Granger Causality and Dynamic Structural Systems

Halbert White and Xun Lu Department of Economics, UCSD

October 15, 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Objective

Relate Granger causality to a notion of structural causality

• Granger (G) causality

(Granger, 1969 and Granger and Newbold, 1986)

Structural causality

(White and Chalak, 2007 and White and Kennedy, 2008)

Outline

- 1. Define G non-causality and structural non-causality
- 2. Relation between (retrospective, weak) G non-causality and structural non-causality

- 3. Testing (retrospective) weak G non-causality
- 4. Testing (retrospective) conditional exogeneity and structural non-causality
- 5. Applications
- 6. Conclusions

1. Definitions of *G* non-causality and structural non-causality

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Granger Causality

- Let $\mathbb{N}_0:=\{0,1,2,3...\}$ and $\mathbb{N}:=\{1,2,3...\}.$
- subscript_t denotes a variable at time t.
- superscript^t denotes a variable's "t-history", (e.g., X^t = {X₀, X₁, ..., X_t})

Definition: Granger non-causality Let $\{D_t, S_t, Y_t\}$ be a sequence of random vectors. Suppose that

$$Y_{t+1} \perp D^t \mid Y^t$$
, S^t for all $t \in \mathbb{N}_0$

then we say D does not G-cause Y with respect to S. Otherwise, we say D G-causes Y with respect to S.

Data Generating Process (DGP)

Assumption A.1(a) (White and Kennedy, 2008) Let V_0 , W_0 , D_0 , Y_0 be random vectors and let $\{Z_t\}$ be a stochastic process. $\{V_t, W_t, D_t, Y_t\}$ is generated by the structural equations

$$V_{t+1} = b_{0,t+1}(V^{t}, Z^{t})$$

$$W_{t+1} = b_{1,t+1}(W^{t}, V^{t}, Z^{t})$$

$$D_{t+1} = b_{2,t+1}(D^{t}, W^{t}, V^{t}, Z^{t})$$

$$Y_{t+1} = q_{t+1}(Y^{t}, D^{t}, V^{t}, Z^{t})$$

$$t = 0, 1, 2...$$

- Cause of interest: D^t . Response of interest: Y_{t+1} .
- $\{D_t, Y_t, W_t\}$ observable; some components of $\{Z_t, V_t\}$ unobservable
- Covariates: $X_t := \{W_t, \text{ observable components of } Z_t \text{ and } V_t\}$
- Unobservables: U_t
- $b_{0,t+1}$, $b_{1,t+1}$, $b_{2,t+1}$, q_{t+1} unknown functions.

Assumption A.1(a) (White and Kennedy, 2008) Let V_0 , W_0 , D_0 , Y_0 be random vectors and let $\{Z_t\}$ be a stochastic process. $\{V_t, W_t, D_t, Y_t\}$ is generated by the structural equations

$$V_{t+1} = b_{0,t+1}(V^{t}, Z^{t+1})$$

$$W_{t+1} = b_{1,t+1}(W^{t}, V^{t+1}, Z^{t+1})$$

$$D_{t+1} = b_{2,t+1}(D^{t}, W^{t+1}, V^{t+1}, Z^{t+1})$$

$$Y_{t+1} = q_{t+1}(Y^{t}, D^{t+1}, V^{t+1}, Z^{t+1})$$

$$t = 0, 1, 2...$$

(日) (同) (三) (三) (三) (○) (○)

Structural Causality

Implicit dynamic representation of the DGP:

$$Y_{t+1} = r_{t+1}(Y_0, D^t, V^t, Z^t)$$
 $t = 0, 1, 2, ...$

• **Definition:** *Structural non-causality*

Suppose for given t and all y_0 , v^t , and z^t , the function

$$d^t
ightarrow r_{t+1}(y_0, d^t, v^t, z^t)$$

is constant in d^t . Then we say D^t does not structurally cause Y_{t+1} and write $D^t \not\Rightarrow_S Y_{t+1}$. Otherwise, we say D^t structurally causes Y_{t+1} and write $D^t \Rightarrow_S Y_{t+1}$.

• Example: $Y_{t+1} = \beta_0 + Y_0\beta_1 + D^{t\prime}\beta_2 + V^{t\prime}\beta_3 + Z^{t\prime}\beta_4$

$$eta_2=0$$
: structural non-causality
 $eta_2
eq 0$: structural causality

2. Relation between *G* non-causality and structural non-causality

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Weak Granger Causality

• **Definition**: Weak G non-causality

Let $\{D_t, S_t, Y_t\}$ be a sequence of random vectors. Suppose that

$$Y_{t+1}\perp D^t\mid Y_0$$
, S^t for all $t\in\mathbb{N}_0$

then we say D does not **weakly** G-cause Y with respect to S. Otherwise, we say D **weakly** G-causes Y with respect to S.

Note: G non-causality says $Y_{t+1} \perp D^t \mid Y^t$, S^t for all $t \in \mathbb{N}_0$

(日) (同) (三) (三) (三) (○) (○)

Conditional Exogeneity

• Assumption A.2 (a)

$$D^t\perp U^t|\,\,Y_0$$
 , X^t , $t=0,1,2,...$.

We say D^t is conditionally exogenous with respect to U^t given (Y_0, X^t) , t = 0, 1, 2, For brevity, we just say D^t is conditionally exogenous.

Structural Non-causality and (Weak) G Non-causality

• Proposition 1

Suppose Assumption A.1(a) holds and that $D^t \not\Rightarrow_S Y_{t+1}$ for all $t \in \mathbb{N}_0$. If Assumption A.2(a) also holds, then D does not (weakly) G-cause Y with respect to X.

• Structural non-causality and conditional exogeneity imply (weak) G non-causality

Retrospective Weak Granger Causality

Time line

• Definition: Retrospective weak G non-causality Let $\{D_t, S_t, Y_t\}$ be a sequence of random variables. For a given $T \in \mathbb{N}$, suppose that

$$Y_{t+1} \perp D^t | Y_0$$
, $S^{\mathcal{T}}$ for all $0 \leq t \leq \mathcal{T}-1$

Then we say D does not **retrospectively** weakly G-cause Y with respect to S. Otherwise, we say D **retrospectively** weakly G-causes Y with respect to S.

Retrospective Conditional Exogeneity

• Assumption A.2 (b)

$$D^t \perp U^t | Y_0, X^T$$
, $t=0,1,2,...$.

We say D^t is **retrospectively** conditionally exogenous with respect to U^t given (Y_0, X^T) , t = 0, 1, 2, For brevity, we just say D^t is **retrospectively** conditionally exogenous.

Structural Non-causality and Retrospective (Weak) G Non-causality

• Proposition 2

Suppose Assumption A.1(a) holds and that $D^t \not\Rightarrow_S Y_{t+1}$ for all $t \in \mathbb{N}_0$. If Assumption A.2(b) also holds, then for the given T, D does not retrospectively (weakly) G cause Y with respect to X.

• Structural non-causality and retrospective conditional exogeneity imply retrospective (weak) G non-causality

Some Converse Results

• Assumption A.3(a) there exist measurable sets B_Y , B_0 , B_D , and B_X such that:

(i)

$$P[Y_{t+1} \in B_Y, Y_0 \in B_0, D^t \in B_D, X^t \in B_X] > 0$$

(ii)
 $P[D^t \in B_D | Y_0 \in B_0, X^t \in B_X] < 1; \text{ and}$

(iii) with

$$B_U(d^t, y_0, x^t) \equiv \text{supp}(U^t \mid D^t = d^t, Y_0 = y_0, X^t = x^t),$$

for all $d^t \notin B_D$, $y_0 \in B_0$, and $x^t \in B_X$, and all $u^t \in B_U(d^t, y_0, x^t)$

 $r_{t+1}(y_0, d^t, v^t, z^t) \notin B_Y.$

Some Converse Results (Cont'd)

Intuition of A.3(a)

Example of A.3(a):

 $\begin{array}{l} Y_{t+1} = D_t + U_t, \ D_t \sim N\left(0,1\right), \ U_t \sim \!\!\! \text{Uniform}(0,1); \\ B_D = (-\infty,0) \cup (1,\infty) \ \text{and} \ B_Y = (-\infty,0) \cup (2,\infty). \\ d_t \notin B_D \ \text{means} \ d_t \in [0,1]. \ \text{For all} \ d_t \in [0,1] \ \text{and} \ u_t \in (0,1), \\ y_{t+1} = d_t + u_t \in (0,2), \ \text{which is not contained in} \ B_Y. \end{array}$

Some Converse Results (Cont'd)

• **Definition**: Strong Causality

Suppose A.1(a) and A.3(a) hold. Then we say that D^t strongly causes Y_{t+1} . Otherwise, we say that D^t does not strongly cause Y_{t+1} .

• Proposition 3

If D^t strongly causes Y_{t+1} for all t, then D weakly G-causes Y with respect to X.

Some Converse Results (Cont'd)

 Similarly, we can define Retrospective Strong Causality by replacing X^t with X^T in A.3(a).

• Proposition 4

If D^t retrospectively strongly causes Y_{t+1} , then D retrospectively weakly G-causes Y with respect to X.

Summary of the relation between (retrospective) weak G causality and structural causality

• Under (retrospective) conditional exogeneity, structural non-causality implies (retrospective) weak G non-causality.

Conversely,

• (Retrospective) strong causality implies (retrospective) weak *G* causality.

3. Testing (retrospective) weak G non-causality

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / の�?

Testing (Retrospective) Weak G Non-causality

• Weak *G* non-causality:

$$Y_{t+1} \perp D^t | Y_0, X^t$$

• (Retrospective) weak G non-causality:

$$Y_{t+1} \perp D^t | Y_0, X^T$$

Testing (Retrospective) Weak G Non-causality (Cont'd)

• Proposition 5

(a) Under some conditional stationarity and memory assumptions, then

$$Y_{t+1} \perp D^t \mid Y_0, X^t \Leftrightarrow Y_{t+1} \perp D_t \mid Y_t, X_{t-\tau}^t$$

Notation:
$$X_{t-\tau}^t := (X_{t-\tau}, X_{t-\tau+1}, ..., X_t)$$

(b) Under some conditional stationarity and memory assumptions, then

$$egin{aligned} \mathsf{Y}_{t+1} \perp \mathsf{D}^t \mid \mathsf{Y}_{\mathsf{0}}, \mathsf{X}^{\mathcal{T}} \Leftrightarrow \mathsf{Y}_{t+1} \perp \mathsf{D}_t \mid \mathsf{Y}_t, \mathsf{X}_{t- au}^{t+ au} \end{aligned}$$

Notation: $X_{t-\tau}^{t+\tau} := (X_{t-\tau}, X_{t-\tau+1}, ..., X_t, X_{t+1}, X_{t+2}, ..., X_{t+\tau})$

Flexible Parametric Tests of Conditional Independence

 $\mathsf{Test}: \mathcal{Y} \perp \mathcal{D} \mid \mathcal{S}$

• CI test Regression 1: testing conditional mean independence with linear conditional expectations

$$E(\mathcal{Y} \mid \mathcal{D}, \mathcal{S}) = \alpha + \mathcal{D}' \beta_0 + \mathcal{S}' \beta_1.$$

• CI test Regression 2: testing conditional mean independence with flexible conditional expectations

$$E(\mathcal{Y} \mid \mathcal{D}, \mathcal{S}) = \alpha + \mathcal{D}'\beta_0 + \mathcal{S}'\beta_1 + \sum_{j=1}^q \psi(\mathcal{S}'\gamma_j)\beta_{j+1}$$

• CI test Regression 3: testing conditional independence using non-linear transformations

$$\mathcal{Y} \perp \mathcal{D} \mid \mathcal{S} \Rightarrow \psi_{y}(\mathcal{Y}) \perp \psi_{d}(\mathcal{D}) \mid \mathcal{S}$$

 $E(\psi_{y}(\mathcal{Y}) \mid \psi_{d}(\mathcal{D}), \mathcal{S}) = \alpha + \psi_{d}(\mathcal{D})'\beta_{0} + \mathcal{S}'\beta_{1} + \sum_{j=1}^{q} \psi(\mathcal{S}'\gamma_{j})\beta_{j+1}.$

4. Testing (retrospective) conditional exogeneity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(Retrospective) Conditional Exogeneity

• Conditional exogeneity:

$$U^t \perp D^t | Y_0, X^t$$

• Retrospective conditional exogeneity:

 $U^t \perp D^t | Y_0, X^T$

Challenge: U_t is unobservable.

Resolution: Observe additional proxies for U_t , say \tilde{W}_t – can use \tilde{W}_t to test (retrospective) conditional exogeneity.

Testing Conditional Exogeneity

• Assumption A.6 (a) \tilde{W}_0 is an observable random variable and $\{\tilde{U}_t\}$ is an unobservable stochastic process such that (i) $\{\tilde{W}_t\}$ is generated by the structural equations

$$ilde{W}_{t+1} = b_{3,t+1}(ilde{W}^t, X^t, U^t, ilde{U}^t), \quad t=0,1,...,$$

where $b_{3,t+1}$ is an unknown measurable function; and (ii)

$$D^t \perp (\tilde{U}^t, \tilde{W}_0) \mid Y_0, U^t, X^t, \quad t = 1, 2, ...$$

• Assumption A.7 (a) $(\tilde{W}_{t+1}, \tilde{W}_t) \perp (\tilde{W}_0, Y_0) \mid X^t$ for all t = 1, 2, ...

Testing Conditional Exogeneity (Cont'd)

• Proposition 6

Suppose Assumptions A.1(a), A.6(a), and A.7(a) hold. Then $D^t \perp U^t \mid Y_0, X^t$ for all $t \in \mathbb{N}$ implies $\tilde{W}_{t+1} \perp D^t \mid \tilde{W}_0, X^t$ for all $t \in \mathbb{N}_0$.

Proposition 7

Under some conditional stationarity and memory assumptions,

$$\begin{array}{rcl} \tilde{W}_{t+1} & \perp & D^t \mid \tilde{W}_0, X^t \text{ for all } t \in \mathbb{N}_0 \\ \Leftrightarrow & \tilde{W}_{t+1} \perp D_t \mid \tilde{W}_t, X_{t-\tau}^t \text{ for all } t \in \mathbb{N}_0 \end{array}$$

• Similarly, test Retrospective Conditional Exogeneity by replacing X^t , $X_{t-\tau}^t$ with X^T , $X_{t-\tau}^{t+\tau}$.

A Pure Test of Structural Non-causality

Reject structural non-causality if

- the (retrospective) (weak) G non-causality test rejects; and
- the (retrospective) conditional exogeneity test fails to reject.

Significance Level and Power of the Structural Non-causality Test

- Test levels
 - α_1 : conditional exogeneity test
 - α_2 : *G* non-causality test
 - $\boldsymbol{\alpha}$: structural non-causality test
- Test powers
 - π_1 : conditional exogeneity test
 - π_2 : *G* non-causality test
 - π : structural non-causality test

Proposition 8

$$\max \{0, \min \{(\alpha_2 - \alpha_1), (\pi_2 - \pi_1), (\alpha_2 - \pi_1)\}\} \le \\ \alpha \le \max\{\min\{1 - \alpha_1, \alpha_2\}, \min\{1 - \pi_1, \pi_2\}, \min\{1 - \pi_1, \alpha_2\}\} \\ \pi_2 - \alpha_1 \le \pi \le \min\{1 - \alpha_1, \pi_2\}.$$

Significance Level and Power of the Structural Non-causality Test (Cont'd)

- Test levels
 - $\alpha_{1T} \rightarrow \alpha_1$: conditional exogeneity test
 - $\alpha_{2T} \rightarrow \alpha_2$: G non-causality test
 - $\alpha_{\mathcal{T}}$: structural non-causality test
- Test powers
 - $\pi_{1T} \rightarrow 1$: conditional exogeneity test
 - $\pi_{2T}
 ightarrow 1: G$ non-causality test
 - π_T : structural non-causality test

Proposition 9

$$0 \leq \liminf \alpha_T \leq \limsup \alpha_T \leq \min \{1 - \alpha_1, \alpha_2\}$$
 and

$$\pi_T \rightarrow 1 - \alpha_1$$

5. Applications

Applications

- Crude oil prices and gasoline prices (White and Kennedy, 2008)
- Monetary policy and industrial production (Angrist and Kuersteiner, 2004)
- Economic announcements and stock returns (Flannery and Protopapadakis, 2002)

Crude Oil Prices and Gasoline Prices

- Y_t : the natural logarithm of the spot price for US Gulf Coast conventional gasoline
- *D_t* : the natural logarithm of the Cushing OK WTI spot crude oil price
- Ut : all unobservable drivers of gasoline prices
- Structure:

$$Y_t = r_t(Y_0, D^t, U^t), \quad t = 0, 1, ..., T.$$

- Note: "Contemporaneous" effects allowed.
- Sample period: January 1987-December 1997

Crude Oil Prices and Gasoline Prices (Cont'd)

- $X_t = W_t$:
 - (1) natural logarithm of Texas Initial and Continuing Unemployment Claims
 - (2) Houston temperature
 - (3) winter dummy for January, February, and March
 - (4) summer dummy for June, July, and August
 - (5) natural logarithm of U.S. Bureau of Labor Statistics Electricity price index
 - (6) 10-Year Treasury Note Constant Maturity Rate
 - (7) 3-Month T-Bill Secondary Market Rate
 - (8) Index of the Foreign Exchange Value of the Dollar

Crude Oil Prices and Gasoline Prices (Cont'd)

Test retrospective conditional exogeneity by testing

$$D_t \perp \tilde{W}_t \mid \tilde{W}_{t-1}, X_{t-\tau}^{t+\tau}$$
(1)

• Test retrospective weak G non-causality by testing

$$Y_t \perp D_t \mid Y_{t-1}, X_{t-\tau}^{t+\tau}$$
(2)

Results:

1. Fail to reject (1) using CI test Regressions 1, 2, 3 for almost all the choices of τ ($\tau = 0, 1, ..., 5$) and q (q = 1, 2, ..., 5).

2. Reject (2) using CI test Regressions 1, 2, 3 for almost all the choices of τ ($\tau = 0, 1, ..., 5$) and q (q = 1, 2, ..., 5).

Crude Oil Prices and Gasoline Prices (Cont'd)

- Conclusions: reject the hypothesis of structural non-causality from crude oil prices to gasoline prices.
- Similar conclusions using non-retrospective conditional exogeneity and weak *G* non-causality tests.
- Conclusions not surprising But they critically support subsequent inferences about effect magnitudes.

Conclusions

This paper

- Links G non-causality and a notion of structural non-causality
- Provides explicit guidance as to how to choose S so G non-causality gives structural insight
- Extends G non-causality to new *weak* and *retrospective weak* versions
- Provides new tests of (retrospective) weak G non-causality, (retrospective) conditional exogeneity, and structural non-causality