
 

 

Grant-Free Massive MTC-Enabled Massive 

MIMO: A Compressive Sensing Approach 

Kamil Senel and Erik G Larsson 

The self-archived postprint version of this journal article is available at Linköping 

University Institutional Repository (DiVA): 

http:/ / urn.kb.se/ resolve?urn=urn:nbn:se:liu:diva-153682 

  

  

N.B.: When citing this work, cite the original publication. 
Senel, K., Larsson, E. G, (2018), Grant-Free Massive MTC-Enabled Massive MIMO: A Compressive 

Sensing Approach, IEEE Transactions on Com m unications, 66(12), 6164-6175. 

https:/ / doi.org/ 10 .1109/ TCOMM.2018.2866559 

Original publication available at: 
https:/ / doi.org/ 10 .1109/ TCOMM.2018.2866559 

Copyright: Institute of Electrical and Electronics Engineers (IEEE) 

http:/ / www.ieee.org/ index.html 
© 2018 IEEE. Personal use of this material is permitted. However, permission to 

reprint/ republish this material for advertising or promotional purposes or for 
creating new collective works for resale or redistribution to servers or lists, or to reuse 

any copyrighted component of this work in other works must be obtained from the 

IEEE.  

 

 

 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-153682
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-153682
https://doi.org/10.1109/TCOMM.2018.2866559
https://doi.org/10.1109/TCOMM.2018.2866559
http://www.ieee.org/index.html
http://www.ieee.org/index.html
http://twitter.com/?status=OA%20Article:%20Grant-Free%20Massive%20MTC-Enabled%20Massive%20MIMO:%20A%20Compressive%20Sensing%20Approach%20http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-153682%20via%20@LiU_EPress%20%23LiU


1

Grant-Free Massive MTC-Enabled Massive MIMO:

A Compressive Sensing Approach
Kamil Senel, Member, IEEE, and Erik G. Larsson Fellow, IEEE

Abstract—A key challenge of massive MTC (mMTC), is the
joint detection of device activity and decoding of data. The
sparse characteristics of mMTC makes compressed sensing (CS)
approaches a promising solution to the device detection problem.
However, utilizing CS-based approaches for device detection
along with channel estimation, and using the acquired estimates
for coherent data transmission is suboptimal, especially when the
goal is to convey only a few bits of data.

First, we focus on the coherent transmission and demon-
strate that it is possible to obtain more accurate channel state
information by combining conventional estimators with CS-
based techniques. Moreover, we illustrate that even simple power
control techniques can enhance the device detection performance
in mMTC setups.

Second, we devise a new non-coherent transmission scheme
for mMTC and specifically for grant-free random access. We
design an algorithm that jointly detects device activity along with
embedded information bits. The approach leverages elements
from the approximate message passing (AMP) algorithm, and
exploits the structured sparsity introduced by the non-coherent
transmission scheme. Our analysis reveals that the proposed
approach has superior performance compared to application of
the original AMP approach.

I. INTRODUCTION

MACHINE-type-communication (MTC) compels a

paradigm shift in wireless communication due to the

diverse data traffic characteristics and requirements on delay,

reliability, energy consumption, and security. A key scenario

of MTC, referred as massive MTC (mMTC), corresponds

to providing wireless connectivity to a massive number of

low-complexity, low-power machine-type devices [3]. These

devices enable various emerging smart services in the fields of

healthcare, security, manufacturing, utilities and transportation

[4].

Cellular networks are a potential candidate to accommodate

the emerging MTC traffic thanks to the existing infrastructure

and wide-area coverage [5]. However, previous generations of

cellular systems are designed for human-type communication

(HTC) which aims for high data rates using large packet

sizes [6]. The integration of MTC along with HTC in cellular

networks requires the handling of diverse communication

characteristics. Moreover, unlike HTC, in MTC the data traffic

is uplink-driven with packet sizes going down as low as a

few bits [7]. An example of a single-bit transmission is the

transmission of ACK/NACK bits [8]. In the mMTC context,
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the amount of signaling overhead per packet can become very

significant compared to traditional setups with mainly human-

driven traffic [9].

In mMTC, only a small fraction of the devices is active at a

time. One reason for this sporadic traffic pattern is the inherent

intermittency of the traffic (especially for sensor data), but

the use of higher-level protocols that generate bursty traffic

also contributes. The setup of interest is depicted in Fig. 1.

Here, a base station (BS) with M antennas provides service

to N devices and among these N devices, only K are active

at a given time. Our focus will be on systems with Massive

MIMO technology such that M is large. Massive MIMO is an

important component of the 5G physical layer, as it enables

the multiplexing of many devices in the same time-frequency

resources as well as a range extension owing to the coherent

beamforming gain [10].

The intermittency of mMTC traffic calls for efficient mecha-

nisms for random access. Here we focus on grant-free random

access, where devices access the network without a prior

scheduling assignment or a grant to transmit. Owing to the

massive number of devices, it is impossible to assign orthog-

onal pilot sequences to every device. This inevitably leads to

collisions between the devices. Conventionally, such collisions

are handled through collision resolution mechanisms [11],

[12]. Standard ALOHA-based approaches are not suitable for

mMTC, as ALOHA suffers from low performance when the

number of accessing devices is large [13]. A promising class

of collision resolution methods, known as compressed sensing

(CS) techniques, have been considered for device detection

in mMTC [14]. With that approach, all active users transmit

their unique identifiers concurrently, and the base station (BS)

detects the set of active devices based on the received signal.

Moreover, unique user identifiers can be utilized as a sensing

matrix to estimate the channels along with the device detection

[15]. The CS algorithms are shown to outperform conven-

tional channel estimation techniques when the device activity

detection is to be performed jointly with channel estimation

[16]. However, conventional channel estimation techniques

may also be employed once CS-based device detection has

been accomplished. Under the assumption that perfect channel

state information (CSI) is available, the channel states can be

utilized as a sensing matrix and the joint active device and data

detection problem can be tackled by CS-based techniques both

for single-antenna [17], [18] and MIMO setups [19], [20].

In coherent transmission, the detection of active devices and

the estimation of their channels is followed by payload data

transmission. Coherent transmission in an mMTC setup has

been investigated in [21] which proposes an approach that

relies on pilot-hopping over multiple coherence intervals. A
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paper that investigates the spectral efficiency of a CS-based

approach for mMTC setup is [22]. However, the acquisition

of accurate channel state information is a challenging task,

which prompted researchers to consider the possibility of

non-coherent transmission schemes [23], [24]. Especially, for

mMTC where devices usually transmit small packets intermit-

tently, using resources to obtain CSI for coherent transmission

may not be optimal.

In this work, we consider the uplink transmission between

a large number of devices and a Massive MIMO BS. The

BS aims to detect the set of active devices and estimate their

channels and decode a small amount of data transmitted by

the active devices. The approaches in the literature employ

coherent transmission based on estimates acquired from the

CS-based algorithms. We demonstrate that the minimum-

mean square estimator, combined with CS-based techniques,

can be utilized to obtain more accurate CSI. Furthermore, a

novel non-coherent transmission technique is introduced. A

comparison between coherent and non-coherent approaches

reveals that non-coherent transmission can significantly out-

perform coherent transmission in mMTC setups. Compar-

isons of coherent and non-coherent transmission techniques in

multiple-antenna setups are available in the literature [25]. It is

known that generally, non-coherent transmission outperforms

coherent transmission. In this work, we provide a comparison

under an mMTC setup with specific focus on the challenges

that arise when joint device detection, channel estimation and

data decoding must be performed with non-orthogonal pilots.

The specific contributions of our work are as follows:

• An analysis of the AMP algorithm demonstrates that

the gains from increasing the number of BS antennas is

comparable to increasing pilot sequence length, making

massive MIMO a key enabler for MTC applications.

(Section III-A)

• We investigate the effect of employing a power control

approach suitable for mMTC setups, on device detection

performance. The analysis reveals that power control

provides significant improvement in terms of device de-

tection. (Section IV)

• We present a scheme which combines conventional chan-

nel estimation techniques with CS-based device detection

algorithms, and derive a closed-form expression for the

resulting achievable spectral efficiency. The proposed

scheme significantly enhances the spectral efficiency for

coherent transmission. (Section V)

• We introduce a novel non-coherent data transmission

technique based on embedding information bits to the

pilot sequences to be decoded during the user activity

detection process. (Section VI)

• We devise a new receiver based on approximate message

passing that detects which devices are active, and detects

their associated information bits, without using any prior

information neither on the channel response nor on the

user activity. (Section VI-A)

• We provide an extensive comparison between coherent

and non-coherent transmission techniques and demon-

strate that under mMTC setups, non-coherent transmis-

sion is more suitable for conveying small numbers of

K active Users N-K inactive Users

M antennas  

Fig. 1. mMTC scenario: An M -antenna base station serves N users, of which
K are active at a given point in time.

information bits. (Section VI-B)

The paper in hand goes beyond our previous conference

papers [1], [2], by considering power control, non-coherent

transmission for multiple bits, detailing a new modified AMP

algorithm for the multi-bit case, and providing several new

experimental results and comparisons. Moreover, the analysis

is carried out utilizing a novel receiver, which is designed

for the proposed non-coherent scheme and provides additional

performance gains compared to the original AMP algorithm.

II. SYSTEM SETUP

We consider the uplink communication between a single

base station with M antennas and N single antenna devices.

Non-line of sight communication is assumed and the channel

between device n and the BS is modeled as

gn =
√

βnhn, ∀n = 1, . . . , N, (1)

where βn is the large-scale fading and hn denotes the small-

scale fading. The elements of hn are assumed to be i.i.d.

CN(0, 1). The channel is constant and frequency-flat for τ
samples called coherence interval (CI). The large-scale fading

coefficients are assumed to be known at the BS and identical

across antennas whereas the small-scale fading coefficients

which change independently between CIs, are to be estimated

in each CI.

During coherent transmission, each CI is utilized for both

channel estimation and data transmission, i.e., each active

device transmit τp-length pilot sequences and the remaining

τ − τp symbols are utilized for data transmission. In order

to accomplish coherent data transmission, BS must detect

the active devices, estimate their channels, and decode the

transmitted data based on the acquired channel estimates. In

traditional networks, an orthogonal pilot sequence is assigned

to each device which requires pilot sequences of length

τp ≥ N . Such an approach is not feasible for mMTC systems

as the number of devices is large. Therefore, we consider a

setup with non-orthogonal pilot sequences which are generated

by sampling an i.i.d. symmetric Bernoulli distribution. Let√
τpϕn denote the pilot sequence of the nth device with ϕn ,

[ϕ1,n, . . . , ϕτp,n]
T ∈ C

τp×1 where ϕl,n = (±1 ± j)/
√

2τp
and ‖ϕn‖2 = 1. As a result of the Bernoulli distribution

assumption, there are a finite number of unique pilot sequences

and hence the probability that two devices have identical pilot

sequences (called the “collision probability” here) is non-zero.
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If the sequences were generated by sampling an i.i.d. symmet-

ric Gaussian distribution, the collision probability would be

zero. However, as will be demonstrated later, pilot sequences

based on Bernoulli distribution provide better performance.

Let PrC(τp, N) be the collision probability for a given number

of devices, N , and a pilot sequence length, τp. Then,

PrC(τp, N) =







1−
N−1
∏

k=1

(

1− k
22τp

)

, N ≤ 22τp ,

1, N > 22τp .

(2)

In practice, the collision probability is negligible, for example,

with N = 200 devices and pilot sequences of length τp = 20,

the collision probability is ∼ 10−8.

In our setup, we assume that the pilot sequences associated

with each device are known at the BS. The justification is

that in practice the BS would have a list of devices that

are associated with it, and their unique identifiers. The pilot

sequences may then be created by a pseudo-random generator

that uses the unique identifiers of the devices as seeds. Since

these unique identifiers are known to the BS, the pilot sequence

matrix is also known at the BS. Note that all devices are

not necessarily active in each of the coherence intervals; only

when they have data to transmit, they will communicate with

the BS.

The BS detects active devices in a given CI based on the

received composite signal, Y ∈ C
τp×M which is defined as

Y =
N
∑

n=1

√
τpρulαnϕng

T
n + Z, (3)

where αn is the device activity indicator for device n with

Pr(αn = 1) = ǫ and Pr(αn = 0) = 1 − ǫ; Z is additive

white Gaussian noise with i.i.d. elements ∼ CN (0, σ2). The

transmission power is denoted by ρul and it is identical for

each device. In Section IV, we investigate the performance

when power control is employed.

Let Φ = [ϕ1, . . . ,ϕN ] ∈ C
τp×N be the pilot matrix and

X = [x1, . . . ,xN ]H ∈ C
N×M be the effective channel matrix

where

xn = αngn. (4)

Then, (3) can be rewritten in vector notation as

Y =
√
τpρulΦX+ Z. (5)

Note that, X has a sparse structure as the rows corresponding

to inactive users are zero. The activity detection problem

reduces to finding the non-zero rows of X.

The motivation of this work is based on finding efficient

communication techniques for grant-free random access with

small amounts of data in mobile systems. Conventional tech-

niques that rely on channel estimates and employ coherent

transmission may not be suitable for mMTC for two critical

reasons. First, the coherence interval length, the duration in

which the channel can be assumed to be flat, limits the number

of orthogonal pilots which in turn makes it harder to ob-

tain accurate channel estimates. Second, allocating orthogonal

pilots to each device is suboptimal, if possible at all, due

to the intermittent nature of mMTC. Furthermore, utilization

of higher frequency bands and relatively high mobility of

devices in some mMTC scenarios, e.g. vehicular sensing,

the coherence interval length is substantially smaller which

compels different approaches for data transmission.

III. REVIEW OF APPROXIMATE MESSAGE PASSING

The problem of detecting active devices is equivalent to

finding the non-zero rows of X based on the noisy observa-

tions, Y and known pilot sequences, Φ. This problem can

be modeled as a compressive sensing problem, as X has a

row-wise sparse structure. For the single antenna setup, the

problem reduces to the single measurement vector (SMV)

reconstruction problem whereas with multiple antennas it be-

comes a multiple measurement vector (MMV) reconstruction

problem. CS-based techniques are shown to outperform linear

minimum mean square error (LMMSE) estimators in terms of

device detection performance in various works [14], [16]. In

this work, a low complexity CS algorithm called approximate

message passing (AMP) [26], [27] is utilized to recover the

sparse X. Next, we provide a brief review of the AMP

algorithm.

Let t denote the index of the iterations and let X̂t =
[x̂t

1, . . . , x̂
t
N ]H be the estimate of X at iteration t. Then, the

AMP algorithm can be described as follows:

x̂t+1
n =ηt,n

(

(Rt)Hϕn + x̂t
n

)

(6)

Rt+1=Y −ΦX̂t+1+
N

τp
Rt

N
∑

n=1

η′t,n
(

(Rt)Hϕn + x̂t
n

)

N
(7)

where η(.) is a denoising function, η(.)′ is the first order

derivative of η(.) and Rt is the residual at iteration t [28]. The

residual in (7) is updated with a crucial term containing η(.)′,
called the Onsager term, which has been shown to substantially

improve the performance of the iterative algorithm [29].

An important property of AMP is that in the asymptotic

region, i.e., as τp, K, N → ∞ while their ratios are fixed,

the behavior is described by a set of state evolution equations

[30]. In vector form, the state evolution is given by [31]

Σt+1 =
σ2

ρulτp
I+

N

τp
E{eeH} (8)

where e = η(xβ − (Σt)
1

2w)− xβ ; w ∈ C
M×1 is a complex

Gaussian vector with unit variance and xβ ∈ C
M×1 has the

distribution

pxβ
= (1− ǫ)δ + ǫphβ

. (9)

Here, phβ
∼ CN (0, βI) is the distribution of the channel

vector of the active device and δ is the dirac Delta at zero

corresponding to the inactive device channel distribution. The

expectation in (8) is taken with respect to β and allows

performance analysis of the AMP algorithm as the update

given by (6)-(7) are statistically equivalent to applying a

denoiser to the following [30]:

x̂t
n = xn + (Σt)

1

2w = αnhn + (Σt)
1

2w, (10)

which decouples the estimation process for different devices.

The state evolution is shown to be valid for a wide range
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TABLE I
SIMULATION PARAMETERS

Parameter Value

Path and penetration loss at distance d (km) 130 + 37.6 log10(d)
Bandwidth (Bw) 20 MHz
Cell edge length 250 m
Minimum distance 25 m

Total noise power (σ2) 2·10−13 W
UL transmission power (ρul) 0.1 W

of Lipschitz continuous functions [31]. For the multiuser

detection problem, the following denoising function is used:

ηt,n(x̂
t
n) = v(x̂t

n;Σ
t)βn

(

βnI+Σt
)−1

x̂t
n (11)

where

v(x̂n;Σ) =
1

1 + 1−ǫ
ǫ det(I+ βnΣ−1)q(x̂n;Σ)

, (12)

q(x̂n;Σ) = exp
(

−x̂H
n

(

Σ−1− (Σ+ βnI)
−1
)

x̂n

)

.(13)

The denoising function (11) is shown to be the MMSE for the

equivalent system described by (10) in [26]. Notice that, when

the active device are to be detected the MMSE given by (11),

is non-linear.

Note that v(·) is a thresholding function based on the

likelihood ratio which can be computed by considering two

cases in (10), device n is active, i.e., αn = 1 and αn = 0
when it is inactive. For the case when ǫ = 1, i.e., every device

is active, (11) reduces to the linear MMSE estimator.

Remark 1: State evolution provides an important tool to

analyze AMP. However, the equations defined in (10), which

decouple the estimation process for different devices, are only

valid in the asymptotic region. More detail on the behavior of

AMP in the asymptotic region is given in Section III-B.

A. Device Activity Detection via AMP

The AMP approach heavily relies on the sparsity in the

device activity pattern. The so-called ”sparsity-undersampling

tradeoff” states that as sparsity decreases, the length of the

pilot sequences must increase in order to achieve the same

performance [29]. For the noiseless case, a lower bound on

the length of pilot sequences for perfect recovery is given

by τp ≥ K [26]. The device detection problem has a key

difference compared to the reconstruction problem: It is not

necessary to reconstruct the signal perfectly, only the devices

that transmit their pilot sequences must be detected. However,

being able to detect devices without recovery does not render

the reconstruction of X an unnecessary task, as the reconstruc-

tion process corresponds to the estimation of the channels,

which will be investigated in Section V.

Fig. 2 demonstrates the performance of the AMP algorithm

for various pilot sequence lengths under a setup with M = 20,

N = 200 and ǫ = 0.05. The results illustrate that the

performance highly depends on the pilot sequence length. As

the pilot sequence length increases, the average correlation be-

tween pilot sequences of different devices decreases. Note that

the improvement is especially significant when τp is equal to

the expected number of active devices and for longer sequence

lengths. The simulation parameters used in the simulations are

summarized in Table I.
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Fig. 2. Probabilities of miss and false alarm for different pilot sequence
lengths, τp, for N = 200 devices with a device access probability ǫ = 0.05
and M = 20 antennas at the base station.
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Fig. 3. Probabilities of miss and false alarm for different numbers of antennas,
M , for N = 200 devices with a device access probability ǫ = 0.05 and a
pilot length τp = 10.

Another crucial parameter which affects the user detection

performance, is the number of antennas at the BS. The user

detection performance of the AMP algorithm with respect

to various number of BS antennas is illustrated in Fig. 3.

Increasing the number of antennas significantly improves the

performance. However, the performance gains due to increased

numbers of antennas experience a saturation effect, i.e., the

improvement gradually decreases as M increases. This shows

that increasing the number of antennas enhances the perfor-

mance of the AMP algorithm for user detection; however the

number of antennas should not be considered as an absolute

substitute for pilot sequence length.

Pilot sequences generated by an i.i.d. complex Gaussian

distribution represent another common choice for compressed

sensing approaches [22]. Here, we have utilized pilot se-

quences generated by sampling an i.i.d. Bernoulli distribution.

There are two reasons for this choice: First, it is easier and

more practical to utilize sequences generated from a finite
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Fig. 4. Probabilities of miss and false alarm using pilot sequences generated
via Bernoulli (B-pilots) and Gaussian (G-pilots) distributions. The setup
consists of M = 20 BS antennas and N = 200 devices with a device
access probability ǫ = 0.05.

alphabet. Second, our numerical analysis demonstrates that

Bernoulli sequences provides better performance in terms of

device activity detection. This is illustrated in Fig. 4, which

provides a comparison of device detection performance for

different pilot sequences, using the AMP algorithm. The

performance of Bernoulli sequences is better than that of

Gaussian pilots, and the performance difference becomes more

significant as the pilot length increases.

B. Asymptotic Analysis

The state evolution of the AMP algorithm is equivalent

to applying a denoiser to a signal received over an AWGN

channel, in the asymptotic region. This property is shown to

hold when the sensing matrix, Φ in (5), is Gaussian. The

state evolution is expected to hold for matrices with i.i.d.

entries with zero mean and variance 1/τp. Even though there is

numerical evidence that it holds for a broader class of matrices

[29], the characterization of the matrices for which the state

evolution holds is an open problem [31].

In the rest of this section, we assume that state evolution

holds in the asymptotic region, which allows us to provide

a theoretical analysis of the device detection performance

of AMP. Based on (10), x̂t
n has i.i.d. Gaussian distributed

elements with variance βn + µ2
t , if αn = 1 and with variance

µ2
t , if αn = 0. Here, µ2

t denotes the diagonal elements of

Σt, which can be shown to be a diagonal matrix when the

channels of a device across different antennas are assumed to

be uncorrelated [32]. Under these assumptions, we can state

the following.

Lemma 1: Assume that the detection of devices is carried

out by comparing ‖x̂t
n‖2 with a threshold, ζ. Then, the miss

detection and false alarm probabilities of the AMP algorithm,

in the asymptotic region, for any threshold satisfying

Mµ2
t < ζ < M

(

βn + µ2
t

)

(14)

10 15 20 25 30 35 40 45 50
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10
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10
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10
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Fig. 5. Error probabilities with respect to M , in a setup with N = 2000
devices, device access probability of ǫ = 0.05 and a pilot length of τp = 150.

goes to zero when M → ∞:

lim
M→∞

PrMD (M, ζ) → 0, (15)

lim
M→∞

PrFA (M, ζ) → 0. (16)

Proof: See Appendix A.

Lemma 1, states that perfect detection is possible in the

asymptotic region. This is expected, since as τp → ∞ the

pilot sequences become orthogonal which eliminates the cross-

correlation between them. Moreover, as M → ∞ the impact

of noise also vanishes which allows for perfect detection. A

similar analysis can be found in [32].

Fig. 5 illustrates the miss detection and false alarm proba-

bilities as a function of M for both Gaussian and Bernoulli

sequences. Since the goal is to analyze the asymptotic be-

havior, we consider a setup with a large number of devices,

N = 2000, with a device access probability of ǫ = 0.05 and

pilot length τp = 150. In both cases, the detection performance

improves with the number of BS antennas as predicted by

Lemma 1. An important point is that Bernoulli sequences

provide better performance compared to Gaussian sequences.

IV. POWER CONTROL

The assumption on identical transmission power, i.e., lack of

power control, is common in compressed sensing approaches

[1], [22], but this is strictly suboptimal. Simple power control

strategies are suitable for MTC scenarios with low-complexity,

low-power devices. Especially, for the mMTC uplink, power

control scenarios based on small-scale fading coefficients are

not practical as accurate channel state information is difficult

to acquire and inefficient for the transmission of small pack-

ages.

Gradually decreasing transmission power based on the

large-scale fading, also referred to as “statistical channel in-

version” (SCI) [33], helps reduce the channel gain differences

between users and is especially beneficial to the users with
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Fig. 6. Comparison of power control strategies, for different numbers of
antennas, M , in a setup with N = 200 devices, a device access probability
of ǫ = 0.05 and a pilot length of τp = 15.

relatively weaker channel gains. As a simple power control

policy, we employ SCI and adjust the powers as follows:

ρk = ρmax
ul

βmin

βk
, (17)

where ρmax
ul is the maximum transmission power and βmin

represents the minimum large-scale coefficient in the cell.

Using SCI, the device with the lowest large-scale coefficient

will transmit at maximum power and the other devices’ trans-

mission powers scale inversely proportionally to their large-

scale coefficients. Note that in practice there would have to be

some signaling mechanism by which the base station informs

the users about βmin. If a user has a value of β below βmin,

it would not be able to access the network using its available

power budget.

Fig. 6 illustrates the performance difference between the

two cases with no power control (NPC) and SCI. With NPC,

each device transmits with maximum power, whereas with

SCI each device adjusts its transmission power based on

(17). An important difference between the two setups is that

with SCI the total power consumption is less. Hence, the

total interference in the system is also higher with NPC than

with SCI. Fig. 6 shows that even with a very simple power

control policy, the device detection performance is improved.

The difference is even more significant when the number of

antennas is increased. In the subsequent numerical analysis,

SCI is employed.

V. COHERENT TRANSMISSION

In the canonical massive MIMO setup with TDD operation,

each coherence interval consists of three phases: uplink train-

ing, uplink, and downlink data transmission. In this section,

we focus on the uplink training and data transmission, and

thus the downlink data transmission phase is neglected. The

channel estimates acquired via uplink training are utilized at

the BS during the uplink data transmission of devices.

The channel estimates provided by the AMP algorithm can

be used for coherent data transmission along with device

detection [22]. However, it is possible to obtain a more

accurate channel estimate of device k as follows,

yk = Yϕk =
∑

k′∈K

(√
ρk′τpgk′ϕ

H
k′ + Z

)

ϕk,

=
√
ρkτpgk +

∑

k′∈K\{k}

√
ρk′τpgk′ϕ

H
k′ϕk + z′,

where K is the set of active devices and z′ = Zϕk has i.i.d.

CN (0, σ2) components as ‖ϕk‖2 = 1. Then, the LMMSE

estimate of gk is

ĝk =
E{yH

k gk}
E{yH

k yk}
yk,

=

√
ρkτpβk

∑

k′∈K
ρk′τpβk′ |ϕH

k ϕk′ |2 + σ2
yk, (18)

which only considers the effect of the active devices. Hence,

once the set of active devices is determined (the non-zero rows

of X) by the AMP, the MMSE estimator can be utilized to

obtain a channel estimate, which provides the true MMSE

were the pilot sequences and large-scale fading coefficients

known at the BS.

Remark 2: We assume perfect device detection in this

section, since our focus is to demonstrate that it is possible

to obtain more accurate channel estimates via MMSE, than

what the AMP algorithm delivers. Consequently, higher rates

are achievable by using the MMSE estimator after the device

detection. The performance of coherent transmission without

perfect device detection assumption is investigated later.

The complexity of the AMP is O(NMτp) per iteration.

The increased complexity due to MMSE estimation is less

than the equivalent of one iteration in the AMP algorithm.

Note that although we explicitly considered the AMP in this

section, the ideas can be employed with any compressed

sensing techniques, such as those in [34].

During the data transmission the BS receives,

y =
∑

k′∈K

√
ρk′gk′xk′ + z (19)

where xk represents the data symbol of device k. Each device

transmits unit-power symbols, i.e., E{|xk|2} = 1. To detect

the data symbols of device k, the BS employs a combining

vector, vk, as follows:

ỹk = vH
k y =

∑

k′∈K

√
ρk′vH

k gk′xk′ + vH
k z. (20)

Based on (20), an ergodic achievable rate of device k is

Rk = log2(1 + Γk), (21)

where

Γk =
|E
(

vH
k gk

)

|2ρk
∑

k′∈K

E
(

|vH
k gk′ |2

)

ρk′+E (‖vk‖2)σ2 −|E
(

vH
k gk

)

|2ρk
.

(22)
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Consider the MRC vector,

vk =
1

γk
√
M

ĝk, (23)

where γk is the mean square of the m-th element of ĝk, given

by

γk = E

[

|[ĝk]m|2
]

, (24)

=
ρkτpβ

2
k

∑

k′∈K
βk′ρk′τp|ϕH

k ϕk′ |2 + σ2
. (25)

Then, the spectral efficiency with MRC can be computed using

the bounding techniques given in [10, Sec. 2.3.4], giving the

following result.

Lemma 2: An achievable rate of device k is given by,

Rk = (1− τp
τ
) log2 (1 + Γk) (26)

where Γk is the effective SINR given by

Γk =
Mρk

M
∑

k′∈K\{k}

|ϕH
k
ϕk′ |2ρ2

k′
β2

k′

ρkβ2

k

+ 1

γk

(

∑

k′∈K

ρk′βk′ + σ2

) .

(27)

Proof: See Appendix B.

Remark 3: Although there are other methods (e.g., zero-

forcing and MMSE), we only consider MRC throughout this

work for conciseness, and as the performance of different

combining techniques is not in our focus. Detailed formulas

for performance of other detection techniques follow by direct

application of techniques in [10].

The rate that can be achieved with coherent transmission is

limited by the non-orthogonality of the pilots, which creates

coherent interference that scales with the number of antennas.

Especially, in the asymptotic region when M → ∞, the

effective SINR defined by (27) becomes

Γk =
ρ2kβ

2
k

∑

k′∈K\{k}

|ϕH
k ϕk′ |2ρ2k′β2

k′

. (28)

In this regime, the non-orthogonality of the pilots is the

limiting factor for the achievable rate.

An important point is that (27) is valid for long block

lengths while for control signaling tasks, probability of error

is a more relevant performance measure. Nevertheless, the

ergodic capacity gives an indication of how, qualitatively at

least, the performance varies with the different system param-

eters. Other performance metrics such as maximum coding

rate, are available for short packet lengths in the literature

on finite-block length information theory [35]. However, for

control signaling applications where only a few bits are to be

transmitted, the finite-block length bounds are not tight and

error probability is a more reliable performance metric.

Fig. 7 illustrates how the quality of the channel estimates

impacts the spectral efficiency. The rates shown take the pilot

overhead into account, and hence represent “net throughputs”

(per unit bandwidth and time unit). Specifically, the total

number of symbols available for pilots and data transmission is

fixed, which results in fewer data symbols as the pilot sequence

5 10 20 30 40 50 60 70 80

0

0.5
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1.5
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2.5

3

3.5

Fig. 7. Comparison of achievable ergodic rates with coherent detection, with
different channel estimators and with MRC for a setup with M = 50 antennas,
N = 100 devices, a device access probability of ǫ = 0.05, and a coherence
interval length of τ = 500 symbols.

length increases. The estimates obtained via AMP and MMSE

(after device detection is accomplished by AMP) both with

and without perfect device detection assumption are compared

with the perfect CSI case. In the perfect CSI case, the active

devices are also assumed to be perfectly detected at the BS.

The difference between the cases with and without the perfect

device detection assumption, vanishes quickly with increasing

pilot sequence length and around τp = 20, the difference

becomes negligible. Moreover, the difference between AMP

and MMSE estimates also vanishes as the pilot sequence

length is increased. Similarly both techniques approach the

perfect CSI case, since in the asymptotic region (τp → ∞),

the effect of noise on the channel estimates vanishes and the

pilot sequences become orthogonal. In the perfect CSI case,

the rate decreases with the pilot sequence length as the pre-

log term decreases with τp. Also note that the number of

data symbols available for both AMP and AMP+MMSE is

identical, as MMSE estimation is carried out based on the

non-orthogonal pilots used for device detection.

VI. NON-COHERENT TRANSMISSION

In contrast to coherent transmission, explicit channel es-

timates are not required with non-coherent transmission. In

order to convey r bits of data non-coherently, each device

is allocated 2r distinct pilot sequences and transmits one of

these sequences based on the r information bits. Here, the

information is embedded into the pilot sequences and there is

no need to allocate additional symbols for data transmission.

Hence, all τ symbols can be utilized for pilot sequences.

Let Φ̄k = [ϕk,0,ϕk,1, . . . ,ϕk,2r−1] ∈ C
τ×2

r

denote the

pilot sequences allocated for device k. This device transmits

exactly only one of these pilot sequences, selected based on

the information bits. Then, the composite received signal at

the BS is

Y =
√
ρulτpΦ̄X̄+ Z, (29)
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where

Φ̄ = [Φ̄1, . . . , Φ̄N ] ∈ C
τ×N2

r

and

X̄ = [X̄1, . . . , X̄N ]H

where

X̄k = [αk,1gk, . . . , αk,2rgk] ∈ C
M×2

r

.

Here αk,l = 1 if device k is active and the lth-symbol is

embedded. Recall that each device is active with probability

ǫ and

2
r−1
∑

i=0

αn,i =

{

1, with Pr. ǫ,

0, with Pr. 1− ǫ,
∀n = 1, . . . , N. (30)

Notice that with non-coherent transmission, the BS must

consider N2r pilot sequences instead of N . However, the

number of active users remains the same, i.e., the number of

non-zero rows of X̄ and X is equal. The active devices along

with their embedded bits could in principle be detected by the

AMP algorithm without any modification, implicitly assuming

each pilot sequence is associated with a different, fictitious

device. But such an approach is strictly sub-optimal, as the

available information about the structure of X̄ is not utilized.

A modified AMP algorithm for the case of r = 1 was outlined

in [1]. Here, we present its extension to the general r-bit case.

A. Algorithm Description

Assigning multiple pilot sequences to a device increases

the sparsity, i.e., the number of non-zero rows of X̄ and X

are equal; however X̄ has 2r times more rows than X. This

increase in the sparsity manifests itself structurally in X̄, as

it is impossible to have multiple non-zero rows corresponding

to the same device. In order to exploit these new structural

properties of X̃, we propose a modified AMP algorithm to

be used for the detection of embedded bits along with device

detection.

Let X̄k = [x̄k,1, . . . , x̄k,2r ] ∈ C
M×2

r

and ˆ̄xk,l be the

estimate of the row of X̄ corresponding to the lth pilot

sequence of device k. Assume that user k is active and

transmitting the pilot sequence l′, i.e., αk,l′ = 1; then

ˆ̄xt
k,l =

{

gk + (Σt)
1

2w ∼ CN (0, βkI+Σt), if l = l′,

(Σt)
1

2w ∼ CN (0,Σt), if l 6= l′.

(31)

Hence only a single row corresponding to device k is non-zero.

The likelihood function based on (31) is given by

Λ(ˆ̄xt
k,l) =

|Σt|
|βkI+Σt|q(

ˆ̄xt
k,l;Σ

t)−1. (32)

Let ϕ(ˆ̄xt
k,l) denote the sequence likelihood fraction (SLF)

coefficient defined by

ϕ(ˆ̄xt
k,l) =

Λ(ˆ̄xt
k,l)

∑2r

l′=1
Λ(ˆ̄xt

k,l′)
. (33)

This coefficient can be thought of as a measure of the

proportional likelihood of a given sequence allocated to de-

vice k. The SLF coefficient provides a form of proportional

thresholding; however in order to enhance its effectiveness, a

sharper threshold is required. In the ideal case, the receiver

should only decide on one of the possible pilot sequences

while suppressing the other one. In order to achieve this,

we utilize a soft-thresholding function known as a sigmoid

function. More specifically, the sigmoid function is defined by

f(x) =
1

1 + exp(−c(x− 1

2
))
. (34)

where c is a parameter that determines the sharpness of the

sigmoidal transition. The resulting modified denoiser is

η̃t,n(ˆ̄x
t
n) = f(ϕ(ˆ̄xt

k))ηt,n(ˆ̄x
t
n). (35)

Note that the modified denoiser is Lipschitz-continuous.

However, the validity of state evolution is unclear, as the

unmodified case with Bernoulli sequences is only verified via

numerical analysis. Even though there are some results for

the cases where the modifying function is separable and the

sensing matrix has a special structure [36], the asymptotic

behavior of AMP with other sensing matrix distributions than

Gaussian, is an open problem.

The proposed modified AMP algorithm (M-AMP) is specif-

ically designed for non-coherent transmission. The principal

idea is that only a single row corresponding to a device may

be non-zero as it is impossible for a device to transmit both

pilot sequences concurrently.
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Fig. 8. Probabilities of miss and false alarm of device activity detection, for
various pilot lengths, τp, in a setup with N = 100 devices, M = 50 antennas
and a device access probability of ǫ = 0.1.

In Fig. 8, the user detection performances of three different

AMP algorithms are depicted. The algorithms compared are

as follows:

• AMP: The original AMP algorithm which considers N =
100 pilot sequences without any embedded information

bit.

• AMP with EIB: The original AMP algorithm which

considers N = 200 pilot sequences and detects users

along with a single embedded information bit.
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Fig. 9. Probabilities of miss and false alarm of device activity detection,
for various pilot lengths, τp, for a setup with N = 200 devices, M = 50
antennas and a device activity probability of ǫ = 0.1.

• M-AMP: The modified AMP algorithm which considers

N = 200 pilot sequences and detects users along with a

single embedded information bit.

There are 100 potential users and on average only ǫN are ac-

tive. For the case when a single information bit is transmitted,

the detector must consider 200 pilot sequences. In this case, if

the detector determines that one of the pilot sequences corre-

sponding to a user is transmitted, then that user is detected

as an active user independently of whether an information

bit is transmitted. In all cases, the number of iterations and

pilot sequence length are identical. As expected the AMP

algorithm without any additional information bit provides the

best performance. M-AMP outperforms the original AMP

when the embedded information bit is to be detected along

with the device activity. The performance difference between

the algorithms becomes more significant with increased pilot

length.

An interesting property of the AMP algorithm is that in-

creasing N , τp and K while keeping their ratios fixed improves

the performance. Fig. 9 illustrates the scaling of the device

detection performance of the three approaches. The behavior

of each algorithm is similar; however the performances of all

of the approaches are superior compared to the case with 100
users. This is a desirable property in mMTC scenarios with

large numbers of devices.

B. Coherent versus Non-Coherent Transmission

In this section, we compare coherent and non-coherent

transmission for an mMTC scenario where each device aims

to transmit a few data bits. No prior information on the set

of active devices is assumed. Since, the goal is to convey a

small number of bits of data, we utilize probability of error

as a performance metric.
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Fig. 10. Probability of error for the transmission of a single embedded
information bit, as function of the coherence interval length, τ , for various
(repetition) code lengths in a setup with M = 20 antennas, N = 100 devices,
and a device activity probability of ǫ = 0.1.
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Fig. 11. Probability of error for the transmission of 4 embedded information
bits in a setup with M = 20 antennas, N = 100 devices and a device activity
probability ǫ = 0.1.

Fig. 10 illustrates the performance of coherent and non-

coherent transmission in terms of probability of error for a sin-

gle bit of information, for different coherence interval lengths.

For coherent transmission, first AMP is employed to detect

the active devices and obtain the channel estimates. Then,

a repetition code of varying rate with BPSK transmission is

employed to convey a single bit of information. Hence, entire

coherence interval except for the repetition-coded information

bit is utilized as pilot sequence. The best performance is

obtained with a length-11 repetition code, whereas lengths 15
and 19 provide similar performances. For the non-coherent

transmission, AMP and M-AMP are employed to detect the

transmitted pilot sequences among 2N = 200 candidates.

The results shows that non-coherent transmission not only
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outperforms coherent transmission but also scales better with

the coherence interval length.

Fig. 11 illustrates the performance of coherent and non-

coherent transmission in terms of probability of error for

transmission of 4-bits with respect to coherence interval

length. For coherent transmission, a (7, 4)-Hamming code

is utilized to convey 4 information bits after the channel

estimates are acquired. The original and the modified AMP

algorithms are utilized to detect the active users and the trans-

mitted pilot sequences among 16N = 1600 candidates. Even

though non-coherent transmission provides significantly better

performance, as the number of information bits increases,

this difference vanishes. The performance difference between

coherent and non-coherent transmission is more significant for

the single bit case shown in Fig. 10 compared to Fig. 11.

VII. CONCLUSION

We investigated the joint device detection and data trans-

mission problem in an mMTC setup, where devices use non-

orthogonal pilots. The device detection is carried out using

the AMP compressed sensing algorithm. A simple power

control technique which only relies on large-scale coefficients

is employed and shown to enhance the performance. We also

showed that once the active devices have been detected, it is

possible to obtain more accurate channel estimates by using

MMSE estimation, instead of relying on the estimates provided

by the AMP. This in turn results in a higher spectral efficiency

for coherent transmission.

Targeting the vision of fully non-coherent communication

for mMTC in Massive MIMO, especially for control signaling,

we furthermore proposed a novel non-coherent transmission

scheme. This scheme encodes the information to be transmit-

ted into the choice of pilot sequence sent by each devices,

specifically mapping r information bits onto 2r possible pilots

per device. We devised a modified AMP (M-AMP) algorithm

designed specifically to exploit the structured sparsity incurred

by the proposed non-coherent transmission scheme. The M-

AMP algorithm not only outperforms the original AMP algo-

rithm for the non-coherent scheme, but also scales better with

the number of devices. A comparison of coherent and non-

coherent transmission revealed that non-coherent transmission

significantly outperforms the coherent transmission scheme.

This suggests that the proposed non-coherent transmission

approach can be useful in future mMTC networks.

APPENDIX A

PROOF OF LEMMA 1

First, note that x̂t
n defined by (10), is a random vector where

each element has i.i.d. Gaussian distributed real and imaginary

parts. Hence, ‖x̂t
n‖2/((βn+µ2

t )) given αn = 1 and ‖x̂t
n‖2/µ2

t

given αn = 0 follows a χ2 distribution with 2M degrees of

freedom (DoF). The cumulative distribution function is defined

by

Pr
(

‖x̂t
n‖2 ≤ ζ

)

=
γ(M, ζ/2)

Γ(M)
, (36)

where Γ(·) represents the Gamma function and γ(·) is the

lower incomplete Gamma function. Since, our focus is on

asymptotic behavior, i.e., τp, K, N → ∞ while their ratios

are fixed, the probabilities of miss detection and false alarm

as a function of number of BS antennas, M , can be defined

as follows

PrMD (M, ζ) = Pr
(

‖x̂t
n‖2 ≤ ζMD|αn = 1

)

,

=
γ(M, ζMD/2)

Γ(M)
, (37)

PrFA (M, ζ) = Pr
(

‖x̂t
n‖2 > ζFA|αn = 0

)

= 1− γ(M, ζFA/2)

Γ(M)
, (38)

where

ζMD =
ζ

βn + µ2
t

, (39)

ζFA =
ζ

µ2
t

. (40)

Equations (37) and (38) define the probabilities of miss

detection and false alarm in terms of Gamma functions. First,

we focus on the probability of miss detection and use an

asymptotic representation of the type

γ(M, ζMD/2)

Γ(M)
=

1

2
erfc

(

−η
√

M/2
)

−RM (η), (41)

where,

RM (η) ∼
exp

(

− 1

2
Mη2

)

√
2πM

∞
∑

i=0

ci(η)

M i
, M → ∞, (42)

which is derived in [37]. Here, η =
√

2(λMD − 1− lnλMD)
for λMD = ζMD/M < 1 and the first coefficient c0(η) is

defined by

c0(η) =
1

λMD − 1
− 1

η
, (43)

and the remaining terms of RM are at least of

o(exp(−M)/M3/2) [38]. Finally, we use the following

approximation for the erfc(·) function

erfc(x) =
exp(−x2)√

πx

(

1 + o

(

1

x2

))

. (44)

Hence, (41) can be re-written as

PrMD (M, ζMD/2) =
1

2

exp
(

−η2M/2
)

−η
√

πM/2

(

1 + o

(

1

M

))

(45)

−
exp

(

−η2M/2
)

√
2πM

(

1

λMD − 1
− 1

η

)

− o

(

exp (−M)

M
√
M

)

, (46)

which can be simplified as

PrMD (M, ζMD/2) =
exp

(

−η2M/2
)

√
2πM

1

1− λMD

+ o

(

1

M

)

,

= o

(

1

M

)

. (47)

Similarly, for the false alarm detection, we start with the

asymptotic representation of type

1− γ(M, ζFA/2)

Γ(M)
=

1

2
erfc

(

η
√

M/2
)

+RM (η), (48)
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where RM (η) is defined by (42) and η =
−
√

2(λFA − 1− lnλFA) for λFA = ζFA/M > 1. Using

(42) and (44) in (48), we obtain

PrFA (M, ζFA/2) =
1

2

exp
(

−η2M/2
)

η
√

πM/2

(

1 + o

(

1

M

))

(49)

+
exp

(

−η2M/2
)

√
2πM

(

1

λFA − 1
− 1

η

)

+ o

(

exp (−M)

M
√
M

)

, (50)

(51)

which simplifies to

PrFA (M, ζFA/2) =
exp

(

−η2M/2
)

√
2πM

1

λFA − 1
+ o

(

1

M

)

,

= o

(

1

M

)

. (52)

Hence, as M → ∞, PrMD (M, ζ) → 0, PrFA (M, ζ) → 0 for

any choice of
ζMD

M
< 1 <

ζFA

M
. (53)

Using (39) and (40), the set of thresholds satisfying (53) lies

in the interval,

Mµ2
t < ζ < M

(

βn + µ2
t

)

. (54)

Hence, any choice of threshold satisfying (54) will result in

perfect detection in the asymptotic region which concludes the

proof.

APPENDIX B

PROOF OF LEMMA 2

The terms in (22) can be computed as follows

∣

∣E
(

vH
k gk

)
∣

∣

2
ρk =

∣

∣

∣

∣

E

(

1

γk
√
M

ĝH
k gk

)∣

∣

∣

∣

2

ρk

= Mρk (55)

and

∑

k′∈K

E
(

|vH
k gk′ |2

)

ρk′ =
∑

k′∈K

E

(

∣

∣

∣

∣

1

γk
√
M

ĝH
k gk′

∣

∣

∣

∣

2
)

ρk′

=
∑

k′∈K

βk′

γk
+

Mβ2
k′ρ2k′ |ϕH

k ϕk′ |2
ρkβ2

k

. (56)

Finally, the noise term is

E
(

‖vk‖2
)

σ2 =
σ2

γk
, (57)

and (27) is obtained by simply substituting (55), (56), (57)

into (22).
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