchers are
dedicated to developing sustainable materials and sustainable
systems for sensors. For example, distance-based biosensors on
filter paper were developed for instrument-free semi-quantitative
analysis (Cinti et al., 2019). Meanwhile, paper-based devices also
feature as their low-cost, flexibale and capability of point-of-care
testing with variable signal readout (Liu et al., 2019). Additionally,
biodegradable silk or hydrogels has been widely applied in
biosensing devices (Xu et al., 2019). It is challenging to
achieve a sustainable sensing system with all desirable features,
and a balance consideration needs to be reached for developing
advanced and smart biosensing devices or bioelectronics with the
desirable analytical performance which is also sustainable to the
ecosystem (Singh et al., 2020).

In summary, modern BBE aims to realize precise diagnosis
by developing devices/systems to achieve further
advancement in terms of simplicity, sensitivity, specificity,
affordability, multiplex capability, integration of different
functions into a single biochip, in vivo sensing capability,
and sustainability to the ecosystem. Bioelectronics have been
focusing on the development of advanced materials and bio-
signal processing technologies towards Intelligent of Things.
Additionally, continuous development and validation of
reliable biomarkers, development of new ultrasensitive
transducer technology for profiling a range of biomarkers,
detection automation, and verification/validation of the
device in clinical testing are equally essential and
challenging. It limits the rapid growth of these biosensing
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technologies to be clinically valuable in the market at a
competitive cost. During the process to promote the
cutting-edge research on creating smart, sensitive, and
reliable biosensors and biomolecular electronics-ranging
from handheld devices to implantable systems—to service
better health, we expect the studies published in the specialty
section of Biosensors and Biomolecular Electronics, under
Frontiers in Bioengineering and Biotechnology, to contribute
to solve our current challenges, while defining new challenges
for the future towards big data and big health.
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