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ABSTRACT

At low temperatures (<750 °C at moderate  

to high crustal pressures), the production 

of suffi cient melt to reach the melt connec-

tivity transition (~7 vol%), enabling melt 

drainage, requires an infl ux of aqueous fl uid 

along structurally controlled pathways or 

recycling of fl uid via migration of melt and 

exsolution during crystallization. At higher 

temperatures, melting occurs by fl uid-absent 

reactions, particularly hydrate-breakdown 

reactions  involving micas and/or amphi-

bole in the presence of quartz and feldspar. 

These reactions produce 20–70 vol%, melt 

according to protolith composition, at tem-

peratures up to 1000 °C. Calculated phase 

diagrams for pelite are used to illustrate the 

mineralogical controls on melt production 

and the consequences of different clockwise 

pressure-temperature  (P-T) paths on melt 

composition. Preservation of peritectic min-

erals in residual granulites requires that most 

of the melt produced was extracted, implying 

a fl ux of melt through the suprasolidus crust, 

although some may be trapped during trans-

port, as recorded by composite migmatite-

granite complexes. Peritectic minerals may 

be entrained during melt drainage, consistent 

with observations from leucosomes in migma-

tites, and dissolution of these minerals during 

ascent may be important in the evolution of 

some crustal magmas. Since siliceous melt 

wets grains, suprasolidus crust may become 

porous at only a few volume % melt, as evi-

denced by microstructures in residual mig-

matites in which quartz or feldspar pseudo-

morphs form after melt fi lms and pockets. 

With increasing melt volume and decreas-

ing effective pressure, assuming the residue 

is able to deform and compact, the source 

becomes permeable at the melt connectivity 

transition. At this threshold, a change from 

distributed shear-enhanced compaction to lo-

calized dilatant shear failure enables melt seg-

regation. The result is a highly permeable vein 

network that allows transfer of melt to ascent 

conduits at the initiation of a melt-extraction 

event. Melt is drained from the anatectic 

zone via several extraction events, consistent 

with evidence for incremental construction 

of plutons from multiple batches of magma. 

Buoyancy-driven magma ascent occurs via 

dikes in fractures or via high-permeability  

zones controlled by tectonic fabrics; the way 

in which these features relate to compaction 

and the generation of porosity waves is dis-

cussed. Emplacement of laccoliths (horizon-

tal tabular intrusions) and wedge-shaped 

plutons occurs around the  ductile-to-brittle 

transition zone, whereas steep tabular sheeted 

and blobby plutons represent back freezing of 

melt in the ascent conduit or lateral expansion 

localized by instabilities in the magma–wall-

rock system, respectively. 

INTRODUCTION

The continental crust is not uniform (Rudnick 
and Gao, 2003); the upper crust is more silicic 
and is richer in SiO2 and K2O, whereas the lower 
crust is more mafi c and is richer in Al2O3, FeO, 
MgO, and CaO. In addition, the upper crust is 
enriched in the light rare earth elements and has 
a large negative Eu anomaly compared to the 
lower crust. These differences are best explained 
by intracrustal differentiation due to anatexis of 
the lower crust and migration of the partial melt 
to the upper crust. This process leaves a lower 
crust with trace microstructural evidence of hav-
ing melted and a more residual bulk chemical 
composition.

Geophysical surveys confi rm that granites 
are concentrated in the upper continental crust 
(Vigneresse, 1995). This complements the 
view from petrological and geochemical stud-
ies of exhumed granulite terrains and xenoliths 
from volcanic conduits demonstrating that the 
primary source for the melt was residual para-
gneisses, orthogneisses, amphibolites, and gran-
ulites of the lower continental crust (Sawyer 
et al., 2011). Thus, reworking of the continental 
crust during orogenesis by extraction of melt 
from the lower portion and its emplacement 

in the upper portion is the principal process by 
which continents have become differentiated 
into a more mafi c, minimally hydrated, and 
residual lower crust and a more felsic, more 
hydrated, and incompatible element–enriched 
upper crust (Brown and Rushmer, 2006).

This article is about the mechanism of crustal 
reworking and is concerned with granites pro-
duced predominantly by anatexis rather than by 
crystal fractionation of mantle-derived magma. 
It represents the latest in a series of reviews 
published during the past two decades (Ather-
ton, 1993; Brown, 1994, 2007, 2010b; Petford 
et al., 2000; Sawyer et al., 2011), none of which 
is reviewed herein, but to which the interested 
reader is referred to follow the development of 
ideas during the past 20 yr. This article covers 
material similar to that in the book by Brown 
and Rushmer (2006), and it includes reference 
to papers in the Virtual Special Issue on crustal 
melting in the Journal of Metamorphic Geology 
(Brown, 2012). 

AN HISTORICAL PERSPECTIVE

“Whereof what’s past is prologue; what to come,

In yours and my discharge.”

William Shakespeare, The Tempest 
Act II, scene i, lines 253–254

“What’s past is prologue” is engraved on 
the National Archives Building in Washing-
ton, D.C., and today the phrase is used liber-
ally to mean that history infl uences, and sets 
the context for, the present. Thus, it is fi tting in 
an article celebrating the 125th anniversary of 
the Geological Society of America Bulletin to 
review, briefl y, landmark works published by 
the Geological Society of America relating to 
the genesis and emplacement of granite. This is 
followed by a summary of key ideas advanced 
during the past 50 yr, since they set the context 
for our present state of knowledge.

World War II led to a vast expansion in gov-
ernment support of science in the United States, 
which continued after the war with the estab-
lishment of the National Science Foundation 
in 1950. During the second half of the twenti-
eth century, government support of science has 

For permission to copy, contact editing@geosociety.org
© 2013 Geological Society of America

  1079

GSA Bulletin; July/August 2013; v. 125; no. 7/8; p. 1079–1113; doi: 10.1130/B30877.1; 14 fi gures.

†E-mail: mbrown@umd.edu

Invited Review

CELEBRATING ADVANCES IN GEOSCIENCE

1888 2013

Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/125/7-8/1079/419018/1079.pdf
by guest
on 09 August 2022



Brown

1080 Geological Society of America Bulletin, July/August 2013

become the norm in the developed world, and 
this has driven a global proliferation of scien-
tifi c journals since the 1960s. The combination 
of these factors makes any review of the modern 
literature daunting, and the summary presented 
here is highly selective.

Immediate Postwar Years (1945–1960)

In his 1947 address as retiring president of 
the Geological Society of America, Norman L. 
Bowen succinctly summarized the two alter-
nate, diametrically opposed views relevant at 
that time about the origin of granite, as follows:

“We can, indeed, for rough purposes, separate petrolo-
gists into the pontiffs and the soaks. Yet, among the 
pontiffs who bear the stigma of magma, there are 
none who do not believe that magmas contain vola-
tile constituents of which the principal is water, that 
these may emanate from the magma and give rise to 
a liquor that pervades the invaded rocks, transforming 
them at times into igneous-looking rocks. The differ-
ence between the pontiff and the soak is that the lat-
ter must have his liquor in lavish quantities on nearly 
all occasions, but the former handles his liquor like a 
gentleman; he can take it or leave it according to the 
indications of the individual occasion, he can take it 
in moderation when it is so indicated, or again he can 
accept it in copious quantities and yet retain powers of 
sober contemplation of attendant circumstances.

The difference of opinion just discussed is a wide 
difference, and there is little reason to believe that it 
will be resolved in the near future.”

—Bowen (1947)

Today, the difference of opinion has trans-
ferred to the fi eld of isotope geochemistry, 
where it refers to the proportion of mantle versus 
crustal source material in granites (e.g., Kemp 
et al., 2009; Clemens et al., 2011; Clemens and 
Stevens, 2012).

A balanced account of the debate as it stood 
in 1948 was published in the landmark memoir 
Origin of Granite (Gilluly, 1948, Memoir 28). 
Memoir 28 was based on papers presented at the 
seminal conference meeting of the Geological 
Society of America held in Ottawa at the end of 
1947, sandwiched between Read’s well-known 
addresses to the Geological Society of London 
as president on “space” and “time” in plutonism 
(Read, 1948a, 1949). In a novel approach, the 
discussants exchanged papers before the full-
day symposium to foster livelier debate from 
the fl oor and the podium. The resulting mem-
oir refl ects the debate of the time over the con-
trasting ideas about the formation of granite by 
the nebulous process of “granitization” or the 
simple process of crystallization from a melt. 
For Read, plutonism was “all these operations 
that give rise to the plutonic rocks, these as I 
defi ne them comprising the vast transitional 
assemblage of the metamorphic, migmatitic 
and granitic rocks” (Read, 1948a, p. 156). At 

the other extreme from Read, Bowen (1948) 
was a fi rm believer in granite having formed by 
“the method of crystallization differentiation of 
(basalt) magma” (Bowen, 1948, p. 88).

A decade later, in another landmark memoir, 
Origin of Granite in the Light of Experimental 

Studies in the System: NaAlSi3O8–KAlSi3O8–

SiO2–H2O (Tuttle and Bowen, 1958, Memoir 
74), the magmatic origin of granite was dem-
onstrated via experimental petrology, and in the 
following year, Buddington (1959) published 
his extensive review of granite emplacement. 
Following “the granite series” of Read (1948b), 
Buddington classifi ed granites according to 
their level of emplacement in Earth’s crust. On 
this basis, he referred to three types of granite: 
(1) epizonal granites—discordant plutons crys-
tallized from magma with only minor evidence 
of granitization; (2) mesozonal granites—plu-
tons that are in part discordant and in part con-
cordant, and in which evidence of granitization 
is common but subordinate to emplacement of 
magma; and (3) catazonal granites—plutons 
that are predominantly concordant and for which 
granitization was argued to be a major factor 
associated with the emplacement of magma. 
Buddington argued for continuity between plu-
tons of the epizone and the mesozone, but he 
was uncertain whether plutons of the mesozone 
extended down to roots in the catazone or were 
pinched off and isolated from it.

Progress during the Last 50 Years

Buddington’s article in the Geological Soci-

ety of America Bulletin marks a natural break. 
The 1960s represent the beginning of the mod-
ern era in petrological, geochemical, and struc-
tural studies of crustal melting and the formation 
of granite. However, in arguing for continuity 
among granites emplaced at different depths in 
the crust, Buddington’s article planted the seed 
of a paradigm shift in interpreting crustal differ-
entiation by melting as a self-organized critical 
system with feedback relations from source to 
sink (Brown, 2010a; Hobbs and Ord, 2010). 

Crustal Melting: Experiments and Phase 

Equilibria Modeling

From experiments, we have a good under-
standing of phase relations in the granite system 
(Luth et al., 1964), how granite melt crystallizes 
(Maaløe and Wyllie, 1975; Scaillet et al., 1995), 
and how granite itself begins to melt (Johannes, 
1984). In a landmark paper, in addition to fi eld, 
petrologic, geochemical, and geochronologi-
cal data, Presnall and Bateman (1973) used 
phase equilibria to argue that a major portion 
of the Sierra Nevada batholith must have been 
derived from the lower crust. Furthermore, these 

authors argued that conductive heat from the 
mantle and heat from radioactive decay in the 
crust were suffi cient to cause melting in thicker 
crust, although they recognized the necessity for 
additional heat from subduction-related mag-
matism to melt thinner crust in the west. This 
article marks the beginning of the new debate 
about crustal versus mantle sources in granite 
petrogenesis.

Since the centennial article by Whitney 
(1988), which was concerned with the role 
and source of water in the evolution of granitic 
magmas, there have been major advances in our 
knowledge of crustal anatexis based on experi-
mental studies of melting relations in a wide 
range of crustal protoliths and synthetic analogs. 
The range of rock types studied includes: pelites 
(Vielzeuf and Holloway, 1988; Le Breton and 
Thompson, 1988; Patiño Douce and Johnston, 
1991; Carrington and Harley, 1995; Patiño 
Douce and Harris, 1998); other mica-bearing 
metasedimentary rock compositions (Conrad 
et al., 1988; Vielzeuf and Montel, 1994; Gardien 
et al., 1995; Montel and Vielzeuf, 1997; Stevens 
et al., 1997; Koester et al., 2002); amphibolites 
(Ellis and Thompson, 1986; Rushmer, 1991; 
Rapp et al., 1991; Wolf and Wyllie, 1994); and, 
combinations of different protoliths (Patiño 
Douce and Beard, 1995). In addition, there have 
been several theoretical analyses of crustal melt-
ing (Thompson and Algor, 1977; Thompson and 
Tracy, 1979; Thompson, 1982; Clemens and 
Vielzeuf, 1987; Connolly and Thompson, 1989; 
Vielzeuf and Schmidt, 2001).

This work has provided the foundation for 
studies using phase equilibria modeling (White 
et al., 2001, 2007, 2011; Johnson et al., 2008). 
Phase equilibria modeling has enabled inverse 
and forward modeling to better characterize 
the phase relations and chemography of crustal 
melting for a range of paragneiss and ortho-
gneiss compositions in a chemical system that 
closely approaches nature (e.g., Johnson et al., 
2008; Brown and Korhonen, 2009; Korhonen 
et al., 2010a, 2012). Because of this effort, we 
have a detailed understanding of the relation-
ships between protolith fertility and melt pro-
duction, and the consequences of melt drainage 
for the residue (White and Powell, 2002; White 
et al., 2004; Brown and Korhonen, 2009; John-
son et al., 2010, 2011). 

Alphabet Granites

Chappell and White (1974) proposed that 
granites in the Lachlan fold belt of eastern Aus-
tralia could be classifi ed into one of two types, 
which they called I- and S-type granites. I-types, 
which were inferred to have formed from a meta-
igneous source, characteristically have amphi-
bole and may have clinopyroxene and/or brown 
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biotite as additional ferromagnesian mineral(s), 
together with accessory titanite and magnetite. 
They are metaluminous to weakly peralumi-
nous and relatively sodic, with a wide range of 
silica content (56–77 wt% SiO2). S-types, which 
were inferred to have formed from a sedimen-
tary source, characteristically have muscovite 
and red-brown (Ti-rich) biotite and commonly 
cordierite and/or garnet as the ferromagnesian 
mineral(s), together with accessory monazite 
and, generally, ilmenite as the oxide. They are 
strongly peraluminous and relatively potassic, 
with silica compositions restricted to higher 
values than the I-types (64–77 wt% SiO2). In 
addition, White and Chappell (1977) clearly 
identifi ed the fundamental relationship between 
high-grade metamorphism leading to crustal 
melting and the formation of granite magmas. 
Furthermore, in 1984 they recognized that the 
source for the I-types must have been relatively 
homogenous in comparison with the S-types 
(Chappell and White, 1984), which led to the 
view that the two types of granite came from 
source rocks of fundamentally different origin, 
namely sedimentray or supracrustal materi-
als (S-types) and igneous or infracrustal, or 
underplated, materials (I-types). The classifi -
cation was expanded to include M-type (from 
the mantle; White, 1979) and A-type (alkaline, 
relatively anhydrous, and anorogenic; Loiselle 
and Wones, 1979), and, fi nally, C-type (char-
nockitic granitoids; Kilpatrick and Ellis, 1992). 
Of these, only the A-type, which is relatively 
potassic, has high FeO/(FeO + MgO), and has 
elevated high fi eld strength element concentra-
tions, has achieved the same popularity as the 
I- and S-types.

The geochemistry of the A-type granites has 
been characterized by Collins et al. (1982) and 
Whalen et al. (1987), both of whom opted for 
derivation from relatively dry granulite residual 
from an earlier granite-producing event. The 
experiments of Clemens et al. (1986) and Skjerlie  
and Johnston (1992) supported this petrogenetic 
model, although other work has suggested a 
more fertile source and low pressures of melting 
(Creaser et al., 1991; Patiño Douce, 1997).

White and Chappell (1977; see also Chappell 
et al., 1987) proposed that the incorporation of 
“restite”—comprising mineral grains that were 
residual from the source and “clots” inferred to 
be pseudomorphs after such grains—with melt 
explained the observation that granites com-
monly have higher MgO + FeO than experi-
mental liquids at an appropriate temperature. 
Furthermore, according to the “restite model,” 
the principal control over the chemistry of gran-
ites is the degree of restite unmixing from the 
liquid, leading Chappell et al. (1987) to argue 
that granite suites with compositions controlled 

by restite unmixing image their sources. Criti-
cism of the restite model centered on the iden-
tifi cation of restite (Wall et al., 1987; Vernon, 
2007), whereas objections to the restite unmix-
ing hypothesis were based largely on chemical 
arguments about the inability of restite unmix-
ing to replicate the chemical variability found in 
many granite suites (Wall et al., 1987).

Recently, the restite-unmixing hypothesis 
has been refi ned into the “peritectic assem-
blage entrainment” hypothesis of Clemens et al. 
(2011) and Clemens and Stevens (2012). The 
basic modifi cations to the restite model made 
by these authors are twofold. First, the entrained 
material excludes minerals in the source present 
in excess or not involved in the melting reac-
tion, and, second, the peritectic mineral assem-
blage is identifi ed by its chemical signature in 
the granite, but the entrained mineral grains are 
no longer present, having been dissolved during 
ascent. This avoids one of the principal objec-
tions to the “restite” model, as recently summa-
rized by Vernon (2010), that all the crystals in 
granites appear to be magmatic and none appear 
to be pseudomorphs of residual crystals brought 
up from the source. Nevertheless, the S–I typol-
ogy refl ects the nature of the entrained material 
in both cases, and granites remain linked to their 
sources in this revised restite model (Clemens 
et al., 2011; Clemens and Stevens, 2012), even 
though they may not image their respective 
sources as earlier implied (Chappell et al., 1987; 
Clemens, 2003).

Finally, there is strong evidence from micro-
granular enclaves (Vernon, 1984, 1990, 2007; 
Vernon et al., 1988) and isotope geochemistry 
(McCulloch and Chappell, 1982; Collins, 1996; 
Keay et al., 1997; Healy et al., 2004; Kemp 
et al., 2007, 2009) for contamination and multi-
component sources for both I- and S-type gran-
ites. Therefore, it may be surprising to the reader 
that magma mixing has not been incorporated 
into either the restite unmixing or the peritectic 
assemblage entrainment hypothesis. The iso-
tope evidence for source composition will be 
discussed later herein when considering mantle 
versus crustal inputs to granite magmatism.

Basalt as the Driver of Crustal Melting

It is commonly stated that mantle-derived 
magmas (basalts) provide the heat necessary 
for crustal melting, and this is certainly consis-
tent with the requirement for a juvenile input to 
granite magma, as widely inferred from the iso-
tope signature of many granites (e.g., Keay et al., 
1997; Healy et al., 2004; Jahn et al., 2000; Kemp 
et al., 2007, 2009). This process has received 
strong support from numerical modeling (Hup-
pert and Sparks, 1988; Bergantz, 1989; Fountain 
et al., 1989; Petford and Gallagher, 2001; Dufek 

and Bergantz, 2005). More recently, the model 
has evolved into a new paradigm for the genesis 
of intermediate and silicic magmas in “deep 
crustal hot zones” (Annen et al., 2006b), where, 
it is argued, hybridization of melts from mantle 
and crustal sources could explain the isotope 
data. This process may be particularly impor-
tant in arcs (e.g., Petford, 1995), but it may be 
less applicable to melting and the generation of 
granites in zones of crustal thickening associated 
with collisional orogenesis, where mafi c magma 
tends to be notably absent (e.g., Reichardt  and 
Weinberg, 2012a, 2012b).

Rheology of Melt-Bearing Crust

In deformation experiments on melt-bearing 
rocks, the proportion of melt-bearing grain 
boundaries generally increases as the volume 
of melt increases, leading to bulk weakening. 
However, the deformation mechanisms that 
operate in nature and the locations of thresh-
olds where deformation mechanisms change 
are only poorly understood. The effect of melt 
on deformation depends on the amount of melt 
and its distribution, as well as the grain size and 
strain rate (Dell’Angelo and Tullis, 1988). Fur-
thermore, the deformation mechanism depends 
on whether melt can fl ow as fast as the imposed 
strain rate; otherwise, melt pressure will increase, 
leading to melt-enhanced embrittlement (Rutter 
and Neumann, 1995). 

Arzi (1978) argued for a major change in 
mechanical behavior of melt-bearing rock at a 
“rheological critical melt percentage” around 
20 ± 10 vol%, and van der Molen and Paterson 
(1979) proposed that granular framework–con-
trolled fl ow behavior changed to suspension-like 
behavior at a “critical melt fraction” of 30–35 
vol%. Notwithstanding, Rutter and Neumann 
(1995) found no evidence of such a change 
in behavior in their experiments, a disagree-
ment they attributed to the different methods 
employed to change the melt volume at fi xed 
temperature. In the earlier experiments, melt 
volume was controlled by increasing the water 
added to the charge, which decreased the vis-
cosity dramatically for larger melt fractions. In 
contrast, in their experiments, Rutter and Neu-
mann (1995) raised the temperature to increase 
the melt volume at fi xed water content, which 
does not decrease the viscosity as dramatically. 
Overall, Rutter and Neumann (1995) argued 
that as melt volume increases so effective pres-
sure decreases, and the behavior of the anatectic 
crust changes from distributed shear-enhanced 
compaction to localized dilatant shear failure. 
This increases permeability by formation of 
deformation bands into which melt is expressed.

Using an alternative approach based on per-
colation theory, Vigneresse et al. (1996) argued 
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for a minimum of 8 vol% melt to overcome the 
“liquid percolation threshold,” above which 
melt pockets connect, but they also argued that 
melt volume must reach a “melt escape thresh-
old” of 20–25 vol% to allow migration of melt 
with entrained solids over large distances. As 
discussed next, this fi rst threshold is broadly 
consistent with results from deformation experi-
ments. In a re-evaluation of the experimental 
data, Rosenberg and Handy (2005) argued for 
a change in mechanical behavior as an inter-
connected grain-boundary network of melt 
becomes established at ~7 vol%, which they 
called the “melt connectivity transition” (similar 
to the liquid  percolation threshold of Vigneresse 
et al., 1996). They attributed continued weaken-
ing above the melt connectivity transition to melt 
fl ow within interconnected melt-rich domains, 
although continued weakening may be limited 
in nature by drainage of melt from the system 
at this threshold. Thus, the melt escape thresh-
old of Vigneresse et al. (1996) is not realized in 
nature because melt is drained from the source 
at a much lower threshold, as suggested subse-
quently by Rabinowicz and Vigneresse (2004).

Melt Segregation, Ascent, and Emplacement

Inverse modeling of geochemical data from 
postcollisional granites generated during ther-
mal relaxation of overthickened crust is con-
sistent with drainage of melt in batches from 
crustal sources at depth (Deniel et al., 1987; 
Harris and Inger, 1992; Searle et al., 1997; 
Pressley and Brown, 1999; Clemens and Benn, 
2010). The process by which melt may seg-
regate from its residue and be extracted from 
the source in batches has been described and 
explained by Sawyer (1991, 1994, 1998, 2001), 
Brown (1994, 2010a), and Brown et al. (1995) 
based on examples from the fi eld. These data 
support a model in which compaction drives 
melt into a network of veins that drains the 
source. The link with upper-crustal granites 
has been investigated by Brown and D’Lemos 
(1991), Pressley and Brown (1999), Solar and 
Brown (2001a), and Tomascak et al. (2005), 
and the consequences of melt loss for the pres-
ervation of peak mineral assemblages in resid-
ual granulites have been investigated by White 
and Powell (2002).

The mechanism of ascent of granite magma 
through the crust remains controversial. Trans-
port through fractures (e.g., Clemens and 
Mawer, 1992; Brown, 2004; Weinberg and 
Regenauer-Lieb, 2010) or shear zones (e.g., 
Strong and Hanmer, 1981; D’Lemos et al., 
1992; Hutton and Reavy, 1992; Brown, 1994; 
Rosenberg, 2004) or conduits controlled by 
strain (e.g., Brown and Solar, 1998a, 1998b, 
1999; Weinberg, 1999) is the most commonly 

postulated mechanism. In addition, although 
discredited during the past 20 yr (e.g., Petford, 
1996), the viability of diapirism under the right 
circumstances has been demonstrated by Burov 
et al. (2003) and Weinberg and Podladchi-
kov (1994).

Similarly, the mechanism of emplacement 
of granite magma into the upper crust to form 
plutons remains controversial. Multiple papers 
identify the intimate relationship between 
deformation and emplacement, but with differ-
ent means of accommodation argued for each 
case. Proposed mechanisms include: emplace-
ment accommodated by local processes related 
to crustal-scale shear zones (e.g., Hutton, 1982, 
1988a, 1988b; Grocott et al., 1994; Vigneresse, 
1995; Weinberg et al., 2004, 2009); emplace-
ment in a pull-apart structure along a shear 
zone (e.g., Guineberteau et al., 1987); emplace-
ment into extensional shear zones (e.g., Hutton 
et al., 1990; Grocott et al., 1994); emplacement 
accommodated by multiple local material trans-
fer processes (e.g., Paterson and Fowler, 1993; 
Paterson and Vernon, 1995); emplacement by 
dike wedging along a steep reverse-sense shear 
zone (e.g., Ingram and Hutton, 1994; Mahan 
et al., 2003); emplacement accommodated by 
raising the roof or depressing the fl oor of the 
pluton (e.g., Benn et al., 1997; Cruden, 1998; 
Brown and Solar, 1998b, 1999; Vigneresse 
et al., 1999; Clemens and Benn, 2010); and 
emplacement accommodated by stoping and 
assimilation, although the signifi cance of this 
last process is debated (Glazner and Bartley, 
2006, 2008; Saito et al., 2007; Clarke and Erd-
mann, 2008; Paterson et al., 2008; Yoshinobu 
and Barnes, 2008). The principal alternative 
mechanism of emplacement is diapirism (e.g., 
Ramsay, 1989; Paterson and Vernon, 1995; 
Miller and Paterson, 1999).

WHERE ARE WE NOW?

In the remainder of this anniversary article, 
the process of crustal melting, the types of melt-
ing, and the fertility of source materials are dis-
cussed fi rst, including some of the geochemical 
consequences of melting along particular clock-
wise pressure (P)–temperature (T) paths. This 
is followed by a consideration of mechanisms 
of melt segregation and extraction, and mech-
anisms of ascent and emplacement. Finally, 
issues are identifi ed for future research.

There is not suffi cient space to be concerned 
with the way in which the crust gets hot enough 
to melt, and the interested reader is referred to 
Bea (2012) and Clark et al. (2011) for recent 
summaries of this topic. Instead, I assume that 
suffi cient heat is generated in the orogenic 
crust by a combination of radioactive, mechani-

cal (viscous dissipation or shear heating), and 
chemical (latent heat) processes, supplemented 
by heat advected with basalt infl ux from the 
mantle where there is evidence for this, and that 
this heat may be redistributed by conduction and 
advection via intracrustal melt migration.

MELTING THE CRUST

“Our main thesis is simple. Water is essential for the 
formation of granites, and granite, in turn, is essential 
for the formation of stable continents. The Earth is the 
only planet with granite and continents because it is 
the only planet with abundant water.”

—Campbell and Taylor (1983)

Migmatites are complex rocks that are prod-
ucts of prograde melt-producing reactions, loss 
of most of this melt, and retrograde reactions 
involving melt left on grain boundaries. Evi-
dence of this sequence of events is preserved in 
the mineralogy and microstructure of migmatites 
(at shallower levels) and granulites (at deeper 
levels) exhumed in orogens (e.g., Brown et al., 
1999; Sawyer, 1999; Brown, 2001a, 2001b, 
2002; Marchildon and Brown, 2001, 2002; 
Johnson et al., 2003a, 2004; Holness and Saw-
yer, 2008; White and Powell, 2002). Migmatite 
terranes commonly separate deeper-level, resid-
ual granulites that may preserve only minimal 
leucosome (quartzofeldspathic material related 
to melting but not necessarily preserving liquid 
compositions) from shallower-level granite ter-
ranes where the fugitive magma was emplaced 
in subsolidus crust. Thus, migmatite terranes 
are polygenetic in that they appear to represent 
levels in the crust where melting has occurred, 
from which melt has drained, in which melt 
has accumulated, and through which melt has 
transferred (e.g., Brown, 2001b, 2008). Leuco-
somes may have liquid compositions, they may 
consist of dominantly peritectic minerals, they 
may have cumulate compositions, or they may 
have crystallized from fractionated liquids (e.g., 
Brown, 2001b; Solar and Brown, 2001a).

Figure 1 is a calculated pressure P-T pseudo-
section (isochemical phase diagram) for an 
average amphibolites-facies pelite composition 
in the chemical system Na2O–CaO–K2O–FeO–
MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCKF-
MASHTO; modifi ed from Brown and Korho-
nen, 2009). Abbreviations used in this diagram 
are: Bt—biotite, Crd—cordierite, Grt—garnet, 
Kfs—K-feldpsar, Ky—kyanite, Liq—hydrous 
silicate melt, Mag—magnetite, Ms—musco-
vite, Opx—orthopyroxene, Pl—plagioclase, 
Qtz—quartz and Sil—sillimanite. This phase 
diagram may be used to investigate the process 
of melting for an undrained system (Brown and 
Korhonen, 2009). The effects of melt loss on 
the formation and preservation of suprasolidus 
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phase assemblages in peraluminous migmatites 
and residual granulites are discussed by White 
and Powell (2002) and are not reiterated here.

In the presence of aqueous fl uid, common 
crustal protoliths, such as pelites and gray-
wackes (Brown and Korhonen, 2009), and sili-
ceous igneous rocks (Sawyer, 2010), begin to 
melt at temperatures of 650–700 °C at crustal 
pressures. However, the amount of pore fl uid 
immediately below the solidus is small, and 
rocks in the granulite facies are essentially 
“dry” (Yardley and Valley, 1997), so that fl uid-
undersaturated conditions predominate during 
high-grade metamorphism, melts generally will 
be H2O-undersaturated (Clemens, 2006), and 

the residue will eventually become (nominally) 
anhydrous (Xia et al., 2006). Thus, major melt 
production requires the breakdown of hydrate 
minerals in protoliths that also contain quartz 
and feldspar, for example, at temperatures 
above 750–800 °C for mica-bearing rocks and 
above 850–900 °C for amphibole-bearing rocks 
(Clemens , 2006). As melting continues to tem-
peratures above the terminal stability of the 
hydrate phase involved, the melt becomes pro-
gressively drier by consuming solids to lower 
the H2O content; this is mostly achieved by dis-
solving quartz and feldspar.

Fluid-present melting or fl uid-absent hydrate-
breakdown melting in migmatites and granulites 

may be distinguished based on the nature of the 
ferromagnesian minerals associated with leu-
cosomes. Mica- and hornblende-bearing leuco-
somes without anhydrous minerals in mica- and 
hornblende-bearing hosts are more likely to 
be the product of fl uid-present melting (Figs. 
2A and 2B; for an example, see Milord et al., 
2001), whereas leucosomes that carry nomi-
nally anhydrous (peritectic) minerals, such as 
garnet or pyroxene, are more likely to be a prod-
uct of fl uid-absent hydrate-breakdown melting 
(Figs. 2C and 2D; for an example, see White 
et al., 2004). Without additional aqueous fl uid 
and at crustal temperatures up to 1000 °C, vari-
ous crustal rocks, such as pelites, graywackes, 
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Figure 1. (A) Pressure (P)–temperature (T ) pseudosection (isochemical phase diagram) calculated for an average amphibolites-facies 

pelite composition in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCKFMASHTO; modifi ed from Brown and 

Korhonen , 2009). Abbreviations used in this diagram are: Bt—biotite, Crd—cordierite, Grt—garnet, Kfs—K-feldpsar, Ky—kyanite, Liq—

hydrous silicate melt, Mag—magnetite, Ms—muscovite, Opx—orthopyroxene, Pl—plagioclase, Qtz—quartz and Sil—sillimanite. This dia-

gram is drawn for a fi xed composition, which means that processes such as melt loss cannot be considered in relation to this diagram but 

require calculation of a new pseudosection for the residual composition after an imposed melt drainage event. The heavy green dashed line 

represents the solidus. The three colored areas labeled I, II, and III are discussed further in the text. The pseudosection is contoured for 

melt mol% (light green dashed lines) for a rock saturated in H2O at the solidus at 1.2 GPa; because the composition is fi xed and melt loss 

is not considered, the amount of melt simply increases with increasing temperature, whereas in nature, melt drainage would be expected 

to occur. Due to the different amount of H2O required to saturate the rock in aqueous fl uid at different pressures along the solidus, the 

amount of fl uid present along the low-P part of the solidus is an overestimation, and consequently the amount of melt produced at low pres-

sures is overestimated. For clarity, the small multivariant phase assemblage fi elds are not labeled with the phase assemblage; these fi elds 

may be identifi ed by reference to the caption to Figure 2 in Brown (2010b). (B) The same P-T pseudosection with the suprasolidus stability 

of the rock-forming ferromagnesian minerals emphasized. Below ~850–900 °C, biotite-bearing assemblages are stable (orange fi elds); at 

temperatures above the stability of biotite, at higher pressures, garnet-bearing assemblages are stable (red fi elds), whereas at lower pres-

sures, cordierite-bearing assemblages are stable (purple fi elds). Three schematic clockwise P-T paths are shown, labeled A, B, and C; the 

petrological consequences of each of these evolutionary paths in P-T space are discussed in the text.
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C D

A B

Figure 2. Mesoscale features 

asso ciated with fl uid-present (A 

and B) and fl uid-absent hydrate-

breakdown (C and D) melting. 

(A) Stromatic metatexite mig-

matite with biotite-rich melano-

somes interpreted to have formed 

by fl uid-present melting. Floor 

of the Guest Hotel foyer at the 

China University of Geosciences, 

Wuhan, China; door key card 

for scale. (B) Patch metatexite 

migmatite in amphibolite inter-

preted to have formed by fl uid-

present melting; note coarser 

hornblende crystals associated 

with the in situ leucosome. From 

Caishixi in the Taohuayu Geo-

heritage Scenic Area, Taishan, 

Shandong Province, China; 

hand lens for scale. (C) Stromatic 

metatexite migmatite (khonda-

lite) with pristine peritectic gar-

net in the leucosomes indicating 

loss of melt prior to retrograde 

cooling and fi nal crystallization; 

this is interpreted to have been a 

fl uid-absent hydrate-breakdown 

melting event. From Kulappara 

in the Kerala khondalite belt, 

southern India; diameter of coin 

~20 mm. (D) Mylonitized stro-

matic metatexite migmatite (high-

pressure granulite) with pristine 

peritectic garnet associated with 

the leucosomes indicating loss of 

melt prior to retrograde cooling 

and fi nal crystallization; this is 

interpreted to have been a fl uid-

absent hydrate-breakdown melt-

ing event. From the Lixão quarry 

in the Três Pontas–Varginha 

Nappe, southern Brasília belt, 

Brazil; diameter of coin ~20 mm.
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granites, andesites, and some amphibolites, 
may yield 20–70 vol% of H2O-undersaturated 
melt (Clemens, 2006) of which 80–95 vol% 
is extractable, with <<5 vol% remaining on 
grain boundaries in residual granulites (Sawyer, 
2001). Whether this melt is homogeneous is 
another matter. Homogeneity will be determined 
by the rates of dissolution of minerals in contact 
with the melt, the rates of diffusive transport of 
their components through the melt, and whether 
residual minerals recrystallize (Acosta-Vigil 
et al., 2012b). These issues are fundamental for 
fl uid-present melting at high degrees of reaction 
overstepping.

Fluid-Present Melting of the Crust

As discussed already, there is only a small 
amount of free aqueous fl uid in the subsolidus 
crust as the solidus is approached with increas-
ing temperature. Aqueous fl uid may be intro-
duced at convergent plate margins either above 
subducting oceanic plates in continental arc sys-
tems or during continental collision, for example 
associated with crustal-scale tectonic structures 
such as shear zones (Reichardt and Weinberg, 
2012a, b). In addition, infl ux of aqueous fl uid 
may occur locally, for example, associated with: 
(1) the inner zone of contact aureoles (Pattison 
and Harte, 1988; Symmes and Ferry, 1995; 
Johnson et al., 2003b; Droop and Brodie, 2012); 
(2) an infl ux of hydrous fl uid at temperatures 
just above the solidus from metasedimentary 
rocks with a slightly higher solidus tempera-
ture that are still undergoing subsolidus musco-
vite breakdown (White et al., 2005); (3) zones 
of localized high-strain deformation (Johnson 
et al., 2001; Berger et al., 2008; Genier et al., 
2008; Sawyer, 2010); and (4) extensional frac-
ture systems (Ward et al., 2008).

Fluid-saturated melting is commonly postu-
lated where there is a spatial association with 
igneous intrusions or tectonic structures and 
a mismatch between the observed volume of 
(apparently) locally derived leucosome and 
the calculated peak P-T conditions. In one 
example, Rubatto et al. (2009) postulated a 
series of related melting events driven by epi-
sodic infl ux of locally derived aqueous fl uid at 
approximately constant temperature to explain 
the distribution of zircon overgrowths and ages 
from leucosomes in migmatites formed during 
a single Barrovian metamorphic cycle in the 
central Alps.

In orogens, relaxation of the yield stress 
developed in the brittle portion of the crust 
may result in a depth interval below the 
brittle-to-ductile transition zone character-
ized by an inverted pressure gradient (Petrini 
and Podladchi kov, 2000; Stüwe et al., 1993; 

Stüwe and Sandiford, 1994). At depths where 
this inverted pressure gradient is less than the 
hydrostatic gradient of an interstitial fl uid, 
an aqueous fl uid that is subject to the confi n-
ing pressure will migrate downward and stag-
nate where the rock pressure gradient equals 
the hydrostatic fl uid gradient (Connolly and 
Podladchikov, 2004). This condition defi nes 
a depth of tectonically induced neutral buoy-
ancy that also acts as a barrier to upward fl uid 
fl ow. In combination with dynamic downward 
propagation of the brittle-to-ductile transition 
zone during the early stages of orogenic thick-
ening, this phenomenon provides a mechanism 
to sweep upper-crustal aqueous fl uids into the 
lower crust to promote melting as prograde 
heating evolves to peak temperatures.

The requirement for infl ux of aqueous fl uid 
from an external source is obviated if the aque-
ous fl uid that exsolved during magma ascent 
is recycled (Holk and Taylor, 2000). Evidence 
to support recycling of aqueous fl uid comes 
from metamorphic core complexes of the 
Canadian Rockies, where there is a remark-
able uniformity of mineral δ18O values in the 
middle continental crust beneath detachment 
faults (Holk and Taylor, 2000). These zones of 
pervasive homogenization in 18O/16O are inter-
preted to result from exchange with magmatic 
or metamorphic aqueous fl uid, and this same 
fl uid appears to have promoted crustal melting. 
Holk and Taylor (2000) suggested that melt-
ing of pelites and graywackes began at P-T of 
~0.8 GPa and ~750 °C in response to infl ux 
of aqueous fl uid associated with thrusting and 
local muscovite breakdown. The resulting H2O-
rich magma ascended adiabatically through the 
crust, exsolving H2O, which rose faster than the 
magma and exchanged oxygen with subsolidus 
rocks while catalyzing melting. Final crystalli-
zation of magma in plutons occurred at much 
shallower levels in the crust, where exsolution 
of H2O enabled 18O/16O exchange with shallow 
subsolidus country rocks.

Fluid-present melting reactions may be 
congruent, for example, muscovite + biotite + 
plagio clase + quartz + H2O → liquid, or incon-
gruent, for example, biotite + plagioclase + 
quartz + H2O → liquid + garnet + cordierite. In 
this case, given the different reactants and prod-
ucts involved, there will be concomitant differ-
ences in melt chemistry. The steep (at higher P) 
or negative (at lower P) slope of the solidus for 
fl uid-present melting limits vertical migration of 
the melt because the melt crystallizes on decom-
pression to the solidus (Fig. 1A). As tempera-
ture increases, if the available H2O is consumed 
completely, then further melting must proceed 
by fl uid-absent hydrate-breakdown reactions or 
by dissolution of quartz and feldspar.

Fluid-Absent Hydrate-Breakdown Melting

Fluid-absent hydrate-breakdown melting 
occurs over a range of temperatures after an 
initial insignifi cant H2O-present melting step 
that yields minimal melt from the pore fl uid 
present in the subsolidus protolith. In proto-
liths of appropriate mineralogy and at pressures 
above ~0.4 GPa (Fig. 1), melting continues with 
muscovite breakdown under upper-amphibo-
lite-facies conditions and extends through the 
granulite facies with biotite breakdown (in 
peraluminous metasedimentary protoliths) 
and hornblende breakdown (in metaluminous 
graywackes and hydrated basaltic protoliths). 
Fluid-absent hydrate-breakdown melting is 
incongruent (i.e., solids >> solids + liquid), and 
nucleation of the solid products of the reaction 
may be diffi cult. As a result, once the melt-
ing reaction is overstepped, it is energetically 
favorable for initial diffusion-controlled melt-
ing to continue at sites where the solid products 
nucleated until melt connectivity is established, 
allowing melt to migrate. As shown in Figure 
2C, leucosomes commonly provide evidence 
that melt generation and accumulation were 
concentrated around the peritectic product of 
the melting reaction (e.g., Waters, 1988; Jones 
and Brown, 1990; Powell and Downes, 1990; 
Brown, 2004). This process yields leucosomes 
with coarse-grained peritectic minerals in the 
center (Brown, 1994; Brown and Dallmeyer, 
1996; White et al., 2004). Assuming equilib-
rium, the volume of melt produced will vary 
as a function of hydrate mineral content in the 
proto lith and the P-T conditions achieved.

Information on fl uid-absent hydrate-break-
down melting reactions for a variety of crustal 
protoliths has been obtained from melting 
experiments on natural rocks and synthetic 
mixtures (reviewed by Clemens 2006), and by 
evaluation of petrogenetic grids and thermo-
dynamic modeling of phase equilibria (Spear 
et al., 1999; White et al., 2001, 2007; John-
son et al., 2008; Brown and Korhonen, 2009). 
Recent comparisons between the results of 
melting experiments on natural compositions 
and phase equilibria calculated by thermody-
namic modeling for the same compositions 
yield good agreement, inspiring confi dence 
in models for melting processes in the crust 
(Grant, 2009; White et al., 2011).

The composition of the glass in melting 
experiments on natural crustal rocks and syn-
thetic compositions varies from granite to tonal-
ite, depending on the composition of the starting 
material, the H2O content, and the P-T condi-
tions of melting (Clemens, 2006). When these 
glass compositions are compared with melt 
inclusions in peritectic minerals in migmatites 
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and granulites or with the full range of compo-
sitions in naturally occurring suites of granite 
sensu lato, it is clear that a signifi cant portion 
of the natural compositions cannot be matched 
with the experimental glass compositions (e.g., 
Stevens et al., 2007; Cesare et al., 2011; Bar-
toli et al., 2013). One explanation for this dis-
crepancy is that natural melts selectively entrain 
peritectic minerals from the source (Stevens 
et al., 2007; Clemens et al., 2011; Clemens and 
Stevens, 2012), and that these entrained min-
eral grains are dissolved or achieve equilibrium 
during ascent through a process of dissolution-
reprecipitation cycling in the melt (Villaros 
et al., 2009a; Taylor and Stevens, 2010).

This model receives support from the obser-
vation in a stromatic migmatite from southern 
Brittany of garnet within the leucosomes, as 
imaged using high-resolution computed X-ray 
tomography, interpreted to be entrained peri-
tectic residue trapped during transport (Brown 
et al., 1999). Many similar examples have now 
been reported (Fig. 3; e.g., Taylor and Stevens, 
2010; Lavaure and Sawyer, 2011), including 
entrainment of accessory minerals, particularly 
zircon, from the source (Watson, 1996). Support 
is also provided by rare enclaves of strongly 
melt-depleted residue in granite, such as that 
described by Solar and Brown (2001a), and rare 
meter-sized pods consisting of 50–70 vol% gar-
net (with sillimanite, biotite, plagioclase, and 
quartz), such as those described by Dorais et al. 
(2009). In the latter example, from the Cardigan 
pluton in New Hampshire, whole-rock chemis-
try suggests that the garnetites either are restites 
or represent melt-depleted xenoliths; similar 

neodymium and strontium isotope composition 
of garnetite and granite, and detailed mineral 
chemistry reported by Dorais and Tubrett (2012) 
support an interpretation as restite. Dorais et al. 
(2009) calculated a magma-ascent rate of >1000 
km/yr and proposed that fast ascent inhibited 
restite dissolution in the Cardigan pluton; they 
suggested that slower rates of ascent might 
account for the paucity of restite preserved in 
most peraluminous granites. 

Accessory Minerals

Accessory minerals in granites, especially zir-
con, monazite, and apatite, have an importance 
that far outweighs their modal abundance. Both 
zircon and monazite potentially may be used 
to determine the age of crystallization of melt 
retained in the source and of granite emplaced 
in the upper crust. In addition, in many gran-
ites, inherited grains, particularly forming cores 
in magmatically-precipitated zircon, preserve 
information about the source. Accessory miner-
als represent a signifi cant reservoir for a number 
of petrogenetically important trace elements. 
These elements include zirconium, yttrium, the 
heavy rare earth elements, hafnium, and ura-
nium in zircon, and phosphorus, thorium, and 
the light rare earth elements in monazite. As a 
result, the dissolution, entrainment, and crys-
tallization of accessory minerals exert a strong 
control on the trace-element chemistry of gran-
ites (Watt and Harley, 1993; Bea, 1996; Watson, 
1996; Watt et al., 1996; Bea and Montero, 1999; 
Brown et al., 1999). Furthermore, zircon and 
monazite may be used to estimate the tempera-

ture of crystallization of the granite host (e.g., 
Watson and Harrison, 1983; Montel, 1993), and 
the difference between hosts that are rich or 
poor in inherited zircon has led to a division into 
“cold” and “hot” granites, respectively (Miller 
et al., 2003).

The trace element and isotope composition 
of many granite bodies has been interpreted to 
record disequilibrium with respect to refractory 
accessory minerals in the source (Watt and Harley , 
1993; Ayres and Harris, 1997; Jung, 2005; Zeng 
et al., 2005a, 2005b; Perini et al., 2009; Villaros 
et al., 2009b; Acosta-Vigil et al., 2012a; McLeod 
et al., 2012). This feature is sometimes incor-
rectly inferred to record “disequilibrium melting.” 
However, lower-than-expected concentrations of 
trace elements and isotope disequilibrium may 
occur for several reasons.

These reasons include kinetic effects inhibit-
ing dissolution during melting (Watt and Harley , 
1993; Watson, 1996; Watt et al., 1996), non-
Henrian behavior during melt-solid partitioning 
(Bea, 1996), and the sequestration of grains as 
inclusions in major rock-forming minerals (Bea, 
1996; but for a contrary view, see Watson et al., 
1989). In general, accessory mineral solubility 
is a function of temperature and melt composi-
tion (Harrison and Watson, 1983, 1984; Rapp 
and Watson, 1986; Montel, 1993). For example, 
zircon solubility increases strongly with increas-
ing temperature but decreases with increasing 
silica and aluminum saturation index (Watson 
and Harrison, 1983; Bea et al., 2006).

During crustal melting, it is the major ele-
ments that determine the thermodynamically 
stable phase assemblages during melting, and 

A B

Figure 3. Examples of peritectic assemblage entrainment consequent upon biotite-breakdown melting and melt 

migration. (A) Leucosomes in stromatic metatexite migmatite link continuously with thin garnet-bearing, high-

aspect-ratio tabular granites. The peritectic garnet decreases in the mode with distance away from the migmatite 

melanosomes, suggesting limited peritectic assemblage entrainment. From the eastern side of Mount Avers in 

the central part of the Fosdick migmatite-granite complex, Marie Byrd Land, West Antarctica; handle of ice axe 

for scale. (B) Local concentrations of peritectic garnet are developed in granite against an enclave of stromatic 

metatexite migmatite. From the eastern side of Mount Avers in the central part of the Fosdick migmatite-granite 

complex, Marie Byrd Land, West Antarctica; handle of ice axe for scale.
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for these elements, the melt and residue are gen-
erally in equilibrium at the time scale of interest. 
In contrast, factors other than thermodynamic 
equilibrium control the trace-element distribu-
tions between the melt and accessory minerals 
in the residue, so that the melt extracted may 
be undersaturated with respect to trace-element 
concentrations and out of isotope equilibrium.  

Suprasolidus Phase Equilibria, P-T Paths, 

and the Consequences for Melt Chemistry

Melting may occur by increasing tempera-
ture or decreasing pressure at an appropriate 
tempera ture above the solidus. With reference 
to Figure 1A, with increasing temperature, sig-
nifi cant melting of metapelite, as modeled in the 
NCKFMASHTO  system, begins with the break-
down of muscovite and biotite at P above ~0.4 
GPa across a narrow trivariant phase assemblage 
fi eld where muscovite is eliminated and K-feld-
spar appears (fi eld 10 at the low-temperature 
edge of area I in Fig. 1A). This muscovite-out 
reaction is followed by a broad quadrivariant 
phase assemblage fi eld across which melt volume 
increases by dissolution of quartz and feldspars 
up to the high-temperature boundary of area I (at 
a maximum T of 830 °C at 0.66 GPa in Fig. 1A).

With increasing T at P > 0.66 GPa, garnet 
appears across the boundary between areas I 
and II and progressively increases at the 
expense of biotite, which is eliminated after an 
interval of 60–120 °C at the high-temperature 
boundary of area II (Fig. 1A). At this stage, at 
~900 °C, <30 to >40 mol% melt has been gen-
erated from this particular protolith composi-
tion. With increasing T at P < 0.62 GPa, biotite 
breaks down to cordierite via a narrow trivari-
ant phase assemblage fi eld where sillimanite is 
eliminated (fi eld 11 at the high-pressure edge 
of area III in Fig. 1A). Cordierite increases at 
the expense of biotite across a broad tempera-
ture interval of up to 120 °C, after which ortho-
pyrox ene appears with cordierite up to the high-
temperature boundary of area III (Fig. 1A). At 
this stage, at ~850 °C, <40 to >50 mol% melt 
has been generated from this particular protolith 
composition, but this will be an overestimate 
because the amount of water in the system was 
set at 1.2 GPa (Fig. 1A, caption). At T > 820 °C 
at intermediate pressures (0.62 < P < 0.66 GPa), 
both garnet and cordierite appear at the expense 
of biotite (Fig. 1A).

The composition of all solid-solution phases, 
including melt, changes as P-T evolves, and the 
topology of the phase diagram will change as 
the bulk composition changes with melt loss 
(Yakymchuk et al., 2011). Figure 1B empha-
sizes the suprasolidus stability of the ferromag-
nesian silicate minerals for the pseudosection 

shown in Figure 1A. Using this phase diagram, 
several aspects of the melting process and the 
consequences for melt trace-element chemistry 
may be investigated in relation to different P-T 
paths and the stability of the ferromagnesian 
silicate minerals.

In the pseudosection, biotite is stable at all 
pressures at temperatures up to 850–900 °C 
(Fig. 1B). Since biotite may include accessory 
minerals such as zircon, monazite, xenotime, 
and apatite, the stability of biotite may exert 
a strong control on the trace-element chemis-
try of the melt, as well as the degree of zircon 
inheritance. Garnet is stable at moderate to high 
pressures and temperatures (Fig. 1B), and the 
development of garnet as a peritectic product of 
biotite-breakdown melting exerts a strong con-
trol on the rare earth element chemistry of both 
melt and residue. At moderate to low pressure 
at high temperature, cordierite and orthopyrox-
ene are the stable phases (Fig. 1B). In summary, 
Figure 1B shows: (1) the suprasolidus stability 
of biotite before the appearance of garnet, the 
stability of biotite with garnet, and the stability 
of garnet beyond the stability of biotite at higher 
pressures; and (2) the suprasolidus stability of 
biotite before the appearance of cordierite, the 
stability of biotite with cordierite, and the stabil-
ity of cordierite and orthopyroxene beyond the 
stability of biotite at lower pressures.

The reader is reminded that Figure 1 is a 
model system designed to illustrate suprasolidus 
phase equilibria for an average amphibo lites-
facies pelite. The activity-composition (a-x) 
models for the phases considered under supra-
solidus conditions do not incorporate man ganese 
(White et al., 2007). Accordingly, manga nese is 
not included in the model system used to calcu-
late Figure 1 (Brown and Korhonen, 2009). This 
omission causes garnet to appear at a higher 
temperature in the model system than in nature. 
Similarly, fl uorine will stabilize biotite to higher 
temperatures in real systems.

The utility of the modeling approach is illus-
trated by reference to three schematic clockwise 
P-T paths appropriate to collisional orogenesis. 
The consequences of counterclockwise P-T 
paths may be assessed by reference to White 
and Powell (2002), White et al. (2004), and 
Clarke et al. (2007). The three clockwise paths 
cross different phase assemblage fi elds with dif-
ferent ferromagnesian mineral stabilities that 
have direct impact on the chemistry of the melt, 
particularly for the trace-element concentrations 
and isotope signature, as discussed more fully in 
the following.

Melting begins at the solidus. For path A 
in Figure 1B, during the prograde evolution a 
pulse of melting occurs around 750 °C due to 
muscovite breakdown, which has consequences 

for rubidium and strontium concentrations, 
and strontium isotope chemistry (discussed 
in the following). Further along the prograde 
segment of the P-T evolution, biotite reacts 
out completely around 900 °C—creating the 
potential for dissolution and/or entrainment of 
any sequestered accessory minerals—with gar-
net as the peritectic product. This process has 
consequences for the trace element and isotope 
chemistry of the melt, since various accessory 
minerals are the main hosts for zirconium, ura-
nium, thorium, and the rare earth elements (Bea, 
1996; discussed further later herein), although 
heat production may be largely unaffected (Bea 
and Montero, 1999; Bea, 2012), and garnet pref-
erentially sequesters the heavy rare earth ele-
ments. Melting continues during initial decom-
pression at 950 °C, at which point (around 0.75 
GPa) close to 70 mol% melt has been produced 
(Fig. 1A), assuming an unrealistic situation in 
which no melt is lost from the system.

The prograde segment of path B in Figure 1B 
crosses the “garnet-in” line but does not reach 
the “biotite-out” line, creating the potential for 
dissolution and/or entrainment of some but not 
all of the sequestered accessory mineral grains. 
Thus, some zircon and monazite are predicted to 
remain sequestered within biotite in the residue, 
with implications for the trace-element chemis-
try of the melt. At peak temperature of 860 °C, 
slightly over 20 mol% melt is produced. Addi-
tional melting is predicted to occur during high-
temperature decompression, but multiple cycles 
of melt buildup and melt loss during the pro-
grade evolution will limit melt production dur-
ing decompression (Yakymchuk et al., 2011). 
During decompression, garnet will be replaced 
by cordierite and orthopyroxene, unless melt 
is drained from the system; then reaction of 
garnet to cordierite and orthopyroxene is lim-
ited by the reduced melt available for reaction. 
Without melt loss, retrograde cooling at 0.4 GPa 
should result in a fi nal subsolidus assemblage of 
Bt + Ms + Sil + Mag + H2O + Qtz + Pl (+Ilm), 
although the free H2O at this low pressure is a 
direct consequence of the amount of H2O in the 
system having been set at the solidus at 1.2 GPa 
(Fig. 1A, caption).

Along path C in Figure 1B, the “garnet-in” 
line is not crossed on the prograde segment, and 
biotite remains stable, which may restrict the 
availability of sequestered accessory mineral 
grains to dissolve and/or become entrained in 
the melt, with implications for the chemistry 
of melt and residue. Garnet is not produced, so 
the melt is not depleted in the heavy rare earth 
elements. Along the decompression segment at 
770 °C, path C crosses the low-variance Bt + 
Sil Crd + Mag + Kfs + Qtz + Pl + Liq (+Ilm) 
fi eld (fi eld 11 on Fig. 1A) involving biotite-
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breakdown melting, eliminating sillimanite and 
producing cordierite, which yields an additional 
~15 mol% melt (Johnson and Brown, 2004).

Along the prograde and decompression seg-
ments of all three of the model P-T paths, H2O 
is partitioned into the hydrous silicate melt. In 
a closed system, cooling potentially will lead 
to retrogression by reaction between melt and 
residue (Brown, 2002; White and Powell, 2002). 
However, the common occurrence of pristine 
or only weakly retrogressed peritectic minerals 
in residual migmatites and granulites requires 
that most melt was drained from the lower crust 
(Waters, 1988; Powell and Downes, 1990; White 
and Powell, 2002). This conclusion is consis-
tent with the presence of granites in the upper 
crust (Brown, 2001b, 2005, 2008; Guernina 
and Sawyer , 2003) and geochemical evidence, 
including isotope data, that links granites with 
lower-crustal sources (Pressley and Brown, 1999; 
Solar and Brown, 2001a; Johnson et al., 2003c; 
Tomascak et al., 2005; Hinchey and Carr, 2006). 
The consequences of open system processes on 
the dissolution and growth behavior of zircon 
and monazite with respect to evolving pressure, 
temperature and silicate mineral assemblages in 
high-grade, melt-bearing source rocks have been 
considered briefl y by Kelsey et al. (2008).

More about Melt Composition

Melt extraction is expected to occur soon 
after the melt connectivity transition is reached 
at ~7 vol% melt (Rosenberg and Handy, 2005; 
approximately equivalent to 7 mol% melt in Fig. 
1A). Thus, multiple cycles of melt buildup and 
drainage are predicted along the suprasolidus 
prograde P-T evolution (Handy et al., 2001; 
Brown, 2007, 2010a; Hobbs and Ord, 2010), 
and the melt volumes predicted for closed-sys-
tem behavior will not be retained at depth in the 
orogenic crust. As a result of melt extraction, the 
bulk composition of the source is likely to have 
been changed multiple times during the evolu-
tion to peak temperature, even allowing for melt 
fl ux through the system (Brown, 2004, 2006, 
2007). Since the composition of solid solution 
phases changes with changes in the intensive 
variables, successive batches of magma will 
have different major-element compositions 
(Yakymchuk et al., 2011).

As melt migrates relative to the solid residue 
during segregation and extraction, so the major- 
and trace-element composition of the liquid may 
evolve by interaction with the matrix to deter-
mine the chemical signature of the extracted 
melt (Jackson et al., 2003, 2005; Getsinger et al., 
2009). For example, incompatible elements will 
preferentially enter the melt to be transported 
upward, whereas compatible elements will be 

retained in the residue to be transported down-
ward by compaction as the melt is extracted. 
Thus, the transport of melt relative to the solid 
matrix of mineral grains is a basic driver in 
generating temporal and spatial diversity in the 
major- and trace-element compositions of gran-
ite magmas.

Various accessory minerals (principally zir-
con, rutile, monazite, and apatite) are the main 
hosts for zirconium, uranium, thorium, and the 
rare earth elements (Watt and Harley, 1993; 
Bea, 1996; Bea and Montero, 1999; Kelly at al., 
2005; Zeng et al., 2005a, 2005b, 2005c; Kelsey 
et al., 2008; Kelsey and Powell, 2011). Notwith-
standing, it is not clear that breakdown of these 
minerals under suprasolidus conditions neces-
sarily will lead to saturation of the melt in the 
liberated elements, since many rock-forming 
minerals in the granulite facies may become 
enriched in these elements (Reid, 1990; Fraser 
et al., 1997; Villaseca et al., 2003, 2007). For 
example, during prograde fl uid-absent hydrate-
breakdown melting, as phosphates dissolve, the 
highly compatible yttrium and heavy rare earth 
elements are partitioned into peritectic garnet 
(Pyle et al., 2001), but the light rare earth ele-
ment and europium budget is controlled by the 
stability of feldspar (Villaseca et al., 2007). As 
much as one-third of the zirconium content of 
residual pelites may be sequestered in rutile and 
garnet, and although breakdown of garnet to 
cordierite by reaction with melt during decom-
pression releases zirconium, this simply forms 
new zircons as inclusions in cordierite (Fraser 
et al., 1997; Degeling et al., 2001), with pos-
sible implications for depletion of zirconium 
in the melt. For a different protolith composi-
tion, Reichardt and Weinberg (2012a) have 
shown that, during fl uid-present melting of calc-
alkaline plutonic rocks, the formation of heavy 
rare earth element–enriched hornblende and its 
retention in the residue may generate magmas 
with high (chondrite-normalized) lanthanum to 
ytterbium and high strontium to yttrium ratios 
similar to adakites. 

In fl uid-absent hydrate-breakdown melting, 
low melt fractions may be isolated along the 
hydrate grain boundaries. In this case, there 
is the potential to liberate trace elements con-
centrated in accessory minerals located along 
hydrate grain boundaries or possibly from those 
grains located close to the edges of the hydrate. 
In contrast, in fl uid-present melting, low melt 
fractions form predominantly at quartz-feldspar 
grain junctions, which may limit the opportunity 
for equilibration with trace elements in acces-
sory minerals associated with hydrate grain 
boundaries or sequestered in hydrate minerals. 
Synanatectic deformation is also critical (Walte 
et al., 2005). For example, granular fl ow (dif-

fusion accommodated grain-boundary sliding) 
allows melt migration along grain boundaries, 
which enables better interaction between acces-
sory mineral grains and the interstitial melt, 
whereas diffusion creep by dissolution-precipi-
tation favors equilibration of grain surface com-
positions with the interstitial melt. Deformation 
also favors rapid melt extraction, which may 
inhibit equilibration between melt and residue 
(Watt et al., 1996). 

The fl ux of trace element(s) into the melt 
during dissolution of accessory minerals is a 
function of radial diffusion-controlled dissolu-
tion rate and surface area, which are correlated 
with grain size, and the degree of undersatura-
tion of the melt with respect to the element(s) 
concerned (Watson, 1996). Monazite and zircon 
populations commonly have different average 
grain size, and the range of grain sizes may 
vary from protolith to protolith within a source 
terrane (Nemchin and Bodorkos, 2000). These 
attributes may lead to relative differences in 
light rare earth element and zirconium concen-
trations among small volumes of melt produced 
in different parts of the source, subject to the 
caveats discussed previously.

Rock-forming and accessory mineral behavior 
during melting is important in relation to the iso-
tope composition of the melt. The isotope com-
position of a melt depends on the minerals being 
consumed during melting and the time elapsed 
since the last isotope equilibration event. For 
example, the initial lead (Pb) isotope composi-
tion of a melt is sensitive to the age(s) and abun-
dance of zircon in the source and the amount of 
radiogenic lead that is incorporated into the melt 
through dissolution of zircon (Hogan and Sinha, 
1991). Similarly, the samarium and neodymium 
content, the samarium to neodymium ratio, and 
the neodymium isotope composition of a melt 
depend on the amount of apatite and monazite 
dissolved in the melt and the degree of samarium 
to neodymium fractionation and neodymium 
isotope disequilibrium (Ayres and Harris, 1997; 
Zeng et al., 2005a, 2005b). 

In contrast, the micas, amphiboles, and 
feldspars control the rubidium and strontium 
content, the rubidium to strontium ratio, and 
the strontium isotope composition of a melt. 
Although apatite also incorporates strontium, 
the strontium isotope composition of any melt 
will be dominated by feldspar, which is much 
more abundant in any source rock. Muscovite 
and biotite have very high rubidium to strontium 
ratios (generally >50), whereas plagioclase and 
hornblende have very low rubidium to strontium 
ratios (generally <1), so that fractionation dur-
ing nonmodal melting will yield liquids with 
distinct isotope signatures (Harris and Inger, 
1992; Zeng et al., 2005a, 2005b, 2005c; Farina 
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and Stevens, 2011). Since the hydrate involved 
in fl uid-absent crustal melting and the stoichi-
ometry of the melting reaction change with 
increasing temperature, as discussed earlier, 
lower-temperature melts and higher-tempera-
ture melts are likely to have distinctive chem-
istries and isotopic compositions. In addition, 
strontium isotope disequilibrium may occur 
if melt extraction is suffi ciently fast to prevent 
trace-element and isotope equilibrium between 
melt and residual minerals (Hammouda et al., 
1996; McLeod et al., 2012). Spatial and tem-
poral heterogeneity in the initial isotopic com-
position of granites may be inherited from the 
source. The heterogeneity is preserved in gran-
ites because of the incremental construction of 
plutons from multiple batches of magma and 
the lack of pluton-wide homogenization (Deniel 
et al., 1987; Hogan and Sinha, 1991; Pressley 
and Brown, 1999; Tomascak et al., 2005; Farina 
and Stevens, 2011; McLeod et al., 2012).

During crustal melting, various factors affect 
the dissolution of accessory minerals such as 
zircon, monazite, and apatite, and consequently 
control the concentration of the various essen-
tial structural constituents derived from these 
minerals in the melt. These factors include: the 
microstructural location of the accessory min-
erals (along grain boundaries or sequestered as 
inclusions) and the stability of the major rock-
forming minerals that host inclusions (Watson 
et al., 1989; Bea et al., 2006); the kinetics of dis-
solution (Bea, 1996; Watson, 1996); the extent 
of anatexis (Rubatto et al., 2001); the chemistry 
of the melt (Watson and Harrison, 1983); and the 
P-T path (Roberts and Finger, 1997). Some of 
these and other factors affect the precipitation 
of these accessory minerals during crystalliza-
tion and consequently the saturation of the melt 
in the various essential structural constituents of 
these minerals. These factors include: the bulk 
rock chemical composition (Kelsey et al., 2008); 
the entrainment of residual grains (Watson , 
1996); the P-T path (Roberts and Finger , 1997); 
the chemistry of the melt (Watson  and Harri-
son, 1983); and fractionation at all scales due 
to decreasing saturation levels of the essential 
structural constituents in accessory minerals 
with falling temperature or the formation of 
diffusion-controlled compositional gradients in 
the melt adjacent to crystallizing minerals (Wark 
and Miller, 1993).

As a result, the use of zirconium and the light 
rare earth element concentrations of granites to 
determine magma temperatures based on zir-
con and monazite solubility (Miller et al., 2003; 
Chappell et al., 2004) may be fl awed in some 
circumstances. For example, low-zirconium 
granites may refl ect sources that follow a P-T 
evolution similar to path C (or possibly path B) 

in Figure 1B. In this case, zircon may remain 
sequestered or partially sequestered in biotite. 
Even a high-temperature P-T evolution similar 
to path A (or possibly path B) may reduce the 
zirconium available to the melt if a proportion 
of the zirconium is partitioned into the peritectic 
minerals. Thus, rather than being true low-tem-
perature melts, as might be inferred from their 
zirconium concentrations, low concentrations 
of zirconium may be a function of sequestration 
of zircon (Bea, 1996) or of high-temperature 
element partitioning in the source (Villaseca 
et al., 2007).

Mantle versus Crust as Sources

Recently, it has become popular to argue that 
granites emplaced in continental margin arc 
systems were crystallized from hybrid magmas 
with both mantle and crustal inputs in the source 
(Keay et al., 1997; Gray and Kemp, 2009), par-
ticularly I-type granites. If this interpretation is 
shown to be correct, then I-type granites may 
provide a link between the process of formation 
of crust in arcs and the generation and differ-
entiation of ancient continental crust (David-
son et al., 2005; Dufek and Bergantz, 2005; 
Hawkesworth and Kemp, 2006; Kemp et al., 
2007, 2009; Lackey et al., 2008).

Kemp et al. (2007) used hafnium and oxygen 
isotope compositions obtained from zoned zir-
con crystals to investigate the petrogenesis of 
the classic hornblende-bearing (I-type) granites 
of eastern Australia. The hafnium and oxygen 
isotope compositions correlate with each other 
over the full range, from compositions char-
acteristic of the mantle to those characteristic 
of metasedimentary protoliths (cf. Keay et al., 
1997). Kemp et al. (2007) argued that this 
covariation demonstrates that the granites were 
formed by reworking of metasedimentary proto-
liths by mantle-derived melts and not by melting 
of lower-crustal igneous protoliths as previously 
proposed (Chappell et al., 2004, and references 
therein).

This perspective receives support from experi-
ments concerning the relative contributions 
of crust and mantle to granite magmas (Patiño 
Douce, 1999). With the exception of peralumi-
nous granites, Patiño Douce (1999) concluded 
that all other granite magmatism is associated 
with crustal growth rather than just recycling.

In contrast, Clemens et al. (2011) maintain 
that I-type granites are of purely crustal origin, 
but they are derived from arc volcanic and sedi-
mentary rocks of intermediate composition that 
pass on the isotope signature of a mixed mantle 
and crustal source. These authors propose that 
the distinctive chemistry of the I-types is due to 
peritectic assemblage entrainment, specifi cally, 

differential entrainment of peritectic clino-
pyroxene, plagioclase, and ilmenite/titanomag-
netite, and entrainment of residual apatite and 
zircon. Although rare in I-types, where pyrox-
enes occur, they have the textural and chemi-
cal characteristics of magmatically precipitated 
minerals (Vernon, 2010). Small crystals of peri-
tectic origin entrained in melt from the source 
are inferred to be dissolved and/or recrystallized 
during ascent and crystallization.

At convergent plate margins, the propor-
tion of supracrustal to juvenile material may 
vary through time, as shown by Lackey et al. 
(2008) for the central Sierra Nevada batholith 
and by Kemp et al. (2009) for the Australian 
Tasmanides. In a wide-ranging study of gran-
ites from the Australian Tasmanides, Kemp et al. 
(2009) showed that the S-type, I-type, and 
A-type granites defi ne striking secular trends 
in εNd-εHf-δ

18O. These trends correlate with 
cycles from shortening to extension related to 
slab advance and retreat that control the pro-
portion of source inputs. Each cycle begins 
with S-type granites derived by melting of a 
thickened turbidite-fi lled backarc basin as slab 
advance changes to retreat, leading to input of 
basaltic melt that provides both heat and fl u-
ids for anatexis of the turbidites. Subsequently, 
I-type granites are generated during ongo-
ing slab retreat and lithospheric extension by 
the increase in input of juvenile basalt. These 
I-type granites have 18O-enriched zircons that 
show evidence of extensive sediment incorpora-
tion into a juvenile basaltic melt (Kemp et al., 
2007, 2009). The juvenile component within 
the granites increased from the Cambrian to the 
Triassic, consistent with a decreased input of 
sedimentary detritus from the craton as the arc-
backarc system migrated oceanward with time. 
A-type granites in the Tasmanides are closely 
associated with mafi c intrusives that have simi-
lar geochemical and isotopic characteristics to 
the granites (Turner et al., 1992; Kemp et al., 
2005). Contradicting the original interpretation 
of a lower-crustal origin from residual granulite, 
these data point to an origin by differentiation 
from alkaline basaltic melt, with trends to lower 
zircon εHf and sparse inherited zircon cores 
refl ecting variable but volumetrically minor 
incorporation of crust (Kemp et al., 2005, 2009).

In a contrary perspective, Villaros et al. 
(2012) have shown that the time-evolved εHf 
arrays for inherited zircon cores from the Pan-
African S-type granites of the Cape granite suite 
overlap closely with the εHf range displayed by 
the magmatic zircon rims at the time of crys-
tallization of the granites. Thus, in contrast to 
the earlier studies discussed already, which 
have interpreted similar arrays to refl ect mixing 
between crustal- and mantle-derived magmas , 
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Villaros et al. (2012) argued that these arrays 
may be wholly inherited from the source, 
refl ecting mixing among various crustal materi-
als of different ages with original hafnium iso-
tope compositions. This interpretation supports 
the original view of S-type granites, i.e., that 
they inherit their chemical characteristics from 
the source. If this interpretation is correct, it pro-
vides strong support for the hypothesis that peri-
tectic assemblage entrainment is the primary 
mechanism by which granite magmas acquire 
compositions more mafi c than the range defi ned 
by the compositions of crustal melts (Clemens 
and Stevens, 2012).

An additional example of polyphase crustal 
reworking largely without any juvenile input 
is provided by the Fosdick migmatite-granite 
complex of West Antarctica, which preserves 
evidence of two crustal differentiation events 
along a segment of the former active margin of 
Gondwana, one in the Devonian–Carbonifer-
ous and another in the Cretaceous (Korhonen 
et al., 2010a, 2010b, 2012). The Hf-O isotope 
composition of zircons from Devonian–Car-
boniferous granites is explained by mixing of 
material from two crustal sources consistent 
with the high-grade metamorphosed equivalents 
of a Lower Paleozoic turbidite sequence and a 
Devonian calc-alkaline plutonic suite without 
input from a more juvenile source (Yakym-
chuk et al., 2013b). In contrast, the Hf-O iso-
tope composition of zircons from Cretaceous 
granites requires a contribution from a more 
juvenile source in addition to contributions 
from the high-grade metamorphosed equiva-
lents of the turbidite sequence and the Devonian 
calc-alkaline plutonic suite (Yakymchuk et al., 
2013b). The Fosdick complex granites contrast 
with coeval granites in other localities along and 
across the former active margin of Gondwana, 
including the Tasmanides of Australia and the 
Western Province of New Zealand, where the 
wider range of more radiogenic εHf values of 
zircon suggests that juvenile material played a 
larger role in granite genesis. This suggests arc-
parallel and arc-normal variations in the propor-
tion of crustal reworking versus crustal growth 
along the former active margin of Gondwana 
(Yakymchuk et al., 2013b).

CURRENT VIEWS ON MELT 

SEGREGATION AND EXTRACTION

In several studies, the size-frequency dis-
tributions and spacing of plutons show power-
law distributions; these distributions have been 
used to argue that magmatic systems are self-
organized from the bottom up (Bons and Elburg, 
2001; Cruden and McCaffrey, 2001; Cruden, 
2006; Koukouvelas et al., 2006). This view is 

consistent with multiple studies of relict anatec-
tic systems (Brown and Solar, 1998a; Brown, 
2005, 2010a; Hall and Kisters, 2012; Yakym-
chuk et al., 2012) and results from modeling 
(Petford and Koenders, 1998; Bons and van 
Milligen, 2001; Ablay et al., 2008; Hobbs and 
Ord, 2010) that suggest melt extraction may be 
a self-organized critical phenomenon.

The formation of upper-crustal plutons 
requires that melt be generated and separated 
from solid residue within lower-crustal sources 
and then become focused into high-permeability 
ascent conduits to feed the roots of plutons. This 
mass transfer involves a multitude of physical 
and chemical processes that operate at several 
different length and time scales linked by feed-
back relations between melting and deformation 
(Brown, 2010a). However, the rheology of crust 
composed of two distinct but interacting phases, 
a stiffer solid matrix that hosts a weaker liquid, 
is complex. Evaluating this rheology is made 
diffi cult by the dramatic change in strength that 
occurs as melting progresses, the dependence of 
strength on grain-scale distribution of the melt, 
and the melt pressure, which will be at or close 
to lithostatic. As a result, actively melting crust is 
a highly dynamic nonlinear system with history- 
and time-dependent behavior, characterized by 
changes in deformation mechanism and redis-
tribution of melt by two-phase fl ow (Vigneresse, 
2004; Rosenberg and Handy, 2005; Walte et al., 
2005; Rutter and Mecklenburgh, 2006; Závada 
et al., 2007; Schulmann et al., 2008).

If this interpretation of anatectic systems 
is accepted, then effect is fed back to cause, 
which may be negative, tending to stabilize the 
system, or positive, leading to instability. This 
nonlinear behavior leads to unpredictability, 
which is expressed in anatectic systems by melt-
extraction events. Random fl uctuations drive the 
self-organization of anatectic systems, allowing 
them to explore new structures while attempting 
to fi nd the preferred structure (the “attractor”). 
Over time, these fl uctuations permit the anatectic 
system to approach a point at which the prop-
erties change suddenly (the critical point) and 
to maintain itself at that point (e.g., where the 
matrix in a dynamic system goes from nonperco-
lating [disconnected] to percolating [connected] 
or vice versa). This property is called self-orga-
nized criticality. If it is assumed that an anatectic 
system can mutate, then the system may change 
toward a more static or a more changeable con-
fi guration. If the confi guration is too static, a 
more changeable confi guration will be selected, 
and vice versa, until a particular dynamic struc-
ture that is optimal for the system is achieved. 
Thus, anatectic systems adapt to converge on 
the optimal structure for melt extraction (Brown, 
2010a; Hobbs and Ord, 2010). 

Inferences from Residual Migmatites 

and Granulites

Pseudomorphs of melt-fi lled pores in mig-
matites (Holness and Sawyer, 2008) are consis-
tent with pervasive melt fl ow at the grain scale. 
Similar to texturally equilibrated rocks, melt is 
inferred to fl ow along three-grain edges, where 
the geometry of the conductive channels is con-
trolled by the wetting relations between solid 
and liquid phases (Laporte et al., 1997), or along 
individual grain boundaries if these dilate under 
tectonic stresses (Schulmann et al., 2008).

At outcrop scale, leucosome distribution 
records the interplay between deformation and 
mesoscale migration of melt, and it provides 
information about the minimum permeability of 
the anatectic zone (Tanner, 1999; Sawyer, 2001; 
Marchildon and Brown, 2002, 2003; Guernina 
and Sawyer, 2003; Brown, 2004, 2010a). 
Although not ubiquitous at all leucosome inter-
sections, for reasons related to the origin of the 
leucosomes (peritectic vs. cumulate vs. liquid) 
and the mechanism of crystallization (cooling 
vs. diffusive loss of H2O), petrographic con-
tinuity (similar modal mineralogy, grain size, 
and microstructure) between concordant and 
discordant leucosomes, as shown in Figure 4, is 
a common occurrence that has been reported in 
multiple studies (Maaløe, 1992; Brown, 1994, 
2004, 2006; Oliver and Barr, 1997; Marchildon 
and Brown, 2001, 2002, 2003; Sawyer, 2001; 
Guernina and Sawyer, 2003; Weinberg and 
Mark, 2008; Hall and Kisters, 2012). Based on 
this robust observation, networks of leucosome-
fi lled deformation bands in migmatites are 
inferred to be evidence of the former active melt 
fl ow networks in the suprasolidus crust (Jones 
and Brown, 1990; Allibone and Norris, 1992; 
Brown, 1994, 2001a, 2001b, 2004, 2005, 2006, 
2010a; Collins and Sawyer, 1996; Oliver and 
Barr, 1997; Sawyer, 1998, 2001; Brown et al., 
1999; Sawyer et al., 1999; Daczko et al., 2001; 
Guernina and Sawyer, 2003; Marchildon and 
Brown, 2003; White et al., 2004; Weinberg and 
Mark, 2008; Hall and Kisters, 2012; Yakym-
chuk et al., 2012). 

In the Karakoram shear zone, Weinberg and 
Mark (2008) have shown that melt migrated 
from grain boundaries to layer-parallel leuco-
somes in stromatic metatexite migmatite, and 
then to the axial surfaces of developing folds, 
where intersecting leucosomes formed pipe-like 
“backbone” structures for faster fl ow parallel 
to the fold hinge lines. Synchronous folding 
and melt migration led to layer disaggregation, 
transposition, and the formation of diatexite 
migmatites, demonstrating that melt migration 
was an integral part of the accommodation of 
strain (Weinberg and Mark, 2008, their fi g. 15). 
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Similarly, leucosomes in migmatites exposed 
on Kangaroo Island, South Australia (Weinberg 
et al., 2013), suggest migration of melt toward 
the hinge zones of antiformal folds. At these 
sites, funnel-shaped networks of leucosome 
form a root zone that links up toward a central 
axial-planar channel, forming the main melt-
extraction pathways during folding.

Leucosomes that lie in orientations parallel 
to fold axial surfaces form perpendicular to the 
axis of maximum shortening and, by inference, 
in the plane perpendicular to the local maximum 
principal stress. The implication is that melt 

pressure was able to overcome the maximum 
principal stress plus the tensile strength of the 
host parallel to it. This may occur during fold-
ing if the differential stress is small and a fabric 
is developed in the plane perpendicular to the 
maximum principal stress (Wickham, 1987; 
Lucas and St. Onge, 1995; Brown and Solar, 
1998a; Vernon and Paterson, 2001).

As discussed earlier herein, the preferential 
occurrence of peritectic minerals in leucosomes 
(Figs. 2C and 3A), in spite of a homogeneous 
distribution of reactant minerals in the protolith, 
supports an inference that melting was local-

ized at these sites (Powell and Downes, 1990; 
Brown, 2004; White et al., 2004). The preserva-
tion of the peritectic minerals with only minimal 
retrogression supports an inference of melt loss. 
Leucosomes occur in networks of deformation 
bands, indicating that strain was localized by 
the concentration of melt around the peritectic 
minerals and that melt drained via the leuco-
some networks. In addition, melt loss is inferred 
if bulk chemistry reveals a depleted composition 
for residual source rocks in comparison with 
the expected protolith composition (e.g., Solar 
and Brown, 2001a; Korhonen et al., 2010a, 

A B

C D

Figure 4. Features associated with inferred former melt-bearing structures in metatexite migmatites that are consistent with melt fl ow down 

deformation-induced gradients in hydraulic potential from foliation-parallel leucosome stomata to dilation and shear bands. The dilation 

and shear bands represent faster-fl ow melt-extraction pathways formed by the change from distributed shear-enhanced compaction to lo-

calized dilatant shear failure, which enhances permeability if the porosity is low, enabling focused melt fl ow. (A) Net structured metatexite 

migmatite with thin layer-parallel leucosome stromata (equivalent to compaction bands) and transverse leucosome veins in dilation and 

shear bands. From a kilometric raft of migmatite within the Hoyos granodiorite, central Gredos, Avila batholith, central Spain; diameter 

of coin is ~15 mm. (B) Close-up of the same outcrop as that in A, showing details of the linkage between leucosome in the stromata and 

leucosome in the shear bands; diameter of coin is ~15 mm. (C) Example of petrographic continuity (similar microstructure, mineralogy 

and mode) between leucosome in stromatic metatexite migmatite and leucosome concentrated in shear bands. From 1070 m peak in the 

western part of the Fosdick migmatite-granite complex, Marie Byrd Land, West Antarctica; pencil for scale. (D) Example of leucosome in 

shear band network that is in petrographic continuity (with similar microstructure, mineralogy and mode) with leucosome in the foliation-

parallel stomata, inferred to record a former melt reservoir. From the Tolstik Peninsula, Karelia, Russia; diameter of lens cap is 55 mm.
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2010b), and it is also implied by the formation 
of collapse structures (Bons et al., 2008). Never-
the less, net melt loss estimated qualitatively 
based on this type of evidence is a minimum, 
since residual migmatites and granulites pre-
serve an integrated record of melt fl ux through 
the anatectic zone (Brown, 2004; Olsen et al., 
2004; Slagstad et al., 2005; Korhonen et al., 
2010a, 2010b). 

One consequence of melt fl ux is that leuco-
somes are rarely primary liquid compositions; 
commonly, they are of two types. In the fi rst type, 
the compositions exhibit strong positive euro-
pium anomalies and low zirconium concentra-
tions, features that are expected of leuco somes 
formed during the early stage of segregation 
and extraction. Leucosomes of this type rep-
resent either early crystallization of feldspars 
and quartz (Sawyer, 1987; Solar and Brown, 
2001a, 2001b; Johnson et al., 2003c, 2012; 
Korhonen et al., 2010b) or prograde growth and 
accumulation of peritectic feldspar (together 
with a ferromagnesian peritectic mineral, such 
as garnet, and possibly residual quartz) as the 
result of chemical potential gradients present 
during melting (White et al., 2004). In the sec-
ond type, the compositions show strong nega-
tive europium anomalies and high zirconium, 
features that are expected of leucosomes formed 
from percolating fractionated melt trapped dur-
ing cooling of the terrane (Sawyer, 1987, 1998; 
Solar and Brown, 2001a, 2001b; Hinchey and 
Carr, 2006; Korhonen et al., 2010b; White and 
Powell, 2010).

The contrast between cumulate and fraction-
ated leucosome compositions is generated as 
melt migrates because it encounters host rock 
that is cooler than the liquidus for the melt com-
position, which causes crystallization of liquidus 
minerals (likely feldspar and quartz) on the chan-
nel walls. Thus, there is a continuous process  of 
crystallization and liquid fractionation during 
extraction until the evolved melt crosses the 
anatectic front, after which, if the evolved liquid 
is of suffi cient volume, it ascends to an upper-
crustal pluton.

Additional complexity in leucosome com-
positions arises where hybridization of melts 
from different protoliths occurs in the source or 
a leucosome network is reused multiple times. 
For example, Reichardt et al. (2010) described 
leucosomes that root in different protoliths, 
merging with each other and homogenizing as 
they link up to form a hierarchy of channels, 
feeding into stocks, plutons, and ultimately into 
the Karakoram batholith. This interpretation is 
supported by the hybrid isotope signature of 
leucosomes, which is intermediate between the 
protolith signatures, and their similarity to intru-
sive granites. Thus, the leucosomes represent 

part of a complex melt fl ow network indicative 
of large-scale interconnectivity. The hybrid iso-
tope signature is interpreted to result from local 
equilibration by microscale interaction between 
new melt batches and previously crystallized 
magmatic rocks as melt migrated via grain 
boundaries along an S-C fabric related to syn-
anatectic deformation rather than any mixing 
among melt batches (Hasalová et al., 2011).

The features of leucosomes described here 
are strong evidence that residual source rocks 
were both zones of melt generation and zones of 
melt transfer (Brown, 2004, 2006, 2007; Olsen 
et al., 2004; Korhonen et al., 2010a, 2010b).

Formation of Melt Flow Networks

Under equilibrium conditions in isotropic 
crust, melting begins at multiphase grain junc-
tions that include quartz and feldspar, and com-
monly a hydrate mineral. However, Earth’s 
crust is anisotropic and in a state of stress, with 
variations in bulk composition and grain size 
that infl uence sites where melting begins and 
where melt accumulates. Fluid-absent hydrate-
breakdown melting commonly begins at sites of 
lower pressure, once the initial thermal overstep 
is close to that required to overcome the acti-
vation energy for a particular melting reaction 
(Brown and Solar, 1998a). 

The source becomes permeable at the melt 
connectivity transition, and melt extraction may 
occur if the solid residue is able to deform and 
compact (Rabinowicz and Vigneresse, 2004; 
Rutter and Mecklenburgh, 2006). With increas-
ing melt volume, the effective mean stress 
decreases, and the behavior of the anatectic crust 
may change from distributed shear-enhanced 
compaction, which reduces permeability, to 
localized dilatant shear failure, which enhances 
permeability if the porosity is low (Rutter, 1997; 
Rutter and Mecklenburgh, 2006). Thus, focused 
melt fl ow requires dilatant shear failure at low 
melt fractions, consistent with the melt connec-
tivity transition of Rosenberg and Handy (2005) 
and the concept of a melt segregation window as 
proposed by Rabinowicz and Vigneresse (2004).

Fabric-parallel compaction bands may form 
in anisotropic rocks as pockets of melt become 
overpressured and fail by loss of cohesion at 
grain boundaries and injection of melt along 
these boundaries, or by a cavitation-driven dila-
tion process, or by propagation of ductile frac-
tures. Formation of compaction bands during 
early, distributed shear-enhanced compaction 
implies a fl ow law that permits localization in 
the strain-hardening regime (Sheldon et al., 
2006). As the melt fraction reaches the melt 
connectivity transition, the change to localized 
dilatant shear failure enables melt to move from 

compaction bands into shear bands (oblique 
to fabric) and dilation bands (generally fabric-
normal) as determined by gradients in hydraulic 
potential (van der Molen, 1985; Maaløe, 1992; 
Brown et al., 1995; Brown and Rushmer, 1997; 
Sawyer, 2001; Guernina and Sawyer, 2003). 
This process leads to the formation of outcrop-
scale melt-fi lled deformation band networks, as 
evidenced by leucosome networks in residual 
crust (Figs. 3A and 4).

Thus, a continuous link for melt fl ow from 
pores to vein networks may be created, produc-
ing a system that cycles between melt accu-
mulation and melt loss, where this process is 
modulated by the rate of melt production and 
the deformation-induced pressure gradients 
driving the melt fl ow from grain boundaries to 
vein networks. The way in which these vein 
networks connect to ascent conduits where melt 
ascent is driven by buoyancy remains enig-
matic, although theoretical and phenomeno-
logical models have been proposed (Clemens 
and Mawer, 1992; Petford and Koenders, 1998; 
Brown and Solar, 1999; Weinberg, 1999; Bons 
et al., 2001, 2004; Leitch and Weinberg, 2002; 
Brown, 2004; Ablay et al., 2008; Hobbs and 
Ord, 2010).

Focusing Melt for Extraction

Fertile crustal rocks have the potential to 
yield a variable amount of melt at the meta-
morphic peak, according to the compositional 
balance, and so source volumes may vary from 
about ten times to only two times the volume 
of a pluton, according to the crustal temperature 
achieved (Brown, 2001a, 2001b). Ultimately, 
melt drains from the source via a limited num-
ber of discrete tabular or cylindrical conduits to 
feed upper-crustal plutons (Vigneresse, 1988; 
Brown and Solar, 1998b; Vigneresse et al., 
1999; Cruden, 2006).

The common association of middle-crustal 
migmatites with outcrop-scale bodies of gran-
ite suggests that regional-scale migmatite-
granite  complexes preserve an integrated 
record of melt generation, melt loss, melt pas-
sage, and melt entrapment. As such, they rep-
resent the upper levels of the anatectic zone 
through which fugitive magma was transferred 
from deeper in the source to accumulate in 
plutons in the shallower crust (e.g., Brown and 
Solar, 1999; Brown, 2004, 2005; Olsen et al., 
2004; Slagstad et al., 2005; Korhonen et al., 
2010a, 2010b; Morfin et al., 2013). In the 
source, a critical point may be reached at some 
combination of melt fraction and distribution 
that enables formation of conduits of a size that 
allows melt to be extracted episodically. For 
this to occur, it is likely that the melt volume  
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will be above the melt connectivity transi-
tion at ~7 vol% melt and that a melt-bearing 
network of deformation bands will have been 
formed (Brown, 2004, 2010a).

The anatectic front—equivalent to the solidus 
and representing the upper surface of the melt-
bearing source, a dynamic feature during oro-
genesis (Brown and Solar, 1999)—is recorded 
in orogenic crust by the fi rst appearance of 
leucosome, corresponding to the fl uid-present 
solidus. The height from the anatectic front to 
the level of emplacement varies according to the 
tectonic setting, the degree of orogenic thicken-
ing, and the amount of subsequent extension or 
collapse. Along an active continental margin, 
the distance separating the granite source from 
the site of melt accumulation is rarely going to 
be more than 30 km and commonly will be less, 
and the thickness of the source is likely to be 
<20 km; this is shown schematically in Figure 
5A. In Figure 5B, melt has been drained from 
the source, and a pluton has been emplaced 
at the level of the ductile-to-brittle transition 
zone. The rates of melt production (not shown 
in Fig. 5B), extraction (QEx), ascent (QAs), and 
emplacement (QEm) are assumed to be balanced 
at the crustal scale by various feedback relations 
(Cruden, 1998; Brown, 2004, 2010a; Hobbs and 
Ord, 2010).

The spacing of plutons in formerly active 
continental margins and collisional orogens 
(Bons and Elburg, 2001; Cruden, 2006) strongly 
suggests that ascent is spatially focused, and the 
spacing of plutons likely refl ects the footprint of 
the source being drained beneath them (Fig. 6). 
Since there are only a small number of feeders 
to an individual pluton, and the footprint of the 
source that is drained for any single pluton is 
unlikely to be smaller than the lateral extent of 
the granite, as illustrated schematically in Fig-
ure 6, the principal unresolved issue in melt 
extraction is focusing the melt fl ow to the ascent 
conduit(s). 

There are several ways by which focused 
fl ow of melt to ascent conduits may be achieved. 
Where lower-crustal fabrics are shallow, and, 
therefore, the anisotropy of permeability is shal-
low, melt fl ow down hydraulic potential gra-
dients to ascent conduits or major shear zones 
is commonly postulated (e.g., Brown, 2005, 
2006; Rosenberg, 2004), and may be driven 
by gravitational potential due to differences in 
topographic relief (Hobbs and Ord, 2010). The 
effect of applied differential stress is limited by 
the fl ow strength of melt-bearing crust (Rutter 
and Mecklenburgh, 2006). Nonetheless, if the 
hydraulic potential gradient is maximized, such 
as at low melt fractions in crust with contrasting 
lithologies that create an extrinsic anisotropy of 
permeability to channel fl ow along particular 

layers with strong intrinsic anisotropy of perme-
ability, then lateral melt fl ow driven by defor-
mation may be kilometric (Hobbs and Ord, 
2010, their table 2). In circumstances where the 
tectonic fabrics are steep, fabric anisotropies 
are expected to control extraction of melt, with 
the form of the magma-ascent conduits mim-
icking the apparent fi nite strain (Fig. 7; Brown 
and Solar, 1998a, 1998b, 1999; Weinberg et al., 
2009; Marcotte et al., 2005).

Since the solidus surface is a dynamic fea-
ture in three dimensions during orogenic defor-
mation (Brown and Solar, 1999), the anatectic 
zone expands upward as the solidus surface is 
displaced to shallower crustal levels during the 
prograde metamorphic evolution, but it con-
tracts downward during the retrograde stage. 
Given regional-scale variations in strain along 
the length of an orogen, it is likely that the soli-
dus surface in three dimensions is uneven and 
undulating, with antiformal culminations and 
synformal troughs. Under these circumstances, 
the solidus surface may act as a melt-imper-
meable boundary, or permeability barrier, at 
the base of the subsolidus crust, analogous to 
models for melt extraction at mid-ocean ridges 
(Sparks and Parmentier, 1991; Gregg et al., 
2012). Although such a permeability barrier 
must inevitably be associated with a crystalliza-
tion front at the solidus, the uneven and undulat-
ing nature of the front may allow melt to migrate 
upslope, driven by buoyancy, to points of melt 
extraction that form at antiformal culminations 
in the solidus surface. Melt accumulates at these 

points of melt extraction until the volume is suf-
fi cient to allow it to ascend by buoyancy to the 
level of pluton emplacement. The size and spac-
ing of plutons will be determined by the location 
of these melt-extraction points (Fig. 6; Brown 
and Solar, 1999).

Lower-crustal melting driven by heat supply 
is a continuous process. In contrast, melt extrac-
tion is a discontinuous process that is cyclic 
(e.g., Brown and Solar, 1998a; Handy et al., 
2001; Rabinowicz and Vigneresse, 2004). The 
switch from a continuous to a discontinuous 
process is fundamental and has been discussed 
before (Brown and Solar, 1998a; Handy et al., 
2001); it is a consequence of the nonlinear feed-
back relations during melting (Brown, 2010a; 
Hobbs and Ord, 2010). 

CURRENT VIEWS ON MAGMA 

ASCENT AND EMPLACEMENT

Leucosome networks and mesoscale pods of 
diatexite, migmatite, and granite within residual 
host rocks provide evidence of the storage sys-
tem for melt accumulation prior to extraction. 
The storage networks and locally ponded melt 
feed the ascent conduits that transport magma 
to shallower levels in the crust (Brown, 1994; 
Sawyer, 1998; Brown, 2004, 2006, 2007, 2010a; 
Reichardt and Weinberg, 2012a). 

In general, plutons are constructed incremen-
tally (e.g., Deniel et al., 1987; Brown and Solar, 
1999; Pressley and Brown, 1999; Miller, 2008; 
Clemens and Benn, 2010), consistent with 
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Figure 5. Schematic diagram to illustrate melt extraction, ascent, and emplacement along 

an active continental margin (based on a model in Cruden, 1998). (A) Segregated melt in 

the suprasolidus source, shown schematically in red, is located in fabric-parallel stromata 

and thin sills prior to formation of dikes to allow ascent. (B) After melt ascent, a pluton 

has formed at the level of the ductile-to-brittle transition zone, with space being made by 

a combination of lifting of the roof and depression of the fl oor, accommodated by volume 

loss in the source due to effl ux of the melt. The rates of melt production (not shown on dia-

gram), extraction (QEx), ascent (QAs), and emplacement (QEm) are assumed to be balanced at 

the crustal scale. The depths shown on the right-hand side of the fi gures are intended as a 

general indication of the likely range along an active continental margin. As a consequence 

of melt extraction, the source is less fertile and more residual.
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expectations for cyclic melt extraction from 
the source. Growth of plutons by addition of 
discrete magma batches is confi rmed by high-
precision zircon geochronology coupled with 
the identifi cation of isotopically distinct units 
despite the cryptic internal structure of many 
plutons (Deniel et al., 1987; Hogan and Sinha, 
1991; Brown and Pressley, 1999; Pressley and 
Brown, 1999; Coleman et al., 2004; Matzel 
et al., 2005, 2006; Schaltegger et al., 2009; 
Miller et al., 2007; Miller, 2008; Clemens  and 
Benn, 2010; Acosta-Vigil et al., 2012a). This 
view of pluton construction is supported by 
detailed structural studies of granite, particu-
larly where anisotropy of magnetic susceptibil-
ity has been used to map cryptic fabrics and to 
identify discrete emplacement lobes in plutons 
(Stevenson et al., 2007). 

Sheeted granites provide evidence of the 
feed back relations among episodic melt extrac-
tion, common ascent conduits for successive 
pulses of magma, and local pluton infl ation as 
melt fl ow stalls (Brown et al., 1981; Brown and 
Solar, 1998b, 1999; Brown and McClelland, 
2000; Mahan et al., 2003; Bartley et al., 2008). 
In particular, Bartley et al. (2008) proposed that 
upper-crustal plutons may be constructed by a 
crack-seal mechanism, involving incremen-
tal growth by diking, with emplacement either 
between earlier sheets of granite and wall rocks 
(antitaxial growth) or within earlier sheets of 
granite (syntaxial growth). The problem with 
this hypothesis, as the authors admit, is that 
compelling evidence of pluton construction by 
multiple diking is absent in the interior of many 
plutons. Indeed, where cryptic contacts have 

been established, the form of the individual 
pulses commonly appears not to be dike-like. 
This is not surprising. The cryptic nature of 
internal contacts in granites suggests that suc-
cessive melt batches were emplaced into mushy 
magma that was not fully crystallized; such 
mushy zones are natural traps for ascending 
batches of magma. Thus, entrapment is likely to 
have obscured evidence of the ascent process.

Laccoliths (horizontal tabular intrusions) and 
wedge-shaped plutons (also called lopoliths) 
typically have large aspect ratios, with horizon-
tal dimension ~12–6 times the vertical dimen-
sion as thickness increases from 50 m to 5 km 
(McCaffrey and Petford, 1997; McCaffrey and 
Cruden, 2002). The volume of magma emplaced 
in the upper crust may vary by tectonic setting. 
In one study from an area of 1.5 × 105 km2 in 
the Lachlan fold belt of eastern Australia—an 
accretionary orogenic belt that developed above 
a retreating trench at a continental margin—
Bons and Elburg (2001) estimated that ~103 
plutons with a volume greater than 1 km3 were 
emplaced during Silurian–Devonian orogenic 
events. This yields a total volume of magma 
transferred to the upper crust of 1.5 × 105 km3. 
This distribution is consistent with an average of 
~10 vol% melt drained from a source of a simi-
lar horizontal area or footprint that was ~10 km 
thick; such an estimate ignores any mass input 
due to melting of asthenosphere in the mantle 
wedge. In another study from the Cretaceous 
central Sierra Nevada batholith in California—
an accretionary orogenic belt that developed 
above an advancing trench at a continental mar-
gin—Cruden (2006) estimated magma volumes 
per unit area that are up to four times larger than 
those in the Lachlan fold belt. The difference 
may refl ect a higher proportion of mass addi-
tions from the mantle and/or a higher degree 
of crustal melting in the formation of the Sierra 
Nevada batholith, which in turn may relate to 
plate kinematics and/or rates of subduction.

To a fi rst approximation, the volume of 
magma emplaced in the middle to upper crust 
equals the volume of melt extracted from the 
middle to lower crust (Fig. 5). If the interval 
between melt-extraction events is on the order of 
1000 yr, then for reasonable values of bulk vis-
cosity and elastic shear modulus, the relaxation 
time of the crust is of the same order (Vigner-
esse, 2006; Ablay et al., 2008). Thus, extraction 
and emplacement are complementary actions 
between which there is a feedback relation mod-
ulated by processes in the ascent conduit, and 
space for emplacement is not a problem (Fig. 5; 
Brown, 2001a, 2001b, 2007, 2008, 2010a; Bons 
et al., 2008; Hobbs and Ord, 2010). Locally, 
various mechanisms act to accommodate pluton 
construction, as discussed earlier herein.

Figure 6. Pluton-source rela-

tions in orogens and the spacing 

of plutons (based on a model in 

Brown, 2001a). (A) Perspective 

view of horizontal semicircular 

half-cone–shaped pluton of di-

ameter ~30 km and half-height 

~5 km. (B) Plan view of two 

horizontal semicircular half-

cone–shaped plutons of diam-

eter ~30 km (upper pair; red 

ornament) and two horizontal 

circular cone-shaped plutons 

of diameter ~21 km (lower 

pair; red ornament) in relation 

to the footprint for a source 

of suffi cient volume to fi ll the 

pluton (for a source ~30 km 

diameter, based on an as-

sumed thickness of 15 km and 

20 vol% melting with 20 vol% 

fractional crystallization of the 

melt during transport through 

the source; dashed line). One 

implication of this model for 

the assumptions made is that 

plutons will be spaced at least 

30 km apart (center to center) 

whether they are semicircular 

half-cone–shaped or circular cone-shaped plutons. (C) Perspective view of a horizontal 

tabular intrusion of diameter ~30 km and thickness ~10 km, which is four times greater in 

volume than the plutons discussed in B. (D) Plan view of two horizontal tabular intrusions of 

diameter ~30 km (red ornament) in relation to the footprint for a source of suffi cient volume 

to fi ll the intrusion (for a source ~60 km diameter, based on an assumed thickness of 15 km 

and 20 vol% melting with 20 vol% fractional crystallization of the melt during transport 

through the source; dashed line). One implication of this model for the assumptions made is 

that intrusions will be spaced at least 60 km apart (center to center). A more sophisticated 

discussion of pluton-source shape and volume relations, and melt extraction and source ac-

commodation mechanisms, is given in Cruden and McCaffrey (2001) and Cruden (2006).
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What is the Field Evidence for 

Ascent Mechanisms? 

Dikes

Diking produces discordant bodies of gran-
ite that have very high aspect ratios, thicknesses 
that may vary from millimeters to decameters, 
and lateral dimensions that may extend over 
kilometers. Kisters et al. (2009) described an 
example of the relationship between anatectic 
leucosomes, interpreted to record local melt 
segregation into shallowly dipping dilatant frac-
tures, and steeply dipping disc-shaped granite 

bodies, inferred to record upward transport of 
melt in isolated fractures (interpreted as hydro-
fractures). In this case, the volume of melt in the 
propagating hydrofracture was inferred to have 
increased by ingress of melt draining from the 
shallowly dipping dilatant fractures in response 
to the hydraulic potential gradient associated 
with the developing hydrofracture.

In the Ryoke migmatite belt of Shikoku in 
Japan, millimeter- to centimeter-scale dikelets 
of granite with centimetric to decimetric spac-
ing are seen at outcrop (Fig. 8A). This discor-
dant granite connects in petrographic continuity 

to millimetric stromatic leucosomes (Fig. 8B). 
Close to the tips, these dikelets have an open 
zigzag form (Fig. 8B, below the coin) and bifur-
cate or splay (Fig. 8A).

Similarly, in the southern Brittany migmatite 
belt of western France, centimeter- to meter-
scale granite dikes are abundant at outcrop (Fig. 
8C). Although the volumetric importance of the 
dikes varies in space, they may represent up to 
20% of the area of an outcrop. At outcrop scale, 
small dikes have blunt fracture tips, zigzag 
geometry close to the fracture tips, and petro-
graphic continuity between leucosome in host 
and granite in dikes (Figs. 8D and 8E; Brown, 
2004, 2005, 2006, 2010a, 2010b). At map scale 
in the wider region, the dikes may be as large 
as several hundreds of meters in width, and 
further west, they form feeders to the Carnac 
granite, which formed during orogen-parallel 
extension (Turrillot et al., 2011). Around Port 
Navalo, dikes with thicknesses >10 cm show 
a power-law distribution with an exponent of 
1.11 (Brown, 2005), suggesting that they may 
be scale invariant, although the data set is small 
(87 dikes), and the range of observations is 
only two orders of magnitude. The largest dikes 
measured were 3 m and 5.5 m wide, within the 
range of critical dike widths for fl owing melt 
to advect heat faster than conduction through 
the walls and avoid freezing close to the source 
(Clemens , 1998).

The dikes in southern Brittany appear to 
crosscut structures in the migmatites (Fig. 
8C), but the modal mineralogy, grain size and 
microstructure of the granite in the dikes are 
indistinguishable from those of leucosome 
(Figs. 8D and 8E). Marchildon and Brown 
(2003) interpreted these features to mean that 
both leucosomes and dikes hosted a continuous 
melt-bearing network, and to indicate that mate-
rial in leucosomes and in dikes underwent fi nal 
crystallization at the same time. This inference 
does not mean that leucosomes (or necessarily 
granite in dikes) have liquid compositions.

Intersections among leucosomes or dikes that 
are parallel to the extension direction form pipe-
like “backbone” structures that enable faster 
extraction of melt (Figs. 9A and 9B). Intercon-
nected dike and sill networks (Fig. 9D; Brown 
et al., 2011) represent melt intrusion along con-
jugate ductile fractures.

In Mesoproterozoic aluminous pelites from 
Broken Hill, Australia, White et al. (2004) 
described spatially focused melt formation 
where the resulting pathways for melt escape, as 
recorded by leucosome, are parallel to the folia-
tion defi ned by highly depleted melanosomes. 
In contrast, in the Mount Hay area of the eastern 
Arunta Inlier, central Australia, melt is inferred 
to have migrated through Paleoprotero zoic 
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Figure 7. Schematic diagrams to illustrate the thermal structure and migmatite-pluton re-

lations in a dextral transpressive system, based on the western Maine area in the Acadian 

orogen of the Northern Appalachians (Brown and Solar, 1998b, 1999; Solar and Brown, 

2001a, 2001b; Tomascak et al., 2005). (A) Schematic structure section drawn perpendicular 

to foliation. The anatectic front is recorded in orogenic crust by the fi rst appearance of mig-

matite traversing up-grade—corresponding to the shallowest crustal level reached by the 

solidus. Thus, the migmatite front, which tracks the solidus, was progressively extended into 

shallower parts of the orogenic system by advection of material during contractional thick-

ening, including the sequential ascent of granite melt (Brown and Solar, 1999). The three-

dimensional  form of the fi nal solidus surface projected onto the section illustrates the thermal 

structure at the peak of orogenesis (continuous line labeled “solidus”). An H2O-rich volatile 

phase is exsolved at the solidus as granite crystallizes, which is postulated to be responsible 

for the widespread generation of retrograde muscovite in migmatites, and retrogression of 

staurolite and andalusite porphyroblasts in subsolidus rocks. Dashed lines are boundaries 

between structural domains (ACZ identifi es zones of apparent constrictional strain inside 

zones of apparent fl attening strain identifi ed by the dashed ornament). BHB rocks—Bron-

son Hill belt rocks; CMB rocks—central Maine belt rocks; TAD and WAD—Tumbledown 

and Weld anatectic domains, respectively; P—the Phillips pluton ; Ms—musco vite, Bt—bio-

tite. This fi gure is modifi ed from a similar version published in Solar  and Brown (2001a) 

and is used in accordance with the publications rights policies of Oxford University Press. 

(B) Schematic WNW-ENE model section to show the immediately post-thermal peak stage 

of evolution in a transpressive system, based on the model for the structural evolution of 

the western Maine area by Solar and Brown (2001b); the form of the granites, which are 

projected ENE onto the plane of the section, is based on information in Brown and Solar 

(1998b, 1999). Notice that the granite plutons are rooted in the migmatites, and melt fl ow is 

interpreted to be upward along the fabrics (Brown and Solar, 1998a). The level of horizontal 

expansion and emplacement of the Lexington (L) and Kingsman (Ki) plutons , as exposed, is 

interpreted to correspond approximately to the contemporary ductile-to-brittle transition 

zone. Brown and Solar (1998b) speculated that the Lexington pluton was more laterally 

extensive within 1 km above this level and suggested that the upper  part of the pluton may 

have been emplaced in a more extensive horizontal fracture that propagated laterally in an 

arc from the WSW to the ENE. At a deeper level, the Lexington pluton has a similar form 

to the Phillips (P) pluton (see part A), which is interpreted to be the root to a formerly more 

extensive pluton that has been eroded.
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lower crust via a network of narrow, structur-
ally controlled pathways parallel to the mod-
erately to steeply plunging regional elongation 
direction, as evidenced by leucosomes associ-
ated with coaxial folds and a strong mineral-
elongation lineation (Fig. 10B; Collins and 
Sawyer , 1996). 

Concordant Tabular and Cylindrical Granites

Structurally concordant tabular or cylindrical 
granites, which are also referred to as “sheets” 
and “pipes” of granite in the literature, with high 
aspect ratios, thicknesses up to decameters, and 
lateral dimensions that may extend over kilome-
ters, occur in the high-grade parts of many 
orogenic belts. They are commonly, but not 
always, associated with host migmatite (Figs. 
9C and 10).

In the transpressive Acadian belt in the 
Northern Appalachians, the form of the inferred 
magma-ascent conduits mimics the apparent 
strain ellipsoid recorded by the host-rock fab-
rics (Brown and Solar, 1999; Solar and Brown, 
2001a). Concordant tabular granites occur in 
zones of apparent fl attening strain (Fig. 10A), 
whereas concordant cylindrical granites occur 
in zones of apparent constrictional strain. 
Overall, the orogen-parallel orientation of 
the tabular granites demonstrates that magma 
was transferred in structures oriented at a high 
angle to the far-fi eld maximum principal stress 
(Brown and Solar, 1998b, their fi g. 7; Solar and 
Brown, 2001b).

A similar relationship between granite in 
ascent conduits and the regional stress fi eld is 
observed in a variety of tectonic settings. For 
example, in the Karakoram shear zone of north-
west India, tabular granites that link deeper 
migmatites to shallower plutons have orienta-
tions that lie between the strike of fold axial 
surfaces and the strike of the shear zone. This 
feature suggests that a large portion of the fugi-
tive magma was transported in structures ori-
ented at a high angle to the maximum principal 
stress (Reichardt  and Weinberg, 2012b). Also, in 
the Cascade Mountains of the northwest United 
States, there are sheet-like bodies of granite 
emplaced into the middle crust that have length/
width ratios that increase by an order of magni-
tude as the radii at the tips decrease from 850 
to 100 m and the tip diameter/sheet width ratio 
decreases by half (Paterson and Miller, 1998). 
Paterson and Miller (1998) argued that these 
sheet geometries fall between those character-
istic of dikes and elliptical diapirs. These sheets 
were emplaced at a high angle to the far-fi eld 
maximum principal stress and are always asso-
ciated with narrow structural aureoles that pre-
serve evidence of ductile downward fl ow of the 
host rocks along sheet margins.

Role of Compaction

Effi cient fl uid expulsion from poorly drained 
rocks requires a dynamic mechanism in which 
the dilational deformation responsible for 
increasing permeability is balanced by a compac-
tion mechanism at depth responsible for main-
taining high fl uid pressure. An essential feature 
of such a mechanism is that, irrespective of the 
mean stress gradient, hydraulic connectivity must 
be maintained over a vertical interval that is large 
enough to generate the effective pressures neces-
sary to drive the deformation (Connolly and Pod-
ladchikov, 2007). Melt distribution in connected 
porosity in suprasolidus crust may be affected 
by small-scale variations in mineralogy (Wat-
son, 1999), grain size (Wark and Watson, 2000), 
or grain orientation (Waff and Faul, 1992), and 
suprasolidus crust is likely to be characterized by 
nonuniform melt distribution as a result. In these 
circumstances, porosity waves may nucleate 
from such small perturbations in the distribution 
of melt due to a rheological asymmetry between 
compaction and decompaction in two-phase vis-
cous materials (Connolly, 2010; Connolly and 
Podladchikov, 2007, 2012). The instabilities grow 
by drawing melt in from the permeable matrix, 
compacting that part of the source, causing dila-
tion, increasing melt volume, and disaggregating 
the matrix to form a magmatic suspension (Fig. 
11). Since fl ow is enhanced where melt fraction 
is higher, more melt drains to the instabilities 
from the background porosity, further enhancing 

the fl ow, which induces additional infl ux of melt 
to grow a developing porosity wave via this feed-
back relation. Coupling between fl ow and melt 
fraction leads to melt accumulation and trans-
port in the form of upward-migrating melt-rich 
domains (Connolly, 2010; Connolly and Pod-
ladchi kov, 1998, 2007, 2012).

Assumptions made in modeling compaction 
are that: melt pressure is near lithostatic, fl ow is 
governed by Darcy’s law, permeability is contin-
uous and a strong function of connected porosity, 
and deformation occurs by a viscous mechanism 
in response to effective pressure (Connolly and 
Podladchikov, 2012). If these assumptions are 
accepted, the consequence is that melt fl ow must 
be episodic and accompanied by oscillations in 
fl uid pressure, even in idealized homogeneous 
crust perturbed by an idealized melting reaction. 
Porosity waves simply provide a mechanism to 
generate dilational stress, and, as a result, they 
bridge the extremes of porous and channelized 
fl ow. The way in which the dilational stress 
manifests itself in failure mode will depend on 
the local stress fi eld, the orientation of fabrics, 
and the rheology, but in principle, porosity waves 
provide a mechanism to link melt in pores to 
magma in ascent conduits.  

Mechanisms of Magma Ascent

Magma ascent is driven by buoyancy, but 
the style of ascent through subsolidus crust 
depends on wall-rock rheology. Diking sensu 

Figure 8 (on following page). Features associated with the transition from melt in fabric-

parallel sites (recorded by stromatic leucosomes) to dikes (recorded by discordant dikelets 

and dikes of granite) in granulite-facies metatexite migmatites. (A) Granite in transverse 

dikelets in petrographic continuity (with similar microstructure, mineralogy, and mode) 

with thin fabric-parallel leucosomes, consistent with melt fl ow down gradients in pressure 

from the host stromatic metatexite migmatite; the dikelets are interpreted to initiate by duc-

tile fracture. From the Ryoke belt, Japan; diameter of coin is ~20 mm. (B) Close-up of A to 

show details of the linkage between leucosome in the stromata and leucosome in the dikelet, 

and the open zigzag form of the dikelet, which is consistent with ductile fracture; diameter 

of coin is ~20 mm. (C) View NW across a subhorizontal wave-cut platform to show several 

dikes (the two larger dikes are ~0.5 m wide). These dikes are apparently discordant viewed 

in some sections, but they exhibit petrographic continuity (with similar microstructure, 

mineralogy and mode) with leucosome in the foliation-parallel stomata in other sections (see 

D). From Le Petit Mont, Morbihan, France. For more details about this outcrop, see Brown 

(2004, 2006). (D) A small dike (center) splays from a larger dike (itself a splay from the main 

dike at the top of the image) and, after bifurcating (left of center), terminates with petro-

graphic continuity (similar microstructure, mineralogy, and mode) in a transverse leuco-

some. From Le Petit Mont, Morbihan, France; diameter of coin is ~20 mm. For more details 

about this outcrop, see Brown (2004, 2006). (E) Leucosome in stromatic metatexite migma-

tite is in petrographic continuity with granite (with similar microstructure, mineralogy, and 

mode) in the highly discordant, apparently crosscutting dike, which bifurcates downward 

(in the image) into two dikelets with zigzag form close to the tips, which is consistent with 

ductile fracture. From Le Petit Mont, Morbihan, France; diameter of coin is ~20 mm. For 

more details about this outcrop, see Brown (2004, 2006).
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stricto refers to brittle fracture at the crack tip 
and elastic deformation of the host rock. The 
elastic response is rapid, whereas the viscous 
fl ow of magma into the narrow crack tip is slow, 
and consequently magma viscosity controls 
the velocity of magma ascent. In contrast, dia-

piric rise of magma occurs by ductile (viscous) 
deformation of the host rock. Since the viscosity 
of the host rock is much larger than that of the 
magma, the host-rock viscosity, rather than the 
magma viscosity, controls the ascent velocity; 
ascent may be limited by the ductile-to-brittle 

transition zone (Sumita and Ota, 2011). Meso-
scale pervasive migration limited to the supra-
solidus and the high-temperature subsolidus 
crust immediately above the anatectic front is an 
alternative mechanism documented from many 
migmatite terrains.

A

D

B

C

Figure 9. Examples of former melt fl ow pathways and extraction structures. (A) Steep surface approximately perpendicular to the min-

eral elongation lineation to show migmatite with thin irregular leucosomes intersecting in roughly cylindrical leucosome-fi lled structures 

parallel to the lineation. These structures are inferred to represent evidence of pervasive melt fl ow through the crust parallel to lineation. 

From the north end of Thompson Ridge, in the western part of the Fosdick migmatite-granite complex, Marie Byrd Land, West Ant-

arctica; diameter of coin is ~20 mm. (B) Steep cliff to show stromatic metatexite migmatite hosting variably oriented, slightly irregular, 

high-aspect-ratio, meter-scale tabular granites that intersect at decametric, roughly cylindrical, granite-fi lled structures (“spider” struc-

ture of Marchildon and Brown, 2003). These structures are interpreted to represent evidence of channelized melt transport through the 

suprasolidus crust. From Mount Avers in the central part of the Fosdick migmatite-granite complex, Marie Byrd Land, West Antarctica; 

the red circle locates a person for scale. (C) View of a horizontal outcrop surface approximately perpendicular to the steep foliation to 

show part of a roughly foliation-parallel dike of granite on the left that exhibits petrographic continuity (with similar microstructure, 

mineralogy, and mode) with leucosome in the shear band (center right) and leucosome in foliation-parallel stomata. From near Turku, 

Finland; coin for scale (2 cm diameter). (D) Sill and dike network in stromatic metatexite migmatite at Maigetter Peak (height 480 m) 

in the western part of the Fosdick migmatite-granite complex, Marie Byrd Land, West Antarctica. Intersecting dikes do not appear to 

truncate or displace each other; the sills and dikes of granite crosscut foliation but may be continuous with or discordant to leucosomes 

in the migmatite. The migmatite leucosomes contain pristine peritectic garnet and minor cordierite consistent with melt loss (see Brown 

et al., 2011, their Fig. 1).
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Diking

Here, the term diking is used in a simple mor-
phological sense to refer to discordant bodies of 
granite that have very high aspect ratios. In the 
suprasolidus crust, dikes have been interpreted 
to form by hydrofracture (Bons et al., 2001, 
2004) or by ductile fracture (Brown, 2004, 
2010a; Weinberg and Regenauer-Lieb, 2010), 
and to propagate through the subsolidus crust by 
brittle-elastic fracture until the decrease in trans-
port rate causes freezing of the melt (Hobbs and 
Ord, 2010). To extract melt from suprasolidus 
crust by diking requires sustained transient near-
lithostatic to supralithostatic melt pore pressure 
in the melt fl ow network for the duration of a 
melt-extraction event to prevent immediate 
drawdown, a decrease in the transport rate, and 
the possible collapse of the melt fl ow network.

Diking by hydrofracture represents a 
response to internal melt pressure rather than 
to externally applied stress. Propagation of a 
hydrofracture is based on linear elastic fracture 
mechanics, where inelastic deformation associ-
ated with breaking bonds by intergranular and 
transgranular fracture occurs in a small process 
zone ahead of the fracture tip, with or without 
chemical weakening (subcritical brittle fracture 
or brittle fracture, respectively), driven by the 
magnifi ed stresses at the tip (Lister and Kerr, 
1991). Hydrofracture assumes an isotropic 
protolith, pervasive interconnected melt-fi lled 
porosity, initial failure due to melt-enhanced 
embrittlement, and gradients in fl uid pressure 
suffi cient to drive melt fl ow from interconnected 
pores to the fractures (Bons et al., 2001). In 
these circumstances, steeply oriented fl uid-fi lled 
fractures may become unstable if they exceed 
a critical crack length and move together with 
their fl uid content. Smaller-volume melt-fi lled 

mobile hydrofractures in suprasolidus crust are 
argued to propagate, coalesce, and drain via 
stepwise and discontinuous aggregation to form 
larger-volume potentially crustal-scale hydro-
fractures for melt ascent. In this way, the crustal-
scale hydrofractures are thought to drain the 
anatectic zone of melt and transport it through 
the subsolidus crust in a small number of dikes. 
The effect is modeled as a highly dynamic self-
organized system in which intermittent, local 
events of fracture propagation cause avalanches 
of instabilities and merging of hydrofractures 
(Bons et al., 2004). 

Exactly how melt stored in pores in very 
weak suprasolidus crust links to segregated melt 
transport in propagating hydrofractures is not 
clear. First, the critical crack length for propaga-
tion is too long to permit the cracks to initiate 
spontaneously from a matrix with pervasively 
distributed melt (Rubin, 1998). Second, even if 
able to propagate, the ability of hydrofractures 
to drain melt from suprasolidus crust depends 
critically on the horizontal permeability and 
the viscosity of the melt. Granite melt is more 
viscous than basalt melt, and the compaction 
length in suprasolidus crust is on the order of 
meters to decameters (Petford, 1995; Weinberg, 
1999). Both of these factors limit the rate of 
porous fl ow of melt to a potential hydrofracture, 
which requires that any melt to be extracted dur-
ing diking most likely was already segregated 
into networks of melt-fi lled veins. These prob-
lems potentially may be overcome if diking 
occurs by ductile fracture.

In ductile fracturing, thermally activated fl ow 
processes lead to extensive inelastic deforma-
tion and blunting of crack tips, together with 
processes similar to those in creep failure of 
ceramics at high homologous temperature 

under low rates of loading, such as nucleation, 
growth, and coalescence of pores by predomi-
nantly diffusive deformation mechanisms 
(Eichhubl, 2004). Thus, fracture propagation 
in suprasolidus crust most likely takes place by 
the development  and coalescence of melt-fi lled 
pores ahead of a fracture tip, with fracture open-
ing involving extensive inelastic deformation 
and diffusive mass transfer. Melt is inferred to 
fl ow through self-generated melt-induced defor-
mation band networks (the reservoir for melt 
storage) down hydraulic potential gradients 
to crack-like, ductile opening-mode fractures 
propagating from dilation or shear bands (Figs. 
8A and 8B; Brown, 2004, 2005).

If diking is a general mechanism for the 
ascent of crustal melts, it is likely that ductile 
fracture is the mechanism by which the dikes 
initiate in the suprasolidus crust. However, dur-
ing ascent, as viscosity of the subsolidus crust 
increases, propagation may change from a duc-
tile fracture process  to a brittle-elastic fracture 
process (Fig. 12; Brown, 2008, 2010a; Weinberg 
and Regenauer-Lieb, 2010; Brown et al., 2011; 
Sumita  and Ota, 2011). The experimental work 
of Sumita and Ota (2011) is particularly inter-
esting since it suggests that the style of magma 
ascent through the crust might change as the 
wall-rock rheology evolves from ductile to brit-
tle, so that a buoyancy-driven liquid-fi lled crack 
might migrate as a diapir-dike hybrid (Fig. 13). 
This style of migration may be explained in terms 
of the force balance between the buoyancy of the 
magma and the yield stress of the wall rock.

The propagation of small volumes of magma 
into subsolidus crust will be limited by freezing 
(Clemens, 1998), so an important consideration 
is the way in which the magma plumbing system 
coarsens to facilitate ascent to the shallow crust. 

Figure 10. (A) Subhorizontal 

and subvertical outcrop sur-

faces exposing concordant ir-

regular tabular granite layers 

in residual stromatic metatex-

ite migmatite; the granite rep-

resents melt trapped during 

ascent  within a regional-scale 

zone of apparent flattening 

strain, western Maine, United 

States (for more details, see 

Brown and Solar 1999). Lens 

cap in upper center of image 

for scale. (B) Lineation-parallel , 

irregularly shaped granite 

layer that is inferred to record 

melt migration through Paleo-

protero zoic lower crust via structurally controlled pathways parallel to the moderately to steeply plunging regional elongation direction (for 

more details, see Collins and Sawyer 1996). Pen (parallel to lineation) shows scale.

A B
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Ito and Martel (2002) investigated how dikes 
might potentially coalesce due to interactions 
with the local stress fi eld to increase the volume 
of melt, enabling the larger dike to migrate fur-
ther. These authors discovered that neighboring 
dikes create distortions in the local stress fi eld 
that can be attractive or repulsive according to 
the vertical and horizontal spacing. Dikes that 
are suffi ciently close to each other and that 
are offset appropriately in depth may coalesce 
to focus melt ascent into a smaller number of 
larger-volume and more widely spaced dikes.

Alternatively, the progressive coarsening of 
the magma plumbing system with decreasing 
depth has been attributed to changes in the vis-
cosity and constitutive behavior of the magma 
from elastic-viscous to elastic-plastic as it cools 
(Hobbs and Ord, 2010). In the lower part of the 
ascent zone, the transport network is expected to 
be closely spaced and in local thermal equilib-
rium with the host rock, so that, regionally, the 
isotherms continue to be elevated. As a result, 
the temperature is suprasolidus for the melt but 
subsolidus for the host rocks. With decreasing 
depth, the transport network becomes more 
widely spaced, and the magma loses heat to 
its surroundings, such that elevated isotherms 
occur only near the dikes.

Diapirism

Diapiric ascent has been proposed as the 
mechanism for the emplacement of granites 
in the deep crust in continental arcs (Pater-
son and Miller, 1998; Miller and Paterson, 
1999, 2001). A structural analogy is sometimes 
argued between granites and salt diapirs, but it 
is clear that regional extension is the trigger for 
salt diapirism  (Jackson and Vendeville, 1994), 
whereas the diapirs described by these authors 
were emplaced during regional contractional 
deformation. In many respects, these deep conti-
nental arc plutons have many features in com-
mon with the sheeted tabular granites that pass 
downward into regional migmatite-granite com-
plexes, as discussed in the following.

Mesoscale Pervasive Migration of Melt

As discussed earlier herein, outcrop observa-
tions from many migmatite-granite complexes 
demonstrate that melt extraction from supra-
solidus crust commonly occurs via a network 
of veins, as marked by leucosome, and structur-
ally concordant channels of various shapes and 
sizes, as recorded by bodies of granite (Brown 
and Solar, 1998a, 1999; Solar and Brown, 
2001a, 2001b). Similar observations have been 
made from injection complexes where gran-
ite was emplaced pervasively into hot subsoli-
dus country  rock (Weinberg and Searle, 1998). 
Based on these observations, Weinberg (1999) 

Figure 11. Two-dimensional numerical simulation of fl uid fl ow through a matrix with decom-

paction weakening as it evolves from a layer with elevated poros ity that is bounded from 

above and below by regions with an order of magnitude lower porosity. Upper panels show 

porosity in the uppermost portion of the layer at the base and in the overlying region. Lower 

panels show the corresponding distribution of fl uid overpressure. Initial waves form with 

characteristic spacing identical to the viscous compaction length and leave a trail of slightly 

elevated porosity, fl anked by a fl uid-depleted matrix. Depletion of the matrix reduces the local 

compaction length scale for the initiation of subsequent waves. Later waves collect within the 

trails of the initial waves. Figure is from Connolly and Podladchikov (2007), used with permis-

sion under Copyright Clearance Center’s RightsLink License Number: 3115980422769.

Figure 12. Sketch showing ductile fracture dikes feeding brittle-

elastic dikes (from Weinberg and Regenauer-Lieb, 2010; pub-

lished with permission from the Geological Society of America).
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argued for processes involving pervasive migra-
tion to form melt sheets preferentially emplaced 
parallel to high-permeability zones such as fab-
rics. The melt is able to exploit suitably oriented 
fabrics as planes of weakness, if the melt pres-
sure is high and the differential stress is low, 
that is, if the differential stress is less than the 
difference between the tensile strength of the 
crust normal to and parallel to the fabric (Brown 

and Solar, 1998b). The resulting granites will be 
similar to the strain-controlled tabular and cylin-
drical granites found in zones of apparent fl at-
tening and apparent constrictional strain, respec-
tively, such as in melt-depleted migmatites from 
Maine (Brown and Solar, 1998a, 1999; Solar and 
Brown, 2001a, 2001b).

The evolution of these systems is controlled 
by processes that operate at the anatectic front, a 
rising isotherm that defi nes melt initiation, par-
ticularly the generation of a melt fl ux that con-
trols the permeability distribution in the system, 
the height of the transport/emplacement region, 
and the size of the resulting plutons (Hobbs and 
Ord, 2010). To produce the melt volumes neces-
sary to form plutons within 104–107 yr demands 
that the isotherm velocity is regulated by melt 
advection in deformation-induced channel 
ways. This velocity is one constraint on the melt 
fl ux generated down temperature of the anatectic 
front, which is the control valve for the behavior 
of the system as a whole. Heat advected with 
migrating melt and latent heat of crystalliza-
tion expand the suprasolidus domain upward to 
allow ascent of melt to shallower depths (Brown 
and Solar, 1999; Weinberg, 1999; Leitch and 
Weinberg, 2002; Jackson et al., 2003, 2005). 
This feedback relation between migration of 
melt and heating allows younger batches of melt 
to reach increasingly shallower levels.

Once the accumulated melt has suffi cient 
buoyancy to escape the anatectic front, a con-
duit width-selection process must operate, 
driven by changes in melt viscosity and consti-
tutive behavior to facilitate ascent to the level 
of pluton emplacement. At this level, magma 
emplacement is controlled by the transition in 
constitutive behavior of the melt/magma from 
elastic-viscous at high temperatures to elastic-
plastic-viscous approaching the solidus of 
the melt, enabling fi nite-thickness plutons to 
develop (Hobbs and Ord, 2010). These authors 
calculated that a melt fl ux at the anatectic front 
of the order of 10–10 m s–1 is close to the maxi-
mum possible given the physical parameters of 
anatectic systems. This corresponds to a maxi-
mum thickness for the anatectic zone of 21 km 
and is suffi cient to produce plutons >3 km thick 
in a single intrusive event over a period of 106 yr.

Relationship between Mechanisms of 

Ascent and Porosity Waves

Discordant dikes and concordant high-
aspect-ratio tabular granites in migmatites (Figs. 
8, 9, and 10) may simply record different fail-
ure modes related to the local stress fi eld and 
fabric orientation in weak suprasolidus crust 
(Cosgrove, 1997; Brown and Solar, 1998b), and, 
accordingly, they may represent different physi-

cal expressions of porosity waves moving melt 
up through the crust. Examples of each mode 
may be represented by the dikes of granite in 
the southern Brittany migmatite belt of western 
France (Marchildon and Brown, 2003; Brown, 
2004, 2005, 2010a) and the midcrustal mag-
matic sheets (diapirs) of Paterson and Miller 
(1998) and Miller and Paterson (1999, 2001). 
Connolly and Podladchikov (2007, 2012) made 
an analogy with the three-dimensional viscous 
case studied by Wiggins and Spiegelman (1995) 
to infer that the three-dimensional expression 
of porosity wave channels might be pipe-like, 
perhaps as represented by cylindrical granites 
in the zones of apparent constrictional strain in 
the Acadian belt in the Northern Appalachians 
(Brown and Solar, 1999). Notwithstanding, in 
the presence of far-fi eld stress, Connolly and 
Podladchikov (2007, 2012) argued that kine-
matic effects might be expected to fl atten these 
structures in the direction of the minimum prin-
cipal horizontal stress, perhaps as represented 
by tabular granites in the zones of apparent fl at-
tening strain in the Acadian belt in the Northern 
Appalachians (Brown and Solar, 1999). 

Large-scale tectonic perturbations to the 
lithostatic mean stress gradient are likely to 
have relatively minor infl uence on the rate and 
direction of compaction-driven fl uid fl ow. In 
extension, the mean stress gradient in the crust 
is increased, which accelerates compaction-
driven fl uid fl ow, favoring the formation of 
porosity waves for which the physical expres-
sion is likely to be as dikes, such as those in 
the southern Brittany migmatite belt of western 
France (Marchildon and Brown, 2003; Brown, 
2004, 2005, 2010a). In contraction, an inver-
sion in the mean stress gradient approaching 
the ductile-to-brittle transition zone creates a 
barrier to magma ascent, which may cause the 
magma to stall, leading to back freezing in the 
ascent conduit, as occurred in the Acadian belt 
in the Northern Appalachians (Brown and Solar, 
1999). Gravity modeling of plutons shows that 
they tend to form at the depth of the contempo-
rary ductile-to-brittle transition zone (e.g., Vig-
neresse, 1995), suggesting that magma ascent 
commonly ends at this transition.

The temperature dependence of the viscous 
rheology leads to an upward strengthening of 
the deep crust and a consequent increase in vis-
cous compaction length with decreasing depth 
that may cause channelized fl ows to anastomose 
upward through the anatectic zone (Connolly 
and Podladchikov, 2007, 2012). The mecha-
nism of melt transfer into subsolidus crust 
might involve melt-enhanced embrittlement, 
since the solidus represents the boundary to 
the anatectic zone with its interconnected melt-
fi lled porosity. Compaction within the anatectic 
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Figure 13. (A) Schematic diagram of a 

blade-like crack viewed in the direction par-

allel to the crack plane, showing the channel 

fl ow and the balance between the yield stress 

σy and buoyancy ∆ρgl at the crack tip; l 

and δ are the height and thickness scales, 

respectively, of the fl uid-fi lled crack head. 

(B) Same as A but for the case when the me-

dium is softer or density difference is larger, 

thus forming a diaper-dike hybrid. Here the 

volumes of A and B are assumed to be the 

same. As the crack head bulges, the crack 

becomes thicker (large δ), and its length 

becomes shorter (small l). (C) Schematic 

diagram to show how a buoyancy-driven 

liquid-fi lled crack may change its shape as it 

ascends through the ductile-to-brittle tran-

sition zone. Here, three cases for the same 

volume but different density difference are 

shown. Diamonds indicate fracturing at the 

crack tip. Figure is from Sumita and Ota 

(2011), used with permission under Copy-

right Clearance Center’s RightsLink Li-

cense Number: 3087080276836.
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zone may generate strong variations in pressure 
near the solidus, which may enable deforma-
tion at the solidus to be essentially brittle-elastic 
in character. Under this condition, melt may 
be transported across the solidus into the sub-
solidus (zero-porosity) crust by an elastic shock 
(Chauveau and Kaminski, 2008). However, the 
anatectic front is also an unstable interface, so 
that amplifi cation of fl ow instabilities across the 
solidus by ductile processes might be an alterna-
tive mechanism to continue melt ascent in some 
circumstances (Connolly and Podladchikov, 
1998). Experiments by Whitehead and Helfrich 
(1991) showed that fl ow instabilities develop 
increasing resistance as they advance into cooler 
regions across an interface, and the number of 
advancing fi ngers rapidly decreases with time to 
one as the fl ow becomes focused. In both cases, 
the physical expression of the transfer of melt 
across the anatectic front might the tabular and 
cylindrical granites described earlier that link 
down into the anatectic zone.

A General Model for Granite Emplacement

In this section, a general model for the 
emplacement of laccoliths and plutons is pro-
posed. This model accommodates the systematic  
variation in three-dimensional shape of intru-
sions with depth, from shallower laccoliths and 
wedge-shaped (lopoliths) plutons in the brittle 
regime to deeper vertical tabular and blobby 
plutons (e.g., Brown and Solar, 1998b; Brown, 
2007, 2010b; Cruden, 1998, 2006).

Brittle Regime

In the brittle regime, emplacement occurs 
when mainly vertical fl ow switches to predomi-
nantly horizontal fl ow and vertical infl ation. 
Depression of the fl oor and/or lifting of the roof 
allow infl ation (Cruden, 1998, 2006), sometimes 
with a component of ductile strain in the aure-
ole (e.g., Wagner et al., 2006) or associated with 
faulting (Benn et al., 1997; Clemens and Benn, 
2010). Structural and geophysical data indicate 
two main types of pluton morphology. Lac-
coliths are thin (3–4 km) and tend to be equi-
dimensional (e.g., Clemens and Benn, 2010); 
they may have multiple root zones (Vigneresse 
et al., 1999). These contrast with thick (>10 km) 
wedge-shaped plutons, which tend to be elon-
gated along one direction and tend to have single 
or only a few root zones (e.g., Brown and Solar, 
1998b; Vigneresse et al., 1999). The South 
Mountain batholith in Nova Scotia, Canada, is 
large, covering more than 7000 km2, and it has 
been interpreted as a laccolith based on its inter-
nal sheeted structure (Benn et al., 1997). How-
ever, the South Mountain batholith is large for 
a laccolith, and gravity modeling (Benn et al., 

1999) suggests that the constituent plutons have 
fl at or gently dipping fl oors at ~7.0 km depth 
underlain by deeper (>10 km) elongate root 
zones. Thus, it might be better classifi ed with the 
large wedge-shaped plutons.

Dimensional data for sills, laccoliths, plutons, 
and composite batholiths have been compiled 
from various sources by McCaffrey and Pet-
ford (1997) and McCaffrey and Cruden (2002). 
Thickness (T) versus width (L) and horizontal 
area (A) data defi ne an S-shaped distribution 
when plotted in log T versus log A or L space 
(Fig. 14), which implies vertical limits for intru-
sions of T <1 m when L < 10 m and T >10 km 
when L > 500 km (Fig. 14B). Between the lim-
its, T increases with increasing L and A, with a 
maximum slope of a ~1.5 at L ~1 km, and L/T 
decreases because vertical thickening domi-
nates over horizontal lengthening (McCaffrey 
and Cruden, 2002). However, as T approaches 
10 km, horizontal lengthening begins to domi-
nate over vertical thickening and vertical thick-
ening appears to be limited to ~15 km. Earlier 
empirical power-law scaling relationships for 
laccoliths showing a = 0.8 and plutons showing 
a = 0.6 (McCaffrey and Petford, 1997; Cruden 
and McCaffrey, 2001) likely defi ne tangents to 
the S-curve in Figure 14, rather than represent-
ing unique scaling relationships for different 
classes of intrusions.

Limiting factors on vertical growth of plutons 
include the host-rock mechanical properties and 

the depth of emplacement. To lift the roof, Pmelt 
must overcome the lithostatic load and any tec-
tonic overpressure. At shallow levels, intrusions 
that grow by vertical infl ation from a larger 
horizontal area are better able to lift the roof, but 
with increasing depth, vertical growth of plutons 
occurs dominantly by fl oor depression, which is 
limited by the thickness of the source and the 
degree of melting in that zone (Cruden, 1998, 
2006; Cruden and McCaffrey, 2001, 2002).

Mechanical theories for the initiation and 
growth of sills and laccoliths are reasonably 
well established (e.g., Cruden and McCaffrey, 
2002; Bunger and Cruden, 2011).  Sills initiate 
due to a change in the local stress regime associ-
ated with magma ascent whereby the minimum 
principal stress switches from horizontal to ver-
tical, transforming vertical ascent to horizontal 
emplacement (Vigneresse et al., 1999). One key 
parameter in the analysis of such intrusions is 
the geometric ratio of the intrusion width to its 
emplacement depth, L /h. Given suffi cient melt 
pressure, the sill-to-laccolith transition occurs 
where L /h > 2–3, depending on the geometry 
of the sill and the rheology of the melt. This 
refl ects shallow emplacement (h = 0.5–5 km) for 
intrusions where L = 1–10 km, corresponding to 
the lower half of the S-curve (Fig. 14), with the 
change of slope at L = 0.1–1 km recording the 
increasing ability of shallow intrusions to lift 
their roofs as their horizontal area increases. The 
steepest slope likely represents a limiting curve 
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Figure 14. (A) Compilation of 

intrusion thickness (T ), width 

(L), and horizontal area (A) 

data (McCaffrey and Cruden, 

2002). The solid S-curve is 

drawn though the data by eye, 

and the shaded area represents 

the approximate limits of the 

data about the curve. Repre-

sentative intrusion styles are 

shown adjacent to appropriate 

parts of the curve. (B) An in-

terpretation of the S-curve in 

terms of minimum and maxi-

mum growth limit, dominant 

emplacement mechanism, and 

depth of emplacement in the 

crust (Cruden and McCaffrey, 

2002). Arrows show vertical 

growth trajectories along a 

possible end-member growth 

curve with a slope a = ∞. This 

diagram is reproduced with 

permission of the Geological 

Society Publishing House (from 

Brown, 2007).
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for laccoliths to expand vertically from an initial 
sill by roof lifting along a growth line with a >>1 
(Fig. 14; McCaffrey and Cruden, 2002). After 
this point, vertical growth of moderate to large 
plutons occurs dominantly by fl oor depression 
(Cruden, 1998, 2006; Brown and Solar, 1998b; 
Cruden and McCaffrey, 2001, 2002).

Floor depression may occur by elastic down-
bending of the pluton fl oor if L /h is small (deep 
emplacement) and if the strength of the mate-
rial beneath the pluton is signifi cantly less than 
that above it, as might be expected close to the 
 ductile-to-brittle transition zone. A number of 
different structural arrangements of phases 
of granite within plutons are predicted depend-
ing upon the growth mode (tabular vs. wedge) 
and the type of melt delivery (continuous vs. 
pulsed; top-down vs. base-up). Kinematic mod-
els of fl oor depression involving piston and canti-
lever mechanisms suggest that emplacement and 
growth are geologically rapid processes , with 
typical plutons able to form over thousands to 
hundreds of thousands of years, at geologically 
reasonable strain rates (Cruden, 2006). An alter-
native mechanism for fl oor depression may be 
sub sidence accommodated by the compacting 
source as melt is extracted, although the relation-
ship is unlikely to be simple , since the magma 
volume in the pluton is from a much larger 
source volume. In this case, the vertical growth 
limit is imposed by the thickness of the source, 
degree of melting, and the effi ciency of melt 
extraction. Composite batholiths with L >100 km 
lie on the uppermost part of the S-curve, where 
a <<1 (Fig. 14). Cruden and McCaffrey (2002) 
proposed that this is likely an upper limit for 
multiple stacking of intrusions in the middle 
crust, resulting from the maximum amount of 
fl oor subsidence that is possible.

Ductile Regime

In the ductile regime, emplacement may 
occur simply by a decrease in the rate of magma 
ascent approaching the ductile-to-brittle transi-
tion zone and back freezing downward. Mul-
tiple uses of such ascent conduits may lead to 
construction of sheeted plutons (e.g., Brown and 
Solar, 1998a; Miller and Paterson, 2001; Mahan 
et al., 2003; Bartley et al., 2008). In addition, 
the magma sheets or diapiric plutons of Pater-
son and Miller (1998) and Miller and Paterson 
(1999) may have been emplaced by simple back 
freezing, with the diapiric form being a result 
of wall-rock ductility (cf. the experiments of 
Sumita and Ota, 2011).

Magma ascent may be slowed by lateral 
expansion of the ascent conduit localized by 
amplifi cation of instabilities in the magma–wall-
rock system (Brown, 2001a, 2001b). Instabili-
ties may be external to the ascent column, such 

as variations in the strength of the wall rock 
or the stress fi eld around the ascent column. 
Magma exploits the weaker/lower-stress sectors, 
locally expanding the ascent column to form 
blob-like plutons, perhaps similar to the model 
proposed by Lagarde et al. (1990). The nested 
diapirs of Paterson and Vernon (1995) may have 
been emplaced by such a mechanism, involv-
ing sequential arrival of successive batches of 
magma. Alternatively, instabilities may be inter-
nal to the ascent column, such as fl uctuations in 
the fl ow rate and/or changes in cross-sectional 
shape, as might occur, for example, immedi-
ately above the anatectic zone. Here, such differ-
ences in fl ow rate or cross-sectional shape may 
lead to fl uctuations around the critical width for 
fl ow without freezing. If freezing occurs in the 
slower/wider parts of the conduit, fl ow will focus 
in the faster/narrower parts. Advective heating of 
the host rock at these locations may cause weak-
ening of the wall rock, allowing swelling of the 
conduit, leading to a slowing rate of magma 
ascent, and, perhaps, freezing. 

Emplacement at the Top of the Anatectic Zone

As discussed already, melt may not be able to 
cross the solidus surface at the top of the ana-
tectic zone, but instead it may be trapped under 
this surface, as anticipated by Bowen (1947, 
p. 277). The Carnac granite in the southern Brit-
tany migmatite belt of western France appears to 
be an example where this has occurred, since the 
pluton is fed from beneath by multiple dikes and 
thins laterally, eventually giving way to a series 
of granite dikes cutting migmatite (Turrillot 
et al., 2011). Furthermore, a signifi cant portion 
of the melt generated under granulite-facies con-
ditions may be retained in the source as dia texite 
migmatite and granite. For example, Morfi n 
et al. (2013) have described an injection complex 
in granulite facies migmatites of the Opinaca belt 
of the Superior Province in Canada that formed 
as melt became trapped by the granite solidus 
during transport through the deep crust. 

TIME SCALES

Melting occurs along grain boundaries in a 
fertile source (less than a cubic millimeter) dur-
ing a metamorphic cycle that may take several 
millions to several tens of millions of years 
(106–107 yr; e.g., Hermann and Rubatto, 2003; 
Reno et al., 2009, 2012; Korhonen et al., 2012). 
In contrast, a pluton represents a large volume of 
magma (103–104 km3 or more) aggregated from 
many batches of melt (each perhaps 10–1–102 
km3) that crystallized during tens of thousands 
to several millions of years (104–107 yr; Brown, 
2001b, 2010a; Coleman et al., 2004; Matzel 
et al., 2006; Miller, 2008). Thus, melt extraction 

from segregation to emplacement is a process 
with a length scale that spans more than seven 
orders of magnitude, or a volume concentration 
factor that exceeds 1021 (Brown, 2004, 2010a).

Anatectic melts are commonly undersaturated 
in light rare earth elements and zirconium, con-
sistent with fast rates of deformation-assisted 
segregation, perhaps on the order of 10–104 yr 
for a single batch of melt (Sawyer, 1991; Harris  
et al., 2000), but see following. In addition, 
unusually high zircon inheritance due to limited 
dissolution of zircon during high-temperature 
crustal melting indicates rapid production of 
melt, probably in <104 yr (Bea et al., 2007). 
Ascent times for melt in a dike, likely <<1 yr 
for an ascent rate of 10–2–10–1 m s–1 (Petford 
et al., 1993; Clemens , 1998), suggest that a 
small dike 1 km in length and 3 m wide could 
transfer 103 km3 of melt from source to sink in 
~103 yr. Thus, melt extraction from segregation 
to emplacement is a process with a time scale 
that spans at least seven orders of magnitude, and 
probably more (Brown, 2004, 2010a).

The time scale for crustal melting and the rate 
of melt production are determined by the rate of 
heat fl ow into the crust, which is a function of 
the mechanism of heating and the thermal dif-
fusivities of the protoliths. Numerical modeling 
of prograde heating of the deep crust suggests 
that the time scale required to achieve ultrahigh 
temperatures of >900 °C might be tens of mil-
lions of years (Thompson and Connolly, 1995; 
Clark et al., 2011), with much of this evolution 
being suprasolidus. This is broadly consistent 
with some determinations of the residence times 
for melt in anatectic crust (e.g., Rubatto et al., 
2001; Montero et al., 2004; Gordon et al., 2010; 
Korhonen et al., 2013; Weinberg et al., 2013), 
but not with others (e.g., Solar et al., 1998; 
Matzel et al., 2004; Hinchey and Carr, 2006; 
Gordon  et al., 2008; Rubatto et al., 2009, 2013; 
Jeon et al., 2012).

The assignment of unique crystallization ages 
to granites based on U-Pb zircon dating is com-
plicated by the propensity of zircon to survive 
emplacement of multiple pulses of magma that 
eventually crystallize to a large pluton (Miller 
et al., 2007). As a result, distinctions must be 
made between zircons entrained from the source, 
xenocrystic zircons derived locally from host 
rocks during magma ascent and/or emplace-
ment, and growth and recycling of new zircon 
during the emplacement and crystallization of 
multiple pulses of magma to form a pluton.

There is no denying that the process from 
deposition of the protolith to crystallization of 
the magma may be rapid. Matzel et al. (2004) 
documented rapid burial of the Swakane Gneiss 
in the North Cascades, United States, by thrust-
ing to a depth of ~30 km, followed by partial 
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melting within a period of 5 m.y. Similarly, Jeon 
et al. (2012) have argued for a short time scale 
from the beginning of melting to fi nal crystalliza-
tion in the generation of a Permian granite in the 
New England orogen of eastern Aus tralia. These 
authors reported a 15 m.y. difference between the 
age of the youngest inherited zircon population 
entrained from the source and the oldest melt-
precipitated zircon cores, and another 5 m.y. dif-
ference between the age of these new cores and 
melt-precipitated zircon rims. They argue that the 
5 m.y. age difference was the mean time inter-
val between the initiation of melting and post-
emplacement melt crystallization. 

The early stage of melt segregation involv-
ing diffusive mass transfer is a slow process, 
perhaps operating on time scales that approach 
a million years, given the many variables that 
affect diffusion rates and effi ciencies (Costa 
et al., 2003; Dohmen and Chakraborty, 2003). 
However, as the melt fraction approaches the 
melt percolation threshold, advective mass 
transfer will dominate (Rabinowicz and Vig-
neresse, 2004; Rosenberg and Handy, 2005). 
Calculated times for melt extraction by shear-
enhanced compaction and dilatant shear failure 
based on deformation experiments on suprasoli-
dus granite are on the order of tens of thousands 
of years (e.g., Rutter and Mecklenburgh, 2006), 
whereas numerical modeling yields extraction 
times of a few hundreds of thousands of years 
(e.g., Rabinowicz and Vigneresse, 2004).

Faster still are rates of melt extraction, ascent, 
and emplacement based on inverse modeling 
of the geochemistry of Himalayan granites by 
Harris et al. (2000). Undersaturation of the light 
rare earth elements in granites suggests that melt 
could have been extracted in less than 10,000 yr 
(Ayres and Harris, 1997), whereas experi-
mental studies indicate that some melts were 
undersaturated in zirconium (Patiño Douce and 
Harris, 1998), implying extraction could have 
occurred in as little as 100 yr. Such short time 
scales require deformation-driven mechanisms 
to segregate and focus the melt for extraction 
from the source. As discussed already, dis-
solution rates of accessory minerals depend 
strongly on the temperature and water content 
of the melt, and shielding of accessory mineral 
inclusions by their host may prohibit dissolu-
tion; maybe such fast rates are an artifact of the 
methodology? Crystallization of the melt could 
have taken from 500 to 30,000 yr, depending on 
whether the granite laccoliths were constructed 
from multiple batches of melt or not (Harris 
et al., 2000).

For disequilibrium to be preserved, crustal 
melts must segregate on time scales shorter than 
required for diffusive equilibration (Sawyer, 
1991; Watt et al., 1996). Segregation of melt on 

time scales of hundreds to thousands of years 
would be signifi cantly faster than the time scale 
required for diffusion to erase, for example, 
strontium compositional gradients, which takes 
a few million to tens of millions of years (Tom-
masini and Davies, 1997). This in turn implies 
that the production of disequilibrium composi-
tions during nonmodal melting may be a funda-
mental process in determining the composition 
of the crustal melts, even at high melt fractions 
(Barbero et al., 1995; Zeng et al., 2005a, 2005b, 
2005c), and that inversion of the geochemis-
try of granites to determine rate of extraction 
should be viable. For example, Barbero et al. 
(1995) invoked nonmodal melting of a mineral 
assemblage including biotite and plagioclase 
combined with restricted Sr diffusion to account 
for the observed disequilibrium in anatectic 
granites from central Spain. The coalescence 
of numerous batches of melt from composition-
ally distinct protoliths, each of which is out of 
equilibrium with its source, has the potential to 
produce geochemically complex crustal gran-
ites, provided the rate of emplacement is fast 
(Acosta-Vigil et al., 2010, 2012a, 2012b).

Annen et al. (2006a) used thermal modeling 
to investigate the time scale for the emplace-
ment of the Manaslu granite in the Himalayas, 
assuming that is was the successive emplace-
ment of numerous thin sills that contributed to 
the fi nal intrusion. They concluded that the ther-
mal aureole temperature and thickness and the 
isotopic heterogeneities within the granite can 
be explained by the accretion of 20–60-m-thick 
sills of melt emplaced every 20,000–60,000 yr 
for 5 m.y. Five million years is two to four 
orders of magnitude longer than the range of 
time scales implied by the inverse geochemical 
modeling of Harris et al. (2000).

QUO VADIMUS?

Resolution of some of the issues discussed 
in this review requires advances in a number of 
different specialties, wider application of newly 
developed techniques, and, in some cases, more 
data to test hypotheses. Examples where prog-
ress may be made in the next decade include the 
following topics.

Forward Modeling of Suprasolidus 

Phase Equilibria

To fully explain the process of crustal differ-
entiation by intracrustal melting, it is important 
to be able to apply quantitative phase equilibria 
modeling across a wider range of protolith com-
positions than is presently possible, particularly 
to mafi c rocks. In addition, this is a prerequi-
site to better interpret the petrogenesis of the 

tonalite-trondhjemite-granodiorite series, which 
is fundamental in relation to the generation of 
continental crust in the Archean.

The importance of such an advance in the 
application of quantitative phase equilibria mod-
eling may be assessed by considering the recent 
work by Nagel et al. (2012) to model fl uid-
absent hydrate-breakdown partial melting of two 
hydrated mafi c compositions, a modern mid-
oceanic-ridge basalt and a typical Eoarchean arc 
tholeiite. Although these authors acknowledge 
that the data set “is actually designed for haplo-
granitic compositions up to 10–12 kbar,” they 
justify using it “because it predicts the forma-
tion of tonalitic melt in hydrated basaltic host 
rocks for reasonable temperatures and melt 
fractions.” However, this argument is a fallacy, 
because the consequent is a non sequitur, and 
the melt compositions derived from the phase 
equilibria modeling may or may not be reason-
able! Furthermore, the conclusion that tonalite-
trondhjemite-granodiorite series magmas are 
derived from Eoarchean arc tholeiites relies on 
the melt compositions derived from the phase 
equilibria modeling. Thus, this conclusion can-
not be accepted unless replicated by modeling 
using appropriate thermodynamic models. 

In addition, it is essential to be able to model 
melting at higher pressures than is possible at 
present if we are to recognize fully the possible 
contribution of melting to the exhumation of 
high-temperature, ultrahigh-pressure metamor-
phic terranes. These demands require the devel-
opment of a new thermodynamic model for melt 
that is appropriate to a wider range of composi-
tions and intensive variables, particularly pres-
sure, and improvements to activity-composition 
models for minerals such as amphibole and 
pyroxene. This work is in progress. Thus, we 
should expect to see further advances in our 
understanding of crustal melting across a wider 
range of protolith compositions and under high-
temperature, ultrahigh-pressure metamorphic 
conditions in the near future.

Fluid-Present Melting

Fluid-present melting has not been studied as 
extensively as fl uid-absent hydrate-breakdown 
melting. In particular, fl uid-present melting may 
be invoked where the mechanism by which the 
fl uid gained access to the source is not clear. A 
better understanding of the physics of pervasive 
fl uid infi ltration during high-grade metamor-
phism is necessary to further our interpretation 
of fl uid-present melting in crustal evolution. 
This is central to developing a better comprehen-
sion of crustal reworking in the Archean, where 
fl uid-present melting of tonalite-trondhjemite-
granodiorite series rocks was widespread.
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Peritectic Assemblage Entrainment

The hypothesis that the chemistry of granite 
suites is controlled by peritectic assemblage 
entrainment should be tested more widely. In 
addition, the confl icting views about whether 
granites image heterogeneous crustal sources 
or represent some combination of crustal and 
mantle  inputs must be resolved. For example, 
how widespread is the transfer of source hetero-
geneity to individual batches of magma dur-
ing melting and melt extraction? This question 
may be resolved by the wider application of 
combined hafnium and oxygen isotope stud-
ies of zircons to suites of granite from different 
tectonic settings. At present, the proportion of 
crustal reworking to crustal growth in the gen-
eration of granites is disputed, but this is a fun-
damental issue to resolve, since the outcome is 
pivotal to models for crustal evolution.

Quantitative Inverse Modeling of 

Chemical Data

The rates of the various processes involved 
in granite petrogenesis discussed herein vary by 
more than an order of magnitude. Is this wide 
range realistic or an artifact of the different  
methods  by which the rates have been deter-
mined? Assessing the extent of trace-element 
and isotope disequilibrium during nonmodal 
melting of crustal rocks by wider application 
of quantitative modeling of chemical data from 
granites might lead to a resolution. With a bet-
ter knowledge of the nature and impact of dis-
equilibrium processes on the trace-element and 
isotope compositions of granites, it should be 
possible to develop methods to better estimate 
the time scales of melt segregation by inversion 
of trace-element and isotope data. If the rates 
derived from modeling disequilibrium features 
of granite chemistry are correct, what might be 
the reasons for the disparity between these rates 
and those determined from U-Pb geochronology 
on accessory minerals? It is critical to resolve 
this issue, since knowledge of these rates is a 
prerequisite to assessing the effects of crustal 
melting on the rates of orogenic processes.

Melt Segregation and Extraction at 

Low Melt Fraction

Our understanding of melt segregation and 
extraction at low melt fractions in crustal rocks 
is based on models assuming textural equilib-
rium, which predict that melt resides in channels 
along grain edges. We know that the porosity in 
residual granulites as determined from pseudo-
morphs of relict melt is less than the melt con-
nectivity transition of 7 vol%, implying that 

melt segregation and extraction are effi cient. 
Since deep crustal rocks have melted exten-
sively, this observation implies that the poros-
ity of the suprasolidus crust was controlled by 
the balance between the pace of melt generation 
as controlled by heat fl ow and the rate of melt 
extraction by processes such as shear-enhanced 
compaction and localized dilatant shear failure. 
However, the crust is anisotropic at a variety of 
scales, which imparts an anisotropy to the per-
meability at low porosities in particular hori-
zons. Furthermore, at suprasolidus conditions, 
the rheology of the crust varies according to 
composition and, therefore, degree of melting, 
as well as varying throughout the melt-extrac-
tion cycle—weakening up to the melt connec-
tivity transition but strengthening as melt drains 
from the system. Thus, an explanation of melt 
segregation and extraction at low melt fractions 
requires better knowledge of the transport prop-
erties of deforming anisotropic crustal rocks 
under suprasolidus conditions with variable 
degrees of melt-related weakening. This is a 
key factor because a better understanding of the 
effects of anisotropy on melt segregation and 
extraction at low melt fractions and on rheology 
will improve our insight into the processes by 
which orogens are built and destroyed.

Porosity Waves in Suprasolidus Crust

The hypothesis that melt extraction and 
ascent in orogenic crust occur via porosity 
waves should be tested against the geological 
record. An assessment of the imprint of poros-
ity waves in the crust will require the genera-
tion of new quantitative fi eld data, such as the 
spacing and size of fossil melt fl ow structures at 
all scales from leucosome veins in migmatites 
to granites crystallized in ascent conduits. It is 
recognized that these fossil structures are likely 
to have necked-down as the rate of melt/magma 
fl ow declined and the remaining fi ll crystal-
lized. Nonetheless, with due consideration for 
the changes during solidifi cation, these natural 
data may be inverted for comparison with the 
scales of porosity waves predicted in numeri-
cal simulations to ensure that the rheological 
and hydraulic properties required by the model 
are consistent with what is known about rock 
mechanics. Relating the model to nature is para-
mount; although compaction is the means by 
which high fl uid pressure is generated in supra-
solidus crust, which is a necessary condition 
for melt extraction, failure mode depends on 
local stresses and rheology. Thus, it is essential 
to develop a better understanding of the way in 
which the necessary high fl uid pressure mani-
fests itself in nature; such an advance should be 
possible during the next few years.

Melting, Melt Drainage, and Crustal 

Rheology during Orogenesis

There has been no systematic investigation of 
melting and melt drainage along either clock-
wise or counterclockwise P-T paths, and the 
implications of episodic drainage of melt from 
orogenic crust during the prograde evolution 
have not been fully explored. We know that the 
amount of H2O required to saturate the solidus 
at low crustal pressures is much less than that 
required at high crustal pressures. As a result, 
there will be differences in the details of melting 
reactions, the rate of melt production, the P-T 
conditions and number of melt drainage events, 
the chemistry of the melts, and the evolution of 
crustal rheology along different P-T paths. The 
ways in which these differences might affect the 
amount of melt produced, the style of deforma-
tion during prograde heating, melting, and melt 
drainage, and the geometry and evolution of the 
melt fl ow networks are unknown. Furthermore, 
we require better quantitative descriptions of 
leucosome networks and their linkages to ascent 
conduits in different tectonic settings to discrim-
inate among the various processes postulated 
for linking melt extraction to magma ascent, 
and whether these might be different according 
to the P-T evolution. This is a key to interpret-
ing the temporal evolution of the melt drainage 
system, and particularly the issues of timing of 
melt interconnectivity versus extraction, cyclic-
ity in melt extraction, and the evolving rheology 
as melt drainage dries the residual crust.

Counterclockwise P-T paths exhibit thick-
ening during heating, but thickening seems to 
occur only after the prograde evolution exceeds 
the solidus. What is the relationship among heat 
fl ow, melting, and melt loss, and the evolving 
rheology on the amount of thickening and the 
peak temperature for these P-T paths? Does the 
type of P-T path, that is, heating and thickening 
versus heating and decompression, affect the 
mechanism of magma ascent to the upper crust 
and its emplacement in plutons? These ques-
tions could be addressed by the wider applica-
tion of thermo-mechanical numerical modeling 
to a systematic investigation of anatectic sys-
tems and P-T paths. 

Decompression melting has been invoked as 
a process by which to increase buoyancy during  
exhumation of high-temperature, ultrahigh-
pressure metamorphic terranes, and as a weak-
ening mechanism to facilitate orogenic collapse 
and crustal extension. However, the way in 
which episodic melt loss along the prograde 
P-T path affects the volume of melt that could 
be produced during decompression has not 
been evaluated. Furthermore, the P-T path is 
critical. Decompression could be accompanied  
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by heating, for example, caused by superheated 
melt ascending fast enough through the decom-
pressing crust to advect heat at a faster rate 
than the rate of decompression. Nonetheless, 
in  adiabatic-isentropic systems, decompression 
melting must lead to cooling, because tempera-
ture is a dependent variable and melting con-
sumes heat of fusion. Thus, the simple view 
of decompression melting as an iso thermal 
process cannot be correct, and the assumption 
that melting occurs during decompression may 
sometimes be false.

A quantitative evaluation of melting and melt 
drainage along clockwise and counterclockwise 
P-T paths is in progress. Thus, we should soon 
expect to have a better comprehension of the 
implications of episodic drainage of melt from 
orogenic crust for melt production, crustal rhe-
ology, and the development of clockwise (thick-
ening before heating to peak temperature) and 
counterclockwise (heating before thickening to 
peak pressure) orogens.

High-Precision Geochronology

There is a clear and demonstrated need to 
have better information about the rates of crustal 
melting, the time scales of melt segregation 
and extraction, the rates of magma ascent and 
emplacement, and the time scales of pluton con-
struction from individual pulses of magma. The 
wider application of high-precision U-Pb dating 
of accessory minerals is necessary at each stage 
of the process. However, there is a fundamen-
tal question about the separate processes that 
are being dated with zircon, melting or crystal-
lization, and there is a need for better physical 
models to explain the mix of zircon populations 
found in plutons.

Do ranges of concordant U-Pb ages retrieved 
from accessory minerals record the duration of a 
process such as crustal melting or simply regis-
ter the time taken for the magma to crystallize? 
Can the beginning of melting or the time when 
the melt volume reaches the melt connectivity 
transition be dated using accessory minerals? 
Does new growth depend on the size of the 
melt reservoir? Do small melt reservoirs, for 
example, where the degree of melting was low, 
limit the dissolution of preexisting grains and 
new growth? Do variations in the size of melt 
reservoirs explain differences in the morphol-
ogy, chemistry, and inheritance that are evident 
between accessory minerals in migmatites and 
coeval granites? What differences are there in 
the behavior of accessory minerals during lower-
temperature, fl uid-present melting and higher-
temperature, fl uid absent melting and between 
closed and open system partial melting? 
Answers to these questions will signifi cantly 

improve our knowledge of the rates of the dif-
ferent process involved in crustal differentiation 
by intracrustal melting.

FINAL REMARKS

We have come a long way since the debate 
between Bowen and Read more than 60 yr ago, 
and even since the GSA centennial paper by 
Whitney 25 yr ago (Whitney, 1988). Although 
we have a good understanding of melting in 
some common metaclastic sedimentary and 
meta-igneous rocks, our thermodynamic mod-
els will always be open to improvement, and 
the range of compositions to which quantitative 
phase equilibria modeling may be applied will 
expand during the next few years. Differences of 
opinion over the interpretation of petrogenetic 
isotope data in relation to granite petrogenesis 
need to be resolved as soon as practicable. We 
have a basic knowledge of fl uid fl ow and the 
rheology of two-phase materials, but there is 
scope for improvement in physical models for 
fl uid infi ltration and in characterization of criti-
cal thresholds in melt-bearing systems. Our 
interpretation of melt segregation in the crust 
at low melt fractions and of magma emplace-
ment in plutons has improved signifi cantly since 
1988, but we lack a good explanation of the way 
in which segregation of melt into veins links to 
the ascent of magma in conduits or the way in 
which porosity waves might relate to structures 
in the fi eld. A better knowledge of the rates of 
the processes that contribute to the genesis and 
emplacement of granite is important if we are 
to better understand the process of orogenesis. 
At present, the information we have about time 
scales is inadequate and contradictory, and more 
work is required from both geochronology and 
inverse geochemical modeling to resolve these 
differences. 
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