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Abstract Data granulation emerged as an important

paradigm in modeling and computing with uncertainty,

exploiting information granules as the main mathematical

constructs involved in the context of granular computing.

In this paper, we comment on the importance of data

granulation in computational intelligence methods. Toward

this aim, we discuss also the peculiar aspects related to the

analysis of non-geometric patterns, which have recently

attracted considerable attention by researchers. As a con-

clusion, we elaborate over the fundamental, conceptual

problems underlying the process of data granulation, which

drive the quest for a sound theory of granular computing.

Keywords Data granulation � Computational

intelligence � Analysis of non-geometric patterns �

Uncertainty measures

1 Introduction

Granular computing (Pedrycz and Chen 2014; Pedrycz

2013; Han and Lin 2010; Bargiela and Pedrycz 2008) is

typically portrayed as a research context intended as a

convergence of various modeling and computational

approaches for dealing with uncertainty. The modeling side

is essentially rooted on formal constructs called informa-

tion granules (IG) (Pedrycz et al. 2015, 2008). Information

granules are mathematical models describing data aggre-

gates; data in such aggregates are related to each other by

considering, for instance, functional and structural simi-

larity criteria. Well-known formal settings for implement-

ing information granules include (higher-order) fuzzy sets

(Wagner et al. 2015), rough sets (Qian et al. 2010; Ali

et al. 2013), and intuitionistic sets (Huang et al. 2013), for

instance. Information granules can be obtained in a data-

driven fashion in different ways (Yao et al. 2013; Salehi

et al. 2015). A prominent example comes from partition-

based approaches, which are typically implemented by

means of partitive clustering algorithms. However, for-

mation of information granules is not limited to partition-

based techniques (Salehi et al. 2015; Qian et al. 2014,

2015). Uncertainty is a pivotal concept in granular com-

puting and related aspects. In fact, one of the main goals of

information granules is to convey the uncertainty of

aggregated data in a synthetic but yet effective way.

Uncertainty is a powerful concept, which has been highly

exploited in many mathematical settings (Klir 2006).

Information theory is certainly the most prominent exam-

ple, which is rooted in the classical probability framework.

However, information-theoretic concepts have been

extended to modern models of information granules, such

as in the case of imprecise probabilities (Bronevich and

Klir 2010), fuzzy sets (Zhai and Mendel 2011), intuition-

istic fuzzy sets (Montes et al. 2015), and rough sets (Zhu

and Wen 2012; Chen et al. 2014; Dai and Tian 2013).

The computational aspects of granular computing are

intimately related with the research context called com-

putational intelligence (Livi et al. 2015). It includes nature-

inspired techniques for performing recognition, control,

and optimization tasks (Engelbrecht 2007). Related

methodologies are typically data-driven, in the sense that

such techniques rely on experimental evidence (data,
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patterns) in order to perform inductive inference (or gen-

eralization). In this setting, information granules are used

as computational components of data-driven inference

systems. Granular neural networks (Ding et al. 2014) are

only one of the many pertaining examples available in the

literature (Pedrycz 2013).

In this paper, we comment on the importance of data

granulation in Computational Intelligence methods. Sec-

tion 2 introduces the Computational Intelligence context,

posing the accent on pattern recognition aspects. We dis-

cuss also issues related to the analysis of the so-called non-

geometric patterns, which have recently attracted consid-

erable attention by researchers (Livi et al. 2015). Section 3

offers a glimpse of the rapidly-changing granular com-

puting domain. We highlight two specific aspects in this

paper: the (novel) interpretation of information granules as

patterns (Sect. 3.1) and the challenge of designing a cri-

terion for synthesizing information granules from data

(Sect. 3.2). The design of such criteria is deeply connected

with the fundamental, conceptual problems underlying the

process of data granulation, which drive the quest for a

sound theory of granular computing bridging both model-

based and data-driven perspectives. Finally, Sect. 4 con-

cludes the paper.

2 Computational intelligence methods

and the challenge for processing non-geometric

input spaces

The research context called computational intelligence (CI)

(Engelbrecht 2007) unifies several nature-inspired compu-

tational methods under a data-driven paradigm. Well-

known instances of such methods include neural networks,

fuzzy systems, evolutionary and swarm intelligence opti-

mization techniques. Typical problems faced by means of

CI methods include recognition problems (e.g., classifica-

tion, clustering, and function approximation) and those of

adaptive control (e.g., fuzzy control and data-driven opti-

mization via neural networks). CI is closely-related to the

soft computing discipline. Quoting from Bonissone

(Bonissone 1997) ‘‘The term soft computing (SC) repre-

sents the combination of emerging problem-solving tech-

nologies such as fuzzy logic (FL), probabilistic reasoning

(PR), neural networks (NNs), and genetic algorithms

(GAs). Each of these technologies provides us with com-

plementary reasoning and searching methods to solve

complex, real-world problems’’. Data-driven inductive

inference systems can be implemented in terms of soft

computing methodologies by departing from the assump-

tion of Boolean truth values and membership of elements

to classes. This goal was first obtained by means of the

celebrated Zadeh’s fuzzy logic (Zadeh 1965). Different

many-valued logics (and corresponding set-theoretic

frameworks) have been defined so far, such as rough sets

(Pawlak 1982), intuitionistic fuzzy sets (Atanassov 1986),

and the three-valued logic underlying shadowed sets

(Pedrycz 1998). Well-known applications of fuzzy logic

include rule-based (adaptive) fuzzy inference systems

(Nauck et al. 1997), modern evolutions of fuzzy neural

networks (Wu et al. 2014; Liu an Li 2004) and higher-

order fuzzy systems (Zhou et al. 2009; Pagola et al. 2013;

Wagner and Hagras 2010; Melin and Castillo 2013; Oh

et al. 2014).

Focusing on recognition problems (Theodoridis and

Koutroumbas 2008; Haykin 2007), the concept of pattern

plays an important role. Patterns are everywhere, such as in

climate physics, series of seismic events, complex bio-

chemical and biophysical processes, brain science, finan-

cial markets and economical trends, large-scale power

systems, and so on. Human knowledge and reasoning are

both founded on searching for such patterns and on their

effective aggregation to define meaningful concepts and

decision rules (Pedrycz 2013). However, formally speak-

ing, a pattern is essentially an experimental instance of a

data generating process, P. A process can be described as a

mapping P : X ! Y, idealizing a system (either abstract or

physical) that generates outputs according to inputs. X is

referred to as the input space (or domain, representation

space), where the patterns are effectively represented

according to some suitable formalism. Y, instead, is the

output space. In pattern recognition, the closed-form

expression of P is not known. Nonetheless, it is possible to

observe such a process through a finite dataset, S. The

problem typically boils down to reconstructing a mathe-

matical model of P, say M, by analyzing S. To be useful in

practice, a mathematical model M, once established, must

be adapted to the problem at hand. In practice, learning or

synthesizing a model M from S consists in optimizing

some criterion, i.e., a performance measure that allows to

tune the model parameters to the data instance at hand.

Such a model is then evaluated (used) by considering its

generalization capability on unseen test patterns. Pattern

recognition techniques can be grouped in two mainstream

approaches: discriminative, such as support vector machi-

nes (Schölkopf and Smola 2002) and adaptive fuzzy

inference systems (Sadeghian and Lavers 2011), and gen-

erative, like the hidden Markov models (Bicego et al.

2004) and the recently-developed deep convolutional

neural networks (Sainath et al. 2014). Of course, also

hybridized formulations exist.

Computational intelligence methods are typically

designed relying on the assumption that the input space, X ,

is essentially a subset of Rd. When departing from the Rd

pattern representation, theoretical and practical problems
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arise, which are mostly due to the absence of an intuitive

geometric interpretation of the data. However, many

important applications can be tackled by representing

patterns as ‘‘non-geometric’’ entities. For instance, it is

possible to cite applications in document analysis (Bunke

and Riesen 2011), solubility of E. coli proteome (Livi et al.

2015), bio-molecules recognition (Ceroni et al. 2007; Rupp

and Schneider 2010), chemical structures generation

(White and Wilson 2010), image analysis (Serratosa et al.

2013; Morales-González et al. 2014), and scene under-

standing (Brun et al. 2014). The availability of interesting

datasets containing non-geometric data motivated the

development of pattern recognition and soft computing

techniques on such domains (Livi et al. 2014, 2015; Rossi

et al. 2015; Fischer et al. 2015; Lange et al. 2015; Schleif

2014; Bianchi et al. 2015). Non-geometric patterns include

data which are characterized by pairwise dissimilarities

that are not metric; therefore they cannot be straightfor-

wardly represented in a Euclidean space (Pȩkalska and

Duin 2005). A particularly interesting instance of such non-

geometric data is constituted by structured patterns. A

labeled graph is the most general structured pattern that is

conceivable, since it allows to characterize a pattern by

describing the topological structure of its constituting ele-

ments (the vertices) through their relations (the edges)

(Livi and Rizzi 2013). Both vertices and edges can be

equipped with suitable labels, i.e., the specific attributes

characterizing the elements and their relations. Sequences

of generic objects, trees, and automata, for instance, can be

though as particular instances of labeled graphs.

Figure 1 offers a schematic, visual representation of the

typical stages involved in the use of CI methods for

recognition purposes. By means of a training set (Tr in the

figures), a model is synthesized and then used during the

so-called testing stage by processing unseen data (denoted

as Ts). Such a schematic organization is valid for both Rd

(Fig. 1a) and non-geometric (Fig. 1b) data as well. How-

ever, in order to properly use standard CI methods in the

case of non-geometric data, the input space must be pro-

cessed with particular care. Notably, three mainstream

approaches can be pursued (Livi et al. 2015): (i) using a

suitable dissimilarity measure operating in the input space,

(ii) using positive definite (PD) kernel functions, and (iii)

embedding the input space in Rn. The choice depends on

the particular data-driven system adopted for the task at

hand and on other factors, such as the computational

complexity and the specific application setting. The first

case is the most straightforward one, but its use is legiti-

mate only if the data-driven system does not require a

specific geometrical structure of the input space. In fact, a

dissimilarity measure might not be metric; therefore also

not Euclidean. The second case is a typical choice in the

case of kernel methods—such as support vector machines.

Positive definite kernels can be obtained only if the

underlying geometry is Euclidean. However, if such a

requirement does not hold, corrections techniques could be

used to rectify the data (Livi et al. 2015). The last approach

consists in mapping (i.e., embedding) the input data into a

vector space, typically Rn. In this way, conventional CI

methods can be used without alterations.

3 Granular computing as a general data analysis

framework

Granular computing (GrC) can be pictured as a general

data analysis framework (or a data analysis paradigm)

founded on IGs. Information granulation is a the basis of

GrC: from the formation of sound IGs to their use in

intelligent systems. IGs are the main mathematical con-

structs involved in the process of GrC. Several formalisms

are available to implement IGs, such as fuzzy and rough

Fig. 1 Schematic representations of a data-driven inference system

operating in R
d (a) and considering non-geometric (b) data,

respectively
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sets (Yao et al. 2013). Such mathematical frameworks

offer solid bases on which designing IG models and their

operations. However, an issue arises when we project our

perspectives in a data-driven context, that is, when we try

to extract (or synthesize) IGs from empirically observed

data. A criterion to synthesize IGs from data is thus of

utmost importance, since (i) it provides a way to formalize

ideas under a common umbrella facilitating their practical

and formal evaluations, and (ii) it lies at the basis of any

consistent, formal theory. We suggest that a criterion for

synthesizing IGs should play the same role as the one

played by error functions in learning from data. A sound

criterion for synthesizing IGs would lay the groundwork

for conceiving a formal theory of GrC. Nonetheless, to date

a general, unified, and consolidated theory of GrC, bridging

model-based and data-driven perspectives in information

granulation, is currently missing.

The integration of IG constructs and CI systems, such as

pattern recognition and control systems, is nowadays well-

established. For instance, granular neural networks offer an

interesting example (Ding et al. 2014; Zhang et al. 2008;

Ganivada et al. 2011; Song and Pedrycz 2013). Granular

neural networks are basically extensions of typical artificial

neural network architectures, which incorporate a mecha-

nism of information granulation at the weights level or

within the neuron model. In the first case, numerical

weights modeling the synaptic connections of the network

are realized in term of IGs—e.g., interval, fuzzy and rough

sets. A particularly interesting consequence of this design

choice is the fact that a granular neural network typically

produces a granular output, hence consistent with the

framework chosen for the IGs. Another interesting appli-

cation of IGs can be cited in higher-order fuzzy inference

systems (Biglarbegian et al. 2010; Gaxiola et al. 2014;

Soto et al. 2014; Mendel 2014). Fuzzy inference systems

and their extensions played a pivotal role in many appli-

cations in the last few decades. Higher-order fuzzy infer-

ence systems employ fuzzy sets of higher type instead of

the original (type-1) fuzzy sets for handling the uncertainty

of the input–output mapping and for performing the

inference (e.g., rule composition). Clustering is another

important research endeavor in which the GrC paradigm

plays an important role (Tang and Zhu 2013; Linda and

Manic 2012; Izakian et al. 2015). In fact, clustering algo-

rithms are one of the most prominent example of tech-

niques to generate IGs—technically, via the generation of a

partition of the input data. Here IGs find a one-to-one

mapping with clusters, which are typically endowed with

some mathematical construct in order to offer a synthetic

description of the data together with its characteristic

uncertainty. IG constructs (mostly fuzzy sets) have been

used also in problems of optimization and decision-making

(Liang and Liao 2007; Kahraman et al. 2006; Pedrycz

2014; Wang et al. 2014a, b; Pedrycz and Bargiela 2012). In

fact, both problems are typically affected by uncertainty at

different levels: in the problem definition (e.g., constraints)

or by considering the output (e.g., decision variables). It is

worth citing the use of higher-order fuzzy constructs also in

time series analysis (Chen and Tanuwijaya 2011; Huarng

and Yu 2005), where either the time and amplitude (e.g.,

the time series realizations) domains are subjected to

proper granulations. Finally, rough set theory found con-

siderable application in many data analysis contexts. The

rough set construct can be used to identify a reduced ver-

sion of the original set of attributes pertaining to a decision

system. As a consequence, rough sets found considerable

application in feature selection and classification systems

(Thangavel and Pethalakshmi 2009; Swiniarski and

Skowron 2003; Foithong et al. 2012).

A founding prerequisite that an IG should satisfy is the

capability of handling the uncertainty of the low-level

entities that it aggregates. Klir (1995) states that ‘‘The

nature of uncertainty depends on the mathematical theory

within which problem situations are formalized’’. This fact

suggests that the mathematical description of the data

uncertainty pertaining a specific situation/process is not

absolute, although it should be possible a reasonable and

consistent mapping among the various theories. As a con-

sequence, the specific setting on which IGs are defined

affects in turn the way the data uncertainty is handled and

therefore used in practice by an intelligent system operat-

ing through data granulation. Nonetheless, as postulated in

Refs. (Livi and Sadeghian 2015; Livi and Rizzi 2015), the

level of uncertainty conveyed by an IG defined according

to some mathematical setting should be monotonically

related to the uncertainty expressed by some other IG

defined in a different setting. This suggests that, given

some experimental evidence, the level of uncertainty is

what should be preserved during data granulation, regard-

less of the formal setting used for defining IGs.

3.1 Information granules as data patterns

From a mathematical viewpoint, IGs are considered as

formal constructs endowed with proper operations, such as

intersection and union, to allow for symbolic manipula-

tions. From a more operative perspective, instead, IGs

typically play the role of computational components in

some data-driven inference mechanism; as discussed in the

previous sections. Nonetheless, more recently researchers

(Ha et al. 2013; Guevara et al. 2014; Livi et al. 2013,

2014; Rizzi et al. 2013) realized that IGs could be con-

sidered also as a particular type of (non-geometric) pat-

terns. This perspective opens the way to a multitude of

future research works. For instance, it could be interesting

to face typical pattern recognition problems, such as
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clustering, classification, and function approximation,

directly in the space of IGs. Technical issues involved in

this process could be faced by exploiting the methods

already developed for the non-geometric domains intro-

duced in Sect. 2. Here, similarity measure for IGs (e.g.,

higher-order fuzzy sets, intuitionistic sets, and rough sets

(Zhao et al. 2014; Chen and Chang 2015; Tahayori et al.

2015) could offer an important technical bridge between

those fields. The process of data granulation implements an

abstraction of the original data. This suggests that facing a

data-driven problem in the space of IGs would required a

different interpretation, offering thus also qualitatively

different insights for the problem at hand.

3.2 General criteria for a justifiable data

granulation

The quest for a general, sound, and justifiable criterion by

which synthesizing IG from empirical evidence plays a

pivotal role in GrC. IGs, in the data-driven setting, are

obtained by means of an algorithmic procedure operating

on some (typically, but not necessarily, non-granulated)

input dataset. As previously stated, there are many math-

ematical models suitable for modeling IGs, like hyper-

boxes, (higher-order) fuzzy sets, shadowed sets, rough sets,

and hybrid models (Pedrycz et al. 2008). All those models

are framed in specific theories, having well-defined math-

ematical operations and descriptive measures. However,

when facing (data-driven) problems involving the synthesis

of IGs from a given dataset (experimental evidence), a

sound and general criterion must be adopted. Such a cri-

terion should be general, in the sense that it should work

regardless of the specific IG model that is adopted. In fact,

a general theory of GrC should not be conceived by

focusing on specific mathematical formalisms for IGs. In

addition, the criterion should be mathematically sound,

meaning that it should admit a well-defined mathematical

formulation, allowing thus for rigorous implementations,

extensions, and validations. According to the perspectives

offered in Sect. 2, we would be tempted to suggest that

such a criterion should be applicable also regardless of the

nature of the input data domain (e.g., numeric or not). In

our opinion, such a criterion would provide the basic

component for aiming toward a formal and unified theory

of GrC, bridging both model-based and data-driven

perspectives.

Despite the considerable effort recently devoted to the

design of granulation procedures (algorithms for generating

IGs) (Yao et al. 2013; Salehi et al. 2015) and formal GrC

frameworks (Qian et al. 2014, 2015), to our knowledge it is

possible to cite only two instances of such a criterion: the

Principle of Justifiable Granularity (PJG) (Pedrycz and

Homenda 2013) and the Principle of Uncertainty Level

Preservation (PULP) (Livi and Sadeghian 2015).

3.2.1 The principle of justifiable granularity

The PJG (Pedrycz and Homenda 2013; Pedrycz 2011) has

been developed as a guideline to form IGs from the

available (experimental) input data. IGs generated follow-

ing such a principle have to comply with two conflicting

requirements: (i) justifiability and (ii) specificity. The first

requirement insures that each IG would cover a sufficient

portion of the experimental evidence. This means that a

well-formed IG should not be too specialized. On the other

hand, the second requirement provides a way to generate

IGs that are not too dispersive, in the sense that an IG

should come also with a well-defined semantics. Such two

requirements taken together allow for a data-driven, user-

centered, and problem-dependent synthesis of IGs from

specific input datasets. The PJG itself is general—it has

been successfully used to generate different IG types,

including fuzzy sets and shadowed sets—and mathemati-

cally sound—it usually takes the form of an optimization

problem. However, being designed in a user-oriented per-

spective, it is not conceived to directly offer a built-in

mechanism to objectively evaluate the ‘‘quality’’ of the

granulation itself. To this end, it is necessary to rely on

external performance measures to quantify and judge over

the quality of an IG.

3.2.2 The principle of uncertainty level preservation

Principle of uncertainty level preservation (Livi and Rizzi

2015; Livi and Sadeghian 2015) elaborates on a different

perspective, by considering data granulation as a mapping

between some input and output domain. PULP takes

inspiration from the principles of uncertainty (Klir 1995),

formulated by Klir few decades ago. A quantification of the

uncertainty is considered in PULP as an invariant property

to be preserved during the process of data granulation, i.e.,

when assigning an IG to a given input dataset. Uncertainty

in PULP assumes the form of entropy expressions,

exploiting the fact that the concept of entropy is well-de-

veloped in many mathematical settings, such as those of

probability and fuzzy set theory. Therefore, synthesis of

IGs is effectively casted in an information-theoretic

framework, where the entropy measured for the input

evidence is used as a guideline to form output IGs. Nota-

bly, the difference among the input–output entropy is

considered as the granulation error, which needs to be

minimized in order to reach a satisfactory result. PULP

allows for a nonlinear relationship among the input–output

entropy by considering a suitable monotonically increasing
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function, bridging the two frameworks that define the input

and output uncertainty quantifications, respectively.

Moving to mesoscopic descriptors, such as those pro-

vided by entropic characterizations, allows to conceived

data granulation on a more abstract perspective. This fact

has a number of benefits: (i) it automatically provides a

way to quantify the quality of the granulation itself by

objectively relying on the input–output uncertainty differ-

ence; (ii) it is applicable to any form of input data and IG

formalism (at least to those where entropic functionals can

be developed), and (iii) it allows to judge over the per-

formance of different data granulation procedures operat-

ing in the same experimental conditions.

4 Concluding remarks

We would like to conclude this paper by posing a question:

is granular computing an intrinsically experimental disci-

pline? In other terms, is it possible to conceive an axio-

matic theory of granular computing on which consistently

develop both theoretical results and algorithmic solutions

to perform data granulation and related operations? Of

course, in the affirmative case, such a theory should be

general, without focusing on specific models of informa-

tion granules. A very important issue, as discussed in this

paper, would be a criterion to bridge the model-based and

data-driven perspectives of information granulation. That is

to say, how should we perform data granulation? By fol-

lowing what criterion? We suggest that such a criterion

would play an important role in the quest for a unified and

sound theory of granular computing.
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