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Granular computing classi	cation algorithms are proposed based on distance measures between two granules from the view of
set. Firstly, granules are represented as the forms of hyperdiamond, hypersphere, hypercube, and hyperbox. Secondly, the distance
measure between two granules is de	ned from the view of set, and the union operator between two granules is formed to obtain the
granule set including the granules with di
erent granularity.�irdly the threshold of granularity determines the union between two
granules and is used to form the granular computing classi	cation algorithms based on distancemeasures (DGrC).�e benchmark
datasets in UCI Machine Learning Repository are used to verify the performance of DGrC, and experimental results show that
DGrC improved the testing accuracies.

1. Introduction

Granular computing (GrC) is computing method based on
the partition of problem space and is widely used in pattern
recognition, information system, and so forth. Zadeh identi-
	ed three fundamental concepts of the human cognition pro-
cess, namely, granulation, organization, and causation [1, 2].
Granulation is a process that decomposes a universe into
parts. Conversely, organization is a process that integrates
parts into a universe by introducing operation between two
granules. Causation involves the association of causes and
e
ects. Information granules based on sets, fuzzy sets or rel-
ations, and fuzzy relations are computed in [3]. In general, the
fuzzy inclusionmeasure is induced by granule and union gra-
nule, such as the positive valuation functions of granules that
are used to form the fuzzy inclusionmeasure [4–6]. But there
are some problems; for example, the fuzzy inclusion measure
between two atomic granules is zero no matter how far
between two atomic granules is. �ese studies enable us to
map the complexities of the world around us into simple
theories.

GrC based algebraic system is a frame computing para-
digm that regards the set of objects as granule, and the union
operator and meet operator are the two keys of GrC. �e
union operator and meet operator are related to the shapes

of granule. �ere are granules with di
erent shapes, such as
hypersphere granules, hypercube granules, hyperdiamond
granules, and hyperbox granules.

�epresentwork uses distancemeasure between granules
with the same shapes from the view of set. A granule is re-
presented as a vector, and the distance between granules is
de	ned by the centers of granules and the granularities, such
as the half length of hyperdiamond diagonal, the radii of
hypersphere, the half length of hypercube side, and the length
of hyperbox diagonal. �e granular computing classi	cation
algorithms based on distance measure (DGrC) are proposed.

�e rest of this paper is presented as follows. Granular
computing classi	cation algorithm based on distance mea-
sure is described in Section 2. Section 3 demonstrates the
comparative experimental results on two-class andmulticlass
problems. Section 4 summarizes the contribution of ourwork
and presents future work plans.

2. Granular Computing Classification
Algorithm Based on Distance Measure

For the dataset � = {(��, ��) | � = 1, 2, . . . , �} in �-dimen-
sional space, we construct granular computing classi	cation
algorithms (GrC) in terms of the following steps. Firstly, the

Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2014, Article ID 656790, 9 pages
http://dx.doi.org/10.1155/2014/656790



2 Computational Intelligence and Neuroscience

single point in � is represented as the atomic granules which
are indivisible. Secondly, the distance between two granules is
proposed based on the view of set. �irdly, the distance and
granularity determine the union process jointly. Finally, the
granule set is obtained and used to predict the class of
unknown datum.

2.1. Representation of Granule and Granularity. In reality, the
shapes of granules are irregular, the distance between two gra-
nules is not easily measured, the union granule, and the meet
granule are related to the shapes of granules. In order to study
granular computing, the granule is represented as regular
shapes, such as hyperdiamond, hypersphere, hypercube, and
hyperbox, especially diamond, sphere, cube, and box in 2-
dimensional space.�ese four shape granules are represented
as follows.

(1) Hyperdiamond granule is represented as a vector in-
cluding the hyperdiamond’s center and the half of dia-
gonal length.

(2) Hypersphere granule is represented as a vector
including the center and the radii of the hypersphere.

(3) Hypercube granule is represented as a vector includ-
ing the center and the half of side length of the
hypercube.

(4) Hyperbox granule is represented as a vector including
vectors induced the beginning points and the end
points.

Granularity is the size of granule, such as the half of
diagonal length of hyperdiamond granule, the radii of hyper-
sphere granule, the half of side of hypercube granule, and the
maximal diagonal of hyperbox. �e granularity of granule �
is represented as 	�(�).

For hyperdiamond granule

	� (�) = 
, (1a)

where 
 is the half of diagonal length of hyperdiamond
granule.

For hypersphere granule �
	� (�) = 
, (1b)

where 
 is the radii of hypersphere.
For hypercube granule

	� (�) = 
, (1c)

where 
 is the half of side of hypercube.
�e granularity of hyperbox granules � is de	ned as the

distance between the beginning point and the end point. For
hyperbox granule � = (x, y), the granularity is the distance

	� = ����x − y
����2. (1d)

In Figure 1, �1 = (0.1, 0.2, 0.5) is hyperdiamond granule

in �2 space, whose center is (0.1, 0.2) and granularity is 0.5.
�2 = (0.1, 0.2, 0.5) is hypersphere granule with center

(0.1, 0.2) and granularity 0.5. �3 = (0.1, 0.2, 0.5) is hyper-
cube granule with center (0.1, 0.2) and granularity 0.5.
�4 = [0.1 0.2 0.3 0.5 0.3606] is hyperbox granule with
the beginning point (0.1, 0.2), the end point (0.3, 0.5), and the
granularity 0.3606. �ese granules are shown in Figures 1(a),
1(b), 1(c), and 1(d). From Figure 1, we can see that di
erent
shape granules have di
erent shapes even if they have
the same forms of representations.

2.2. Distance Measure between Granules. �e distance bet-
ween granules refers to the minimal distance between two
points which belong to di
erent granules.

For two hyperdiamond granules �1 = (
1, 
1) and �2 =(
2, 
2), the distance is
� (�1, �2) = ����
1 − 
2����1 − 
1 − 
2, (2)

where 
1 = (�1, �2, . . . , ��) and 
2 = (�1, �2, . . . , ��) are
the centers of hyperdiamond granules�1 and�2 and 
1 and 
2
are granularities of hyperdiamond granules �1 and �2

����
1 − 
2����1 = �����1 − �1���� + �����2 − �2���� + ⋅ ⋅ ⋅ + ������ − ������ . (3)

For two hypersphere granule �1 = (
1, 
1) and �2 =
(
2, 
2), the distance is

� (�1, �2) = ����
1 − 
2����2 − 
1 − 
2, (4)

where 
1 = (�1, �2, . . . , ��) and 
2 = (�1, �2, . . . , ��) are
the centers of hypersphere granules �1 and �2 and 
1 and 
2
are granularities of hypersphere granules �1 and �2
����
1 − 
2����2 = √(�1 − �1)2 + (�2 − �2)2 + ⋅ ⋅ ⋅ + (�� − ��)2.

(5)

For hypercube granules �1 = (
1, 
1) and �2 = (
2, 
2),
the distance is

� (�1, �2) = ����
1 − 
2����∞ − 
1 − 
2, (6)

where 
1 = (�1, �2, . . . , ��) and 
2 = (�1, �2, . . . , ��) are the
centers of hypercube granules �1 and �2 and 
1 and 
2 are
granularities of hypercube granules �1 and �2
����
1 − 
2����∞ = max {�����1 − �1���� , �����2 − �2���� , . . . , ������ − ������} .

(7)

For two hyperbox �1 = (x1, y1) and �2 = (x2, y2), the
distance is

� (�1, �2)
=����max {�11, �21}−min {�11, �21} |× ⋅ ⋅ ⋅ ×|max {�1�, �2�}

−min {�1�, �2�}���� ,
(8)

where x1 = (�11, �12, . . . , �1�) and x2 = (�21, �22, . . . , �2�)
are the beginning points of hyperbox granules�1 and�2 and
y1 = (�11, �12, . . . , �1�) and y2 = (�21, �22, . . . , �2�) are the
end points of hyperbox granules �1 and �2.
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Figure 1: Granules with di
erent shapes in �2 space.

x = x1 ∨x2, y = y1 ∧y2 are operators between two vectors
and de	ned as

x1 ∨ x2

= (max {�11, �21} ,max {�12, �22} , . . . ,max {�1�, �2�}) ,
y1 ∧ y2

= (min {�11, �21} ,min {�12, �22} , . . . ,min {�1�, �2�}) .
(9)

According to the distance between two granules men-
tioned above, the distance between two granules is the arbi-
trary real number. �ere is margin between two granules
when � > 0, there is a same point between two granules when
� = 0, and there is an overlap between two granules when � <
0. When � > 0, the greater � means the greater margin
between two granules, and when � < 0, the greater � means
the smaller overlap. Figure 2 shows the distance between two
granules, including � < 0, � = 0, and � > 0.

2.3. Operators between Granules. Any points are regarded as
atomic granuleswhich are indivisible; the union process is the
key to obtain the larger granules compared with atomic gran-
ules. Likewise, the whole space is a granule with the maximal
granularity; the decomposition process is the key to divide
the lager granules into smaller granules.

For two hyperdiamond granules �1 = (
1, 
1) and �2 =(
2, 
2), the union hyperdiamond granule is

� = �1 ∨ �2 = (
, �) ,


 = (12 (max {� (:, 1)} −min {� (:, 1)}) ,

(max {� (:,2)} −min {� (:, 2)}) ,

. . . , 12 (max {� (:, �)} −min {� (:, �)})) ,

� = 1
2�‖(��1, :) − � (��2, :)‖1,

(10)
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Figure 2: Distances between two granules in �2 space.

where � = �1∪�2, �1 = {
1−
1�� | � = 1, 2, . . . , �}, �2 = {
2−
2�� | � = 1, 2, . . . , �}, �� is the vector whose �th component is
1, and the other components are 0,

��1 = arg max � (:, 1) , ��2 = arg min � (:, 1) . (11)

For two hypersphere granules �1 = (
1, 
1) and �2 =
(
2, 
2), the union hypersphere granule is

� = �1 ∨ �2 = [
, �] = [12 (� + �) , 12 ‖� − �‖] , (12)

where� = 
1−
1(
12/‖
12‖), � = 
2+
2(
12/‖
12‖), 
12 =
2 − 
1 the vector from 
1 to 
2.
For two hypercube granules �1 = (
1, 
1) and �2 =

(
2, 
2), the union hypercube granule is

� = �1 ∨ �2 = (
, �) ,

 = min {
1 − 
1!, 
2 − 
2!} + �,

� = max (
1 ∨ 
2 − 
1 ∧ 
2) + 
1 + 
2,
(13)

where ! is the vectorwith the same length as vector 
1, and all
the components are 1.

For two hyperbox granules �1 = (x1, y1) and �2 =
(x2, y2), the union hyperbox granule is

� = �1 ∨ �2 = (x1 ∧ x2, y1 ∨ y2) . (14)

We explain the union process between granules in

Figure 3 for 2-dimensional space �2. Two granules �1 =
[0.1 0.2 0.2] and �2 = [0.25 0.25 0.2] represent two
hyperdiamond granules, hypersphere granules, or hyper-
cube granules in 2-dimensional space, the union hyperdia-
mond granule is [0.1750 0.2250 0.2791], the union hyper-
sphere granule is [0.1750 0.2250 0.38989], and the union
hypercube granule is [0.1750 0.2250 0.3]. Suppose two
hyperbox granules �1 = [0.1 0.2 0.2 0.4] and �2 =
[0.2 0.25 0.25 0.5] in 2-dimensional space, the unionhyper-
box granule is [0.1 0.2 0.25 0.5]. �ese union granules are
shown in Figure 3.

2.4. Granular Computing Classi�cation Algorithms Based on
Distance between Granules. �e granular computing classi	-
cation algorithms include two algorithms, the 	rst algorithm
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Figure 3: Unions between two granules. �e union granules are represented as the red lines.

is the training algorithm and the second algorithm is the
testing algorithm.

For training set TS, the training granular computing
classi	cation algorithms are proposed by the following steps.
Firstly, the samples are used to form the atomic granule.
Secondly, the threshold " of granularity is introduced to con-
ditionally unite the atomic granules by the aforementioned
union operator, and the granule set is composed of all the
union granules.�irdly, if all atomic granules are included in
the granules of GS, the union process is terminated, other-
wise, the second process is continued.�e training algorithm
is described as follows.

Suppose that the atomic granules with the same class
labels induced by TS are 	1, 	2, 	3, 	4, and 	5. �e training
algorithm can be described as the following tree structure in
Figure 4; leafs denote the atomic granules, root denotes GS
including its child nodes �2 and �3, �1 is induced by union
operation of child nodes 	1 and 	2,�2 is the union granule of�1 and	3, and�3 is the union granule of	4 and	5.�ewhole
process of obtaining GS is the bottle up process.

�e threshold ", which is the cut of granularity induced
by formulas (1a)–(1d) for the di
erent shapes of granules, is
selected in descending order. �e larger "means the granule

GS

G2 G3

G1

g1

g3 g5g4

g2

Figure 4: �e training process of TS including 5 samples.

set induced by Algorithm 1 including the larger granules,
conversely; the smaller " means the granule set induced by
Algorithm 1 including the smaller granules. For the same
training set, the smaller " means the induced granule set
including more granules compared with the larger ".

�e purpose of training algorithm is to obtain the granule
set and the corresponding class lab, which are used to predict
the class label of an unknown datum. �e testing data
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Input: Training set TS, threshold " of granularity, the class number �
Output: Granule set GS, the class label lab

(S1) initialize the granule set GS =⌀, lab =⌀
(S2) � = 1
(S3) select the samples with class �, and form set$
(S31) initialize the granule set GSt = ⌀
(S32) % = 1
(S33) for the %th sample �� in$, form the corresponding atomic granule ��
(S34) & = 1
(S35) by formulas (2), (4), (6), and (8), compute the distance ��� between the atomic granule �� and the &th granule �� in GSt

(S36) & = & + 1
(S37) 	nd the minimal distance ���
(S38) form the union granules by formulas (10), (12), (13), and (14), and determine the granularity of the union granule by
formulas (1a), (1b), (1c) and (1d) if the granularity of the union of �� and �� is less than or equal to ",
the granule �� is replace by the union, otherwise �� is the new member of GSt.

(S39) remove �� until$ is empty.

(S4) GS = GS ∪ GSt, lab = lab ∪ {�}
(S5) if � = �, output GS and class lab, otherwise � = � + 1

Algorithm 1: Training algorithm.

includingmultiple data and their class labels are used to form
the testing set, which is used to verify the performance of
granular computing algorithms. If the prediction class labels
of the testing data are same as the real class labels, the testing
data are classi	ed. Otherwise, the testing data are misclassi-
	ed. �e classi	cation accuracy is one of the performances
of granular classi	cation algorithms.�e testing algorithm is
described as Algorithm 2.

3. Experiments

Weevaluated the e
ectiveness ofDGrConboth two-class and
multiclass problems using Intel PIV PC with 2.8GHz CPU
and 2GB memory, running Microso� Windows XP Profes-
sional, andMatlab 7.0.Wemainly analyze and discuss DGrCs
with di
erent shape granules from training accuracy (Tr (%)),
testing accuracy (generalization ability) (Ts (%)), training
time (Tr (s)), and testing time (Ts (s)).

3.1. Two-Class Problems. �e spiral classi	cation is a di�cult
problem to be classi	ed and is used to evaluate the perfor-
mance of classi	ers. �e training data are generated by the
method proposed in [7]. �e training set and the testing set
in reference [8] are used to evaluate the performance of GrC.

�e threshold " of granularity is from 0.2 to 0 with step
0.001; the maximal testing accuracy is the selection indicator
of optimization algorithms. Performances of GrC with four
kinds of shape are listed in Table 1.�e training data and their
granules were shown in Figure 5 in which the single points
are the atomic granules. From the table, we saw that GrCwith
hypersphere granules achieved the optimization performance
because of theminimal size of GS including 88 granules when
" = 0.094, GrC with hypercube granules is poor because
of maximal size of GS including 99 granules when " =
0.079, and GrC with hyperdiamond granules touched the

Input: inputs of unknown datum �, granule set GS, the
class label lab
Output: class label of �
(S1) � is represented as granule 	
(S2) for � = 1: |GS|
(S3) compute the distance �� between 	 and 	� in GS
(S4) 	nd the minimal distance ��
(S5) 	nd the corresponding class label of the 	� as the
label of �

Algorithm 2: Testing algorithm.

best testing accuracy 	rstly. �e training time and testing
time are related to the size of granule set GS, so the granular
computing classi	cation algorithms with the minimal size of
granule set are our pursuits in the same conditions for the
maximal test accuracy.

3.2. Multiclass Problems. For multiclass problems, datasets
listed in Table 2 are selected from the UCI Machine Learn-
ing Repository (http://archive.ics.uci.edu/ml/) to test DGrC.
�ey are wall-following robot navigation data (sensor2, sen-
sor4, and sensor24) which are divided into training data and
testing data at random, optical recognition of handwritten
digits (optdigits) including training data and testing data,
pen-based recognition of handwritten digits (pendigits) in-
cluding training data and testing data, letter recognition (let-
ter) which is divided into training data and testing data, and
shuttle including training data and testing data. �ese data-
sets are used to verify the performances of DGrC from the
aspects of size, Tr (%), Ts (%), Tr (s), and Ts (s) (see Table 3).
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Table 1: Performance of GrC with di
erent shape granules.

Shapes " Size Tr (%) Ts (%) Tr (s) Ts (s)

Hyperdiamond 0.1 97 100 100 0.35938 0.015625

Hypersphere 0.094 88 100 100 0.3125 0.015625

Hypercube 0.079 99 100 100 1.4063 0.03125

Hyperbox 0.095 97 100 100 5.2656 0.0326
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Figure 5: Spiral classi	cation problem and GS (a) hypersphere granules, (b) hypercube granules, (c) hyperdiamond granules, and (d)
hyperbox granules.

Table 2: Multiclass problems.

Data sets Inputs Outputs Training size Testing size

Sensor2 2 4 3636 1820

Sensor4 4 4 3638 1818

Sensor24 24 4 3636 1820

Optdigits 64 10 3823 1797

Pendigits 16 10 7494 3498

Letter 16 26 13333 6667

Shuttle 9 7 43500 14500

For the selected datasets, the optimal testing accuracies
are 98.0769% (sensor2), 90.8691% (sensor4), 83.0220% (sen-
sor24) 97.997% (optdigits), 97.799% (pendigits), 94.765% (let-
ter), and 99.883% (shuttle) by KNN algorithms. We selected
the optimal parameters that maximized the testing accuracy.
DGrCs with 4 shapes are performed in the same environ-
ment, and the performance is listed in Table 3. From the table,
we can see, for the optimal testing accuracies, that DGrC
is better than KNN. (1) DGrC with hyperdiamond granules
achieved the best testing accuracies 92.4092%, 87.8022%, and
99.9448%, which are highlighted by black fonts, for datasets
sensor4, sensor24, and shuttle. (2) DGrC with hypersphere
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Table 3: Performance of DGrC on multiclass problems.

Data sets Shapes " Size Tr (%) Ts (%) Tr (s) Ts (s)

Sensor2

Hyperdiamond 0.005 948 99.67 98.3516 1.1875 0.2031

Hypersphere 0.0115 338 99.3674 98.4615 1.2031 0.1406

Hypercube 0.01 365 99.2299 98.1319 3.8125 0.0938

Hyperbox 0.004 1560 99.945 98.297 1.2031 0.71875

Sensor4

Hyperdiamond 0.0195 974 99.5052 92.4092 1.1563 0.2344

Hypersphere 0.0085 1387 99.9175 91.7492 0.9063 0.5938

Hypercube 0.0255 466 98.3233 90.4290 2.1563 0.1563

Hyperbox 0.00765 906 97.306 91.474 1.5469 0.8125

Sensor24

Hyperdiamond 0.4450 2154 99.6425 87.8022 9.2188 2.7969

Hypersphere 0.4450 1700 98.3773 83.2418 4.7031 2.4063

Hypercube 0.1750 2276 99.3674 75.6593 10.0625 3.7969

Hyperbox 0.265 2711 99.67 83.132 7.5469 6.4531

Optdigits

Hyperdiamond 1.99 3685 99.9738 97.4958 18.5625 4.813

Hypersphere 2 1005 100 98.1636 2.1094 2.4063

Hypercube 0.15 3823 100 96.3272 6.5781 12.2344

Hyperbox 2.1 2028 99.9738 98.0523 25.0625 7.1875

Pendigits

Hyperdiamond 0.62 2334 99.97856 97.5129 5.2500 2.3281

Hypersphere 0.28 4041 100 97.9131 5.0000 7.5000

Hypercube 0.25 2074 99.9733 97.5129 8.8594 4.2344

Hyperbox 0.64 5801 99.9466 97.9417 2.7031 9.6563

Letter

Hyperdiamond 0.13 11993 100 94.6603 7.0156 18.2188

Hypersphere 0.065 12685 100 94.7953 3.1719 28.0469

Hypercube 0.08 7350 100 90.2955 9.2344 19.9063

Hyperbox 0.5 10427 98.77 94.5853 6.9844 36.8438

Shuttle

Hyperdiamond 0.0028 3052 99.9931 99.9448 47 10.255

Hypersphere 0.0015 3348 100 99.9448 36.3125 10.8594

Hypercube 0.00006 5895 99.9977 99.9379 58.7969 31.1250

Hyperbox 0.0025 2920 99.9885 99.9379 26.2688 28.7813

granules achieved the optimal testing accuracies 98.4615%,
98.1636%, 94.7953%, and 99.9448% for dataset sensor2, opt-
digits, letter, and shuttle. (3) DGrC with hyperbox granules
achieved the optimal testing accuracy 97.9417% for pendigits.

4. Conclusions

�e granular computing classi	cation algorithms with di
er-
ent shape granules are proposed based on distance measures
in the paper. Firstly, a training datum is represented as an
atomic granule. Secondly, the distance measure between
granules is form based on the centers and granularities of
granules.�irdly, the training process is constructed based on
the union operator and the threshold of granularity jointly.
Finally, the proposed granular computing classi	cation algo-
rithms are demonstrated by the dataset selected from refer-
ences. DGrC is a
ected by the sequence of the training data
the same as the other granular computing. For the future
work, we will focus on the adaptive selection of threshold of
granularities and apply the granular computing to image
segmentations.
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