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Granger causality is becoming an important tool for determining causal relations between neurobiological
time series. For multivariate data, there is often the need to examine causal relations between two blocks
of time series, where each block could represent a brain region of interest. Two alternative methods are
available. In the pairwise method, bivariate autoregressive models are fit to all pairwise combinations
involving one time series from the first block and one from the second. The total Granger causality
between the two blocks is then derived by summing pairwise causality values from each of these models.
This approach is intuitive but computationally cumbersome. Theoretically, a more concise method can
be derived, which we term the blockwise Granger causality method. In this method, a single multivariate
model is fit to all the time series, and the causality between the two blocks is then computed from this
model. We compare these two methods by applying them to cortical local field potential recordings from
monkeys performing a sensorimotor task. The obtained results demonstrate consistency between the two
methods and point to the significance potential of utilizing Granger causality analysis in understanding
coupled neural systems.

Keywords: Multivariate time series; pairwise Granger causality; blockwise Granger causality; sensorimo-
tor cortex, beta oscillation network.

1. Introduction

The issue of determining directionality in neural

interactions has become a focus of strong interest in

neuroscience since directionality holds the promise of

revealing paths of information flow within the ner-

vous system. In this regard, Granger causality and

its spectral counterpart have emerged as the leading

statistical quantities to furnish directional informa-

tion from multivariate neural data. The concept of

Granger causality1,2 follows directly from considera-

tion of two time series. If the first time series is better

predicted by its past measurements in conjunction

with those of the second time series than by its own

past values alone, then the second time series is said

to be causal to the first time series. The roles of the

two time series can be reversed to address the causal

influence in the opposite direction. Granger causality
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can also be studied in the frequency domain. In

fact, Geweke’s3 frequency decomposition of the time

domain Granger causality, which allows the exami-

nation of causal relations among oscillatory neural

activities, is the focus of the present work.

Granger causality had its genesis in the eco-

nomics field, and its deployment in neuroscience has

only begun fairly recently.4–8 Applications to the

investigation of causal influences between different

brain structures have so far mainly utilized pair-

wise analysis9,10 in which two time series are ana-

lyzed at a time. However, pairwise analysis may

be considered inadequate given the rapid advances

that have occurred in multi-site recording technol-

ogy in recent years. When dealing with large sets of

multivariate neural time series data, a more sensi-

ble approach for many purposes is to combine the

time series recorded from different brain regions of

interest into blocks, and then to analyze the rela-

tions between the blocks. Although it is possible to

achieve a blockwise analysis by combining the results

of repeated pairwise analyses, a more effective, and

theoretically more elegant, approach is to address the

relation between two blocks of time series directly.

This blockwise approach is contained in the general

methodological framework developed by Geweke.3 In

what follows, we first introduce the mathematical

framework for deriving Granger causality between

two blocks of time series (Sec. 2). We then com-

pare the performance of this blockwise method with

that of the bivariate approach by applying both to

multi-site local field potential recordings from the

cerebral cortex of monkeys performing sensorimotor

tasks (Sec. 3). For this comparison study, one block

is defined to contain a single time series and the

remaining time series in the data set comprise the

other block. Section 4 summarizes the work.

2. Methods

2.1. Time domain formulation

In what follows, boldface letters with an arrow

on top denote vectors and boldface letters without

arrows denote matrices. The formulation below fol-

lows that of Geweke3 and Chen et al.11 Let
⇀

Wt =

[w1t, w2t, . . . , wpt]
′ be a multivariate stationary pro-

cess with dimension p, where the prime denotes

the matrix transposition. Under fairly general con-

ditions,
⇀

Wt could be represented by the following

multivariate autoregressive (MVAR) model:

⇀

Wt =

∞
∑

i=1

ai

⇀

Wt−i +
⇀

εt. (1)

Suppose that
⇀

Wt was partitioned into two vectors
⇀

Xt

and
⇀

Yt with dimensions k and l:
⇀

Wt =
(

⇀

X′

t,
⇀

Y′

t

)

,

where k + l = p. In the case of pairwise Granger

causality,
⇀

Xt and
⇀

Yt are two one-dimension time

series (k = 1, l = 1); while in the case of blockwise

Granger causality,
⇀

Xt and
⇀

Yt are two sets of time

series of dimensions k and l typically not equal to 1.

(
⇀

Xt and
⇀

Yt have no overlap.)

Individually,
⇀

Xt and
⇀

Yt can each be represented

by the following models

⇀

Xt =

∞
∑

j=1

a1j

⇀

Xt−j +
⇀

ε1t, var (
⇀

ε1t) = Σ1

⇀

Yt =
∞
∑

j=1

d1j

⇀

Yt−j +
⇀

η1t, var (
⇀

η1t) = Γ1.

(2)

Jointly, they are represented as

⇀

Xt =

∞
∑

j=1

a2j

⇀

Xt−j +

∞
∑

j=1

b2j

⇀

Yt−j +
⇀

ε2t

⇀

Yt =

∞
∑

j=1

c2j

⇀

Xt−j +

∞
∑

j=1

d2j

⇀

Yt−j +
⇀

η2t.

(3)

where
⇀

ε2t and
⇀

η2t are uncorrelated over time within

themselves and with each other, but could be cor-

related with each other at the same time and their

contemporaneous covariance matrix is

Σ = E

((

⇀

ε2t
⇀

η2t

)

(
⇀

ε2t
⇀

η2t)

)

=

(

Σ2 Υ2

Υ′

2
Γ2

)

. (4)

Notice that Eq. (3) actually is the partitioned form of

Eq. (1). The total interdependence between
⇀

Xt and
⇀

Yt is defined as

FX,Y = ln
|Σ1||Γ1|

|Σ|
(5)

where | · | denotes the determinant of the enclosed

matrix. When
⇀

Xt and
⇀

Yt are independent, FX,Y = 0.

The total interdependence FX,Ybetween two sets of
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time series
⇀

Xt and
⇀

Yt can be decomposed into three

components.

FX,Y = FX→Y + FY→X + FX·Y. (6)

where

FY→X = ln
|Σ1|

|Σ2|
(7)

FX→Y = ln
|Γ1|

|Γ2|
(8)

are the linear causality from
⇀

Yt to
⇀

Xt and from
⇀

Xt

to
⇀

Yt due to their interactions. And

FX·Y = ln
|Σ2||Γ2|

|Σ|
(9)

is the instantaneous causality.

2.2. Frequency domain formulation

To examine the directional linear causality relations

in the frequency domain, Eq. (3) is rewritten into the

following form with the lag operator L(L
⇀

Xt =
⇀

Yt−1)
(

Bxx(L) Bxy(L)

Byx(L) Byy(L)

)

(

⇀

Xt
⇀

Yt

)

=

(

⇀

ε2t
⇀

η2t

)

(10)

where

Bxx(L) = Ik −

∞
∑

j=1

a2jL
j,

Bxy(L) = −

∞
∑

j=1

b2jL
j ,

Byx(L) = −

∞
∑

j=1

c2jL
j,

Byy(L) = Il −

∞
∑

j=1

d2jL
j , and

Bxx(0) = Ik, Byy(0) = Il,

Bxy(0) = 0, Byx(0) = 0.

By pre-multiplying a transformation matrix P to

both sides of Eq. (10)

P =

(

Ik 0

−Υ′

2
Σ−1

2
Il

)

(11)

we can get the following equation:
(

Bxx(L) Bxy(L)

B̃yx(L) B̃yy(L)

)

(

⇀

Xt
⇀

Yt

)

=

(

⇀

ε2t
⇀

η̃2t

)

(12)

where

B̃yx(L) = Byx − Υ′

2Σ
−1

2
Bxx(L),

B̃yy(L) = Byy − Υ′

2Σ
−1

2
Bxy(L),

⇀

η̃2t =
⇀

η2t − Υ′

2
Σ−1

2

⇀

ε2t.

Now
⇀

ε2t and
⇀

η̃2t are uncorrelated with each other

even at the same time,

cov (
⇀

ε2t,
⇀

η̃2t) = 0,

var (
⇀

η̃2t) = Γ̃2 = Γ2 − Υ′

2Σ
−1

2
Υ2.

The covariance matrix of the noise terms is

Σ̃ = E

((

⇀

ε2t
⇀

η̃2t

)

(⇀

ε2t

⇀

η̃2t)

)

=

(

Σ2 0

0 Γ̃2

)

. (13)

Taking the Fourier transform of both sides of Eq. (12)

leads to

(

Bxx(ω) Bxy(ω)

B̃yx(ω) B̃yy(ω)

)

(

⇀

Xt(ω)
⇀

Yt(ω)

)

=

(

⇀

Ex(ω)
⇀

Ẽy(ω)

)

(14)

Defining transfer function H̃ as the inverse of the

coefficient matrix B̃ and B, we can get

(

⇀

X(ω)
⇀

Y(ω)

)

=

(

H̃xx(ω) H̃xy(ω)

H̃yx(ω) H̃yy(ω)

)

(

⇀

Ex(ω)
⇀

Ẽy(ω)

)

(15)

The spectral matrix is then

S(ω) =

(

Sxx(ω) Sxy(ω)

Syx(ω) Syy(ω)

)

= H̃(ω)Σ̃H̃
∗

(ω) (16)

where Sxy(ω) = S∗

yx(ω) with ∗ denoting complex

conjugate and matrix transposition.

The total interdependence between
⇀

Xt and
⇀

Yt in

the frequency domain is defined as

fX,Y = ln
|Sxx(ω)||Syy(ω)|

|S(ω)|
. (17)

Equations (13) and (16) imply the following spectral

decomposition of the spectral density of
⇀

Xt

Sxx(ω) = H̃xx(ω)Σ2H̃
∗

xx(ω) + H̃xy(ω)Γ̃2H̃
∗

xy(ω).

(18)

The first term in Eq. (18) can be interpreted as the

intrinsic power of
⇀

Xt and the second term as the

causal power of
⇀

Xt due to
⇀

Yt. This interpretation

suggests the definition of the causal influence from
⇀

Yt to
⇀

Xt at frequency ω as

fY→X(ω) = ln
|Sxx(ω)|

|H̃xx(ω)Σ2H̃∗

xx(ω)|
(19)
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Using
„

Ik −Υ2Γ−1

2

0 Il

«

as the transformation matrix

and following the same steps that lead to Eq. (19), we

get the causal influence from
⇀

Xt to
⇀

Yt at frequency

ω:

fX→Y(ω) = ln
|Syy(ω)|

|H̃yy(ω)Γ2H̃∗

yy(ω)|
. (20)

By defining the instantaneous causality in the spec-

tral domain as12

fX·Y(ω)

= ln
|(H̃xx(ω)Σ2H̃

∗

xx(ω))||(H̃yy(ω)Γ2H̃
∗

yy(ω))|

|S(ω)|
,

(21)

we achieve frequency domain decomposition for the

total interdependence as,

fX,Y(ω) = fY→X(ω) + fX→Y(ω) + fX·Y(ω). (22)

Notice that Eq. (22) is the frequency domain coun-

terpart of Eq. (6).

For two time series, we simply let p = 2, l = 1 and

k = 1, and call the approach the pairwise (bivariate)

approach. When the data set can be sensibly divided

into two blocks, one can fit one MVAR model to the

data by a method proposed in Ding et al.13 The inter-

dependencies are then estimated by Eqs. (19)–(21).

3. Applications to Cortical Local Field

Potential Data

Local field potential data were recorded from two

macaque monkeys using transcortical bipolar elec-

trodes chronically implanted at distributed sites in

multiple cortical areas of one hemisphere (right hemi-

sphere in monkey GE and left hemisphere in mon-

key LU) while the monkeys performed a GO/NO-GO

visual pattern discrimination task.14 Figure 1 shows

the electrode placement. The presence of oscillatory

field potential activity in the beta (14–30Hz) fre-

quency range was recently reported in the sensorimo-

tor cortex of these monkeys during the prestimulus

period when the monkey maintained steady pressure

on a mechanical lever and paid attention to the com-

puter screen anticipating the imminent onset of the

visual stimulus.10 In that study, Granger causality

analysis was performed for all pairwise combinations

of sensorimotor cortical recording sites indicated by

the heavy circles in Fig. 1.

Fig. 1. Locations of recording sites. The sites enclosed
by the heavy circles are the sites involved in the beta
oscillation network in the sensorimotor cortex.

In both monkeys, a network of sensorimotor sites

was found to be coherent (synchronized) in the beta

frequency range in relation to maintenance of the

depressed mechanical lever. Within this network,

significant beta-frequency Granger causal influences

were discovered from primary somatosensory cortex

to both primary motor cortex and inferior posterior

parietal cortex, with the latter area also exerting

Granger causal influences on primary motor cortex.

In a pairwise analysis, the values of peak beta-

frequency Granger causality between the primary

somatosensory cortex site (I in GE and K in LU) and

all other sites with which it was coherent in the beta

frequency range were summed. The summed (outgo-

ing) influence exerted by the primary somatosensory

cortex site on the other sites was 5.9 times larger

in GE than the summed (incoming) influence that

the other sites exerted on it, and 5.2 times larger in

LU. In contrast, the summed incoming influence for

the primary motor cortex site (site L in LU) was 4.1

times larger than the summed outgoing influence in

LU, and in GE only the incoming influences for the

primary motor cortex site (site J in GE) were statisti-

cally significant. The primary somatosensory cortex

site thus appeared to be a major source of influence

in the beta frequency range for the other network

sites, whereas the precentral motor sites appeared
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to be a major receiving site from the other network

sites.

The above study makes it abundantly clear that

the functional relation between one recording site

and the rest of the network can be useful for assess-

ing the relative importance of that site in organiz-

ing the dynamics of the network. It thus appears

that the blockwise Granger causality method might

be ideally suited for addressing this functional rela-

tion if we treat one time series as a block and the

remaining time series as another. That is why we

have re-analyzed the same data with the blockwise

Granger causality method in order to compare the

summed pairwise and blockwise methods for assess-

ing Granger causality between one recording site and

the rest of the network. The results obtained from

both methods are presented for monkey GE in Fig. 2

and LU in Fig. 3.

In Figs. 2 and 3, the solid curves result from

the blockwise Granger causality method in the fre-

quency domain (Eqs. 19 and 20 with k = 1 and

l = 6) and the dashed curves are from the summed

pairwise Granger causality method (k = 1, l = 1).

For instance, the outgoing summed pairwise Granger

causality from site J (i.e., J → remaining sites) is the

sum of the pairwise Granger causality values from J

to each of the other sites (i.e., J → I +J → G+J →

K + J → M + J → H). As can be seen, the results

from both methods are similar in terms of the shape

of the Granger causality spectra and the peak loca-

tions in the entire spectrum (0–100Hz). The peak

values from the blockwise method tend to be slightly

smaller compared with the summed peak values from

the pairwise method.

In Fig. 3, for demonstration purposes, we have

also included Granger causality spectra (solid thick

curves) estimated between the individual time series

of one site and the average time series computed

from the block of multiple time series of the other

sites (that is k = 1 and l = 1 here too). This com-

parison is included since in many studies, the time

series from a given region-of-interest (ROI) are aver-

aged before assessing functional relations among the

ROIs. Once the average of all the rest of time series

Fig. 2. Blockwise Granger causality (solid) and summed pairwise Granger causality (dashed) for the beta-coherent net-
work of monkey GE. Here, “X → remaining sites” denotes the outgoing causality exerted by site X on the other sites in
the network, and “remaining sites→ X” denotes the incoming causality from the other sites to X, where X represents site
G, H, I, J, K, or M. The stars indicate the peaks of the Granger causality spectra within the beta (14–30 Hz) frequency
range.
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Fig. 3. Blockwise Granger causality (solid thin) and summed pairwise Granger causality (dashed) for the beta-coherent
network of monkey LU. The axis labels have the same meaning as for Fig. 2. The stars indicate the peaks of the Granger
causality spectra within the beta (14–30 Hz) frequency range. The solid thick curves are the Granger causality spectra
estimated between the individual time series of one site and the average of the time series of the block of other sites.

within the block was obtained, pairwise Granger

causality was estimated between the time series of

interest and this average time series. Figure 3 shows

that the level of Granger causality is not consistent

with the other two methods for most recording sites.

For example, this analysis shows that the outgoing

casual influence from precentral site L in LU was

greater than the incoming influence, in contrast to

both the summed pairwise and the blockwise meth-

ods. Thus, this average method does not appear to

be suitable for an accurate estimation of the causal

relations between blocks. This is an additional proof

that spatial averaging of cortical activity, typically

used to ease computational burden and/or to filter

out noise, may lead to erroneous results of analysis.

From Figs. 2 and 3 one can also estimate the rela-

tive intensity of the outgoing to incoming Granger

causality for each site. From the blockwise Granger

causality method, the outgoing influence exerted by

the primary somatosensory cortex site on the rest

of the network is about five times larger than the

incoming influence it receives from the network in

monkey GE (site I), and about two times larger in

monkey LU (site K). On the other hand, the outgoing

blockwise Granger causality exerted by the precen-

tral site on the rest of the network is about one fifth

of the incoming influence that it receives from the

network in monkey GE (site J) and about one third

in monkey LU (site L). These results are consistent

with the results of the pairwise Granger causality

method reported by Brovelli et al.10

For a more quantitative comparison between the

two methods, we estimated the frequency and ampli-

tude of the peaks in the Granger causality spectra

obtained by the pairwise and blockwise methods.

The scatter plots in Fig. 4 display the combined

results from both monkeys. The points in the top

two panels represent peak amplitudes and peak fre-

quencies of outgoing causal influence (i.e., Granger

causality from one site to the rest of the network),

and the bottom two panels represent peak amplitude

and peak frequency of incoming causal influence (i.e.,

Granger causality from the rest of the network to the

given site). As can be seen, the peak frequencies (left

column) and peak amplitudes (right column) from

the two methods are both highly correlated, indicat-

ing that the two methods give very similar results.

The slopes of the linear regression line for the peak
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Fig. 4. Comparison of blockwise versus summed pairwise Granger causality methods. The results of the two methods are
presented in scatter plots for frequency (left column) and amplitude (right column) of the peak Granger causality. Only
peaks in the beta frequency band are considered here. The panels in the top row refer to the outgoing causal influence,
and the panels in the bottom row refer to the incoming causal influence, from the point of view of the single time series
block. Each panel is a composite of the results from both monkeys used in this study. Linear correlation coefficients are
indicated on top of each figure.

amplitude scatter plots are both slightly larger than

one, confirming the earlier observation that the peak

amplitudes from the blockwise method tend to be

smaller than the ones from the summed peak ampli-

tudes by the pairwise method.

4. Discussion

For two blocks of time series, two methods can be

used to assess the causal relations between them:

pairwise method and blockwise method. The main

result of this work on the analysis of multi-site cor-

tical field potential time series is that the blockwise

Granger causality method, which is based on a single

MVAR model fitting to all available time series, pro-

vides an efficient and useful tool for investigating the

causal relations between one site and a block of other

sites in densely coupled networks such as the ones in

the brain. A careful comparison shows that the two

methods give consistent results. In general practice,

it may be useful to combine the blockwise and pair-

wise approaches. For example, the blockwise method

may be used first to identify important regions of

interactions, and the pairwise method is then used

to further assess the contributions of specific sites

within and between those regions (network cluster-

ing). In medical applications, these methods may also

be useful in the monitoring of systems that slowly

move towards synchronization, for example, prior to

the onset of epileptic seizures (see Ref. 15 for a review

on this topic15). In this case, the driving site (or

block of sites) and its dynamics may be identified

through the causality analysis shown herein. Specif-

ically, our methods might be useful for the identi-

fication of the epileptogenic zone as the block of

sites that drive the rest of the brain into seizures.

Nonetheless, it is important to note that in some sit-

uations, both the pairwise and blockwise methods

may produce misleading results. Specifically, if the

influence between two sites (or blocks) is not direct,

but mediated by a third site (or block), neither the

simpler pairwise nor blockwise analyses considered

here are able to completely resolve the connectiv-

ity/causality pattern. Another method, called the
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conditional Granger causality, has been developed to

deal with this problem.11,16
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