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General features are discussed of grand unified theories with local supersymmetry broken at high
energies by the super-Higgs effect. The low-energy effective Lagrangian is a globally supersymmetric one
with all the explicit soft breakings. It is argued that the energy splittings among the vacua due to
gravitational effects must be small in order to be able to pick out the correct vacuum. Also discussed are
the mechanisms of breaking SU(2) by the gravitational effects and of suppressing monopole production in
the early universe.

§1. Introduction

It is now believed that global supersymmetry (SUSY) may naturally resolve the
hierarchy problem in grand unified theories.»® Unfortunately such attempts seem to
have the following shortcomings:

(i) It is difficult to break SUSY spontaneously as it is known to remain unbroken in
perturbation theory if it is so at the tree level. We must introduce, at least, three chiral
fields for the sole purpose of breaking SUSY.”

(ii) Theories with spontaneously broken SUSY is characterized by the unrealistic
mass formula®

;(—1)“(2]+1)mﬁ: , (1)

and by a positive vacuum energy (cosmological constant), which must be very close to
zero on observational grounds.

(iii) In order not to contradict experimental and astrophysical constraints,® the result-
ing Goldstino, distinct from the observed neutrino, must couple weakly to matter, or it
must be eliminated. >

(iv) Globally supersymmetric theories often possess degenerate minima so that we
cannot determine which vacuum should be realized.

(v) Since the unification scale is near the Planck mass, it is not completely obvious
whether one can still neglect the effects of gravity.

Although these problems except for the last may be overcome by considering
radiative corrections and other mechanisms,*** global symmetry does not seem to be the
most fruitful approach. We are then naturally led to local SUSY.” The purpose of this
paper is to discuss such theories and show not only that the above-mentioned problems
may be evaded but also that phenomenologically interesting models can be constructed.
For example, SUSY is easily broken by the super-Higgs effect, which at the same time

2 Paper based on the University of Tokyo Preprint UT-388 circulated in October 1982.
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**¥) A possible way out of the difficulties (ii) and (iii) is the supersymmetric dipole mechanism.®
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eliminates the Goldstino and cosmological constant. Furthermore, when # chiral multi-
plets are coupled to supergravity, Eq. (1) is modified to ¥

;(—1)2’(2]+1)m,2=2(n—1)m§/2, (2)

where ms; is the gravitino mass. We shall exhibit some general aspects and a viable
scenario for such theories, instead of trying to build specific models.*

§ 2. Super-Higgs effect

We first note that, in constructing realistic models, it is enough to consider only N =1
SUSY since the fermions in N =2 SUSY transform like real representations of the gauge
group.” It istrue that N =2 SUSY can be broken down to N =1 theory in supergravity'”
(but not in global SUSY ), but then we would be left effectively with models of the type to
be discussed here. We consider supergravity as such an effective theory and do not worry
about its nonrenormalizability.

Let us next consider the coupling of chiral fields to N =1 supergravity. The scalar
potential in such a case is known to take the form®*»'"

ow

V= elczlz:zrz{ A LA
aZa

2
'zt W[ =3\ W)+ LD, 3)

where G=x?/8r is the gravitational constant, W the superpotential for chiral fields z«,
and Di=2z."(£4)%z, with ¢4 being the representation of the A-th generator for these
scalars, including a coupling-constant factor. The last term in Eq. (3) is positive definite
and must be small. This automatically leads to a zero vacuum expectation value(VEV)
for the scalar partners of quarks and leptons. Then this term vanishes in all the examples
considered here and consequently will be dropped hereafter.

In order to implement the supe.-Higgs effect, we take the superpotential'®

W =m*(z+ Bo), (4)

where z is a gauge singlet chiral field, and Bo and m are constants. By imposing the
conditions dV/dz=0 and V =0, we find®

_at+V/3b _ V2a+/3b (5)
S x x ’

{z> Be=
where a,b=+1, and the gravitino acquires the mass ms.=xm?- ¢>*** % by the super-Higgs
effect. It turns out that we must choose ab=—1 since the scalar A and pseudoscalar
components B of z[z—<z>=(A—iB)/v2] have the masses —2v3abmj. and 2(2+3ab)
X m3s, respectively. (If ab=+1, then there are solutions for dW/dz 4+ x2z' W =0, leading
to unbroken SUSY.) We put 6= —« but leave « as a free parameter taking values 1. On
the other hand, the cosmological constraints'® imply that ms.210°"* GeV or <1 keV.
The latter possibility reduces Eq. (2) practically back to Eq. (1) and hence is not attrac-
tive.*® We are then forced to choose m=10*° GeV, which suggests that xm?=10% GeV is

*) Some specific models have recently been considered by several authors®
**) Since SUSY is broken, radiative corrections can also modify Eq.(1).
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544 N. Ohta

the electroweak mass scale. We shall see that this possibility in fact leads to many
interesting consequences.

§3. SU(5) models

3.1. Low-energy effective Lagrangian

We now proceed to examination of some SU (5) models based on this scheme. We
do this by expanding the potential in x with the superpotential

W =g+ m?*(z+By), (6)

where ¢ is that for the scalars z; in appropriate representations of SU(5). A straightfor-
ward calculation yields

Y = ot 2= (Vo L V- Vot Var t O(x%)) (7)
with
_|0g |?
Vo= 221 (8)
_ _ .09 -
Vi=amsp| —zi 5 +v3g§+hc.), (9)
Vem=mi{v3A*+(2—V3)B*+ |z}, (10)

= =2
Vz,:;ﬂ[zi gzg,{g* +5(A+iB )}+h.c.

—(2/3-1lgF— (VD B(5— 7)), (11)

where §=¢* "¢ and #*=e?> " m? In the limit x—0 with xm?(o<ms;) held fixed, only
Egs. (8)~(10) survive.” Notice that (8) is a globally supersymmetric term® ac-
companied by the explicit breakings™ (9)~(11) due to the gravitational effects. The
requirement of naturalness® is therefore satisfied if we take the above limit as we do in
ordinary field theories. However, since we intend to discuss the case when g involves the
grand unified mass M assumed to be of order 10'® GeV and larger than m, other terms
cannot be neglected either. Thus we should also keep terms which do not vanish in the
limit ¥~ 0 with xM? and xm® held fixed. Since such SUSY-breaking new terms can arise
only from terms of order x*M* in Eq. (7), they have dimension less than three and hence
are soft, maintaining the naturalness of the theory.

3.2. SU(2) breaking at the tree level

It should also be noted that «l/ the scalar fields automatically possess a common mass
ms;z because of the terms in Eq. (10).!® These terms tend to prohibit scalars from
developing nonvanishing VEVs. As we shall see shortly, these often make the electro-
weak gauge group SU(2) unbroken.

*) The structure of the fermion part is the same as in global SUSY with the superpotential ¢g.
**) In particular, (9) and (10) are soft in the sense that no quadratic divergences are generated.'®
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However, this is not always the case. As an example, consider the superpotential®

gz/il% Tr 2+ 21 22>+,12H’(2+3M’)H+/135H’H , (12)
where X, H, H and S are scalar fields in 24, 5,5 and 1 representations of SU(5), re-
spectively, and A:(7=1, 2,3), M and M’ are parameters. The minima of the potential are

determined by Eq. (8) in the lowest order of x. In this case, we have three minima at

{H>=<{H'>=0, <{S>=undetermined,
() <>=0, (i) <2>:§diag(1,1,1,1, —4),

(iii) <X>=M diag(2,2,2, —3, —3), (13)

corresponding to SU(5), SU(4)QU(1) and SU(3)QSU(2)®U(1) phases, respectively.
One may hope that the singlet field S in Eq. (12) may serve to make the SU(2) doublets
in H and H’ light naturally. In global SUSY, the minimization condition with respect to
<S> ensures that these doublets are massless at the stage of SU(5) breaking — the so-
called “sliding singlet” mechanism.® Unfortunately, in our case the additional term (10)
makes large VEV for S energetically unfavorable and in general tends to prevent this
mechanism from working. Moreover, in the model (12) , a closer examination of the full
potential shows that, in order to break SU(2) at the energy scale of xm® (2 10° GeV), we
must set M'=M and <S>=0 (at order x°). In fact, we can then find a solution in which
SUB)®SU(2)R®U(1) is broken to SU(3)® U (1) at the energy scale of xm*.” Thus the
gravitational effects can break SU(2) group. (Another mechanism will be discussed
later.)

3.3. Avoidance of anti-de Sitter vacua and nearly degenerate vacua

This solution suffers from the presence of a large cosmological constant of order
x2M°®, but it can be chosen to vanish by adding a constant to g. Once this is done, the
other two solutions in Eq. (13) correspond to large negative-vacuum-energy (~ —x*M*®)
states, which we call anti-de Sitter vacua hereafter. Nevertheless, we may choose any
state as our vacuum since all these vacua are stable.’” This is frustrating, however, since
we are still ignorant about the correct choice of the vacuum despite the fact that the
degeneracy has been lifted. This ambiguity cannot be resolved even when we trace back
the history of the universe because of the negligible thermal effects near the expected
phase transition points compared with the large gravitational splittings.'”

Fortunately, such anti-de Sitter vacua can be avoided in the presence of the super-
Higgs term (4).” The question then arises of what are the necessary conditions for this
evasion of anti-de Sitter vacua. To investigate this problem, suppose g~ 4 at the
stationary points which would be near the points dg/dz;=0. From Eqs. (3) and (6), it is
easy to see that the vacuum energy is then of order x*m*M?—xm”> 4 — x* 4%, which can be
positive only when 4 <m’M < M?. We have investigated some models and found that, if
we try to make 4 smaller than M?, we are inevitably forced to have vanishing 4 in the
limit x—0. For example, consider

g=AX(Tr 2*~M?*)+A.H(X+M )H+ASH' H (14)
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where X is a singlet of SU(5) and other fields are the same as in Eq.(12). This super-
potential vanishes at the following minima in the lowest order of x:

CH>=C(H»>=<X>=0, {S>=undetermined ,

(i) <E>%73—6 diag(2, 2, 2, —3, —3), (i) <E>:md1ag(l, 1,1,1, —4). (15)

Examination of the minimum points in the next order of x shows that they are modified
to

2
CHY>=<H">=(S>=0, <X>:%,

(i) <2>:7%(1+e)diag(2,2,2,—3,~3), (i) <z>:%(1+e)diag(1,1,1,1, —4)
(16)

with common = —(v/3—1)x*m*/ 4A.>M?, and these states are degenerate in energy. This
implies that we have no anti-de Sitter vacuum. Arnowitt et al.” considered a more
complicated potential with additional 24 and 1 fields and found that the SU(4)®U(1)
state is higher than the SU(3)QSU(2)®U(1) only by energy of the order of TeV.
Although the precise amount of the energy splitting depends on the details of the models
considered, the general picture emerging from this approach is that the degeneracy of
vacua is in general removed by the gravitational effects only slightly (< TeV) if we are
to avoid anti-de Sitter solutions like Weinberg’s.

This is welcome from the cosmological point of view. In fact, we can determine in
this case which vacuum will actually be realized by tracing back the history of the
universe: At a very high temperature, the potential has -additional contributions of the
form —(72/90)(Ns+ LT Nr)T* with Nz and Nr being the number of helicity states of light
bosons and fermions, respectively, and thermal effects always favor the most symmetric
phase. As we cool down in this phase, the growth of the coupling constant with decreas-
ing temperature would reduce the coefficients of 7** in the free energy density owing to the
“confinement of massless particles” in the strong coupling region, causing a rapid transi-
tion to broken symmetry.'® If the transition from SU(5) takes place towards the
SU(4)®U(1) phase (this is expected at 7 ~10°GeV), similar strong coupling pheno
mena of SU4) would occur (at T~10°GeV) and finally we are left with the
SUB)RQSU(2)QU(1) phase. This is quite plausible because the SU(3)QSU(2)QU(1)
phase is the only vacuum that does not possess strong coupling down to the temperature
T~1 GeV.

There is an argument that, in order for this mechanism to work, the barrier between
the different vacua must be small; the barrier height must be smaller than 10'° GeV."?
However, in the models like (14), it is possible to satisfy this condition by choosing small
A

In the example (14), only the transition from SU(4)® U (1) to SUBYRSU(2)QU(1)
is expected since SU(5) is not included among the almost degenerate vacua. We also
note that in this scheme we need not make the energy of SU(4)® U (1) phase higher than
that of SUR)RSU(2)Q® U(1), because we enter the strong coupling region, where the
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above transition is expected to occur, at atemperature much larger than that the energy
splittings among the vacua; the energy splittings are negligible compared with the thermal
energy at the expected transition point. It seems that this scenario is inevitable in order
to avoid Weinberg’s situation where one could not determine the correct vacuum.

3.4. SU(2) breaking by radiative corrvections

Another apparent difficulty with the solution (i) in Eq. (16) is that SU(2) remains
unbroken. This arises precisely because gravity gives positive contributions to the
masses of the Higgs doublets [Eq. (10)]. At first sight, the gravitational effects in general
seem to make unbroken SU(2) favorable, as we have already remarked. Actually this
difficulty can be resolved by the gravitational effects themselves in the following way.
Now that the gravitino is massive, the four-fermion coupling of the gaugino A to the
gravitino characteristic of supergravity

12 AADup* (17)

will induce gaugino mass terms of order ms. (at the one loop level) if we take 1/x as the
cutoff for.the gravitino loop.'"*® There will also appear radiative gaugino masses
coming from radiative graphs involving the gauge multiplets since SUSY is broken.”
Finally there may be direct gaugino masses if the coupling of N =1 supergravity to the
Yang-Mills strength is non-minimal.®’ This is indeed the case for N =4 supergravity. In
any case it is quite plausible that the gauginos acquire nonvanishing masses of order ms.
owing to the gravitational effects. These in turn induce positive masses for scalar
partners of quarks, giving rise to negative contributions to the masses of the Higgs
doublets.”
Suppose these additional contributions are summed up to yield

—a*mi(|HP+|H'?). (18)

. ;3 *
We find that if M ——mM and

a2>/§~%, (19)

then the model (14) in fact possesses the following solution with SU(2) broken at the scale
of xm?:

2 2 2
(=M OO=TFE | (Hy=C(H> =58,

As 21
=M Giag(2.2.2, —3+¢, —3—¢) (20)
‘/3_0 y &y Ly ’ ’
where
2__ 245° é_ 2 /_31/57””24 _2 2}
V=5 (4 3ta ) &= oneld {1 WEAEA R (21)

This mechanism would work favorably provided that there is some lower bound of order
10 GeV for the mass of the top quark, as evaluated in Ref. 3). It should also be noted that

*) This condition is necessary to keep the Higgs doublets light at SU(5) breaking stage. The “sliding singlet”
does not work here either.
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v/3— 2is less than unity. This implies that the mass terms of the Higgs doublets arising
from Eqgs. (10) and (18) need not be negative but must be small. We emphasize that this
mechanism is quite general in this type of unified models, in contrast to that discussed in
the model (12).

3.5. Monopole suppression

One more problem we should discuss in this model is related to the monopole
production in the early universe. Since SU(5) is broken to SU(4)® U (1) at the temper-
ature near the unification scale, too many monopoles would be produced through thermal
fluctuations. To avoid this, it is enough to have SU(5) phase as well. This can be
achieved, for example, by taking the superpotential

g=AATr(Z* )+ M Te(ZI )} +H (X+M' )H+A:SH'H | (22)

where 7 is an additional adjoint scalar field. This potential gives SU(5), SU4)YRQU (1)
and SUQB)RSU2)RQU(1) minima almost depenerate (¢g=0 at all the minima).
Monopoles may be suppressed sufficiently according to the development of the universe
described before, since the transition from SU(5) to SU(4)®U(1) is delayed until the
SU(5) coupling grows large (Tc~10° GeV < Mmonopote)-

The number N, of monopoles produced in the early universe can be evaluated in the
same manner as in Ref. 18) and turns out to be

NmN CT3h3/4 ,

where ¢=(3/7)"*I"(5/4)~0.90 and % is a dimensionless constant. The temperature T*
at which the transition from SU(5) to SU(4)® U (1) is completed is found to be'®

1/T*=1/T:+ O(10)/h"* Mp .
Since Te>~ T*~10° GeV, this implies #'*~107%~"*, leading to
Nn/T3?*=1077",
This is well below the bound <107**, as we expected.

3.6. Flavor-changing-neutral currents

Finally we note that this breaking mechanism of SUSY due to gravitation does not
discriminate flavors. This leads to the natural suppression of flavor-changing-neutral
currents(FCNC) according to Inami and Lim.*»*V

§4. Concluding remarks

We have thus shown that N =1 supergravity seems to provide phenomenologically
interesting models without difficulties inherent in global SUSY and predict new physics
near TeV region. To summarize the main points of the scenario outlined here, the
gravitational effects break SUSY in such a way that (i) the unrealistic mass formula (1)
is no longer true even before the introduction of radiative corrections, (ii) cosmological
constant can be made to vanish, (iii) Goldstino is absent, (iv) the degenerate vacua in
global SUSY are slightly shifted and as a result the correct vacuum may be chosen by
tracing back the history of the universe, (v) SU(2) is also broken by gravitation, (vi)
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monopoles may be suppressed, and (vii) FCNC is suppressed naturally. The resulting
low-energy effective theory is given by a globally supersymmetric theory with all the
explicit soft breakings'® originating from (9), (10) and (17).

There are also remaining problems. It seems that an adjustment of parameters is
necessary to make the Higgs doublets light. The “sliding singlet” does not work, at least,
in its simplest form. This may be overcome by the mechanism of “missing partner”, e.g.,
by using 50 representation of SU(5).*? The question of how the cosmological constant
can be made to vanish naturally and that of to what extent we can narrow down the choice
of the superpotential are also left unsolved. Perhaps, these problems may be resolved
when we succeed in reducing theories based on N =2 supergravity to the models discussed
here.
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