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ABSTRACT 
 

  This dissertation is devoted to a theoretical and experimental study of the granular 

contact lubrication, both. The theory is based on the kinetic of the granular material where the 

granules interact with each other and with the boundary surfaces through instantaneous, binary 

collisions, characterized by a constant coefficient of restitution. Specifically this study focuses on 

granular lubrication in Couette flows. A series of simulations is reported and the results show 

good agreement with several published papers. Also, a theory that ties the true temperature to the 

grain mobility is developed. The true temperature of a granular material depends on the balance 

between the source of energy and the dissipation of energy due to inelastic collisions. 

 In treating rapid shearing regime the collision is generally considered to be instantaneous. 

However, in a dense regime and at relatively small sliding speeds, the contact time between the 

granules is larger than the time between collisions and thus the friction between the granules 

starts to play an important role. Therefore, the effect of enduring contact becomes dominant over 

that of the kinetic and collisional stresses. The enduring contact between granules is into 

consideration by making use of Coulomb friction model. The results reveal that the enduring 

contact is a strong function of the solid volume fraction and its effect tends to dominate the 

solution at relatively small sliding speeds. 

 A series of experimental investigations is presented that demonstrate the lift phenomenon 

observed in an annular shear cell apparatus. The effects of the friction coefficient and the surface 

roughness are expressed as a function of the rotational speed and the applied load. The 

theoretical results and the experimental measurements are compared. The results of experiments 

provide a unique quantitative evidence for the measure of the phenomenon of the lift. 

Furthermore, a series of experimental investigation on the nature of stick-slip associated with 

granular materials sheared at low speeds is demonstrated. The results reveal the occurrence of 

stick-slip at low speed. The behavior of the stick-slip is similar to the results presented by several 

researchers interested in physics and geology fields. 
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CHAPTER 1. INTRODUCTION 
 

1.1 Introduction 

Research in granular flow has a rich history of development dating back to more than a 

century ago. Reynolds [1] was probably the first to lay the foundation of granular flow by 

describing the dilation property of closely-packed assembly of granular material. Over a half a 

century later following the Reynolds’ study, researchers with expertise in fluid mechanics have 

studied granular flows beginning with Bagnold [2] who performed a pioneering experimental 

study of the flow of granular material under shear. In his experiment, dispersed solid spherical 

granules of uniform size was used and sheared between two concentric drums. Bagnold’s 

experiments shed light on two distinct regimes: granule-inertia regime and macro-viscous 

regime. A third transition regime was also established and empirical relations for shear stress 

were formulated.  

Over the last two decades there has been significant interest in lubrication characteristics 

of granular material. Conventional lubricating oils are completely ineffective beyond a certain 

operating temperature. They tend to break down at operating temperature exceeding 200 
o
C, 

degrading their ability to support load. This is in part due to the fact that viscosities of most 

motor oils decay exponentially with increasing temperature. Unlike conventional lubricants, 

which ordinarily become ineffective beyond 200
o
 C, a suitable granular material can effectively 

lubricate a bearing under extreme temperatures and can resist breaking down as a result of large 

shear forces. For example, the viscosity of SAE-40 oil at 204
 o

C (400 
o
F) is approximately 1.3% 

of its viscosity at 15.5
 o

C (60 
o
F). This presents a serious problem for the development of the 

future generation of bearings that need to operate at elevated temperature of 600 
o
C and beyond. 

Thus, alternative lubricants that could withstand extreme temperatures need to be explored. Fine 

granular lubricants have been introduced as a promising solid material for this specific purpose. 

Heshmat [3] reported the first documented experimental investigation of the lubrication 

characteristics of powders. He injected Titanium Dioxide (TiO2) into the clearance of a slider 

bearing to measure the pressure generated across the bearing length (see Figure 1.1). He found 

that the powder lubricant produce pressure profiles similar to those of oils and he referred to this 

type of powder flow as “Quasi-Hydrodynamic Lubrication”. He pointed out that the peak 

pressure of the powder lubricant was skewed towards the bearing’s trailing edge more than the 
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conventional lubricants. Heshmat [4] determined that there were certain conditions related to the 

range of granular size relative to the bearing surface features, which should be satisfied in order 

for the quasi-hydrodynamic lubrication to hold. He reported that very small granules tend to 

conglomerate and form a kind of solid wedge, while bigger granules behave more like 

intermediate elastic bodies that cause abrasive wear. 

 

 

Figure 1.1 : Heshmat’s Experimental Test Rig [3] 

 

To gain insight into granular lubrication, one must study the flow behavior of granular 

materials as they undergo a shearing action within a thin clearance space. Granular flow refers to 

the motion of an assembly of solid components of granules. In general, prediction of this 

granular material behavior is very complex. The instantaneous motions of grains, their 

transitional velocities and spins are different from the mean motion of the bulk. Individual 

granules may interact with one another in various ways. The stresses are generated through 

sustained rolling or sliding contacts in rigid clusters of granules, or by instantaneous collisions 

through which linear and angular momentum are exchanged and the energy is dissipated because 

of the inelasticity and friction. 
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To investigate the granular lubrication phenomenon, we concentrate our attention on 

granular flows in the rapid shearing and transient regimes. In the analysis of the rapid shearing of 

granular material, the collision between the particles provides the principal mechanism for the 

transportation of momentum and energy. If the assumption of continuum holds, then the kinetic 

theory of dense gases can be applied to derive the balance laws and the constitutive relations for 

idealized granular material. The behavior of granular material in motion is compared with the 

conventional fluid-mechanical phenomenon. Accordingly, the individual grains are treated as the 

molecules of a granular fluid. The main difference between molecules and grains is that 

collisions of the latter are inevitably inelastic; hence, there is energy loss due to grains collisions. 

 

1.2 Literature Review 

The study of powder flow has become a fascinating research topic in recent years. One 

motivation for this is the development of Integrated High Performance Turbine Engine 

Technology (IHPTET) which calls for engine operation at very high temperatures. Yet, a 

thorough understanding of the flow characteristics of granular material within the context of 

lubrication is still lacking. 

For a general granular material, the procedure used for the development of governing 

equations and the constitutive equations (consisting of stresses, energy flux and the collisional 

rate of energy dissipation) is similar to the approach employed in the kinetic theory of dense 

gases, where the granular particles are playing the role of molecules. The theory applied is an 

extension of the original kinetic theory of Maxwell. Therefore, the theory of powder lubrication 

is developed from the fundamental principles of fluid mechanics with appropriate formalism. 

This theory is capable of providing a complete description of the behavior of powders as they 

flow inside the clearance space of a hydrodynamic bearing. 

From the microstructure point of view, a number of researchers have dealt with the rapid 

shear flows. Savage and Jeffrey [5], made the first attempt to apply the ideas contained in the 

theoretical work dealing with dense gases. They proposed a theory to determine the stress tensor 

for granular material in a rapid simple shear flow. They assumed that the grains are made of 

uniform, smooth, and perfectly elastic spheres. The binary collisions between the spheres were 

assumed to be responsible for most of the momentum transport. The single granular velocity 

distribution function was taken to be locally Maxwellian. They assumed a modification to the 
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radial distribution function of Carnahan and Starling [6] to account for anisotropy in the spatial 

distribution of the particles. The components of the stress tensor were expressed as integrals 

involving a non-dimensional parameter directly related to the dissipation properties of the 

system.  

Extension of Savage and Jeffrey’s work to incorporate energy dissipation was performed 

by Jenkins and Savage [7] and Lun et al. [8]. Jenkins and Savage [7] developed a theory 

applicable to general deformations of a granular material made up of smooth, nearly elastic, 

spherical particles. Lun et al. [8] dealt with simple shear flow with no gradients of the velocity in 

the y-direction. The collision integrals involving the non-dimensional parameter related to the 

dissipation properties of the system presented by Savage and Jeffrey [5], were evaluated both 

numerically and by asymptotic analysis. The predicted theoretical results agreed with those 

measured. 

To gain more insight into the behavior of granular flows, several researchers studied the 

rotational inertia and the surface friction of grains.  The development of these theories came from 

the study of Jenkins and Richman [9] for systems of smooth, inelastic circular discs; Jenkins and 

Richman [10] for rough, inelastic circular discs and spheres; and Jenkins and Mancini [11] for 

both binary mixtures of smooth, inelastic, circular discs and spheres. Moreover, Lun and Savage 

[12] studied the effect of an impact velocity dependent coefficient of restitution for rough, 

inelastic, spherical particles, while Walton [13] considered the effect of frictional force for the 

spheres. These theories consist of the balance equations for certain mean flow fields and the 

constitutive relations that measure the rate at which momentum and energy are transferred 

throughout the flow. 

Haff [14] put forward a general theory for the flow of granular materials. In Haff’s 

theory, the behavior of granular material in motion was studied and compared with the 

conventional fluid-mechanical phenomenon. The individual grains were treated as the molecules 

of the granular fluid. The main difference between molecules and grains was that collisions of 

the latter were inevitably inelastic. Haff [14] wrote down a set of complete equations, which 

were modeled based on the usual equations of hydrodynamics. Haff’s view of granular flows 

was motivated by the molecular motion within a dense gas and his theory had the same structure 

as the corresponding kinetic theories. The appropriate conservation laws were expressed in terms 

of macroscopic variables and a complete model was formulated by direct appeal to the nature of 
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grain-grain collisions. In Haff’s theory, the microscopic properties of the flow were described 

without carrying out statistical averaging. Nevertheless, several unknown parameters in his 

model remained unevaluated, which could have helped in more realistic predictions. 

Johnson and Jackson [15] introduced a more complicated model which included the 

effect of enduring contact. They assumed that some particles were sliding while others were 

colliding (frictional-collisional mechanism). Both normal and tangential friction of sliding 

particles was related by the Coulomb law of friction. The normal and tangential forces were 

dominant when the granules were densely packed, and the momentum transfer due to collisions 

was dominant when the granules were widely spaced. In Johnson and Jackson’s model, they 

considered a case where interparticle contacts are of intermediate duration in the flow region. 

Further reading on the applicability of this model to tribology is presented by Johnson and 

Jackson [15], Elrod [16] and Khonsari [17].   

The utility of granular lubricants in applications involving auxiliary bearings particularly 

for use during start-up periods have already been demonstrated by Kaur and Heshmat [18]. The 

application of the pelletized dry particulate that provides a long life and low power loss backup 

bearing was investigated by Kaur and Heshmat [18] who developed a prototype of a self-

contained solid/powder lubricated auxiliary hydrodynamic bearing. The tests were conducted 

using several durations, with a bearing operated up to 30,000 RPM, and loads up to 445 N 

resulting in a validation for the powder lubricated bearings with wider range of operating 

conditions.  

Craig et al. [19] studied the rapid shearing flow of dry metal powders in an annular shear 

cell. Their results showed the dependence of the normal and shear stresses on the shear rate, and 

a significant dependence on the gap thickness and the solid volume fraction. Heshmat [20] was 

the first to relate a powder lubrication mechanism to a hydrodynamic fluid film. He found that a 

sheared layer of the compacted powder generates profiles resembling the fluid film bearing. 

Heshmat [3] conducted the first documented experiment to investigate the lubrication 

characteristics of powder lubricant as it flows in the clearance space of a bearing. He showed that 

the ensuing pressure distribution generated is remarkably similar to that of a liquid lubricant.  

Experimental evidence of Savage and Sayed [21], and Hanes and Inman [22] 

demonstrated that differences in the boundaries that drive identical granular shear flows may be 

responsible for very significant differences in the stress induced. Yu et al. [23] introduced an 
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approximate theory from momentum considerations and performed experiments based on 

granular material (glass granules) contained in an annular cell formed by flat, parallel plates, and 

then by a series of convergent wedges. By measuring the normal and shear stresses developed by 

the cell, they validated the concept of lubrication through granular collisions. Strong boundary 

effects on the stresses were also realized in the shear cell experiments of Yu and Tichy [24].  

To capture some of the powder lubrication features, Dai et al. [25] addressed the variable 

geometry boundary problem by applying Haff's constitutive relations and energy and momentum 

equations to the powder flow of the slider bearing. They presented theoretical derivations based 

on the no-slip boundary condition as well as for a situation where a slip distribution function was 

imposed on the surface. Their theory replicated the trends of the pressure profile measured 

experimentally by Heshmat [3]. In order to predict the powder flow using a continuum approach, 

Yu et al. [23] proposed the concept of granular collision lubrication by considering the 

collisional normal stress generated by kinetic energy of the granules and the lubrication normal 

stress due to converging surfaces. They developed a theory, from momentum considerations, for 

interpreting the experimental results.  

McKeague and Khonsari [26] generalized the boundary interactions for powder 

lubricated Couette flows following the work of Hui et al. [27] and Jenkins and Richman [9]. 

They provided a set of equations that governs the boundary conditions of the flow velocity and 

the granular temperature without the need of the slip function. The results of the theory were 

found to be in good agreement with other authors who have investigated granular Couette flows 

using direct computer simulations of granular collisions such as those published by Campbell 

[28] and Elrod and Brewe [29].  

On the general modeling of granular flows, Lun et al. [8], in a frequently cited paper, 

developed the complete set of constitutive equations including the viscous dissipation term in the 

pseudo energy equation. This viscous dissipation was found to be important by Zhou and 

Khonsari [30] in the simulations of powder lubricants. Following the work of Johnson and 

Jackson [15], Zhou and Khonsari [30] derived the appropriate governing equations of the 

granular material sheared between two infinitely long parallel disks to predict the mean velocity, 

the pseudo temperature (fluctuation velocity), and the solid volume fraction of the granular 

material across the gap. Sawyer and Tichy [31] performed numerical and particle simulations to 

generate results that were compared to the granular experiments of Yu and Tichy [24]. They 
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found that trends of both methods were in agreement but the theory over-predicted the 

experimental results of the normal load and the shear force.  

The powder lubrication theory of Dai et al. [25] and McKeague and Khonsari [26] is 

entirely based on the Haff’s continuum theory. In that theory, particles do not possess an 

enduring contact, the friction between particles is neglected, and the viscous dissipation in the 

energy dissipation is neglected to provide an analytical solution. This means, the stress field is 

governed entirely by the collision and kinetic stress. 

In a classification of dry particulates used as lubricants Wornyoh et al. [32] presented a 

thorough literature review covering the last five decades of published papers. They categorized 

the works in dry particulate tribology literature expressing the theory, experiments and numerical 

simulations. Pertinent literature of interest in the present chapter include the work of Yu and 

Tichy [24] whose experiments revealed that at low speeds, the rotation is accompanied by 

grinding and some crushing noises due to the high frictional forces between the compressed 

granules and the surfaces. By increasing the speed, the grinding and crushing noises subsided 

and the lower cylinder disk began to lift off, hence, surfaces separated from each other.  

To gain insight into granular lubrication, one must study the flow behavior of granular 

materials as they undergo a shearing action within a thin clearance space. Based on Johnson and 

Jackson [15], the recent powder lubrication theory published by Zhou and Khonsari [30], and 

Pappur and Khonsari [33] predicted that powders are capable of generating a lifting force even if 

placed in a configuration of two parallel disks in relative motion. This is intriguing because the 

hydrodynamic theory of Newtonian fluids predicts that parallel disks are incapable of generating 

any load-carrying capacity.  

For several years, the science and application of third body tribology have been 

investigated by researchers. A flow transition between two regimes is experienced: the kinetic 

regime which occurs at low pressure and high speed and the load is essentially transmitted by 

collisions between the third body granules, and the quasi-fluid regime which occurs when the 

third body is compressed and the contacts between the granules last for longer periods. To shed 

light on the transition between kinetic and quasi-fluid regimes, Iordanoff et al. [34] proposed an 

investigation concerning the interactions between microscopic properties of the solid third body 

and the macroscopic behavior of the contact. Their discrete model uses the distinct element 

method (DEM) in order to understand phenomena occurring in dry contact. They showed that the 
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particle size has a weak influence when inter-particle forces are repulsive but has a dramatic 

influence when inter-particle adhesion is considered: solid third body goes from a quasi-fluid to a 

quasi-solid behavior. Iordanoff and Khonsari [35] reported the development of a quasi-two-

dimensional particle dynamic simulation program, which yielded good agreement between the 

predictions of the particle dynamic simulations and the kinetic model. Furthermore, they 

demonstrated a link for the flow transition between both regimes. 

In order to quantify the normal and shear stress behavior of binary mixtures of dry 

particulate solids, Hassanpour et al. [36], conducted experiments using an annular shear cell and 

performed a series of numerical simulations using the distinct element method (DEM). They 

found that the mixtures of different sizes of glass granules indicate a highly non-linear particle 

displacement distribution across the shear layer. They indicated that the behavior of the mixture 

is an intermediate regime between quasi-static and rapid shear flows. Higgs and Tichy [37] 

studied the continuum modeling of shear behavior of various granular flows using a granular 

kinetic lubrication model (GKL) of simple shearing flow. New parametric curves for the local 

flow properties of large-particle granules were constructed. Their numerical model showed 

qualitative agreement but over-predicts quantitatively with past annular shear cell experiments 

using glass granules.   

Based on particle dynamic model, Fillot et al. [38] developed a third body source flow 

model allowing particle detachment of a granular material. They found that there is no 

correlation between degradation and friction coefficient measured, and concluded that changes in 

properties of the third body – such as its cohesion and damping – provide equivalent 

degradations in both kinetic and fluid regimes whereas they affect the friction coefficient 

dramatically. Their examination of the friction coefficient confirmed the ideas found in the work 

presented by Wang and Kato [39] concerning the non-correlation between friction and wear. 

Based on Johnson and Jackson’s granular theory, Jang and Khonsari [40] developed a 

general theory for characterization of powder flow within the context of the lubrication. 

Specifically, they derived a 3D generalized Reynolds equation that predicts the pressure profile 

in a bearing with any specified film profile. The flow velocity, volume fraction, and pseudo 

temperature (granular fluctuations) were predicted simultaneously. They studied the 

characteristics and analyzed the behavior of the granular powder, and showed that the pressure 

profile was, indeed, very similar to the conventional fluid-film hydrodynamic lubrication. 
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Moreover, comparison with experimental results of Heshmat yielded good agreement both in 

trend and magnitude. Tsai and Jeng [41] analyzed the performance of hydrodynamic journal 

bearings using grain flow based on Haff’s grain flow theory. They found in their predicted 

numerical results consistency with the experimental results found by Heshmat and Brewe.  
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CHAPTER 2. SCOPE OF THE RESEARCH 
 

Granular collision lubrication is a ground-breaking subject in the field of tribology. 

Recently, several investigations were done to confirm that the use of an appropriate granular 

material such as Titanium Dioxide (TiO2) or Molybdenum Disulfide (MoS2) in a bearing 

clearance can provide very efficient lubrication. The innovative experiment of Heshmat [3] and 

related development as reported by Kaur [42] have proven the capability of powders to generate 

“hydrodynamic type” pressure similar to the conventional lubricants, and thus yield positive 

load-carrying capacity.  

The motivation for this dissertation arises from the need for bearing technology that can 

accommodate the future generation of engines aiming higher thermodynamic efficiency, less fuel 

consumption, and increased thrust-to-weight ratio in turbine engines.  While the need for oil-free 

granular lubrication has been identified, the modeling and prediction of granular flows within the 

context of lubrication still remains poorly understood.  

The theory presented in this dissertation closely follows the work of Zhou and Khonsari 

[30], Johnson and Jackson [15], Lun and Savage [12], Hui and Haff [27], and Jenkins and 

Savage [7]. A realistic constitutive equation introduced by Lun et al. [8] is utilized to study the 

mechanism of granular lubrication. The effect of viscous dissipation term, neglected by 

McKeague and Khonsari [26, 43], is included in the pseudo energy equation. This theory is 

applied to investigate granular lubricant sheared between two parallel plates. The distribution of 

solid volume fraction together with the mean velocity and granular temperature appear naturally 

in the governing equations and are directly predicted by the theory presented herein. Therefore, 

unlike in Haff’s theory, there is no need for assuming thickness dilation to determine the solid 

volume fraction.  

This dissertation is devoted to provide a detailed development of the granular contact 

lubrication theory. The collisional lubrication theory has the same structure as the corresponding 

kinetic theories. The formulation of the problem starts with the first principles of fluid 

mechanics, i.e., conservation of mass, momentum and pseudo temperature. The granules possess 

both a flow velocity and a fluctuation velocity. The granules behavior requires implementing 

appropriate boundary conditions for the slip velocity and the pseudo temperature. These 

boundary conditions play a very important role along with the equations of motion and the 
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pseudo energy equation in forming a complete set of equations for predicting the behavior of the 

granular flows when sheared between parallel disks.  

In this theory, an order of magnitude analysis is carried out to simplify the governing 

granular lubrication equations. The solid volume fraction, together with the mean velocity and 

the granular temperature, appear naturally in the equations and are directly predicted from a 

complete set of governing equations and boundary conditions. An accurate and realistic model is 

introduced to investigate the mechanism of granular lubrication in Couette flows. Because of the 

complexity and nonlinearity of the governing equations and boundary conditions, an efficient 

numerical scheme is used to simulate the problem. The effect of the viscous dissipation in the 

energy equation is considered in the simulations, while other researchers neglect this term. A 

benchmark is set up based on some published papers to compare the results obtained. Different 

parameters of interest are investigated, and the results are compared with those by McKeague 

and Khonsari [26], Zhou and Khonsari [30], Sawyer and Tichy [31], and Pappur and Khonsari 

[33].  

It was found that granular material plays a major role in determining the axial load 

transmitted (lift) between the surfaces, the sliding friction and the slip velocity, but uncertainties 

still remain on several issues, which require more investigation. Thus following to the theoretical 

model, an experimental investigation of the friction and lift characteristics of granular lubrication 

is presented. Experiments were conducted using 3-mm stainless steel balls, as well as 1.4-mm 

ceramic balls to demonstrate the lift phenomenon observed in an annular shear cell apparatus. 

The effects of the friction coefficient and the surface roughness have been expressed as a 

function of the rotational speed and the applied load.  Simulations of the kinetic theory for the 

granular material are performed and compared with the experimental results for validation 

purposes. 

While the archival literature contains a great deal of research on granular lubrication, a 

number of important issues remain largely unexplored. Of particular interest is to examine the 

stick-slip phenomenon associated with granular materials within the context of lubrication. An 

experimental investigation on the nature of stick-slip associated with granular materials sheared 

between two parallel disks is demonstrated. In addition to that, a thorough background on the 

stick-slip phenomenon is also presented and a series of experiments were carried out using 

ceramic granules to demonstrate its effect on the friction coefficient and the displacement (lift). 
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Results are presented for the friction coefficient and the displacement as a function of the 

rotational speed and the applied load.  

To further the theory of granular lubrication, a theoretical study on the true temperature 

of the granular material is presented and analysis is performed. A theory that ties the true 

temperature to the grain mobility is developed by predicting the true temperature of granular 

lubricants sheared between two infinitely wide parallel plates. The distribution of the true 

temperature at both top and bottom interfaces along the x-direction is predicted and the variation 

of a number of important parameters and their effect on the true temperature is analyzed. For 

materials packed in a random assembly of microspheres, it is important to estimate correlation 

for the effective thermal conductivity. An analysis to determine the effective thermal 

conductivity is presented.  

The majority of publications in granular lubrication dealt with the rapid shearing regime 

of granular material where only kinetic and collision effects are considered whereas the effect of 

a so-called enduring contact is neglected. However, most of the granular material in the context 

of lubrication systems operates in a dense regime with a very small gap thickness and high solid 

volume fraction where friction between granules starts to initiate. Thus, the enduring contact 

effect needs to be considered. In this dissertation, the Coulomb friction model is introduced to 

study the effect of the friction force caused by enduring contact between the granules. The 

characteristics of the flow are investigated in a transient regime where both kinetic-collision 

effect and enduring contact exists concurrently. The formulation of the governing equations and 

boundary conditions of the granular flow are formulated along with an efficient numerical 

simulation.  
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CHAPTER 3. THEORY OF COLLISIONAL GRANULAR 

MATERIAL 
 

3.1 Development of Theory 

A common feature of collisional granular flow is that grains interact with each other and 

with the boundary surfaces through collisions. These collisions are responsible for the transfer of 

momentum and the dissipation of energy in the flow. The granules possess both a flow velocity 

and a fluctuation velocity. The latter is commonly referred to as pseudo temperature (not a 

measure of the thermodynamic temperature). According to Johnson and Jackson [15], some of 

the granules undergo sliding motion while the rest are colliding. Thus, the total stress tensor is 

the sum of both frictional and collisional-translational stresses. In the theoretical model that 

follows, granules are assumed to be identical, smooth, frictionless spheres. In chapter 12, the 

friction between the granules will be considered. Therefore, it is assumed that the work done by 

the frictional component of stress is translated directly into thermal internal energy; hence the 

true heat flux (thermodynamic temperature) is not considered in the energy equation, and the 

collisional-translational component is translated into pseudo thermal energy.  

The formulation of the problem starts with the first principles of fluid mechanics, i.e., 

conservation of mass, momentum and pseudo temperature. For a discussion of the range of 

applicability of this theory, one can refer to Johnson and Jackson [15] and a review paper by 

Elrod [16]. The general governing equations for granular flow require consideration of the 

conservation laws described below. 

 

3.2 General Governing Equations 

3.2.1 Conservation of Mass 

The governing equation for conservation of mass is: 

( ) 0. =∇+
∂
∂

U
t

ρρ
                                                       (3-1) 

where υρρ p=  is the bulk density of the granular material,  

    pρ  is the density of the individual granule,  

    υ  is the solid volume fraction,  



 14

U is the bulk velocity defined as ( )kwjviu ˆˆˆ ++ ;  

u, v, and w are the components of velocity in x, y, and z directions, and 

    ∇ is the symbol for gradient ⎟⎟
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3.2.2 Conservation of Momentum 

The governing equation for conservation of momentum is:  

(3-2) 

 

where g is the gravity acceleration andσ  is the stress tensor (a second order tensor) defined as:  
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where ckσ  is the stress tensor caused by collision and the kinetic motion, and  

fσ  represents the stress tensor caused by enduring contact force between granules.  
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3.2.3 Conservation of Energy 

The governing equation for conservation of energy is: 

( )
UQ

Dt

ED
∇−−∇= :. σρ

                                                  (3-4) 

where Q.∇  represents the heat conduction term, U∇:σ  is the viscous dissipation term and is   

            defined in a Cartesian coordinate system as follows: 
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Q represents the total energy flux vector: 

hPT qqQ +=                                                            (3-6) 

where PTq  is the flux of pseudo thermal energy that is related to the fluctuation velocity of 

granular particles, hq  is the true heat flux and is defined as Rh Tkq ∇−= , and k is the heat 

conductivity of the granules lubricant. 

The parameter E is the total energy per unit mass of the granular material and is composed of:  

hPTMK EEEE ++=                                                       (3-7) 

where MKE  is the kinetic energy associated with the local average velocity,  

PTE  is the pseudo thermal energy associated with the fluctuation velocity, and  

hE  is the true thermal internal energy of single granule.  

Appropriate expression for each term is given below: 

2

2

1
UEMK ρ=                                                           (3-8) 

TVEPT ρρ
2

3

2

1 2 ==                                                      (3-9) 

Rph TcE ρ=                                                           (3-10) 

where 2

3

1
VT =  is often referred to as the pseudo temperature,  

V  is the mean fluctuation velocity,  

2V is the mean square of the velocity fluctuation velocity about the bulk velocity U,  

TR  is the parameter of the true temperature, and  

cp is the specific heat of the granular lubricant. 

Following the work of Johnson and Jackson [15], it is assumed that the work done by the 

frictional component of stress contributes only to the true thermal energy. Therefore, the energy 

equation (3-4) is separated into two equations given below: 
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( ) γσ −∇−−∇= Uq
Dt

ED
ckPT

PT :.                                           (3-11) 

( ) γσ +∇−−∇= Uq
Dt

ED
fh

h :.                                             (3-12) 

where Uck ∇:σ  is the viscous dissipation done by the component of collision stress, 

Uf ∇:σ  is the viscous dissipation done by the component of frictional stress, and       

γ  is the rate of dissipation due to inelastic collisions between granules. 

The equation of the conservation of pseudo energy is similar to the pseudo thermal energy 

equation given by Haff [14] and Jenkins and Savage [7] for the case in which there is no 

frictional contribution to stress. By separating the pseudo energy and the true thermal energy into 

two equations (3-11) and (3-12), it is assumed that the granular pseudo temperature is not related 

to the true temperature. However, the true temperature is affected by the energy dissipation 

caused by inelastic collision between granules. 
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CHAPTER 4. CONSTITUTIVE RELATIONS 
 

4.1 Introduction 

The governing equations show that constitutive equations are needed for the collisional-

translational stress ckσ , the pseudo thermal energy PTq , and the inelastic energy dissipationγ . 

Lun et al. [8] developed two types of constitutive relations based on an accurate evaluation of the 

collision integral function. The first one was for inelastic granules in the simple shear flow, while 

the second was for slightly inelastic particles in a general flow. The effects of the enduring 

contact force between granules were neglected and the granules were treated as smooth, inelastic 

spheres. According to their work, the stress tensor and the flux of pseudo energy are contributed 

by two components: kinetic part, and collision part. 

 

4.2 Kinetic and Collision Stress 

In this dissertation, the second model is used for the analysis of granular flow. The 

appropriate constitutive equations for granular material developed by Lun et al. [8] based on the 

original work of Savage and Jeffrey [5] is used assuming that the collisional-translational 

contribution to stress can be calculated as though it acted in isolation. The description of the 

model is given below: 

 

4.2.1 The Total Stress Tensor Caused by Kinetic and Collision 
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where I is the identity tensor 
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I , and  

υ  is the solid volume fraction and can be defined as: 

VolumeChannel

granulessphericalofVolume
FractionVolumeSolid =

HA

m

s

pTρυ =⇒ ,  

Tm is the total mass the spherical granules, H is the gap height, sA  is the surface area,  
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pρ  is the granular material density, and  

S represents the deviatoric part of the rate of deformation tensor, and given by:   
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where ijδ  is the Kronecker Delta; 
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.  

The parameterη  is a constant characterizing the inelastic collision between granules, and is 

defined as: 

( )pe+= 1
2

1η                                                            (4-3) 

where pe  denotes the coefficient of restitution of granules. 1=pe  for perfectly elastic granules 

and 0=pe  for perfectly inelastic granules.   

The factor ⎟
⎠
⎞

⎜
⎝
⎛ +

3

2 α
was introduced by Johnson and Jackson [15] to provide one adjustable 

parameter that could increase the shear stress. The parameterα is a constant of order unity (tends 

to unity when the coefficient of restitution ep tends to unity and υ  tends to zero). In this 

dissertation, it is assumed that 1=α . 

The parameter og represents the radial distribution function proposed by Carnahan and Starling 

[6] based on a semi-empirical equation of state from which they obtained the spherically 

symmetric equilibrium radial distribution function at contact for a single granule. The spatial pair 

distribution function og  is expressed in terms of solids fraction as: 

3
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=

υ
υ

og                                                       (4-4) 

where maxυ is the value of υ  at closest random packing and is assumed to be 0.65 in this analysis.  
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According to Johnson and Jackson [15], it ensures that ∞→og , as maxυυ → , and hence 

constrains υ  to remain smaller than maxυ . Johnson and Jackson [15] point out that when this 

parameter is inserted into the constitutive equations of Jenkins and Savage [7], they become 

essentially equivalent to those of Haff [14] . Parameters μ  and bμ  represent the shear viscosity 

for perfectly elastic granules and the bulk viscosity for perfectly elastic granules, respectively. 

Their definitions are given below: 
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where m is the mass of each spherical granule and defined by: 
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4.2.2 The Total Flux of Pseudo Energy 

The combined flux of kinetic energy and flux of the collision energy is given by: 
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where λ  represents the thermal conductivity for perfectly elastic granules, and defined by: 
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4.2.3 The Collisional Rate of Energy Dissipation Per Unit Volume 
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where pρ the density of the grains, and d is the granule diameter. 
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CHAPTER 5. BOUNDARY CONDITIONS 
 

5.1 Introduction 

The prediction of the granule behavior requires implementing appropriate boundary 

conditions to characterize their interaction with the bounding surfaces. Boundary conditions must 

be developed for both the slip velocity and the pseudo temperature. These boundary conditions 

will play a very important role together with the equations of motion and the pseudo energy 

equation to form a complete set of equations that will help in the predictions of the behavior of 

the granular flows. The flow characteristics and general behavior of granules near a solid surface 

could differ considerably from what is commonly observed in fluids. It has been shown by 

Johnson and Jackson [15] that the granular materials tend to slip at the boundary surfaces, hence 

the need for predicting the slip velocity.  

Granular slippage is one of the important characteristics of granular lubrication. During 

shearing, it provides energy from the boundaries into the granules contained within the gap. Due 

to the slip, the granules are then loosely packed near the boundaries. Thus, the fluctuation 

velocity (granular temperature) increases because of the inelastic collisions between the granules 

and the boundaries, which causes a heat generation.  

 

5.2 Boundary Conditions 

In granular flows, the boundaries tend to supply the momentum and the energy to the 

interior flow by the means of shearing force and the normal force. The supplied energy must be 

in balance with the stress and the total flux of the energy in the flow. These ideas can be used to 

obtain the boundary conditions for both, the slip velocity, and the pseudo temperature. 

 

5.2.1 Condition for the Slip Velocity 

The boundary condition for the flow velocity is derived by Zhou and Khonsari [30], and Pappur 

and Khonsari [33] following the work of Johnson and Jackson [15]. The rate of momentum 

transfer PWM  between the granule possessing a mass m and the wall with roughness wφ  is given 

by: 
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where 
ca

1
 represents the number of granules adjacent to the unit area of the surface, 

ca  is the average boundary area per granule,  

S  denotes the average distance between the boundary and the surface of an adjacent 

granule of diameter d.  

Both S  and ca  are the functions of the solid volume fraction, as given below: 
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Let u represent the bulk velocity of granular flow next to the boundary, and uwall denote the 

velocity of the plate. Then, the slip velocity usl is: 

wallsl uuu −=                                                            (5-4) 

Now considering a unit area at the boundary, the collision frequency for each granule is 

S

T

S

V 3
= , where V  denotes the mean fluctuation velocity of the granule. The average 

tangential momentum transferred per collision is slwumφ , where wφ is the specularity coefficient. 

Specularity coefficient is a measure of that fraction of collisions that transfer a significant 

amount of lateral momentum to the wall. If wφ  is close to zero so that most collisions are nearly 

specular, i.e., a smooth wall, then the amount of slip may be relatively large. For a rough surface, 

however nearly every grain-wall collision will provide a significant transfer of lateral momentum 

to the wall; thus in this case wφ  is near unity and the amount of slip at the wall is minimized. 

The tangential force Ft per unit area acting on the boundary [15] is: 

sl

cksl
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nu
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where 

⎥
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⎥

⎦

⎤

⎢
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⎣

⎡
±=
0

1

0

n  is the unit normal of the boundary pointing into the clearance gap when the 

granular material flows (bottom plate is positive sign, and top plate is negative sign),  

nck .σ  is the force exerted on the surface with unit normal n, and  

[ ]001=
sl

sl

u

u
 represents the unit tangential directed in the positive x-direction where 

shear take place. 

A condition for the slip velocity between the granular material and a bounding surface can be 

obtained by equating the tangential force per unit area acting on the boundary and the rate of 

momentum transfer to unit area of the wall by granular collision (Jenkins and Richman [9]). The 

boundary condition for the slip velocity is 
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5.2.2 Energy Balance  

Following the work of Jenkins and Richman [9], the boundary condition for the pseudo 

temperature is obtained by equating the rate of heat generation due to slip at the boundary and 

the rate of dissipation of pseudo thermal energy due to inelastic collisions of granules with unit 
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area of the boundary. Each collision is characterized by a coefficient of restitution we  that varies 

from zero to unity. The energy loss per granule boundary collision PBE  is given by the difference 

of kinetic energies before and after collision is given by: 

22
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2

1
VmmVEPB
′−=                                                    (5-9) 

where 22 VeV w=′ . 

The rate of heat dissipation of pseudo thermal energy at the boundary is given by [9]: 
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Substituting with equations (5-2) and (5-3), we have 
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The rate of heat generation due to slip at the boundary is given by the product of the rate of 

momentum transfer to the wall by the particle impact and the slip velocity, 
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The total flux of the pseudo thermal energy [9] from the wall is the difference between the rate of 

heat generation due to slip at the boundary (5-12), and the rate of dissipation of pseudo thermal 

energy at the boundary (5-11), and is given by : 
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Equation (5-14) represents the boundary condition for pseudo temperature. In this equation when 

we  is close to unity, the first term of the right hand side (RHS) will dominate and hence the wall 

behaves as heat source. When we  is small, the second term of RHS will dominate and hence the 

wall behaves as a sink. 
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CHAPTER 6. GRANULAR LUBRICATION EQUATIONS 
 

6.1 Introduction 

In this chapter, Lun’s model is considered to study the mechanism of granular lubricant. 

The viscous dissipation term was included in the pseudo energy equation and the solid volume 

fraction, together with the mean velocity and the granular temperature are coupled and is directly 

predicted from a set of complete governing equations and boundary conditions.  

 

6.2 Analysis 

In this section we shall use the constitutive relations to get a general form of the conservation 

equations and boundary condition equations, which will be simplified in a later step. The 

constitutive equation for the total stress tensor (4-1) caused by kinetic and collision can be 

simplified by substituting the set of relations (4-3) to (4-7) as follows: 
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( ) ( )( ) ( )( )SfTdIUfTdfT pppck υρυρυρσ 291 2.2 −∇−=                      (6-1) 

where )(1 υf , )(2 υf , and )(9 υf  are non dimensional functions defined as follows: 
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The equation of the total flux of pseudo energy (4-8) can be simplified by substituting the set of 

relations (4-3) to (4-7) and relation (4-9) as follows: 
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( ) ( ) υυρυρ ∇−∇−= 43 fTTdTfTdq ppPT
                                (6-2) 

where )(3 υf and )(4 υf  are non dimensional functions defined as follows: 
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Similarly, the collisional rate of energy dissipation per unit volume (4-10) can be simplified to: 
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where )(5 υf  is non dimensional function defined as follows: 
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6.3 General Governing Equations 

The general conservation laws, the constitutive equations and the boundary conditions 

presented are applied to a particular flow field shown in Figure 6.1. Considering the two-

dimensional bearing configuration with a film gap h=h (x), the upper plate is stationary while the 
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bottom plate undergoes a constant slider motion UL. The plates are assumed to be infinitely wide. 

The flow is considered to be steady, two-dimensional. The Cartesian coordinate system is set up 

by letting x lie along the plate’s length, and y across the thickness of the flow. The flow velocity 

u, the pseudo temperature T, and the solid volume fraction υ  vary across the gap. 

 

 

 

Figure 6.1 : Two-Dimensional Granular Lubricant Flow 

 

6.3.1 Conservation of Mass 

Neglecting the time derivative, then the governing equation for conservation of mass (3-1) can 

be written as: 
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6.3.2 Conservation of Momentum 

Substituting equation (6-1) in the momentum equation (3-2) yields to the x and y components of 

the momentum equation as follow: 
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Now expanding the total stress tensor caused by kinetic and collision, and substituting with the 
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Also, we know that collisional-translational stress tensor
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Again, substituting equation (6-6) in the momentum equation (6-5), we get 
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6.3.2.1 X-Momentum Equation 

The x-momentum equation is given by: 
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where )(1 υff and )(2 υff  are dimensionless functions defined as follow: 

( ) ( ) ( )υfυfυff 291
3

4
2 +=  

( ) ( ) ( )υfυfυff 292
3

2
2 −=                                                   (6-9) 

 

6.3.2.2 Y-Momentum Equation 

The y-momentum equation is given by: 
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6.3.3 Conservation of Energy 

Substituting equations (6-1), (6-2), and (6-3) in the energy equation (3-11) yields the following: 
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The terms PTq.∇  and Uck ∇:σ are: 
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Now substituting equations (6-12) and (6-13) into the energy equation (6-11), we have 
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That is,  
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6.4 Boundary Conditions 

6.4.1 Condition on the Slip Velocity  

The boundary condition of the slip velocity is obtained by substituting equation (6-1) into 

equation (5-8):  
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where )(8 υf  is a dimensionless function defined as follows: 
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6.4.1.1 At y = 0 (Bottom Plate) 
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where owwall Uu φφ == &  

  

6.4.1.2 At y = H (Top Plate) 
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where Hwwallu φφ == &0   

 

6.4.2 Energy Balance 

The boundary condition for the pseudo temperature is obtained by substituting equation (6-2) 

into equation (5-14): 
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where )(6 υf and )(7 υf  are dimensionless functions defined as follow: 
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6.4.2.1 At y = 0 (Bottom Plate) 
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6.4.2.2 At y = H (Top Plate) 
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6.5 Functions 

All the functions are used for simplifying the equations of motion and the boundary conditions 

are summarized below in Table 6.1. They are dimensionless functions of the solids volume 

fraction only. 
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Table 6.1 : Definition of Functions 
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CHAPTER 7. ORDER OF MAGNITUDE ANALYSIS 
 

7.1 Introduction 

The following order of magnitude analysis was performed to simplify the momentum 

equations and the energy equation along with their boundary conditions. 

x~L , y~H , u~U , 
L

HU
V ~ , and 12191 ~,ff,ffυ,f →                                  (7-1) 

 

7.2 Governing Equations 

7.2.1 X-Momentum Equation 

The x-momentum equation (6-8) can be rearranged as follows:  

( ) ( ) ( )
4342144444444444 344444444444 21444 3444 21
ForcePressure

1

ForcesViscous

221

ForcesInertia

Tfρ
xx

V

y

u
Tdfρ

yy

V
ff

x

u
ffTdρ

xy

u
V

x

u
uυρ pppp ∂

∂
−⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

 
(7-2) 

Now, let us examine the orders of the viscous terms individually: 
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Generally, in lubrication mechanisms the gap width is much smaller than the bearing length (i.e. 

LH 〈〈 ). Thus, 
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 and make much more contribution. Therefore, the other three 

terms can be neglected. 
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Examining the inertia terms individually, we have 
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, which implies that both terms have the same order. 

Based on previous published papers, the ranges of the pseudo temperature always lie between 

0.01 and 0.05. Thus, the average pseudo temperature is assumed to be of order of 0.03.  
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The order of the inertia terms ⎟⎟
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7.2.2 Y-Momentum Equation 

The y-momentum equation (6-10) can be rearranged as follows: 
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(7-5) 

Examining the orders of the viscous terms individually, we have 
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 and can be treated as negligible in comparison to other terms. 

Consequently, equation (7-5) simplifies to: 
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Again, by taking the average pseudo temperature to be of the order of 0.03, then the order of the 

inertia terms ⎟⎟
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Therefore, the final form of the y-momentum equation is: 
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7.2.3 Energy Equation 

The energy equation (6-14) can be rearranged as follows: 
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By examining the order of the convective terms individually, we can see that both terms have the 
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Thus the energy equation (7-8) is simplified to: 
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Finally, we will compare the order of the convective terms ⎟
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It is clear that convective term can be neglected.  

Therefore, the final form of the energy equation is: 
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7.2.4 Elimination of the Volume Fraction 

The coupling term involving the volume fraction can be eliminated from the energy 

equation and the pseudo temperature boundary condition to further simplify the governing 

equations. Using equation (7-7) and substituting with the dimensionless functions given in Table 

6.1, we have: 
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Substituting back in the denominator of (7-12) with the values of go and f1 (Table 6.1), we have 
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Substituting (7-13) in the energy equation (7-10) results the following equation: 
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7.3 Boundary Conditions 

7.3.1 Condition on the Slip Velocity 

Comparing the order of magnitude of the gradient of the velocity 
x

V

y

u

∂
∂

〉〉
∂
∂

 in equations (6-17) 

and (6-18), the condition on the slip velocity is simplified to: 

 

7.3.1.1 At y = 0 (Bottom Plate) 
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7.3.1.2 At y = H (Top Plate) 
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7.3.2 Energy Balance 

Substituting the coupling equation (7-13) in equations (6-21) and (6-22) for the pseudo 

temperature boundary conditions to eliminate the volume fraction term, results the following 

simplified equations: 

 

7.3.2.1 At y = 0 (Bottom Plate) 
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7.3.2.2 At y = H (Top Plate) 
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CHAPTER 8. APPLICATION TO TWO PARALLEL 

PLATES FLOW 
 

8.1 Introduction 

In this chapter, Lun’s model is considered to study the mechanism of granular lubricant 

passing through two parallel plates. The results are compared with those obtained by McKeague 

and Khonsari [26], Zhou and Khonsari [30], Sawyer and Tichy [31], and Pappur and Khonsari 

[33]. 

 

8.2 Lubrication Equations 

The general conservation laws, the constitutive equations and the boundary conditions 

presented in the previous sections are applied to a particular flow field where a granular lubricant 

passes through two parallel plates (Figure 8.1).  

Figure 8.1: Two-Dimensional Granular Lubricant in a Couette Flow 

 

The upper plate is stationary while the bottom plate undergoes a constant sliding motion 

U. Because of the thickness of the gap is very small, the spin effect of the granules and the 

gravity force are neglected. The grains are treated as smooth frictionless spheres of identical size, 

and the plates are assumed to be infinitely wide. The flow is considered to be steady, two-

dimensional, and fully developed. The Cartesian coordinate system is set up by letting x lie along 

the plate’s length, and y across the thickness of the flow. Since the flow is considered to be fully 

developed, all the gradients in x direction are zero ⎟
⎠
⎞

⎜
⎝
⎛ =
∂
∂

0
x

. Therefore, the mean velocity, 
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granular temperature, and solid volume fraction only have gradient along the y direction. The x-

momentum in equation (7-4) for the application of two parallel plates flow can be rewritten in 

the form below: 

( ) 02 =⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
dy

du
Tdfρ

dy

d
p                                                  (8-1) 

The y-momentum (7-7) becomes, 

( ) 01 =Tfρ
dy

d
p  

NTfp == constant1ρ                                                      (8-2) 

where N is the normal load applied per unit area. The energy equation (7-14) along with the 

boundary conditions (7-15) to (7-18), remains the same since they contain only gradients along 

the y direction. 

 

8.3 Dimensionless Forms  

In what follows, we shall make use of the following dimensionless parameters: 

∗=Uuu , ∗= T
ρ
N

T
p

, ∗= Hyy                                               (8-3) 

where U is the bottom plate velocity and H is the thickness of the gap. Substituting with the 

above parameters (8-3) in equations (7-14), (8-1) and (8-2) yields to the following dimensionless 

governing equations: 

 

8.3.1 Dimensionless X-Momentum 
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8.3.2 Dimensionless Y-Momentum 

1)(1

* =υfT                                                              (8-5) 
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8.3.3 Dimensionless Pseudo Energy 
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where 
H

d
C

N

U
A

p == ,
ρ

 

 

8.3.4 Dimensionless Mass Flow Rate 

For a Couette type flow, the distribution of bulk velocity is independent of the flowing direction. 

Hence, the mass flow rate in the gap of a Couette flow is constant. Rewriting equation (6-4) 

accounting for a fixed gap and the fact that υρρ p= , we have:  
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8.3.5 Dimensionless Boundary Conditions 

Substituting (8-3) in equations (7-15) to (7-18) yields to the following dimensionless boundary 

condition equations: 

 

8.3.5.1 At y
* 
= 0 (Bottom Plate) 
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8.3.5.2 At y
* 
= 1 (Top Plate): 
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( ) 2*4
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8.4 Numerical Scheme 

The momentum and the energy equation are coupled, ordinary differential equations. 

Because of the complexity of these equations, numerical schemes are utilized. In the simulations 

presented, the thickness of the gap is fixed and the normal load is specified. Finite difference 

method is employed to discretize the dimensionless governing equations and boundary 

equations, which forms a set of algebraic equations. Newton’s iteration method is used to solve 

the resulting set of equations for velocity and temperature. Bisection method is used to solve the 

volume fraction equation. There are three loops in the computations, the inner loop solves the 

velocity, the second loop solves the temperature, and the outer loop solves the volume fraction. 

The iteration is repeated until the results converge, and then the mass flow rate is computed by 

integrating the volume fraction and the velocity along the gap thickness. The tolerance level used 

is 10
-6

 per iteration. 

 

8.5 Results and Discussion 

The following focuses on applying the theory to predict the performance of the granular 

flow between two parallel plates. A benchmark is set up based on the papers presented by 

McKeague and Khonsari [26] and Zhou and Khonsari [30]. The input parameters for the 

benchmark are presented in Table 8.1. The top plate is stationary, the velocity of the bottom plate 

is sec/m6.4=U , and the thickness of the gap is equivalent to 14 particle diameters. The 

granular material used in the lubrication is made of Titanium Dioxide (TiO2) as reported by 

Heshmat [3]. The particle has a diameter of μm5  and a density 3kg/m4260=pρ . The 

coefficients of restitution for both particle and wall are assumed to be 8.0== wp ee , and the 

roughness of both moving and stationary plate is 5.0== Ho φφ .  

In the simulation presented, several mesh points and error tolerances refinement were 

performed. It was found that 21 grid points given along the fixed gap thickness is the optimum 

number of grid points. The error tolerance is set to be 10
-6

, and the CPU time for each simulation 
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is about 4 seconds. Increasing the grid points more than 21 did not improve the results. The mass 

flow rate in the gap must be specified and adjusted by changing the applied load. 

 

Table 8.1 : Input List for Benchmark Case Used in the Computer Simulations  

 

Parameter Value Parameter Value 

pe  0.8 L 0.0264 m 

we  0.8 U 4.6 m/s 

maxυ
 0.65 H μm70  

pρ  3kg/m4260  oφ  0.5 

d  μm5  
Hφ  0.5 

 

8.5.1 Benchmark Simulations 

Figure 8.2 demonstrates the distribution of the flow velocity, the pseudo temperature, and 

the solid volume fraction. It is clear that there is a slip velocity at the boundaries, and the energy 

supplied from the boundary caused by the slip velocity is transferred to the interior gap. For a 

liquid lubricated system, there would have been no slip velocity at the boundaries. Instead, when 

powder is used, the theory predicted a slip velocity at both boundaries.  

Granular slippage is one of the important characteristics of granular lubrication. During 

shearing, it provides energy from the boundaries into the granules contained within the gap. In 

addition to this energy transferred due to the slip, energy is developed within the flow field due 

to viscous dissipation. Since the top and bottom plates assumed to have the same roughness, then 

the velocity profile exhibit equal slip at the boundaries. 

The fluctuation velocity of the granular material (pseudo temperature) decreases 

gradually from the boundaries to the center of the gap. At the boundaries, the pseudo temperature 

is large due to the granular slip responsible in generating energy that is transferred to the middle 

of the gap. On the other hand, the inelastic collision between the granules in the middle of the 

gap causes a decrease in the energy dissipation. Hence, there is less fluctuation in the middle of 

the gap compared to those at the boundaries and the pseudo temperature is small. The viscous 

dissipation term that appears in the pseudo energy equation (8-6) is ruled mainly by the 

coefficient of restitution. The coefficient of restitution is a constant parameter that describes  
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Figure 8.2 : Benchmark Simulations of the Flow Velocity, Granular Temperature, and 

Solid Volume Fraction 
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the inelastic collision between the granules. Therefore, the pseudo temperature profile is 

determined by both, the viscous dissipation and the slip velocity. 

This behavior of the fluctuation velocity can be explained by examining the volume 

fraction profile. The volume fraction increases in the middle of the gap, meaning that the grains 

are densely packed. Thus, less fluctuation velocity and a decrease in the energy dissipation will 

took place. Closer to the boundaries, the granules are less dense and there will be more 

fluctuation velocity which results in an increase in the pseudo temperature. Therefore, the 

distribution of the solid volume fraction takes a parabolic shape with the maximum value in the 

middle of the gap. 

These predicted results have similar trends to those obtained by other researchers. For a 

specified dimensionless mass flow rate of 0.3, the normal load was found to be 7241 N/m
2
. The 

values of the fluctuation velocity and the solid volume fraction on the boundaries are predicted to 

be 0.0315 (0.053 m
2
/sec

2
) and 0.576, corresponding to 0.12 (0.1 m

2
/sec

2
) and 0.6 reported by 

McKeague and Khonsari [26], 0.081 (0.046 m
2
/sec

2
) and 0.57 by Zhou and Khonsari [30], and 

0.03 (0.049 m
2
/sec

2
) and 0.45 by Pappur and Khonsari [33]. The friction coefficient is predicted 

to be 0.407, which is very close to 0.41 by Zhou and Khonsari [30], and 0.42 Pappur and 

Khonsari [33]. In the experimental work of Savage and Sayed [21], the friction factor of granular 

material is given around 0.3 to 0.4.  

The predicted result of the fluctuation velocity in this dissertation differed slightly from 

the one predicted by Zhou and Khonsari [30] since there was a difference in the normal load. The 

difference in the prediction of the fluctuation velocity between this dissertation and McKeague 

and Khonsari [26], can be attributed to the use of difficult constitutive equations as presented by 

Haff [14]. McKeague and Khonsari [26] show that Haff’s approach is very simple to apply and 

has a very clear physical meaning. But Lun’s model used in the simulations reported here is 

more realistic because some of the parameters are function of the local solid volume fraction, 

instead of some constants in the Haff’s model.  

 

8.5.2 Effect of the Granular Coefficient of Restitution, ep 

Figure 8.3 shows the sensitivity of the flow velocity, granular temperature, and the solid 

volume fraction to the granules coefficient of restitution. The slip velocity decreases at the 

boundaries as ep increases. The larger the ep, the more elastic the granules become. Hence, there  
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Figure 8.3 : Variation of the Flow Velocity, Granular Temperature, and Solid Volume 

Fraction with the Granular Coefficient of Restitution, ep 

 



 50

is less energy loss by inelastic collision between granules. The trend of the granular temperature 

and the solid volume fraction changes drastically at the higher values of ep (0.9 and 0.98) 

compared to the benchmark case where ep = 0.8. There are two energy sources which arise in the 

formulation of the granular temperature.  One comes from the slip velocity at the boundary and 

the other is the viscous dissipation in the interior of the flow. When ep is large, the slip velocity 

at the boundary decreases and the viscous dissipation in the interior flow increases. Therefore, 

there is more energy generated in the interior flow than the one generated at the boundaries by 

the granular slip. Hence, the energy is transferred from the middle of the gap to the boundaries.  

The solid fraction trend is directly related to the pseudo temperature. When there is more 

pseudo energy generated in the interior of the flow, implies that the surrounded granules will 

experience much larger fluctuation than the ones near the boundaries. Therefore, less 

concentration of the granular material will occur in the middle of the gap and more accumulation 

of the granules at the boundaries.  

At higher ep, the load is increased by almost 10 times compared to the benchmark data. 

When ep is 0.8, the normal load is N = 7241 Pa, and the friction factor f = 0.4 and when ep is 

0.98, the normal load is N = 6293 Pa, and the friction factor f = 0.3. According to the above 

analysis, as ep goes to 1, the solid volume fraction near the boundaries is larger than that at the 

center of the channel. Under this condition of low shear stress and high normal stress, it is clear 

that powders are likely to conglomerate at the boundaries. The results are in good agreement to 

those obtained by Zhou and Khonsari [30], and McKeague and Khonsari [26]. 

 

8.5.3 Effect of the Wall Coefficient of Restitution, ew 

Figure 8.4 shows the variation of the flow velocity, granular temperature, and the solid 

volume fraction to the coefficient of restitution of both, top and bottom plates. The slip velocity 

increases as ew increases. An increase in ew means that the wall is more elastic. Hence, there is 

less energy loss during collision between the wall and the granules which implies that more 

energy is supplied from the boundaries to the flow. The granular temperature increases at the 

boundaries and decreases in the middle of the gap.  

As ew increases, the curvature profile of the granular temperature and the solid volume 

fraction becomes greater because of the change in the normal load to match the specified mass  
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Figure 8.4 : Variation of the Flow Velocity, Granular Temperature, and Solid Volume 

Fraction with the Wall Coefficient of Restitution, ew 
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flow rate. As ew increases, the normal stress increases but there is no change in the trends of the 

granular temperature and the solid volume fraction. The parameter ew affects only the slip 

velocity, not the interior of the flow. 

At higher ew the normal load is not largely affected as compared to the benchmark data. 

When ew is 0.8, the normal load is N = 7241 Pa, and the friction factor f = 0.41 and when ew is 

1.0, the normal load is N = 8035 Pa, and the friction factor f = 0.37. Hence, the effect on the 

normal load caused by changing ew is much less than that of ep which implies that the coefficient 

of restitution of the granules play a much more substantial role than the coefficient of restitution 

of the wall. The results are in good agreement to those obtained by Zhou and Khonsari [30]. 

 

8.5.4 Effect of the Surface Roughness at the Top and Bottom Plates, oφ  and Hφ  

Figure 8.5 and Figure 8.6 present the variation of the flow velocity, granular temperature, 

and the solid volume fraction by varying the roughness of the top stationary wall and the bottom 

moving wall respectively. The roughness Hφ of the stationary top boundary surface ranges from 0 

when it is completely smooth, to 1 when it is completely rough.  

When Hφ  is large, the slip velocity at the top boundary becomes smaller. Hence, the 

particles around this boundary become almost stationary which means the slip effect becomes 

nil. Thus, as the roughness of the top plate becomes larger, there is more energy being 

transferred from the bottom plate than from the top plate. Since the bottom plate is supplying 

much more momentum to the adjacent grains through the slip velocity than that at the top plate, 

the granular temperature at the bottom plate is relatively larger than the top plate. These effects 

are also reflected in the solid volume fraction profile, where the larger the slip velocity at the 

bottom plate tends to loosen the grains there whereas the top plate experiences the exact opposite 

effect. The value of the maximum solid volume fraction appears near the top stationary plate, 

and this phenomenon happens because of the viscous dissipation term. The results are in good 

agreement to those obtained by Zhou and Khonsari [30].  

Similarly, the roughness oφ of the moving bottom boundary surface ranges from 0 when it 

is completely smooth, to 1 when it is completely rough. When oφ  is large, the slip velocity at the 

bottom boundary becomes smaller and the energy transferred from this boundary decreases. 
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Figure 8.5 : Variation of the Flow Velocity, Granular Temperature, and Solid Volume 

Fraction with the Roughness of the Top Plate Hφ  
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Figure 8.6 : Variation of the Flow Velocity, Granular Temperature, and Solid Volume 

Fraction with the Roughness of the Bottom Plate oφ  
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Therefore, more energy is being transferred from the top plate than from the bottom plate to the 

middle of the gap. The reduction in the amount of energy transferred from the bottom plate, 

results in a decrease in the pseudo temperature in that boundary accompanied by an increase in 

the solid volume fraction. In the middle of the gap, increasing the bottom plate surface roughness 

tends to increase the pseudo temperature due to the slip velocity. 

 

8.5.5 Effect of the Gap Thickness, H 

Figure 8.7 demonstrates the variation of the flow velocity, granular temperature, and the 

solid volume fraction by varying the thickness of the gap. The mass flow rate decreases as the 

gap thickness H is changed from 20d to 7d. As H decreases, fewer granules flow inside the 

channel and the chance of collision between granules decreases. The granular material becomes 

more concentrated and result a decrease in the fluctuation velocity which in turn decreases the 

energy loss by inelastic collision. Therefore, there is less energy loss through the gap and more 

energy will be supplied to the middle of the gap by the granular slip at the boundaries. The 

granules in the middle of the channel are more influenced by the boundaries. Thus, the 

distribution of the granular temperature and the solid volume fraction across the gap becomes 

more flat in shape. The flow velocity becomes almost linear. As H increases, the effect of the 

boundaries on the distribution of the particles in the middle of the gap becomes less distinct and 

this result a “solid plug” phenomenon as mentioned in McKeague and Khonsari [26]. 

Simulations were performed with H=20d to illustrate this phenomenon.  For a fixed mass flow 

rate, the normal stress increases as H decreases. Varying the particle diameter and fixing the gap 

width would results same trends. 

 

8.5.6 Effect of the Mass Flow Rate 

Figure 8.8 presents the variation of the flow velocity, granular temperature, and the solid 

volume fraction by varying the mass flow rate. Increasing the mass flow rate increases the 

average solid volume fraction across the gap. As the average volume fraction across the gap is 

large, the granular temperature in the flow becomes smaller. Therefore, the slip velocity at the 

boundaries decreases and less energy is supplied from the boundaries. 
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Figure 8.7 : Variation of the Flow Velocity, Granular Temperature, and Solid Volume 

Fraction with the Gap Thickness, H 
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Figure 8.8 : Variation of the Flow Velocity, Granular Temperature, and Solid Volume 

Fraction with the Mass Flow Rate 
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8.5.7 Effect of the Coefficient of Restitution on the Friction Coefficient 

Figure 8.9 demonstrates the effect of both coefficient of restitution of the granules and 

the wall on the friction coefficient. With fixed ew, the larger the ep, the more elastic the granules 

become causing more uniform distribution to the granules across the gap. Hence, there is less 

energy loss by inelastic collision between granules and a decrease in the energy generated by slip 

at the boundaries. Therefore, there is more energy generated in the interior flow than the one 

generated at the boundaries. Thus, the friction coefficient decreases significantly. With ep fixed, 

the variation of the friction coefficient with the coefficient of restitution of the wall is not 

significant. An increase in ew means that the wall is more elastic. Hence, there is less energy loss 

during collision between the wall and the granules which implies that more energy is supplied 

from the boundaries to the flow. 
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Figure 8.9 : Effect of the Coefficient of Restitution on the Friction Coefficient 

 

8.5.8 Effect of the Coefficient of Restitution on the Mass Flow Rate 

Figure 8.10 presents the effect of both coefficient of restitution of the particles and the 

wall on the mass flow rate. With fixed ew, the larger ep, the more elastic the granules become 

causing the average volume fraction to decrease. Decreasing the mass flow rate decreases the 

average solid volume fraction across the gap or vice versa. Thus, when ep increases, the mass 

flow rate decreases. With fixed ep, as ew increases, it shows negligible effect on the mass flow 

rate. 
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Figure 8.10 : Effect of the Coefficient of Restitution on the Mass Flow Rate 

 

8.6 Conclusions 

This chapter deals with simulation of granular flow between two parallel plates with 

infinite width. The formulation of the governing equations and boundary conditions are 

formulated along with an efficient numerical simulation. The effect of the viscous dissipation in 

the energy equation is considered in the simulations, similar to Zhou and Khonsari [30]. The 

solid volume fraction appears naturally in the equations. The constitutive equations in this 

chapter are based on the model of Lun et al [8]. The results are explained and compared with 

those of McKeague and Khonsari [26] , Zhou and Khonsari [30], and Pappur and Khonsari [33]. 

The energy supply to the granular flow is from two sources: one from the slip velocity at 

the boundaries, and the other from the viscous dissipation. For a liquid lubricated system, there 

would have been no slip velocity at the boundaries. Instead, when granules are used, the theory 

predicted a slip velocity at both boundaries. Granular slippage is one of the important 

characteristics of granular lubrication. During shearing, it provides energy from the boundaries 

into the granules contained within the gap. The slip at the boundaries increases the pseudo 

temperature and hence more energy is being supplied to the interior flow. 

The results with Lun’s model have similar trends to those of Zhou and Khonsari [30], and 

McKeague and Khonsari [26]. The friction factor is around 0.4 that is the same as the 

experimental measurement presented by Savage and Sayed [21]. The coefficient of restitution of 

the granules plays a major role in the pseudo temperature and the solid volume fraction. When 
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granules become nearly elastic, the simulations predict a different distribution for the granular 

temperature and the solid volume fraction. There is much more energy generated in the interior 

flow which is transferred to the boundaries. Hence, the distribution of the granules at the 

boundaries is dense, while sparse in the interior flow. This trend was predicted because of the 

viscous dissipation term included in the formulation of the equations, and could not be predicted 

if we neglect this term. 
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CHAPTER 9. GRANULAR COLLISION LUBRICATION: 

EXPERIMENTAL INVESTIGATION AND COMPARISON 

WITH THEORY  
 

9.1 Introduction 

The tribology of dry particulate lubricants is a subject of considerable interest to 

researchers working on powder lubrication. Two distinct types are used: cohesive lubricants 

(powder) and cohesionless lubricants (granular). Cohesive lubricants are soft particles that 

accommodate slip velocity mostly by adhering to surfaces and shearing in the bulk medium, i.e. 

behave similar to hydrodynamic fluids. Cohesionless lubricants are hard particles that transfer 

momentum and accommodate slip velocity through shearing and rolling at low shear rates, and 

through collisions at high shear rates. Granular materials can resist breaking down as a result of 

large shear forces and provide a useful alternative for lubrication under extreme conditions such 

as those encountered in high performance turbine engines, where the operating temperatures are 

very high (~800
 o

C). Other applications using granular materials can vary from auxiliary 

bearings particularly during start-up periods, to the use in micro-nano-scale systems such as 

MEMS devices [44]. 

The motivation for the present chapter arises from the need for bearing technology that 

can accommodate the future generation of engines aiming for higher thermodynamic efficiency, 

less fuel consumption and increased thrust-to-weight ratio in turbine engines.  Despite the fact 

that there is a general agreement on the needs for such a new oil-free granular lubrication 

mechanisms, modeling and prediction of granular flows is very complex and still distant from 

being well understood. It was established that granular material plays a major role in determining 

the axial load transmitted (lift) between the surfaces, the sliding friction and the slip velocity, but 

uncertainties still remain on several issues which require more investigation. In the present 

chapter, experiments were prepared to demonstrate the vertical displacement (lift) observed in an 

annular shear cell apparatus and to study the effect of the rotational speed, the normal load, and 

the surface roughness on the friction coefficient and the lift. Results of theoretical prediction are 

also presented that substantiate the validity of the findings.  
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9.2 Experiment 

9.2.1 The Apparatus 

The test rig used is an automated tribometer controlled and monitored by a computer as 

illustrated in Figure 9.1. The tribometer has a DC servomotor, which provides at a low gear ratio, 

a torque of 11.3 N-m (100 lbf-in) and rotational speeds up to 1,000 rpm. It is equipped with a 

computerized data acquisition system capable of recording real-time values of friction 

coefficient, wear/displacement, and speed. The load on the testing component is applied from the 

loading mechanism located in the bottom section of the apparatus. It can provide and maintain a 

normal load up to 2224 N (500 lbs) using a 4:1 lever arm. The tribometer measures friction and 

displacement to 0.635 μm (25 μin) giving an accurate assessment of displacement and friction as 

a function of time. The vertical displacement and the friction coefficient values are recorded 

automatically every 20 seconds. 

Displacement is measured by means of the linear variable differential transformer 

(LVDT). When the bottom disk moves upward or downward, the LVDT senses this rectilinear 

motion. If the sensor records an upward displacement, it presents an indication of wear and if it 

records a downward displacement, it gives an indication of a positive displacement due to the 

fact that the granules are pushing the bottom disk away from the top disk which provides an 

indication of lift. To measure the friction coefficient, the top vertical shaft is rotating but 

restricted from the motion in the vertical direction while the bottom holder is restrained from 

rotation by a torque arm.  This torque arm is connected to a force transducer and senses the 

frictional torque applied by the granular medium which measures the friction and in turn 

determines the friction coefficient. Since the normal stress is originally specified, thus the shear 

stress can be calculated simply by having the friction coefficient measurements.  

The shear cell as shown in Figure 9.2 consists of two concentric steel disks. The upper 

disk is mounted on a rotating vertical shaft but restricted from the motion in the vertical 

direction. The bottom disk is restricted from rotation, but can move in the vertical direction. The 

shear cell has an annular channel of 31.4 mm wide and a mean radius of 34.7 mm. The channel is 

45.8 mm deep and contains the granular material to be used. The top disk has an annular 

protrusion that fits into the channel of the bottom disk. This annular protrusion does not contact 

the side walls of the bottom disk channel. The side walls of the granular cell are made of clear 

acrylic to visualize the granular flow and a wall thickness of 6.35 mm (0.25 inches). 
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Figure 9.1 : Schematic of the Experimental Apparatus 

 

The operating temperature for the acrylic material is 0
o
 to 66

o
C (0

o
 to 150

o
F), and its 

tensile strength is 62 MPa (9000 Psi). A high-temperature high-strength epoxy and a set of 

screws were used to attach the acrylic wall to the bottom disk. The bottom disk is free to move 

vertically, so as to allow for the expansion of the sheared granular material. The bottom disk is 

attached to a vertical shaft with a sensor on its other end to measure the vertical displacement 

and friction coefficient as a function of time and rotational speed of the top disk. The shear cell 

dimensions and the steel granules properties are summarized in Table 9.1.  

 

9.2.2 Experimental Procedures 

The gap in the annular shear cell is divided into three regions. The first region is the layer 

of granules adjacent to the upper moving disk; the second region is the layer of “locked 

granules” adjacent to the stationary lower disk, and an intermediate layer between those two 

regions (interior flow). A total of 18 experiments were conducted to illustrate the lift 

phenomenon in a parallel plate configuration using granular material with six different applied 
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loads. In addition, three configurations for roughness, for it are established that surface 

roughness plays an important role in granular simulations and experiments.  

 

 

Figure 9.2 : Shear Cell Assembly 

 

In the kinetic theory presented in this dissertation (Chapter 8), a wall roughness 

parameter is used. This parameter is a measure of the fraction of collisions that transfer a lateral 

momentum to the wall and so-called specularity coefficient. Its value varies from 0 to 1 

representing a very smooth to a very rough surface, respectively. When the surface of the wall is 

smooth, the granule-wall collisions are very small and in turn result a large quantity of granule 

slip at the wall. In the case of rough surface, the granule-wall collisions will provide a major 

transport of lateral momentum to the wall and the slip at the wall becomes much less. As 

described below, in the experiments, roughness was applied to the surfaces by attaching a series 

of adjacent granules along the length of each surface to help drive the granules of the interior 

flow. In one series of tests, the upper disk—the driver—was roughened while keeping the lower 

disk smooth. In another set of tests, the configuration was reversed by making the lower disk 

rough and the upper disk smooth. Finally, a series of tests was performed where both disks were 

rough. 
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Table 9.1 : Shear Cell Dimensions and Steel Granules Properties 

 

Channel Width 31.4 mm 

Channel Depth 45.8 mm 

Mean Radius ( meanR ) 34.7 mm 

Shearing Area ( )( )22

ioShear rrA −= π  6846 mm
2
 

Mean Length ( )meanmean RL π2=  218.24 mm 

Gap Height (H) 21 – 27 mm 

Particle Diameter (D) 3 mm 

H/D 7 – 9 

Particle Density 7850 kg/m
3
 

Rotational Speed 50 – 800 rpm 

Linear Speed ( )60/2 NRU meanπ=  0.18 – 3.0 m/sec 

 

The following procedure was used in creating the desired surface roughness. Stainless 

steel wire mesh was used for the rest of the experiments with the proper mesh size as shown in 

Figure 9.3. The wire mesh was first glued to the surface, and then some stainless steel balls 

enough to cover this surface was glued to it using high-impact high-strength epoxy. The wire 

mesh along with the high-strength epoxy provided a very high shear strength and very high 

torque resistance to the balls glued to it. 

A typical experiment starts by placing a specified mass of granules in the lower channel 

of the shear cell. The upper disk is then lowered until it just touches the granules, thereby 

packing them in place. A specified normal load is applied to the granules through the bottom 

surface causing them to be compressed. Corresponding counter weight need to be considered 

when normal load is specified to compensate the weight of the bottom disk and the specified 

mass of granules. The top disk is then given the rotational motion causing the granules to move 
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and exchange places at low speeds. Then, at higher speeds they start to collide and tend to push 

the bottom disk downward. 

 

Figure 9.3 : Surface Roughness 

 

a) Wire Mesh b) Steel Balls Glued to the Surface 

Using the Wire Mesh 

 

With a specified normal load, the drive motor is set to rotate the upper disk slowly for a 

few seconds first to make sure that the granules are well distributed and initially compacted in 

the channel. The motor is then stopped to adjust the positioning of the upper disk if needed after 

the granules being well distributed and compacted to ensure that it just touches the granules.  The 

driving motor starts to rotate the upper disk again and increases the rotational speed in a step 

fashion every 5 minutes ranging from 50 to 800 rpm by an increment of 50 rpm. By increasing 

the rotational rate of the upper disk, the granules start to push the bottom disk downward.  

Real time data for the vertical displacement and the friction coefficient are recorded to 

study the lift phenomenon and the effect of the speed on the friction coefficient. To investigate 

the effect of the load on the friction coefficient and the displacement, the applied load was varied 

from 5.8 to 9.2 kPa. Also, the effect of the surface roughness was investigated by changing the 

upper or lower disk configuration from rough to smooth and vice versa. 

 

9.3 Experimental Results 

9.3.1 Series A: Both the Sliding and Stationary Disks Are Rough 

Physically, shear stress is the applied force per unit area parallel to the plane required to 

produce deformation in a fluid. When applied to granular material, shear stress causes adjacent 
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planes of granules to slip on one another. Normal stress is the stress acting perpendicular to the 

adjacent plane. The coefficient of friction is defined as shear stress divided by normal stress. In 

each set of experiments, the normal load is maintained at a specified value and shear is 

introduced by means of rotation of one of the disks.  

The values of the friction coefficient for two different loads (6.5 kPa and 8.5 kPa) are 

shown in Figure 9.4. The experimental results were recorded every 20 seconds in each stage (i.e. 

speed range), and then data were saved and averaged for each speed. Also shown are curves 

fitted to the experimental data with 98% accuracy.  

 

9.3.1.1 Effect of the Rotational Speed 

The effect of the rotational speed on the friction coefficient is shown in Figure 9.4. The 

contact between the granules is governed by Coulomb law of friction, which imposes a limit on 

the ratio of the tangential force to the normal force at area of contact. When this limit is reached, 

a relative slip motion at the contact area is possible. When the shear stress is applied and the 

rotational speed is small (50 rpm and below), sliding starts gradually at a frictional force smaller 

than that generated during steady sliding (steady state friction). While the shear stress gradually 

increases, more and more contacts will reach the Coulomb threshold and slip occurs. Slip motion 

between the granules in contacts causes dynamical rearrangements and changes in the friction 

forces. With increasing shear, frictional strength increases and sliding stabilizes. The motion of 

the spherical granules becomes more stable when the slip at contacts accumulates over the time. 

The effect of rotational speed on the vertical displacement is shown in Figure 9.5 along 

with the curve-fitted results. By increasing the speed of the top disk, the collision rate of the 

granules is enhanced and more momentum is passed on to the lower disk pushing it gradually 

downward, resulting in an increase in the displacement. The higher the speed, the greater the 

collision rate until it reaches a value where the agitation of the granules overcome completely the 

applied normal load and the lift between the top and bottom disks occurs. 

The friction coefficient and displacement trends can be explained as follows: rolling is to 

some extent restrained in larger size granules, and thus translation of such granules must be 

contained by sliding and dilation. The friction level of spherical granules increases as granules 

follow an increase in their spatial arrangement by increasing the speed. The increase in the 

momentum transfer due to the spatial arrangement translates to an increase in displacement 
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Figure 9.4 : Effect of the Rotational Speed on the Friction Coefficient  

(Series A: Both the Sliding and Stationary Disks are Rough) 

 

 

Figure 9.5 : Effect of the Rotational Speed on the Vertical Displacement  

(Series A: Both the Sliding and Stationary Disks are Rough) 
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between the granules. In other words, at low speed the layers of the spherical steel granules must 

dilate against the applied normal load to accommodate the shearing force. By increasing the 

speed, the proportion of rolling to sliding decreases leading to higher friction and larger 

displacement.  

 

9.3.1.2 Effect of the Load 

Sliding friction increases with increasing the applied load as shown in Figure 9.6. The 

friction levels that we report for spherical material approach the levels often observed in 

experiments and numerical simulations where idealized circular granules are modeled. These 

results agree qualitatively with several published papers (Yu et al. [23], Yu and Tichy [24], 

Hayakawa [45], Sawyer and Tichy [23], Frye and Marone [46], Mair et al. [47], Iordanoff et al. 

[34], Fillot et al. [38]).  

Figure 9.7 presents the result of the displacement (lift) plotted as a function of load. At a 

given speed, the larger the applied load the lesser the displacement (lift) produced by the 

granules to push the lower disk downward due to the increase in the packing of the granules 

within the gap. The results of experiments provide the first quantifiable measure of the lift, 

providing clear evidence that granular material is capable of producing lift force when sheared 

between two parallel disks. 

 

9.3.2 Series B: Rough Sliding Surface and Smooth Stationary Disk 

In order to study the behavior of the granular material and the effect of the surface 

roughness on the friction coefficient and the displacement, several patterns of roughness need to 

be investigated. Previous results of “Series A” as shown in Figure 9.4 to Figure 9.7 presented the 

case when both disks were rough. Figure 9.8 and Figure 9.9 represent the case were the sliding 

surface is rough while the stationary disk is smooth and Figure 9.10 and Figure 9.11 represent 

the case where the sliding surface is smooth while the stationary disk is rough.  

In Figure 9.8, when the moving disk is rough and the stationary disk is smooth, a slight 

decrease in the friction coefficient was noticed compared to the case when both disks were rough 

due to the fact that some of the layers in contact with the smooth surface do not experience 

similar shear forces like the other layers. This reduces the sliding and results in a slight reduction 

in the friction coefficient. Similarly when the stationary disk is smooth, the collision rate of the 
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Figure 9.6 : Effect of the Normal Load on the Friction Coefficient 

(Series A: Both the Sliding and Stationary Disks are Rough) 

 

 

 

Figure 9.7 : Effect of the Normal Load on the Vertical Displacement 

(Series A: Both the Sliding and Stationary Disks are Rough) 
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granules is enhanced and the momentum is passed on to the lower disk gradually pushing it apart 

from the upper disk to create the lift as shown in Figure 9.9. Such a trend is similar to the case 

where both disks are rough (Series A), except that some variations in the displacement 

measurements are experienced especially for the two smallest loads (5.8 and 6.5 kPa). The 

smooth surface causes disrupted collisional rate where granules do not experience similar shear 

forces at low loads.  

 

9.3.3 Series C: Smooth Sliding Surface and Rough Stationary Disk 

Slip motion between the granules in contacts is the key factor that causes dynamical 

rearrangements and changes in the friction forces. When the granular coefficient of friction is 

large, the slip velocity at the boundary decreases and the viscous dissipation in the interior of the 

gap increases as reported by Zhou and Khonsari [30]. This increase in the viscous dissipation 

causes an increase in the slip motion between the granules in contacts. Therefore, there is more 

energy generated in the interior of the flow than there is at the boundaries which causes the 

granular dynamical rearrangements. When the roughness factor is large, the slip velocity at the 

boundaries is smaller and thus more energy is transferred to the flow which also causes the 

granular dynamical rearrangements.  

Figure 9.10 shows the effect of the rotational speed and applied load on the friction 

coefficient. When the sliding disk is smooth, slip occurs between the sliding disk and the 

adjacent layer of granules which results in a decrease in the shear force and in turn a decrease in 

the frictional strength. At low speed, the smooth sliding disk starts to drag gradually some of the 

adjacent granules causing a slight increase in the friction coefficient. By increasing the speed, the 

smooth sliding disk loses its ability to drag the granules which leads to weakening the shear 

force, and in turn, reducing the friction. On the other hand, Figure 9.11 demonstrates the effect of 

the rotational speed and applied load on the displacement. At low speed, small collision rate is 

produced and some momentum is passed on to the lower disk, resulting in a very small 

displacement. But once the speed increases and the slip between the sliding surface and the 

adjacent layer increases, the shear force will decay and the momentum is no longer capable to 

separate the disks.  

Figure 9.6 to Figure 9.11 illustrate the effect of the surface roughness on the friction 

coefficient and the displacement. Three different roughness series were used: In series “A”, both  
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Figure 9.8 : Effect of the Normal Load on the Friction Coefficient 

(Series B: Rough Sliding Surface and Smooth Stationary Disk) 

 

 

 

Figure 9.9 : Effect of the Normal Load on the Displacement 

(Series B: Rough Sliding Surface and Smooth Stationary Disk) 
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Figure 9.10 : Effect of the Normal Load on the Friction Coefficient 

(Series C: Smooth Sliding Surface and Rough Stationary Disk) 

 

 

 

Figure 9.11 : Effect of the Normal Load on the Displacement 

(Series C: Smooth Sliding Surface and Rough Stationary Disk) 
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sliding and stationary disks were rough, in series “B”, the sliding disk was rough and the 

stationary was smooth, and in series “C”, the sliding disk was smooth whereas the stationary disk 

was rough. By looking to all three series, one can easily conclude the importance of having the 

sliding disk rough since series “C” failed to produce lift. The roughness effect on the friction 

coefficient and displacement in series “A” and “B” is very similar except some disturbed 

collisions in the later case. It is expected that series “A” were both surfaces are rough will create 

more lift than series “B” due to the continuous shearing effect while increasing the speed. 

 

9.3.4 Series D: Rough Indents Sliding Surface and Smooth Stationary Disk 

In the previous series “A, B, and C”, the surface roughnesses were manufactured by 

protrusions of the steel granules to the disk surfaces, whereas in this series “D”, the roughness 

was manufactured by indentations on the surface. A computer numerical control “CNC” machine 

was used to provide the indentations (surface roughness) for the sliding disk by drilling a 1.6 mm 

(sixteenth of an inch) holes on the surface of the disk as shown in Figure 9.12. This method is 

not typical since all surfaces are usually roughened by gluing granules on top of the surface. 

Experiments were conducted using the same granular material (stainless steel balls) to monitor 

the effect of the roughness method on the granular behavior.  

 

 

Figure 9.12 : Upper Disk Roughness Using CNC Machine 

 

The layer of granules facing the upper disk was protruded partially from the holes of the 

disk providing the roughness for the rest of the layers. The results shown in Figure 9.13 and 

Figure 9.14 provide evidence that the behavior of the granular material did not change. Four 

different loads were exploited and similar trends were obtained for the friction coefficient and 

the displacement comparing to “Series B” in Figure 9.8 and Figure 9.9 (similar configuration). 
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One can conclude that the order of magnitude was reduced by half using this method which 

proves it was not effective to produce greater displacement (lift).  

 

9.4 Theoretical Analysis 

The theory presented in this chapter is based on the hypothesis of binary collision (kinetic 

theory).  Following the work of Johnson and Jackson [15] and utilizing the constitutive equations 

developed by Lun et al. [8], the dimensionless governing equations where the conservation of 

momentum is directly coupled with the pseudo energy equation along with the boundary 

conditions [equations (8-4) to (8-11)] are presented in this chapter as derived and summarized in 

the Chapter 8 (Johnson and Jackson [15], Lun et al. [8], McKeague and Khonsari [26], Zhou and 

Khonsari [30], Jang and Khonsari [40]). The schematic model of the granular lubricated system 

is shown in Figure 8.1. 

 

9.5 Theoretical Results  

Figure 9.15 shows the velocity, pseudo temperature, and solid fraction distribution for 

stainless steel granular material. The granule has a diameter of 3 mm and a density of 

3/7850 mkgp =ρ . The bottom disk is stationary, the velocity of the top disk is sec/3mU = , and 

the thickness of the gap is equivalent to 7 – 9 granular diameters. The normal load used is 8.5 

kPa, and the surface roughness of both moving and stationary disks is chosen to be 

95.0== Ho φφ  (very rough). The coefficient of restitution between the granules is ep = 0.9, and 

between the wall and the granules is ew = 0.8.  

For a liquid lubricated system, the assumption of no slip velocity at the boundaries 

generally holds. However, when granular material is used, the theory deemed a slip velocity at 

both boundaries. There are two energy sources which arise in the formulation of the granular 

temperature. One comes from the slip velocity at the boundary and the other is the viscous 

dissipation in the interior of the flow. Granular slippage is one of the important characteristics of 

granular lubrication. During shearing, it provides energy from the boundaries into the granules 

contained within the gap. When ep is large, the slip velocity at the boundary decreases and the 

viscous dissipation in the interior flow increases. Therefore, there is more energy generated in 
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the interior flow than at the boundaries by the slip velocity mechanism. Hence, the boundaries 

receive more heat from the interior flow. For more details, see Zhou and Khonsari [30]. 

 

Figure 9.13 : Effect of the Normal Load and Rotational Speed on the Friction Coefficient 

(Series D: Rough Indents Sliding Surface and Smooth Stationary Disk) 

 

 

Figure 9.14 : Effect of the Normal Load and Rotational Speed on the Displacement 

(Series D: Rough Indents Sliding Surface and Smooth Stationary Disk) 
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Figure 9.15 : Velocity, Temperature, and Solid Fraction Distribution for Granular 

Material Sheared Between Two Parallel Plates (In Dimensionless Form) 

 

The solid fraction trend is directly related to the granular temperature. When there is 

more pseudo energy generated in the interior of the flow, granules surrounding the interior of the 

flow have much greater fluctuation velocity than those near the boundaries. Hence, the granular 

distribution becomes less dense in the interior of the flow and much more granules accumulate at 

the boundaries. According to the above analysis with large ep, the solid volume fraction near the 

boundaries is larger than that at the center of the channel. Under this condition of low shear 

stress and high normal stress, it is clear that granular materials are likely to conglomerate at the 

boundaries. The results are in good agreement to those obtained by Zhou and Khonsari [30] 

which is based on Johnson and Jackson’s formulation, and McKeague and Khonsari [26] based 

on Haff’s theory. 

 

9.6 Comparison of Theory and Experiment 

The analysis presented in this section is used for comparison purposes with experimental 

results. The overall comparison is shown in Figure 9.16 to Figure 9.20. Shear stresses are 

compared as a function of the normal stress and the nominal shear rate as well as normal stress as 

Velocity

0.0 0.2 0.4 0.6 0.8 1.0

D
im

en
si

o
n
le

ss
 f

il
m

 t
h
ic

k
n
es

s

0.0

0.2

0.4

0.6

0.8

1.0

Pseudo-Temperature

0.014 0.018 0.022

Volume Fraction

0.60 0.61 0.62



 78

a function with the shear rate. The maximum volume fraction was approximated to be 0.6 

knowing the weight of the granules, the particle density, the shearing area and the gap height. 

The coefficient of restitution between the granules was chosen to be 0.9 based on several 

researchers (Kudrolli et al. [48]) where they conducted experiments to calculate the coefficient 

of restitution. They used 3.2 mm diameter stainless steel granules rolling on a Delrin surface that 

was machined and polished to a uniformity of 0.001 cm, and found the coefficient of restitution 

for the steel granules to be 0.93 with 2% variation. Since the best experimental results for the 

purpose of comparison with the theory were obtained from the case when both disks were rough, 

the roughness factor used in the simulations was set to be 0.95 for both disks (i.e. very rough 

surfaces).The mass flow rate was calculated from the experiments shear cell dimensions using 

the equation below as a function of speed and specified in the simulations putting into 

consideration the width factor considering the infinitely wide approximation. 
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Figure 9.16 plots the friction coefficient as a function of the rotational speed of the 

moving disk. The simulation data show uniform values for the friction coefficient, while the 

experimental data showed a slight increase by increasing the speed until it levels off over a 

period of time. The reason for this trend is likely due to change of the granule rolling and sliding 

proportions as explained in Figure 9.4. Slip motion is another reason where the spherical 

granules reach stability when the slip at contacts gets accumulated over the time. In simulations 

there are no gradual changes but the values of the friction coefficient were within the same 

range. The trends of the theoretical simulation results are in quantitative agreement with the 

experimental results. From the series of experiments conducted, investigations showed 

successfully the lift phenomenon for two parallel plate’s configuration.  

Additionally, Figure 9.17 illustrates the increase in the gap height by increasing the speed 

at any load measured. The trends showed similarities at low speed. By increasing the speed, a 

slight deviation was observed between theoretical simulation results and experimental results. 

The main reason for this trend is due to the slip velocity. At low speed, the effect of the slip 

velocity is small. At higher speeds, granules loose more energy through the experimental setup 

more than the simulation due to the infinitely wide approximation of the latter. The energy lost 

directly affects the granules collision which in turn reduces slightly the increase in gap height. 
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Figure 9.16 : Variation of the Friction Coefficient with Speed at 7.8 kPa 

(Series A: Rough Sliding Surface and Rough Stationary Disk) 

 

 

 

Figure 9.17 : Variation in the Gap Dilation with Speed at 7.8 kPa 

(Series A: Rough Sliding Surface and Rough Stationary Disk) 
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The effect of the load on the gap height increase (dilation) was investigated and 

demonstrated in Figure 9.18 relating the theory to the experiments. Load varied from 6.5 to 9.2 

kPa and the speed ranged from 50 to 800 rpm. It was shown that increasing the load applied 

decreases the ability of granules to expand which results a decrease in their dilation. These 

results showed that the trends between theory and experiment are similar and the increase in 

height was within the same order of magnitude. 

Figure 9.19 shows the variations of the shear stress and the normal stress with the shear 

rate. The shear stress increases linearly by increasing the shear rate. Similarly, the normal stress 

shows direct dependence on the shear rate as well. It is clear that both the shear stress and normal 

stress depend linearly on the shear rate. Same trend prevails with Figure 9.20 where the shear 

stress shows the dependence on the normal stress. Shear stress also depends on the granules size 

and the surface roughness. These trends are similar to those presented by Craig et al. [19, 49] and 

Yu and Tichy [24]. 

 

 

 

Figure 9.18 : Effect of the Normal Load on the Variation in the Gap Dilation 

(Series A: Rough Sliding Surface and Rough Stationary Disk) 
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Figure 9.19 : Variation of the Shear Stress and Normal Stress with the Shear Rate 

(Series A: Rough Sliding Surface and Rough Stationary Disk) 

 

 

 

Figure 9.20 : Variation of the Shear Stress with the Normal Stress 

(Series A: Rough Sliding Surface and Rough Stationary Disk) 
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9.7 Conclusions 

Experiments were conducted using 3-mm stainless steel balls to demonstrate the lift 

phenomenon observed in an annular shear cell apparatus. The effects of the friction coefficient 

and the surface roughness have been expressed as a function of the rotational speed and the 

applied load. Simulations of the kinetic theory for the granular material were performed and 

compared with the experimental results. The agreement between the theory and the experiment is 

illustrated. Furthermore, no adjustments for the friction coefficients or displacements were made 

to obtain a better fit.  

The following conclusions can be drawn from the experimental and theoretical results: 

 The frictional force that can be generated within a sheared granular material is critical 

to understanding its strength but has significant applications in geophysics and 

technology. 

 When shear stress is applied, sliding starts gradually at a frictional force smaller than 

the frictional force generated during steady sliding, but by increasing the shear, the 

frictional strength increases and sliding stabilizes. 

 At low speed spherical granules accommodate strain preferentially by rolling, then by 

increasing the speed, the proportion of rolling to sliding decreases leading to higher 

friction. 

 By increasing the speed of the rotating disk, the collision rate of the granules is 

enhanced and more momentum is passed on to the lower disk to ensure complete lift 

between the top and bottom surfaces and then reach a steady state. 

 In the kinetic regime, sliding friction increases with increasing the applied load. 

 The presented set of experiments provides an evidence of the phenomenon of the lift 

force between two parallel plates lubricated with granular material. 

 The larger the applied load the lesser the lift produced due to the increase of 

compactness of the granules within the gap. 

 Importance of the surface roughness is demonstrated especially the moving surface to 

help drag the granules and initiate shear force. 

 When the moving surface was rough and the stationary disk is smooth, similar trends 

were obtained from the case when both surfaces were rough. A slight decrease in the 
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friction coefficient is noticed. It is due to the fact that the layer in contact with the 

smooth surface does not experience similar shear forces. 

 When the moving disk is smooth, it resulted a failure of producing enough shear force 

and no longer were the granules capable of creating adequate lift to separate the disks. 
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CHAPTER 10. EXPERIMENTAL INVESTIGATION ON 

THE STICK-SLIP PHENOMENON IN GRANULAR 

COLLISION LUBRICATION 
 

10.1  Introduction 

While the archival literature contains a great deal of research on granular lubrication, a 

number of important issues remain largely unexplored. Of particular interest in this chapter is to 

examine the stick-slip phenomenon associated with granular materials within the context of 

lubrication. In what follows, we begin by providing a pertinent background for the stick-slip 

research.  

Stick-slip behavior in granular materials is of vital importance in understanding the 

dynamics of solid on solid friction [50, 51], avalanches [52], and earthquake dynamics [53]. The 

mechanism of the stick-slip behavior of the granular layer was also addressed by Hayakawa [45] 

who introduced a global order parameter (OP) which characterized the phase state of the layer. 

Similar stick-slip oscillations have been observed by Albert et al. [54] in cases when an object is 

moving through granular medium.  

The applied external stress results in the development of an internal structure resisting the 

stress called jammed state. In a jammed state, forces do not propagate uniformly through the 

granular sample but are localized along directional force chains. They found that successive 

formation and collapse of jammed states resulted in fluctuations that are typically observed in 

systems that exhibit stick-slip. These fluctuations were periodic when grain size was small, but 

became steeped (i.e., non-periodic) when larger grains were used.  

Granular flows exhibit a variety of phenomena that have both fluid and solid aspects [55, 

56] and have captured the attention of scientists from different disciplines. Given the recent 

interest in the tribology of powders, it is surprising that there have been limited studies relevant 

to investigation of the stick-slip phenomenon in granular lubrication. In this chapter, we focus 

our attention on the influence of the stick-slip of the granular material sheared between two 

parallel disks. A series of experiments were carried out using ceramic granules to investigate the 

influence of the rotational speed on the displacement (lift) and the friction coefficient. 
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10.2 Background  

In the mid 1950’s, Rabinowicz’s research on the origin of wear led him to lay the 

foundation of stick-slip in materials [57]. Burridge & Knopoff [58] established one of the first 

models linking stick-slip with faulting. Byerlee & Brace [59] and Byerlee [60] were the first to 

perform laboratory experiments that showed occurrence of stick-slip in geological materials like 

granite materials. They proposed that stick-slip instabilities in laboratory friction experiments 

might be similar to earthquakes. Additionally, they found that stick-slip was periodic in time but 

their experiment demonstrated a speed weakening, which could not be explained by a simple 

variation of the friction coefficient.  

Following these findings, Dieterich [61] and Ruina [62] proposed a new theory which 

uses an internal state parameter, called contact ageing, and a velocity-dependent friction law. 

These state parameter laws have been reviewed by Persson [63] in a review of friction that 

includes consideration of microscopic physics, and have been also reviewed and confirmed in a 

book by Scholz [64]. According to Persson [63]  and Meyer et al. [65], understanding the nature 

of sliding friction is essential for nearly all practical problems with engineering applications. For 

example, low friction without disturbance (stick-slip) is a necessary feature for the successful 

operation in applications like information storage and micro-electro mechanical systems.   

In the late 1980’s and early 1990’s, it became necessary to develop a better understanding 

of the friction acting between the slipping surfaces in order to design reliable machinery. The 

experimental results presented by several researchers [66-68] have provided insight into the 

nature of friction and lubrication involving slip. Using a surface force apparatus (SFA), they 

observed that the granular films could support a finite shear stress and exhibit either stick-slip 

dynamics or steady sliding depending on a variety of experimental parameters including the 

spring stiffness (k) and the pulling speed (V).   

By mid 1990’s, the physicists tried to explain the stick-slip phenomenon from a different 

angle. Heslot et al. [69] and Nasuno et al. [70] exposed granular media to shearing and observed 

jerks during the movement. They introduced dilation as a new variable that played a major role 

on the friction strengthening, where the static friction coefficient increases with the time of static 

contact but only in the presence of an imposed shear stress. The stick-slip observed in these 

experiments was periodic similar to what was observed by Byerlee [60]. They found that the 

stick-slip mechanism was correlated with Hopf bifurcation [71, 72], and is now well accepted by 
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geo-physicists. Recent studies of Gayvallet & Geminard [73] showed that stick-slip is associated 

with the dilation effect and attributed the ageing effect (stick-slip state) to corrosion and to 

surface chemical reaction.  

To explore the nature of the transitions between stick-slip and steady sliding, Batista & 

Carlson [71] investigated the bifurcations from steady sliding to stick-slip in models of boundary 

lubrication type. The models used are based on the rate and state approach that characterizes the 

behavior of dry interfaces [62]. They found that for large values of (k) and (V), both models 

exhibited only steady sliding solutions, characterized by constant spring force. Conversely, when 

(k) and (V) are decreased adequately, there is a transition to a series of stick-slip pulses. Batista 

& Carlson [71] concluded that the transition from steady sliding to stick-slip is typically irregular 

and sometimes hysteretic. When hysteresis is observed, it is associated with a sub-critical Hopf-

bifurcation. In either case, they observed a sudden and discontinuous start in the amplitude of 

oscillations at the bifurcation point.  

Radjai et al. [74] found that axial compression of granular matter exhibit smooth 

mechanical responses, independent of the deformation rate. However, Nasuno et al. [70] showed 

that there are situations where the response was not smooth but exhibited stick-slip behavior. 

They found that stick-slip was not periodic and did not depend on the strain rate history. 

Furthermore, Nasuno et al. [75] studied the motion of a heavy plate pushed above a thin granular 

layer with a soft spring with a constant velocity of the pulling point. A general trend is that the 

samples with stick-slip exhibited both smoothening and weakening when the rate of deformation 

is increased. They concluded that at large pulling speed, the plate moves with a constant velocity, 

whereas at smaller speeds the motion of the plate is irregular: long periods of sticks are followed 

by short slip events. Research by Howell et al. [76] revealed that for a given rate of deformation, 

the larger the sample, the less scattered the instabilities. For dry granular material, it was 

concluded that stick-slip behavior can be either periodic or non-periodic.  

Adjémian & Evesque [77] conducted experiments to study the stick-slip behavior with 

glass beads and Hostun sand. They found that the mechanics of the deformation was stable and 

concluded that the strain rate plays a vital role in the amplitudes of the stick-slip. When the strain 

rate is very fast, the stick-slip does not have enough time to develop completely. Furthermore, 

they concluded that stick-slip disappears in relatively large specimens (i.e., large H/D, where H 

is the gap height and D is the granular diameter). Alshibli & Roussel [78] pointed out the 
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importance of understanding the behavior of the stick-slip phenomenon for geological processes. 

They performed a series of axisymmetric triaxial experiments on glass beads to investigate the 

factors influencing stick-slip behavior. They observed continuous volume increase (dilation) 

even at relatively high strains resulting from the uniform shape of the spherical particles used. 

They found also that the load oscillations that appeared in small size beads are due to the stick-

slip phenomenon. 

 

10.3 Experiment 

10.3.1 The Apparatus  

The test rig used is an automated tribometer controlled and monitored by a computer as 

illustrated in Figure 10.1. The experimental apparatus presented in this chapter has been 

described in details in Chapter 9 and by Elkholy & Khonsari [79] where 3-mm stainless steel 

balls were used. A brief description of the test rig is as follows. The apparatus is equipped with a 

computerized data acquisition system, which records real-time values of friction coefficient, 

wear/displacement, and speed. The load on the testing component is applied from the loading 

mechanism located in the bottom section of the apparatus. This tribometer measures friction and 

displacement to 0.635 μm (25 μin) giving an accurate assessment of displacement and friction as 

a function of time. To measure the coefficient of friction, the top vertical shaft is rotating but 

restricted from the motion in the vertical direction while the bottom holder is restrained from 

rotation also senses the frictional torque applied by the granular medium, using a force load cell. 

The vertical displacement and the friction coefficient values are recorded every 20 seconds.  

The shear cell as shown in Figure 10.2 consists of two concentric steel disks. The upper 

disk is mounted on a rotating vertical shaft but restricted from the motion in the vertical 

direction. The bottom disk is restricted from rotation, but can move in the vertical direction. The 

top disk has an annular protrusion that fits into the channel of the bottom disk. This annular 

protrusion does not contact the side walls of the bottom disk channel. The clearance between 

these two surfaces is ~100 microns, to prevent granular material jamming or overflow. The 

bottom disk is free to move vertically, so as to allow for the expansion of the sheared granular 

material. The bottom disk is attached to a vertical shaft with a sensor on its other end to measure 

the vertical displacement and friction coefficient as a function of time and rotational speed of the 

top disk. 
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Figure 10.1 : Experimental Apparatus 

 

 

Figure 10.2 : Shear Cell Assembly 
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10.3.2 Experimental Procedures 

The gap in the annular shear cell is divided into three regions. The first region is the layer 

of granules adjacent to the upper moving disk; the second region is the layer of locked granules 

adjacent to the stationary lower disk, and an intermediate layer between those two regions 

(interior flow). A total of 12 experiments were conducted to investigate the stick-slip 

phenomenon in a parallel plate configuration using ceramic granular material with six different 

applied loads. A summary of the cell dimensions and the granular material properties is shown in 

Table 10.1.  

Surface roughness plays an important role on the performance of granular materials. 

Upon coming into contact with a smooth surface, the granule-wall collisions are very small and 

granule slip at the wall is relatively large. In the contrast, when interacting with rough surfaces, 

the granules slippage at the wall is small and granule-wall collisions will provide a major 

transport of lateral momentum to the wall. To provide this roughness in the experiments, the disk 

surfaces are constructed by attaching a series of adjacent granules along the length of each 

surface to help drive the granules of the interior flow.  

Experiments are conducted where both the stationary and sliding disks are rough. The 

following procedure is used in creating the desired surface roughness. Stainless steel wire mesh 

is used with the proper mesh size.  The wire mesh is first glued to the surface, and then some 

ceramic granules enough to cover this surface are glued to it as shown in Figure 10.3 using high-

impact high-strength epoxy. The wire mesh along with the high-strength epoxy provided a very 

high shear strength and very high torque resistance to the granules glued to it.  

 

 

 

Figure 10.3 : Granular Material & Surface Roughness 
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Table 10.1 : Shear Cell Dimensions and Granular Material Properties 

 

Channel Width 31.4 mm 

Channel Depth 45.8 mm 

Mean Radius ( )meanR  34.7 mm 

Shearing Area ( )( )22

ioShear rrA −= π  6846 mm
2
 

Mean Length ( )meanmean RL π2=  218.24 mm 

Gap Height (H) 9.8 – 12.6 mm 

Granular Material Name Zirconium Silicate (QBZ-58A) 

Composition ZrO2 – 58 % + SiO2 – 37 % 

Hardness 800 Vickers 

Sphere Count 95 % 

Average Crush Strength > 133,000 PSI 

Granule Diameter (d) 1.4 mm 

H/d 7 – 9  

Particle Density 4000 kg/m
3
 

Rotational Speed 5 – 950 rpm 

Linear Speed ( )60/2 NRU meanπ=  0.02 – 3.5 m/sec 
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Experiments are divided into two series in order to detect the region where stick-slip took 

place. They are: relatively high speed tests where the speed ranged from 150 to 950 rpm at an 

increment of 50 rpm, and low speed tests from 5 to 100 rpm with a 5 rpm increment. It is 

necessary to have a small increment in the low-speed tests since stick-slip typically occurs at low 

speed. The testing procedure is as follows.  First, a specified mass of granules is placed in the 

lower channel of the shear cell. The upper disk is then lowered until it just touches the granules, 

thereby packing them in place. A specified normal load is then applied to the granules through 

the bottom surface causing them to be compressed. Corresponding counter weight is specified to 

compensate the weight of the bottom disk and the specified mass of granules. The top disk is 

then given the rotational motion causing the granules to move and exchange places at low 

speeds. At higher speeds the granules start to collide and tend to push the bottom disk downward, 

creating a lift.  

With a specified normal load, the drive motor is set to rotate the upper disk slowly for a 

few seconds first to make sure that the granules are well distributed and initially compacted in 

the channel. The motor is then stopped to adjust the positioning of the upper disk if needed. To 

start each experiment, the driving motor is set to rotate the upper disk again by increasing the 

rotational speed from 5 to 100 rpm in a step-wise fashion every 2 minutes ranging an increment 

of 5 rpm for the slow-speed tests and an increment of 50 rpm for the relatively high-speed range 

of 150 to 950 rpm. Data for the vertical displacement and the friction coefficient are recorded to 

analyze the fluctuations for every load during each speed range. To investigate the effect of the 

load on the stick-slip phenomenon, the applied load is varied from 5.8 to 9.2 kPa.  

 

10.4 Experimental Results  

Generally the stick-slip phenomenon occurs in the granular material when the granules 

begin to exhibit both rolling and sliding, and its behavior is usually detected during shearing. The 

shear resistance between two granules is the force that must be applied to cause a relative sliding 

and rotation between the granules. The experimental work discussed was performed by shearing 

uniform spherical ceramic granules with known size (1.4 mm). Different sources contribute to 

the frictional resistance which is represented by the coefficient of friction and in turn contribute 

to the friction force, such as rolling and sliding of the granular material, granule 
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interlocking/resistance to dilatancy. Dense granular materials have exhibit an increase in volume 

(dilatancy) when they are sheared.  

 

10.4.1 Friction Pattern  

In the experiments, the normal load applied is not necessarily uniform on each granule 

because of the scattered arrangements of granules. Granular material form chains of granules to 

support the applied load. When the chain becomes unstable, some granules will slide out of the 

column causing the load to drop. This drop causes a sudden reduction in the stresses during 

compression. The load then builds up again as new chains of columns form followed by a 

collapse and so on. Each granule may be carrying a low-to-moderate stress, or it may be possible 

that sets of highly localized granule chains (stress chains of aligned granules) where fewer 

granules are involved but each experience much higher local contact stresses [76, 78]. Breaking 

these stress chains results in redistributions of the granular packing.  

Upon applying a shearing force, the stress chains tend to break and reform continuously, 

thereby creating small fluctuations in the global stress of the granular material [74, 80]. This 

phenomenon is also thought to be responsible for the granular material to dilate [81]. Sudden 

releases (slip events) are observed during the deformation of the granular material, whereas 

during sticking the granules are closely packed and have high shear resistance [78].  

In order to investigate the effect of stick-slip phenomenon closely, it is important to focus 

our attention the pertinent range of speed. Figure 10.4 demonstrates the effect of the rotational 

speed and the normal load on the friction coefficient for the two ranges of speed (5 to 100 and 

150 to 950 rpm). Cases A through F in all figures presented thereafter correspond to the variation 

of normal load from 5.8 to 9.2 kPa. To effectively capture the behavior of the granular material, 

six data point were recorded for each speed. The distinction between the stick-slip region and the 

sliding region are shown. ] 

The results show that at the low speed range (5 to 100 rpm) there exist large fluctuations 

in the friction coefficient due to the continuous stick-slip events. At the higher range, a much 

smoother behavior was experienced where sliding starts gradually at a frictional force smaller 

than that generated during steady sliding (steady state friction). In this later case, slight 

fluctuations were recorded at some locations of the speed, but they were followed by a smoother 
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trend. Such behavior is due to the low strength of the granular jammed state at this higher speed 

range [54]. 

 

 

 

Figure 10.4 : Distinction between the Stick-Slip Region and the Sliding Region. 
Case “A” – 5.8 kPa, “B” – 6.5 kPa, “C” – 7.2 kPa, “D” – 7.8 kPa, “E” – 8.5 kPa, and “F” – 9.2 kPa 
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10.4.2 Identification of Stick-Slip  

Let us now turn our attention to the low speed range (5 to 100 rpm) where the stick-slip 

events took place. Figure 10.5 presents the effect of the rotational speed and the normal load on 

the friction coefficient for this low speed range. Translation of the granular material must be 

achieved by both sliding and dilation. Slip motion between the granules in contacts causes 

dynamical rearrangements and fluctuation in the friction forces occurs. As the speed is increased, 

the shearing resistance (friction level) of the spherical granules initially increases as granules 

rearrange spatially. When shear strain is applied sliding starts gradually and while the stress 

increases gradually, more and more contacts causes slip events.  

With increasing shear strain, the frictional strength stabilizes and the magnitude of the 

stick-slip spikes decreases. The motion of the spherical granules becomes more stable when the 

slip at contacts accumulates over time and less stick-slip occurs. Noticeably small random 

pattern of stick-slip was due to the relatively large grain size used in the experiments [77]. Also 

shown in Figure 10.5 are a series of magnified snapshots where we have zoomed into several 

speed values in order to investigate the stick-slip events more closely. All cases with six different 

applied loads clearly revealed stick-slip events. Four different speed locations were chosen for 

each load case. Each zoomed frame represents the variation of the friction coefficient at a 

particular speed for two minutes of recorded data showing a stick-slip event. 

The results presented in this chapter illustrating the occurrence stick-slip phenomenon in 

granular lubrication are qualitatively in agreement with the results published by several 

researchers. For example, Batista & Carlson [71] explored the nature of the transitions between 

stick-slip and steady sliding in boundary lubrication. They observed a sudden and discontinuous 

onset in the amplitude of oscillations at the bifurcation point as they increase the speed. Their 

observations agreed with the results presented in Figure 10.4 where we show that the bifurcation 

point from stick-slip to continuous sliding occurs by increasing the speed. Nasuno et al. [70] 

showed that the dynamics of spherical granules is always irregular. Microscopic events for the 

non-periodic (irregular) stick-slip motion at high stiffness and low driving velocity were also 

demonstrated.  

Their results showing the behavior of the granular material before and after a major slip 

event agreed with our magnified snapshots presented in Figure 10.5. Johansen et al. [50] showed 

that the stick-slip exists at small speed, whereas a damped harmonic motion (continuous sliding) 
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at higher speed in a spring-block system as a function of the pulling velocity. The spring force 

can be somewhat comparable to the friction coefficient in the case presented in this chapter.  

 

 

Figure 10.5 : Effect of the Rotational Speed and the Normal Load on the Friction 

Coefficient. 
Case “A” – 5.8 kPa, “B” – 6.5 kPa, “C” – 7.2 kPa, “D” – 7.8 kPa, “E” – 8.5 kPa, and “F” 9.2 kPa 
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 The behavior of the stick-slip is similar to the results presented in Figure 10.4 and Figure 

10.5. Adjémian & Evesque [77] demonstrated the mechanical behavior of a macroscopic 

ensemble of glass beads where they presented the evolution of the vertical overload as a function 

of the sample strain. The strain behavior resemble to the friction behavior presented in Figure 

10.4. Also they showed the effect of the velocity on the stick-slip which is similar to the results 

found in Figure 10.4. 

 

10.4.3 Displacement/Lift Behavior  

The effect of the rotational speed and the normal load on vertical displacement is 

depicted in Figure 10.6. The shear forces move the granules, causing an increase in the volume 

(dilation) which in turn causes an increase in the displacement. Displacement was measured 

using the linear variable differential transducer (LVDT) where it senses the relative displacement 

of the bottom cup from the upper disk. When this relative displacement is positive, it means that 

there is a separation that took place between the cup and the disk which in turn indicates a lift.  

At low speed, layers of the spherical ceramic granules must dilate against the applied 

normal load to accommodate the shearing force. By increasing the speed slightly, the proportion 

of rolling to sliding decreases leading to larger displacement. At this low speed range, the 

increase in the momentum transfer due to the granules spatial arrangement translates to an 

increase in displacement between them but the stick-slip ceases to have any significant effect on 

the displacement due to its small magnitudes.  

Figure 10.7 presents the result of the displacement (lift) plotted as a function of the wide 

range of speed for a better understanding for the effect of the normal load. The results indicated 

that under the conditions tested at low speed range (5 – 100 rpm) the applied normal load had a 

minimal influence on the displacement. On the other hand, at the higher speed range, the larger 

the applied load the lesser the displacement (lift). In other words, when the applied load is 

greater, the displacement —produced by the granules that push the lower disk downward— due 

to the increase in the packing of the granules within the gap is reduced.  

By increasing the normal load, the lift produced by the granules decreases since higher 

normal load suppress dilatancy of the material. Also when the sliding speed is much higher (100 

– 1000 rpm), the collision rate of the granules is enhanced and more momentum is passed on 

from the rotating disk (top) to the stationary disk (bottom) pushing it gradually downward, thus 
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increasing the separation between the two disks. The results of the experiments provide a 

quantifiable measure and evidence that granular material can produce lift between two parallel 

disks.  

 

 

Figure 10.6 : Effect of the Rotational Speed and the Normal Load on the Vertical 

Displacement. 
Case “A” – 5.8 kPa, “B” – 6.5 kPa, “C” – 7.2 kPa, “D” – 7.8 kPa, “E” – 8.5 kPa, and “F” – 9.2 kPa 
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Figure 10.7 : Effect of the Normal Load on the Vertical Displacement 

 

10.5 Conclusions  

Stick-slip is a complex phenomenon that depends on many parameters. Experiments were 

conducted using 1.4-mm ceramic balls to study the stick-slip phenomenon in an annular shear 

cell apparatus. The results reveal the occurrence of stick-slip within the context of granular 

lubrication. Specifically, the effect of stick-slip on the friction and the change in the spatial 

arrangement of granules in a granular shear cell are demonstrated.  

The following conclusions of this experimental study can be summarized as follow: 

 The experiments provide an evidence of the existence of the stick-slip phenomenon at 

low speed and provide an evidence of formation of granular lift force between two 

parallel disks. 

 The higher the speed of the rotating disk, the greater the collision rate of the granules 

and the higher the momentum which is passed on to the lower disk to bring about a 

lift. 

 The larger the applied load, the lesser the lift produced due to suppressing dilatancy 

tendency. 
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 Stick-slip fluctuations are strongly influenced by the long range nature of the force 

propagation in granular materials at low speed, and at higher speed the jamming 

originates from a localized applied stress.  

 The velocity of the sliding surface influences the stick-slip spikes. At slow speed, the 

surrounding grains are displaced causing dynamical rearrangements which result in 

large fluctuations. By increasing the speed, the granular material no longer sticks to 

the moving surface and instead we observe continuous sliding. 
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CHAPTER 11. THE TRUE TEMPERATURE BETWEEN 

TWO PARALLEL PLATES    
 

11.1 Introduction 

Heat transport through complex and often dynamic porous materials such as granular 

materials is an essential requirement for modern technology such as high performance cryogenic 

insulation, heterogeneous catalysts and catalytic reactors. The true temperature of a granular 

material depends on its entropy, and is difficult to measure in the laboratory. It is important to 

develop a theory that ties the true temperature to the grain mobility. Under certain conditions, the 

behavior of individual granules is qualitatively similar to the motion of a gas molecule. However, 

there is a significant difference between a fluidized granular material and a gas molecule. The 

temperature of the gas, gives the magnitude of the velocity fluctuations (the so-called pseudo 

temperature in granular material), while the true temperature of a granular material depends on 

the balance between the source of energy, and the dissipation of energy due to inelastic 

collisions.  

The purpose of this chapter is to focus our attention on evaluating the granular material’s 

true temperature considering the case where the flow of a granular material lubricant is sheared 

between two infinitely wide parallel plates as shown in Figure 8.1. 

 

11.2 Theory 

The grains are treated as smooth frictionless spheres of identical size, and the plates are 

assumed to be infinitely wide. The governing equations are derived, normalized and solved 

numerically. A series of results are presented to show the distribution of the true temperature 

across the gap, and to investigate the effect of the true temperature on the top and bottom 

interfaces. The upper plate is stationary while the bottom plate undergoes a constant sliding 

motion, U. It is assumed that the spin effect of the granules and the gravity force are neglected 

due to the smallness of the thickness of the gap. The flow is considered to be steady, two-

dimensional, and fully developed. As shown in Figure 11.1, a Cartesian coordinate is set up by 

letting x lie along the plate’s length, and y across the thickness of the flow.  

The analysis of this problem requires consideration of the heat transfer within the gap, 

heat conduction into the bounding plates, and heat convection into the surroundings. Therefore, 
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the problem is divided into the granular domain as well as the heat transfer in the upper and 

lower plates. In what follows the governing equations and the related boundary conditions are 

presented. 

 

Figure 11.1 : True Temperature Regions 

 

11.3 Governing Equations 

11.3.1 Granular Flow 

The governing equation for the conservation of energy (3-4) of the granular material is given by:  

( )
UQ

Dt

ED
∇−−∇= :. σρ

 

Following the work of Johnson and Jackson [15], it is assumed that the work done by the 

frictional component of stress contributes only to the true thermal energy. Therefore, the energy 

equation is separated into two equations (3-11), (3-12) given below. The energy equation of the 

pseudo temperature is, 

( ) γσ −∇−−∇= Uq
Dt

ED
ckPT

PT :.                                           (11-1) 

and the energy equation of the true temperature is,  

( ) γσ +∇−−∇= Uq
Dt

ED
fh

h :.                                             (11-2) 

where
tD

D
 is the material derivative; hE  is the true thermal internal energy of single granule 

defined as Rph TcE = ;  cp is the specific heat of the granular material; hq  represents the true heat 

flux defined as Rph Tkq ∇−= ; kp denotes the heat conductivity of the granular material; TR 
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represents the true temperature of the granular material; fσ  represents the stress tensor caused 

by enduring contact force between granules; Uf ∇:σ  is the viscous dissipation done by the 

component of frictional stress; and γ  is the rate of dissipation due to inelastic collisions between 

granules defined from equation (6-3) as 
( )
d

Tfp

23

5 υρ
γ = .  

It is assumed that the flow is two-dimensional, fully developed, and steady state. Thus, the 

energy equation of the true temperature is simplified as follows: 

γρ +∇−−∇= ).()( RpRp TkTc
Dt

D
                                          (11-3) 

Now, let us examine the orders of the conduction terms individually: 
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Practically, the thermal conductivity of the granular flow is a function of the solid volume 

fraction. It is, therefore, necessary to obtain an effective thermal conductivity for treating the true 

temperature in granular flow. For this purpose, the granular material is treated like a solid with 

continuous pores of air.  

There are mainly two phases present in the porous material: air which is a continuous 

medium of conductivity airk and granules (spheres, dispersed phase) with conductivity pk and a 

solid volume fractionυ . For materials packed in a random assembly of microspheres, the 

effective thermal conductivity is essentially affected by the relation between the thermal 

conductivities of the two phases (air and Titanium Dioxide, for example), the solid volume 

fraction of the dispersed phase, and the thermal polarizability which is defined by Gonzo [82] as: 

airp

airp

kk

kk

2+
−

=β                                                         (11-4) 
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To estimate correlations for the effective thermal conductivity of granular materials, 

Gonzo [82] classified three main groups of materials. Type (A): low-dense porous materials 

(volume fraction of spheres up to 10%); Type (B): medium-dense materials with volume fraction 

in the range 0.15–0.85; and Type (C): high-dense materials (volume fraction higher than 90%). 

The Type (B) porous materials address the class of granular material used in this work. Gonzo 

[82] demonstrated an improved form of Maxwell’s model [83] proposed by Chiew and Glandt 

[84] in the early 1980’s for this type of granules and given by the following expression:  

( ) ( )
βυ

υββυ
υ

−
−++

=
1

321 32

p
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The energy equation for evaluating the true temperature ( )υRR TT =  can be then rewritten as: 
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where u represents the component of the bulk velocity, pρ is the density of the individual 

granule, υ  represents the solid volume fraction, and ( )υeffk  is the effective thermal conductivity. 

In order to solve the above heat equation, the granular flow governing equations for the velocity, 

pseudo temperature, and solid volume fraction must be solved. 

 

11.3.2 Bottom Plate 

The general form of the heat equation with a moving surface is: 

( ) BottBottBottBottBott TkTVc 2. ∇=∇ρ                                            (11-7) 

where Bottρ  is the density of the bottom plate material; cBott  is the specific heat of the bottom 

plate; V represents the velocity vector and since the plate move only with a constant velocity U 

in x-direction, then we can rewrite: 
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The final form of the governing equation for the true temperature of the bottom plate is: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=
∂

∂
2

2

2

2

Bott

BottBott
Bott

Bott

y

T

x

T

x

T
U α                                         (11-9) 

where ( Bottyx, ) represents the Cartesian coordinate for the bottom plate, and Bottα  represents the 

thermal diffusivity of the bottom plate defined as: 
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11.3.3 Top Plate 

The general form of the heat equation with constant thermal conductivity is: 

2

2

2

2
1

Top

TopTopTop

Top y

T

x

T

t

T

∂
∂

+
∂
∂

=
∂

∂
α

                                            (11-10) 

where ( Topyx, ) represents the Cartesian coordinate for the top stationary plate, Topρ  the density 

of the top plate material, cTop represents the specific heat of the top plate, and Topα  represents the 

thermal diffusivity of the top plate defined as: 
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For steady state condition and no heat generation, the Laplacian equation will be simplified as 

follows, 
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11.4 Boundary Conditions 

Figure 11.2 illustrates the boundary conditions for the granular flow, the bottom plate, and the 

top plate respectively. 

 

11.4.1 Granular Flow 

In the x-direction the inlet temperature of the granular material may be taken to as the granular 

supply temperature. In the y-direction, the heat generated transfers into the boundary surfaces 
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only by conduction. At the interface between the granules and the upper and lower plates (disks), 

the heat flux is continuous and the temperatures are equal. 

At x = 0 (Inlet): 
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At y = 0 (Matching boundary condition at the bottom Interface):  
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At y = H (Matching boundary condition at the top interface):  
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where H represents the film thickness, Tin is the inlet temperature, kBott is the heat conductivity of 

the bottom plate, BottT  is the true temperature of the bottom plate, Bottt  is the thickness of the 

bottom plate, kTop is the heat conductivity of the top plate, and TopT  is the true temperature of the 

top plate. 

 

 
 

Figure 11.2 : Boundary Conditions 

 

11.4.2 Bottom Plate 

This plate is the sliding plate and due the symmetric condition at the inlet and outlet, the 

temperature at the inlet and outlet is assumed to be adiabatic.  
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At x = 0 (Inlet):  
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At x = L (Outlet):  
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At yBott = tBott (Matching boundary condition at the bottom Interface):  
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At yBott = 0 (Convection boundary condition): 
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where Botth represents the convection heat transfer coefficient at the interface between the bottom 

plate and the ambient. 

 

11.4.3 Top Plate 

The boundary conditions for the top plate are specified considering the continuity of the heat flux 

at the granular-solid interface (yTop= 0) and at the solid-ambient boundaries (x = 0, x = L, and 

yTop= tTop).  

In x-direction at both inlet and outlet, the plate is subjected to convection boundary condition 
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where Toph is the convection heat transfer coefficient at the interface between the top plate and the 

ambient. 

At x = L (Outlet):  
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At yTop= 0 (Matching boundary condition at the top interface): 
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At yTop = tTop (Convection boundary condition): 
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where Topt is thickness of the top plate 

 

11.5 Dimensionless Form 

In what follows, we shall make use of the following dimensionless parameters: 

   
L

x
x =* , 

H

y
y =* , 

Top

Top

Top
t

y
y =* , 

Bott

Bott
Bott

t

y
y =* , 

U

u
u =* , 

N

U
A

p

2

*
ρ

= , 
in

R
R

T

T
T =* , 

inT

T
T ∞
∞ =* ,           

                                           
in

Bott
Bott

T

T
T =* ,  

in

Top

Top
T

T
T =* ,  

N

T
T

pρ=* ,  
p

eff

eff
k

k
k =*                        (11-23) 

Substituting in the governing equations and boundary conditions with the above parameters 

yields to the non-dimensional equations below:  

 

11.5.1 Granular Flow 

11.5.1.1 Dimensionless Governing Equation 
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11.5.1.2 Dimensionless Boundary Conditions 

At 0* =x  (Inlet): 

1),0( ** =yTR                                                         (11-25) 

At 0* =y  (Bottom interface):  
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At 1* =y (Top interface): 
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11.5.2 Bottom Plate 

11.5.2.1 Dimensionless Governing Equation 
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11.5.2.2 Dimensionless Boundary Conditions 
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At 1* =Botty (Bottom Interface): 
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At 0* =Botty :  
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11.5.3 Top Plate 

11.5.3.1 Dimensionless Governing Equation 
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11.5.3.2 Dimensionless Boundary Conditions 

At 0* =x  (Inlet): 
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At 1* =x  (Outlet):   
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At 0* =Topy (Top Interface):  
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At 1* =Topy :  
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11.6 Numerical Scheme 

The energy equation for the granular flow (11-24), the heat conduction equations for both 

the bottom and the top plates (11-28), (11-33) are coupled through their respective boundary 

conditions. These equations must be solved numerically in an iterative fashion. A finite 

difference method is employed to discretize the dimensionless governing equations and 

boundary conditions, which forms a set of algebraic equations. Newton’s iteration method and 

the marching technique are used to solve the resulting set of equations for the true temperature of 

the granular material and the top and bottom plates. In order to solve the governing equation of 

the true temperature, the characteristics of the granular flow (i.e. velocity, pseudo temperature, 

and solid volume fraction) need to be first obtained. The true temperature of the granular 

material and the plates’ temperature were solved using the main iteration loop. The procedure is 

repeated until the results of all temperatures converge. The error tolerance used is 10
-8

. There are 

21 mesh points across each plate and across the gap and 51 along the length of the pad.  

 

11.7 Discretization 

The appropriate finite difference equations and the detailed discretization are as follow. 

Parameter i  represents the index for the x-direction. Flowj , Bottj  and Topj  represent the indexes for 

the y-direction of the granular flow, the bottom plate, and the top plate respectively. Since the 

inlet temperature is specified, the temperature is solved at every fixed i -section by using the 

marching technique. Newton’s iteration method is also applied in the simulations. In the granular 

flow governing equation (11-24), first order forward differentiation formula was used for the 

convection term since the flow is moving in the x-direction with a specified inlet temperature, 

while a second order central differencing formula was used for the conduction and dissipation 
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terms. Second order forward and backward approximations were used to discretize the interface 

equations (11-26) and (11-27) respectively.  

Given below are the set of discretized equations along with their boundary conditions 

used in the Newton’s iteration method: 

 

11.7.1 Granular Flow 
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11.7.2 Bottom Plate 
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11.7.3 Top Plate 
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11.8 Results and Discussion 

The results presented in this section focus on applying the theory to determine the true 

temperature of the granular flow between two parallel plates and also predict how hot the 

interfaces of the top and bottom plates can become. These predictions are based on the solution 

of the flow velocity, pseudo temperature, and solid volume fraction presented in Chapter 8. The 

input parameters used in the simulations are summarized in Table 11.1. The thermal properties 

presented were evaluated at room temperature and assumed to remain constant. 

Both the top and the bottom plates are made of Stainless Steel. They both have a length 

of 26 mm and thickness of 13 mm. The top plate is stationary, while the velocity of the bottom 

plate is m/sec6.4=U . The properties of the Stainless Steel are chosen from the CRC Materials 

Science and Engineering handbook [85]. The thermal conductivity is selected as 

W/mK3.16== BottTop kk , the specific heat is J/kgK500== BottTop cc , and the density is 

3kg/m8000== BottTop ρρ . The effective thermal conductivity is computed based on the 

prediction of the solid volume fraction. The Value of the convection heat transfer coefficient (h) 

for the moving plate is unknown, but was estimated based on Holman [86] and Incropera & 

DeWitt [87]. Assuming that the conditions for convective heat transfer were the same as for 

laminar air flow over isolated flat plates of the same dimensions one can determine Reynolds 

number from: airair xu ν/Re = , where x is the length of the section of the body in the direction of 

air flow (length of the moving plate), m/sec 4.6U =  is the plate velocity, and airν is the 

kinematic viscosity of air ( s/m10x69.15 26−=airν  at 300K ). The Reynolds number can be 

rewritten as: 53 1010x74.7/Re ≤== airUL ν  and the mean Nusselt number (Nu) was determined 

from 07.52PrRe664.0 333.05.0 ==Nu , where Pr is the dimensionless Prandtl number ( 708.0Pr =  

for air at 300K ). The mean value of h was calculated from KW/m3.51/ 2== LkNuh air , where 
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airk  is the air thermal conductivity ( W/mK026.0=airk ). The convection heat transfer coefficient 

for the moving plate is assumed then to be KW/m50 2=Botth , while for the stationary plate the 

convection heat transfer coefficient is much smaller and is assumed to be KW/m15 2=Toph . 

 

Table 11.1 : Input List for Benchmark Case Used in the Computer Simulations 

 

Parameter Value Parameter Value 

U m/sec 4.6  L  m 0.0264  

maxυ  0.65 H μm70  

we  0.8 oφ  0.5 

pe  0.8 Hφ  0.5 

pρ  3kg/m4260  d  μm5  

pc  J/kgK711  inT  C30o  

pk  W/mK79.8  ∞T  C30o  

Bottρ  3kg/m8000  Topρ  3kg/m8000  

Bottc  J/kgK500  Topc  J/kgK500  

Bottk  W/mK3.16  Topk  W/mK3.16  

Botth  KW/m50 2  Toph  KW/m15 2  

Bottt  0.013 m Topt  0.013 m 

 

Based on the benchmark simulations in Chapter 8, the particle of granular lubrication 

used is made of Titanium Dioxide (TiO2) and the thickness of the gap is equivalent to 14 particle 

diameters. The particle has a diameter of m5μ  and a density 3kg/m4260=pρ . The coefficients 

of restitution for both particle and wall are assumed to be 8.0== wp ee , and the roughness of 

both moving and stationary plate is 5.0== Ho φφ . The properties of the Titanium Dioxide are 

chosen from the literature [88]. The density, thermal conductivity, and the specific heat are 

selected as 3kg/m4260=pρ , W/mK79.8=pk , and J/kgK711=pc  respectively. The effective 
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thermal conductivity is computed based on the prediction of the solid volume fraction using 

equation (8-5). 

 

11.8.1 Benchmark Simulations 

Figure 11.3 presents the predicted distribution of the true temperature at the bottom and 

top interfaces along the moving direction (x-direction). The true temperature at both interfaces 

increases from inlet to outlet. The temperature rise predicted over the stationary disk is greater 

than the one predicted over the moving disk. This phenomenon can be explained by examining 

the energy equation of the granular flow. Three terms governed this equation: the convection 

term, the conduction (diffusion) term, and the dissipation (source) term. 

The convection term represents the rate of temperature transported through the movement 

of the flow from inlet to outlet by convection relative to the interfaces. The dissipation term 

supplies the energy to the flow as a result of inelastic collision between the granules. As a result 

of the convection and dissipation terms, heat is produced due to the inelastic collision between 

the granules and thus the true temperature is predicted to increase from the inlet to the outlet. 

Since the effective thermal conductivity for the granular flow used is very small, it results in a 

prediction of small rise in the temperatures at the interfaces and heat is retained within the 

granular flow.  

Figure 11.4 demonstrates how the true temperature is distributed within the granular flow 

and in the fields of both bottom and top plates. The energy is transferred to the top and bottom 

plates via the thin layer of the plates’ thickness that is in contact with the temperature produced 

within the flow of the granular material. It is noted that the temperature at the top plate interface 

is slightly larger than the bottom plate interface due to the high heat convection coefficient of the 

moving plate. The true temperature distribution within the granular flow demonstrates the effect 

of the viscous dissipation term. The temperature builds up from the inlet to the outlet due to the 

heat source. The energy dissipated due to the inelastic collision between the granules is the major 

factor affecting the increase of the true temperature in the granular flow. This energy dissipated 

is related to the viscous dissipation term that appears in the pseudo energy equation, which is a 

function of the fluctuation velocity (pseudo temperature) and the solid volume fraction. The 

larger the fluctuation velocity becomes, the greater the chance of the collision between the 

granules and associated energy dissipation.  
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Figure 11.3 : The Film Temperature at Both Interfaces (Benchmark Simulations) 
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Figure 11.4 : The Distribution of the True Temperature in the Granular Flow and the 

Fields of the Top and Bottom Plates (Benchmark Simulations) 
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decreases at both top and bottom interfaces. The reason for that can be explained from the true 

temperature energy equation (11-6) along with the constitutive relations of the energy dissipation 

(6-3). The true temperature is related to the rate of energy dissipation due to inelastic collisions 

between granules, which is related to the granular coefficient of restitution. At low granular 

coefficient of restitution, more energy is dissipated due to the inelastic collision leading to an 

increase in the true temperature from the interior of the flow to the interfaces. The larger the pe , 

the more elastic the granules become. As a result, there is less energy loss by inelastic collision 

between granules (less heat dissipation) and the true temperature drops. The distribution of the 

true temperature within the granular flow and in the top and bottom fields for the case when 

98.0=pe  is also demonstrated in Figure 11.6. Similar trends were obtained for the true 

temperature of the flow and both plate fields along the x-direction with a decrease in the heat 

dissipated compared to the benchmark case in Figure 11.4. 

 

11.8.3 Variation of the True Temperature with the Roughness for Both Top 

Plate ( Hφ ) and Bottom Plate ( oφ ) 
 

The change in the true temperature profiles at the top and bottom interfaces by varying 

the roughness of the top and the bottom plates is shown in Figure 11.7. When the roughness 

factor of the top plate is varied, the bottom plate roughness is kept constant and when the 

roughness factor of the bottom plate is varied, the top plate roughness is kept constant. 

Generally, the roughness factor φ  of the boundary surface ranges from 0 when it is completely 

smooth, to 1 when it is completely rough. As Hφ  increases, it causes a decrease in the slip 

velocity at the top boundary.  Hence, the granules around this boundary become almost 

stationary which means the slip effect becomes nil and less fluctuation velocity occurs. Thus, as 

the roughness of the top plate becomes larger, there is less energy being transferred from the top 

plate to the adjacent layer of granules which decreases in turn the true temperature at this 

interface. Likewise, when oφ  is large, the slip velocity at the bottom boundary becomes smaller 

and less energy being transferred and similar explanation to the trend happens but for the bottom 

plate roughness. 

 

 



 119

 

 

Figure 11.5 : The Film Temperature Change with the Granular  

Coefficient of Restitution at Both Interfaces 
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Figure 11.6 : The Distribution of the True Temperature in the Granular Flow and the 

Fields of the Top and Bottom Plates for 98.0=pe  
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become more pronounced on the true temperature of the granular flow and the moving plate as 

the speed of the moving plate increases. As shown in Figure 11.4 the distribution of the true 

temperature on both the stationary and the moving plates indicate that only a thin layer of both 

plates that are close to the granular material and are affected by the heat generated in the granular 

flow. Therefore, there is less energy out through the bottom and top plates which make them 

behave as if they were insulated. Thus the true temperature in the channel is increased with 

increasing the sliding velocity. 

 

11.9 Conclusions 

The true temperature of the granular material flowing between two parallel plates is 

studied. The distribution of the true temperature at both top and bottom interfaces along the x-

direction is predicted and the variation of a number of important parameters and their effect on 

the true temperature is analyzed. The results show that the temperature increases from the inlet to 

the outlet for both top and bottom interfaces. The viscous dissipation term is found to play a role 

on predicting the true temperature. It supplies the energy to the flow as a result of inelastic 

collision between the granules. In addition, the specific heat and the effective thermal 

conductivity have their effect on predicting the true temperature. The viscous dissipation appears 

in the pseudo energy equation and is a function of the fluctuation velocity (pseudo temperature) 

and the solid volume fraction. The larger the fluctuation velocity, the greater becomes the chance 

of collision between granules. Therefore, the energy dissipation caused by the inelastic collision 

increases which cause the true temperature to increase. Increasing the granular material 

coefficient of restitution results a lower temperature at the interfaces due to the fact that the more 

elastic the material, the less energy loss by inelastic collision between granules (less heat 

dissipation). As the roughness factor increases, it causes a decrease in the slip velocity at the top 

boundary and the granules around this boundary become almost stationary which means the slip 

effect becomes nil. Thus, as the roughness becomes larger, less fluctuation velocity occurs and 

there is less energy being transferred to the adjacent layer of granules which in turn decreases the 

true temperature at this interface. On the other hand, the temperature tends to increase by 

increasing the sliding velocity of the bottom plate for both interfaces due to the pronounced 

effect of the convection terms in the granular flow and the bottom plate equations. 
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Figure 11.7 : The Film Temperature Change with the Roughness Factor for the Top Plate 

( Hφ ) and the Roughness Factor for the Bottom Plate ( oφ ) 
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Figure 11.8 : The Film Temperature Change with the Velocity of the Moving Plate at Both 

Interfaces 
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It is concluded that for a flow between two parallel plates, a very small rise of the true 

temperature is experienced in the direction of motion from inlet to outlet. Whereas, Heshmat and 

Brewe [89] described experimentally the thermal phenomena and the heat characteristics of a 

slider-type powder lubricated bearings. At 30,000 rpm, the rise of the true temperature was 

approximately 60
o
C. They also showed that the thermal stability was achieved at different load 

and speed combinations. This is an interesting phenomenon since it indicates that in thrust-type 

bearings, the wedge effect has a pronounced effect on the true temperature. 
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CHAPTER 12. ENDURING CONTACT IN GRANULAR 

LUBRICATION 
 

12.1 Introduction 

In most of the published literature in granular material, the formulation is restricted to 

rapid shearing where the kinetics and collision effect and granular stresses are generated by the 

instantaneous binary inelastic collisions between the granules. As such, the effect of the so-called 

“enduring contact” is neglected. However, in a dense regime the granules are sliding and the 

contact may not be necessarily instantaneous. The enduring contact can play an important role on 

the friction behavior. Hence, the effect of enduring contact must be carefully examined, 

particularly in the view of relatively small clearance gaps and high solid volume fraction in 

applications involving granular lubrication.  

Pioneering experiments of Bagnold [2] dating back to 1954 have revealed the 

development of the so-called transient regime where both collision and enduring contact between 

the granules exist simultaneously. Johnson and Jackson [15] developed a model that takes into 

account the effect of the enduring contact between the granules using the Coulomb law of 

friction to relate the tangential and normal forces of the sliding granules. Jang and Khonsari [89] 

applied the theory to study the enduring contact between granules of powder lubricant in a 

bearing. They found that the enduring contact tends to dominate the kinetic regime of a powder 

lubricant at low speed. Another important effect that is often neglected is the true temperature of 

a granular material during the shearing process and its influence on the grain mobility. In 

contrast, the influence of the so-called pseudo temperature in granular material which represents 

the velocity fluctuation has been studied in many papers [25, 26, 33, 40, and 43].  

In this paper, the effect of the enduring contact and the true temperature are investigated 

for a granular lubricant sheared between two parallel plates. The appropriate equations are 

derived including both the enduring contact as well as the inelastic collision between the 

granules. 

 

12.2 Theory 

In this section, The theory presented in this paper closely follows the work of Johnson 

and Jackson [15], Lun and Savage [12], Hui and Haff [27], and Jenkins and Savage [7] and Zhou 
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and Khonsari [30]. A realistic constitutive equation introduced by Lun et al. [8] is utilized to 

study the mechanism of powder lubrication. The effect of viscous dissipation term is included in 

the pseudo energy equation and the distribution of solid volume fraction together with the mean 

velocity and the pseudo temperature appear naturally in the governing equations and are directly 

predicted by the theory presented herein. The general conservation laws, the constitutive 

equations and the boundary conditions are applied to a particular flow field where a granular 

lubricant sheared between two parallel plates taking into consideration the enduring contact 

effect between the granules. As shown in Figure 8.1, the upper plate is stationary while the 

bottom plate undergoes a constant slider motion U. For parallel plates, the conservation of mass 

is satisfied automatically.  

This kinetic theory is based on the binary collision hypothesis in which enduring contact 

is to be considered, the stress tensor is composed of the collision and kinetic motion as well as 

the enduring contact. The characteristics of the flow are investigated in a transient regime where 

both kinetic-collision effect and enduring contact exists concurrently. The Coulomb friction 

model is introduced to study the effect of the friction force caused by enduring contact between 

the granules.  The formulation of the enduring contact developed by Johnson and Jackson [15] is 

used in this paper.  

 

12.3 Governing Equations 

The general governing equation (3-1), (3-2), (3-4), along with the constitutive relations (4-1), (4-

8) and (4-10) are reduced to the following set of equations: 

 

12.3.1 Conservation of Mass 

The governing equation for conservation of mass is: 

0
)(
=

dx

ud ρ
                                                           (12-1) 

 

12.3.2 Conservation of Momentum 

The governing equation for conservation of momentum is: 

σρρ .∇−= g
tD

UD
                                                    (12-2) 
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where fck σσσ += , ckσ  is the stress tensor caused by collision and the kinetic motion, and fσ  

represents the stress tensor caused by enduring contact force between granules.  

Based on Coulomb failure criterion, the shear stress is proportional to the normal stress in 

a fully developed plane shear and the granules are assumed to be cohesionless (Figure 12.1). The 

contribution of the enduring contact to shear stress is: 

φSinNS ff =                                                          (12-3) 

where φ  is the internal angle of friction and fN  represents the frictional normal stress (enduring 

contact contribution to normal stress) and defined by: 

( )n

r

f

F
N

υυ −
=

max

                                                      (12-4) 

where rF is a dimensional stress constant carrying units of 2kg/ms  and n  is an integer constant. 

At the boundaries, the magnitude of the tangential component of enduring contact is δtanfN , 

where δ  is the angle of friction between the surface and the granule. 

 

 

 

Figure 12.1 : Mohr Stress Diagram 

 

The stress tensor by enduring contact presented by Johnson and Jackson [15] is given by, 
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12.3.2.1 X-Momentum Equation 

( ) 0=xy
dy

d σ  

That is, 

( ) 02 =⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
φSinN

dy

du
Tdfρ

dy

d
fp                                        (12-6) 

 

12.3.2.2 Y-Momentum Equation 

( ) 0)(0 1 =+⇒= fpyy NTf
dy

d

dy

d ρσ                                       (12-7) 

NNTf fp =+1ρ                                                       (12-8) 

 

12.3.3 Conservation of Energy 

The general conservation of energy given by equation (3-4) is divided into two parts, 

conservation of pseudo energy and conservation of true thermal energy as shown below: 

 

12.3.3.1 Pseudo Energy Equation 

( ) γσ −∇−−∇= Uq
Dt

ED
ckPT

PT :.                                           (12-9) 

 

12.3.3.2 True Thermal Energy Equation 

( ) γσ +∇−−∇= Uq
Dt

ED
fh

h :.                                           (12-10) 

where Uck ∇:σ  is the viscous dissipation done by the component of collision stress, Uf ∇:σ  

represents the viscous dissipation done by the component of frictional stress, and γ  is the rate of 

dissipation due to inelastic collisions between granules.  

Using equations (6-12) and (6-13) for PTq.∇  and Uck ∇:σ , the conservation of pseudo energy 

equation can be rewritten as follow: 
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12.4 Boundary Conditions 

The boundary conditions shown in Figure 12.2 are obtained by substituting the Lun’s 

constitutive equations into the boundary condition equations (5-8) and (5-14) including the effect 

of enduring contact.  

 

 

 

Figure 12.2 : Slip Velocity Boundary Conditions  

 

12.4.1 Slip Velocity Boundary Condition 

The condition for the slip velocity (5-1) to (5-8) between the boundary and the granules is 

derived following the work of Johnson and Jackson [15]. In granular flows, the boundaries tend 

to supply the momentum and the energy to the interior flow by the means of shearing force and 

normal force. The supplied energy must be in balance with the stress and the total flux of the 

energy in the flow. The condition for the slip velocity is obtained by equating the total tangential 

force acting on the boundary and the rate of momentum transfer to unit area of the surface by 

collision. The tangential component of the enduring contact is also added to (5-6) and the general 

form of the slip boundary condition is given by:  
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Again we can rewrite the slip velocity equation as follow: 
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Using equations (6-1) and (12-5), the total stress tensor is defined by: 
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            (12-14) 

where ckσ  is the stress tensor caused by collision and the kinetic motion, and fσ  represents the 

stress tensor caused by enduring contact force between granules. 

 

12.4.1.1 Top Plate 
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and since slu  is positive and Γ  is negative at the top plate, we can rewrite the top boundary 

condition as follow: 
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The slip boundary conditions for the top plate can be reduced to the following form: 
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2

8 =−++ φδφ
Sin

Tdfρ
N

u
d

f

dy

du

p

fH                                 (12-15) 

 

12.4.1.2 Bottom Plate 
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and because slu and Γ  are negative at the bottom plate, we can rewrite the bottom boundary 

condition as follow: 
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The slip boundary conditions for the bottom plate can be reduced to the following form: 
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12.4.2 Pseudo Temperature Boundary Condition 

The boundary condition for the pseudo temperature is obtained by equating the rate of 

heat generation due to slip at the boundary to the rate of heat dissipated due to the granules 

inelastic-collision. The general form of the pseudo temperature boundary condition is given by: 
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The boundary conditions for the pseudo temperature at both top and bottom plates are obtained 

from equations (6-21) and (6-22) as follow: 

 

12.4.2.1 Top Plate 
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12.4.2.2 Bottom Plate 
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The above equations are in agreement with Jang and Khonsari [89]. 

 

12.5 Elimination of the Volume Fraction 

The equations can be simplified by eliminating the coupling term of the volume fraction 

from the pseudo energy equation (12-11), and the pseudo temperature boundary conditions (12-

18) and (12-19) as follow: 

By using the y-momentum equation (12-7), and substituting with the functions given in Table 6.1 

we have: 
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Also since 
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Substituting with the values of go and f1 in the denominator, we have  
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12.5.1 Pseudo Energy Equation 

Using equation (12-20) back in the energy equation (12-11) we have the final form of the pseudo 

temperature energy equation as follows: 
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12.5.2 Pseudo Temperature Boundary Condition 

Similarly, substitute equation (12-20) in the pseudo temperature boundary condition equations 

(12-18) and (12-19) yield the following equations: 

 

12.5.2.1 Top Plate 
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12.5.2.2 Bottom Plate 
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12.6 True Temperature Energy Equation 

Let us now consider the equation of the conservation of the true thermal energy (12-10). 

By substituting with the values of the true heat flux and the true thermal internal energy of single 

granule (3-10) along with the correlation of the effective thermal conductivity (11-5) discussed 

in Chapter 11, the true thermal energy equation can be rewritten as follow: 
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D
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By dropping the low order terms and substituting with the stress tensor by enduring contact (12-

5), we have 
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12.7 Normalization 

In what follows, we shall make use of the following dimensionless parameters: 
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where N  is the normal load per unit area, and H is the gap thickness.  

 

12.7.1 Dimensionless Governing Equations 

Using the dimensionless parameters (12-25) yields to the following dimensionless governing 

equations and boundary conditions: 

 

12.7.1.1 X-Momentum Equation 
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12.7.1.2 Y-Momentum Equation 
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12.7.1.3 Pseudo Energy Equation 
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12.7.1.4 True Temperature Energy Equation 

Using of the dimensionless parameters (11-23) in addition to the dimensionless parameters (12-

25) yields to the true thermal energy equation in dimensionless form as follow: 
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12.7.1.5 Continuity Equation 

For a Couette flow, the distribution of bulk velocity is independent of the flowing 

direction. Hence, the mass flow rate in the gap of a Couette flow is constant, and the 

conservation of mass is automatically satisfied. Rewriting equation (12-1) accounting for a fixed 

gap and the fact that υρρ p= , we have  
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12.7.2 Dimensionless Boundary Conditions 

The results of the dimensionless boundary conditions are summarized below: 
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*
= 1 (Top Plate) 

( )φδφ
Sin

TACf

N

C

uf

dy

du fH −−−= tan
*

2

**

8

*

*

                                (12-31) 



 137

( )
C

uφffA

C

effT

dy

dN
ff

dy

dT Hwf

2*

4

22

3

*

*

*

5*

* 1
+

−
−=                                (12-32) 

 

12.7.2.2 At y
*
= 0 (Bottom Plate) 
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12.8 Discretization 

The following focuses on presenting the appropriate finite difference equations and the 

detailed discretization for equations (12-26) to (12-34). Parameter i  represents the index for the 

x-direction and parameter j represents the index for the y-direction. Parameters Flowj , Bottj  

and Topj  are used in the true temperature equation (12-29) and represent the indexes for the y-

direction of the granular flow, the bottom plate, and the top plate respectively.  

A second order central differencing formula was used for the x-momentum and pseudo 

energy equation, while a second order forward and backward schemes were used for the bottom 

and top boundaries respectively. Since the inlet temperature for the true temperature equation is 

specified, the temperature is solved at every fixed i -section by using the marching technique.  

Newton’s iteration method is also applied in the simulations. In the granular flow governing 

equation (12-29), first order differentiation formula was used for the convection term since the 

flow is moving in the x-direction with a specified inlet temperature, while a second order central 

differencing formula was used for the conduction and dissipation terms.  
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12.8.2 Pseudo Energy Equation 
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12.8.3 Boundary Conditions 
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12.8.3.2 At y
*
= 0 (Bottom Plate) 
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12.8.4 True Temperature Equation 
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12.9 Numerical Scheme 

The momentum and the energy equation are ordinary differential equations coupled 

through their boundary conditions. Because of the complexity of these equations, they were 

solved numerically. A benchmark input parameters are chosen based on the theory of granular 

lubrication. In the simulations presented, the thickness of the gap is fixed and the normal load is 

specified. Finite difference method is employed to discretize the dimensionless governing 

equations and boundary equations, which forms a set of nonlinear algebraic equations. There are 

three loops in the computations, the inner loop solves the velocity, the second loop solves the 

pseudo temperature, and the outer loop solves the volume fraction.  

The Newton iteration method is used to solve the resulting set of equations for the 

velocity (12-35) and pseudo temperature (12-36) along with their boundary conditions (12-37) to 

(12-40). Bisection method is then used to solve the volume fraction from equation (12-27) since 

it cannot be computed analytically. The iterations are repeated until the results converge when 

the difference in the computed velocity, pseudo temperature and volume fraction between two 

successive iterations are below the specified tolerance. Then the mass flow rate is computed by 

integrating the volume fraction and the velocity along the gap thickness. The tolerance level used 

is 10
-7

 per all iterations in each loop. The mesh points are 21 in the lateral direction for the film 

thickness. The numerical simulations indicate that a finer mesh does not influence the results but 

necessitates more computational time. After convergence of the velocity, pseudo temperature 

and volume fraction, the granular flow true temperature equation (12-41) is then solved 

numerically using the Newton iteration method along with the equations for the top and bottom 

plates and necessary boundary conditions presented in Chapter 11. 
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12.10 Results 

The input parameters used in the simulations are given in Table 12.1. The operating 

conditions and properties are chosen to mimic the simulations of McKeague & Khonsari [26] 

and Zhou & Khonsari [30]. The lower plate undergoes a sliding velocity while the top plate is 

stationary. The thickness of the gap is assumed to be 14 particle diameters and the granular 

material used is Titanium Dioxide (TiO2) with a μm5  diameter and density 3kg/m4260 .  

 

Table 12.1: Data for Benchmark Simulations 

 

Parameter Value Parameter Value 

U 4.6 m/s L  0.0264 m 

maxυ
 0.65 H μm70  

we
 0.8 oφ  0.5 

pe
 0.8 Hφ  0.5 

pρ  
3kg/m4260  d  μm5  

rF  
232 kg/m.s10x0.4 −  φ  o25  

n 23 δ  o9.22  

 

To characterize enduring contact, two additional constant parameters are introduced in 

the simulations: rF and n that appear in the coulomb friction model equation (12-3) as described 

by Johnson and Jackson [15]. Based on experimental measurements for two different types of 

beads, they proposed the following values for the stress constant rF  and the integer constant n: 

232 kg/m.s10x65.3 −=rF  for glass beads and 232 kg/m.s10x0.4 −=rF for polystyrene beads with n 

= 40 for both cases. However, there are no experimental data available for the Titanium Dioxide 

(TiO2). To carry on the analysis, it is assumed that rF  is fixed at 232 kg/m.s10x0.4 −=rF . To 

estimate values for n for the type of granular material used in the simulations, the following 

analysis is used based on the work of Zhou [90] and Jang & Khonsari [40]: The normal stress 

contributed by the enduring contact fN  must be less than or equal to the specified normal load N 

applied on the plate. Thus, the parameter n can be determined by the following equation, 
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)(log

)/(log

max υυ −
≤

NF
n r                                                     (12-42) 

Appropriate range of the parameter n can be evaluated for different values of )( max υυ − . The 

results are summarized in Table 12.2. It is clear that the difference of volume fraction plays an 

important role on n, while the normal load does not have much significance on n. At N = 7.25 

kPa (benchmark), the value of )( max υυ − is roughly 0.05 and Table 12.2 shows that the parameter 

n should be less or equals to 27. Then n = 23 is selected as the benchmark input in the 

simulations presented. 

 

Table 12.2 : The Range of Parameter n 

 

)( max υυ −
  0.014 0.017 0.021 0.025 0.029 0.034 0.039 0.044 0.05

N =7.25 kPa n 19 20 21 22 23 24 25 26 27 

N =10 kPa n 19.09 20.01 21.10 22.09 23.02 24.1 25.12 26.09 27.2

N =30 kPa n 19.35 20.27 21.38 22.39 23.33 24.43 25.46 26.44 27.6

 

12.10.1 Benchmark Simulations 

In this section, the results of a series of simulations are presented that predict the 

performance of the granular material as they are sheared between two parallel plates. Figure 12.3 

shows the variations of the flow velocity, pseudo temperature, and volume fraction for the 

Couette-type flow across the gap. The results with and without the consideration of the enduring 

contact are shown for comparison purposes. 

The parameter n controls the influence of the enduring contact. At n = 20, the results 

show that the effect of enduring contact is negligibly small and yield nearly identical trends and 

magnitudes to the results without enduring contact. As n increases, the effect on enduring contact 

becomes more significant. The profiles of the volume fraction and the pseudo temperature across 

the gap become more flattened when the enduring contact force between the granules begins to 

play a role in supporting the applied load. The velocity profile is roughly linear across the gap. 
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Figure 12.3 : Benchmark Simulations of the Flow Velocity, Granular Temperature and 

Solid Volume Fraction 
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The enduring force between the granules tends to limit the relative motion between the 

granules and causes the pseudo temperature (fluctuation velocity) to decrease around the 

boundaries and increases in the middle of the gap compared to the case without the enduring 

contact effect. As the friction force between the granules increases, the rate of collisions 

decreases. Therefore, the granules in the middle of the gap become more packed causing a 

decrease in the pseudo temperature. Since the solid volume fraction is directly related to the 

pseudo temperature, it becomes greater around the boundaries and smaller in the middle of the 

gap, thus tending to flattened across the gap thickness to support the applied load. 

 

12.10.2 Effect of the Sliding Velocity, U 

Research by Jang and Khonsari [89] shows that if the operating speed is below 4 m/s, the 

effect of the enduring contact becomes large and cannot be neglected. Figure 12.4 shows the 

velocity, pseudo temperature, volume fraction, and the shear stress distributions with the 

consideration of the enduring contact as a function of the sliding speed. The simulations 

presented here are under the same operating conditions as Jang and Khonsari [89], where the 

speed ranges from 2.6 to 10.6 m/s.  At a moderately high speed, the effect of enduring contact is 

very small and, the trends are analogous to the cases without the consideration of the enduring 

contact. On the other hand, as the sliding speed decreases, the enduring contact force between the 

granules begins to play a role in supporting the applied load. The results of Fig. 5 demonstrate 

that at a sliding speed U = 4.6 m/s and below, the effect of the enduring contact is significant. 

When the sliding speed is very small, the shear stress due to the enduring contact becomes 

noticeable over the kinetic and collisional stresses. In this case, the load is solely carried by the 

dense granules across the gap. 

Under the conditions simulated, at very low sliding speeds (less than 4.6 m/s), the volume 

fraction is predicted to be around 0.6 and its distribution across the gap becomes nearly flat to 

support the load. At the boundaries, the effect of the enduring contact is relatively small since the 

pseudo temperature is higher due to the energy added to the system through the slip velocity and 

by the boundary through the disks surface roughness. The lower the speed, the greater the 

enduring contact and the smaller the kinetic-collisional stress becomes due to the small number 

of collision between granules. As the speed increases, the enduring contact effect becomes less 

and kinetic energy due to collision between granules increases and the total shear
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Figure 12.4 : Effect of the Sliding Velocity, U 
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stress increases. Beyond a certain sliding speed, the effect of enduring contact becomes 

negligibly small and the total shear stress and the shear stress due to enduring contact becomes 

constant across the gap. 

 

12.10.3 Variation of the Friction Coefficient with the Sliding Speed 

Figure 12.5 demonstrates the variation of the friction coefficient with the sliding speed 

from 2 m/s to 30 m/s. Above a certain speed (approximately 4.6 m/s), the predicted friction 

coefficient for both cases is identical since the effect of the enduring contact is nil as explained in 

Fig. 5. Below this speed, the friction coefficient tends to drop when considering the enduring 

contact effect. On the other hand, when the enduring contact is neglected, the friction coefficient 

is predicted to be high even at these very low speeds. 

This behavior of friction can be explained as follows. At very low sliding speed, due to 

the enduring contact effect, the total shear stress is small and since the normal stress is fixed in 

these simulations, a reduction in the total shear stress causes a decrease in the friction coefficient. 

At a relatively high speed, the effect of the enduring contact is nil. Therefore, the friction 

coefficient is identical to the case without the effect of the enduring contact. In addition, as the 

speed increases beyond 8.6 m/s, a small reduction in the friction coefficient is observed. The 

reason for this drop is due to the fact that by increasing the speed, the collision rate between the 

granules increases causing an increase in the displacement between the top and bottom discs and 

in turn a slight reduction in the friction coefficient. At approximately 26 m/s, no more reduction 

in the friction coefficient is obtained and the trend starts to stabilize indicating that a complete 

lift between the two discs occurs. 

 

12.10.4 Effect of the Sliding Speed on the Total Shear Stress 

 Figure 12.6 further explores the behavior of the friction coefficient through a comparison 

of the solid volume fraction and the dimensionless shear stresses at different speeds for the cases 

with and without the effect of enduring contact. At a relatively high speed (6.6 m/s), there is an 

increase in the collision rate between the granules where the grains become loosely packed. 

Hence, there is no possibility for the granules to slide against each other which causes the 

frictional stress to be zero across the gap. Therefore, at this relatively high speed, the collisional-

kinetic stress for the case with enduring contact is equal to the total stress and is identical to the
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Figure 12.5 : Variation of the Friction Coefficient with the Sliding Speed 
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Figure 12.6 : Effect of the Sliding Speed on the Volume Fraction and Shear Stress 
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case without the consideration of enduring contact. Hence, the volume fraction profiles for both 

cases are also identical.  

As the speed decreases, the effect of the frictional stress starts to become visible causing a 

reduction in the total stress compared to the total stress without enduring contact. Therefore, the 

friction coefficient starts to decrease. By lowering the speed to 2.6 m/s, the frictional stress is 

more pronounced and the total stress becomes smaller than its corresponding stress without 

enduring contact and hence, a reduction in the friction coefficient is observed. Also, as the speed 

decreases, the distribution of the solid volume fraction is nearly flat and the load is exclusively 

carried by the stationary granules. 

 

12.10.5 Granular Flow Time Scales 

There are essentially two time scales that describe the granular shear flows, the time 

between granule-granule collisions ( ct ) and the contact time between collisions ( ft ). The kinetic 

theory is valid if the contact time is much shorter than the time between collisions (Jang & 

Khonsari [40]). The time between granule-granule collisions depends on the volume fraction, 

granule size, and the fluctuation velocity. Gidaspow [91] derived the time between collisions for 

monosized granules as follow: 

Tg

d
t

o

c

π
υ24

=                                                       (12-43) 

where d represents the granule diameter, T is the pseudo temperature, υ  represents the solid 

volume fraction, and og is the radial distribution function defined by equation (4-4).  

The contact time between collisions is defined as: 

( )212 ζ
π

−
=

K

m
t f                                                   (12-44) 

where K represents the stiffness constant, m is the granule mass, and ζ is the damping 

coefficient defined by: pp ee 22 ln/ln +−= πζ . 

According to the Hertzian model, the stiffness constant (Johnson [92]) is equal to: 

( )[ ] 3
1

222 18/3 ν−= dFEK , where E represents the Young’s modulus, ν is the Poisson’s ratio and 

F represents the load acting on the granule. For TiO2, GPa270=E  , 07085.0=ζ  and 27.0=ν . 

The load acting on the granule F can be determined from the conservation of momentum as 



 151

follow: mVFtc =2/ , where m is the granule mass as given in equation (4-7), and V is the mean 

fluctuation velocity. 

Appropriate calculations for the time between collisions and the contact time for different 

sliding speeds are summarized in Table 12.3. The parameter n, which controls the influence of 

the enduring contact, is 23 in this analysis. It is clear that the volume fraction plays an important 

role on ct  and ft  at different speeds. As shown in Table 12.3, an increase in the solid volume 

fraction causes a decrease in the pseudo temperature, which results in a decrease in the time 

between collisions ( ct ). In addition, increasing the solid volume fraction results in a decrease in 

the stiffness constant, which causes an increase in the contact time between collisions ( ft ). This 

explanation concurs with equations (12-43) and (12-44). On the other hand, as the sliding speed 

increases, ct  increases and ft  decreases. Therefore, the results agree with the previous discussion 

that the larger the sliding speed becomes, the smaller the effect of the enduring contact until it 

becomes nil. Furthermore, Table 12.3 demonstrates that the ratio cf tt / is less than 1; hence the 

kinetic theory is valid for all the presented cases.  

 

Table 12.3 : Effect of the Sliding Speed on the Time between Collisions 

 

Sliding 

Speed 

U 

(m/s) 

Volume 

Fraction, 
υ  

Radial 

Distribution, 

og  

Pseudo 

Temperature, 

T  (m
2
/s

2
) 

Time 

between 

Collisions, 

( )sct   

Stiffness 

Constant, 

K (N/m) 

Contact 

Time, 

( )sft  

 

c

f

t

t
 

2.6 0.601 38.039 0.034 810x763.8 − 410.687x0 810.003x1 −  110.145x1 −

3.6 0.596 35.133 0.037 8109.123x − 410.688x0 810.002x1 −  110.098x1 −

4.6 0.589 31.029 0.043 8109.717x − 410.690x0 810.001x1 −  110.029x1 −

5.6 0.556 19.773 0.075 7101.223x − 410.701x0 910.928x9 −  210.116x8 −

6.6 0.536 16.092 0.099 7101.361x − 410.708x0 910.879x9 −  210.261x7 −

7.6 0.518 13.705 0.124 7101.479x − 410.715x0 910.833x9 −  210.647x6 −

8.6 0.501 12.029 0.149 7101.584x − 410.721x0 910.789x9 −  210.179x6 −

 

12.10.6 Effect of the Granular Coefficient of Restitution, ep 

Figure 12.7 shows the predictions of the flow characteristics with the variation of the 

granular coefficient of restitution ep. All the other input data are the same as listed in Table 12.1. 
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As the coefficient of restitution increases, the collision between the granules becomes more 

elastic and there is less energy loss by inelastic collision between the granules. Therefore, the 

fluctuation of the granules in the middle of the gap becomes larger, resulting in an increase in the 

pseudo temperature. The behavior of the volume fraction and the pseudo temperature are 

inversely related: As the volume fraction decreases, the pseudo temperature increases. The slip 

velocity decreases at the boundaries and the velocity gradient increases in the middle of the gap 

which causes the viscous dissipation to increase. The granular coefficient of restitution is directly 

related to the viscous dissipation: The parameter η  that appears in the viscous dissipation 

equation (4-10) is a constant characterizing the inelastic collision between granules (4-3) and 

defined as ( )pe+= 15.0η .  The coefficient of restitution parameter ep =1 for perfectly elastic 

granules, and ep =0 for perfectly inelastic granules.  On the boundaries, since increasing the 

coefficient of restitution causes a reduction in the slip velocity, the pseudo temperature becomes 

smaller. 

Figure 12.7 also demonstrates the effect of the granular coefficient of restitution on the 

dimensionless total shear stress and the stress due to the enduring contact. The shear stress due to 

the enduring contact is slightly larger when ep is small. As ep increases, the fluctuation of the 

granules in the middle of the gap becomes larger and the effect of the enduring contact 

diminishes. The total shear stress is mostly influenced by the change in volume fraction. As ep 

increases, the volume fraction decreases and causes the total shear stress to decrease but remains 

constant across the gap. When ep is 0.98, the friction coefficient is 0.16 at the bottom plate and 

the normalized mass flow rate is 0.2. Thus, the mass flow rate is reduced compared to the 

benchmark case where the friction coefficient is 0.4 and the normalized mass flow rate is 0.3. 

Note that the normal load is specified and the gap height is fixed in the simulations. 

It is noted that the trend of the pseudo temperature and the solid volume fraction changes 

considerably at the higher values of ep (0.9 and 0.98) compared to the benchmark case where ep = 

0.8. This interesting phenomenon can be explained by examining to the two energy sources that 

supply energy to the granules.  One comes from the slip velocity at the boundary and the other is 

the viscous dissipation in the interior of the flow. When ep is large, the slip velocity at the 

boundary decreases and the viscous dissipation in the gap increases. Therefore, there is more 

energy generated in the gap than at the boundaries by the slip velocity mechanism. Hence, the 

boundaries receive more heat from the interior flow. The solid fraction trend is directly related to
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Figure 12.7 : Effect of the Granular Coefficient of Restitution, ep 
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the granular temperature. When there is more pseudo energy generated within the gap thickness, 

the surrounding granules within the gap have much larger fluctuation velocity than the ones near 

the boundaries. Hence, the granular distribution becomes less dense within the gap and much 

more granules accumulate at the boundaries. 

 

12.10.7 Effect of the Wall Coefficient of Restitution, ew 

Figure 12.8 shows the variation of the flow velocity, granular temperature, solid volume 

fraction, and the normalized shear stress to the coefficient of restitution of both, top and bottom 

plates. In these simulations, the granular coefficient of restitution ep is kept at 0.8 and the wall 

restitution ew is varied from 0.8 to 1. The slip velocity increases as ew increases. An increase in ew 

means that the wall is more elastic. Thus, near the boundaries the granules are loosely packed 

and there is less energy loss during collision between the wall and the granules which implies 

that there will be a rise in the pseudo temperature as a result of greater fluctuation. Therefore, 

more energy is supplied from the boundaries to the flow. Since the granular temperature 

increases near the wall, the solid volume fraction decreases at the boundaries. Away from the top 

and bottom boundaries and towards the middle of the gap, the volume fraction increases 

implying a greater concentration of granular solids, associated with a reduction in the fluctuation 

velocity.  Hence, in the middle of the gap where the granules are more densely packed, there will 

be less fluctuation and the amount of energy dissipation is lower, and the pseudo temperature is 

reduced. As ew increases, the curvature profile of the granular temperature and the solid volume 

fraction becomes greater because of the change in the mass flow rate to match the specified 

normal load.  

As ew increases, the mass flow rate decreases but there is no change in the trends of the 

granular temperature and the solid volume fraction. The parameter ew affects only the slip 

velocity, not the interior of the flow. When ew is large, no significant effect is noticed on the 

mass flow rate. When ew = 1.0, the mass flow rate is 298.0
*

=
•

m   and the friction coefficient 

is 37.0=f  and at benchmark simulations when ew is 0.8, the mass flow rate is 3.0
*

=
•

m  and the 

friction coefficient is 4.0=f . Hence, the effect on the mass flow rate caused by changing ew is 

much less than that of ep which implies that the coefficient of restitution between the granules 

play a much more substantial role than the coefficient of restitution between the granules and the
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Figure 12.8 : Effect of the Wall Coefficient of Restitution, ew 
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wall. Similarly the effect on the shear stress and the stress due to enduring contact is almost 

negligible. As ew increases, the total shear stresses and the shear stresses due to enduring contact 

does not show any changes and remain constant across the gap.  

 

12.10.8 Effect of the Enduring Contact on the True Temperature, TR 

The results presented in this section focus on applying the theory to determine the true 

temperature of the granular flow sheared between two parallel plates and also predict how hot 

the interfaces of the top and bottom plates can become. These predictions are based on the 

solution of the flow velocity, pseudo temperature, and solid volume fraction presented earlier. 

Both the top and the bottom plates are made of Stainless Steel. They both have a length of 26 

mm and thickness of 13 mm. The top plate is stationary, while the velocity of the bottom plate is 

m/sec6.4=U . From the properties of the Stainless Steel [85], the thermal conductivity, the 

specific heat, and the density are selected as W/mK3.16== BottTop kk , J/kgK500== BottTop cc , 

3kg/m8000== BottTop ρρ  respectively. The properties of the Titanium Dioxide [88] are assumed 

to be 3kg/m4260=pρ , W/mK79.8=pk , and J/kgK711=pc . The effective thermal 

conductivity is computed based on the prediction of the solid volume fraction. The value of the 

convection heat transfer coefficient (h) for the moving plate is unknown. Based on Holman [86] 

and Incropera & DeWitt [87], the convection heat transfer coefficient for the moving plate is 

assumed to be KW/m50 2=Botth , while for the stationary plate the convection heat transfer 

coefficient is much smaller and is assumed to be KW/m15 2=Toph . 

Figure 12.9 represents the predicted distribution of the true temperature including the 

enduring contact effect at the bottom interface, mid-plane and top interface along the moving x-

direction. The results are compared to the benchmark simulations without the consideration of 

the enduring contact. The true temperature increases from inlet to outlet and the rise predicted 

over the stationary disc is greater than the one predicted over the moving disc. This phenomenon 

can be explained by examining the energy equation of the granular flow. Three terms governed 

this equation: the convection, the conduction, and the dissipation. The convection term 

represents the rate of temperature transported through the movement of the flow from inlet to 

outlet by convection relative to the interfaces. The dissipation term supplies the energy to the 
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flow as a result of inelastic collision between the granules. As a result of the convection and 

dissipation terms, heat is produced due to the inelastic collision between the granules and thus 

the true temperature is predicted to increase from the inlet to the outlet.  Since the effective 

thermal conductivity for the granular flow used is very small, it results in a prediction of small 

rise in the temperatures at the interfaces and heat is retained within the granular flow. 

It is clear that the magnitude of true temperature with consideration of enduring contact is 

greater than the case without enduring contact at the interfaces, as well as in the middle of the 

gap. This increase is a result of the role of enduring contact between the granules. When the 

enduring contact exists, it causes an increase in the friction between the granules and therefore a 

higher temperature within the flow. The increase in the friction between the granules means that 

the frictional stress due to the enduring contact starts to become noticeable. An increase in the 

frictional stress results in a reduction in the total shear stress as explained in Figure 12.6, which 

causes reduction in the friction coefficient. In addition, as shown in Figure 12.3, the solid volume 

fraction decreases and the pseudo temperature tends to increase due to the existence of enduring 

force. The larger the pseudo temperature, the greater the dissipation causing the true temperature 

to increase compared to the case without enduring effect. This phenomenon indicates that the 

enduring contact plays a significant role in predicting the true temperature.  

 Figure 12.10 demonstrates how the true temperature is distributed within the granular 

flow and in the fields of both bottom and top plates. The energy is transferred to the top and 

bottom plates via the thin layer of the plates’ thickness that is in contact with the temperature 

produced within the flow of the granular material. It is noted that the temperature at the top plate 

interface is slightly larger than the bottom plate interface due to the high heat convection 

coefficient of the moving plate. The true temperature distribution within the granular flow 

demonstrates the effect of the viscous dissipation term. The true temperature builds up from the 

inlet to the outlet due to the heat source. 

 

12.11 Conclusions 

This chapter deals with the granular flow sheared between two parallel plates with 

consideration of the enduring contact. The formulation of the governing equations and boundary 

conditions are presented. The characteristics of the flow are investigated in a “transient regime” 

where both kinetic-collision effect and enduring contact exists concurrently. 
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Figure 12.9 : The True Temperature at the Top Interface, Middle of the Gap, and 

Bottom Interface (Benchmark Simulations – U=4.6 m/s) 
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Figure 12.10 : The distribution of the true temperature in the granular flow and the fields 

of the top and bottom plates (Benchmark Simulations – U=4.6 m/s) 
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profiles of the volume fraction and the pseudo temperature across the gap become more flattened 

and the load is solely carried by the stationary granules. The lower the speed, the larger the effect 

of the enduring contact and the less is the collision between the granules. As a result, the total 

shear stress becomes smaller. As the speed increases, the enduring contact effect becomes less 

and more collision occurs in the flow. Thus, the total shear stress increases. Furthermore, at very 

low speed the granules are almost stationary and a lower friction coefficient is predicted. 

However, at relatively high speed where the effect of enduring contact is nil, the friction 

coefficient is identical to the case without the effect of the enduring contact.  

The true temperature is also studied. The distribution of the true temperature at both top 

and bottom interfaces along the x-direction is predicted. The true temperature increases from the 

inlet to the outlet for both top and bottom interfaces, as well as the mid-plane. When comparing 

with the case without the enduring contact effect, it is found that the enduring contact has 

noticeable influence on increasing the true temperature due to the friction between the granules. 

The viscous dissipation term is found to play a role on predicting the true temperature. It supplies 

energy to the flow as a result of inelastic collision between the granules. The viscous dissipation 

appears in the pseudo energy equation and is a function of the fluctuation velocity (pseudo 

temperature) and the solid volume fraction. The larger the fluctuation velocity, the greater 

becomes the chance of collision between granules. Therefore, the energy dissipation caused by 

the inelastic collision increases which cause the true temperature to increase.   

It is concluded that for a flow between two parallel plates, a very small rise of the true 

temperature is experienced in the direction of motion from inlet to outlet, whereas Heshmat and 

Brewe [89] experienced a higher temperature rise but with a larger speed as previously explained 

in Chapter 11.  
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CHAPTER 13. CONCLUDING REMARKS 
 

It is well known that conventional lubricating oils are completely ineffective beyond a 

certain operating temperature. They tend to break down at operating temperature exceeding 200 

o
C, thereby degrading their ability to support load. Unlike conventional lubricants, a suitable 

granular material can effectively lubricate a bearing under extreme temperatures and can resist 

breaking down as a result of large shear forces. Thus, it has been identified as a promising 

lubricant for this purpose.  

The motivation for this dissertation arises from the need for bearing technology that can 

accommodate the future generation of engines aiming for higher thermodynamic efficiency, less 

fuel consumption and increased thrust-to-weight ratio in turbine engines.  Other applications 

using granular materials can vary from auxiliary bearings particularly during start-up periods, to 

the use in micro-nano-scale systems such as MEMS devices. Despite the fact that there is a 

general agreement on the needs for such a new oil-free granular lubrication mechanisms, 

modeling and prediction of granular flows still remains distant from being well understood. 

While the archival literature contains a great deal of research on granular lubrication, a number 

of important issues remain largely unexplored.  

In this dissertation, a detailed study of the granular collision lubrication, both 

theoretically and experimentally is presented based on the kinetic theory of the granular material 

where the granules interact with each other and with the boundary surfaces through 

instantaneous, binary collisions, characterized by a constant coefficient of restitution. The 

granular lubrication in Couette flows is of particular interest. The governing equations and the 

proper boundary conditions are derived based on the Lun’s constitutive relations and Johnson 

and Jackson’s general model for the frictional-collisional mechanism of the granular material 

sheared between two infinitely parallel plates. A series of simulations are reported where the 

effect of the viscous dissipation in the energy equation is considered. It was found that the 

energy supply to the granular flow arises from the slip velocity at the boundaries, and from the 

viscous dissipation in the middle of the gap.  

Granular slippage is one of the important characteristics of granular lubrication. During 

shearing, the slip velocity provides energy from the boundaries into the granules contained 

within the gap. The slip at the boundaries increases the pseudo temperature and hence more 
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energy is being supplied to the interior flow. The viscous dissipation term that appears in the 

pseudo energy equation is ruled mainly by the coefficient of restitution. The coefficient of 

restitution is a constant parameter that describes the inelastic collision between the granules 

where it plays a major role in predicting the pseudo temperature and the solid volume fraction. 

When the granules become nearly elastic (large ep), there is less energy loss by inelastic collision 

and the viscous dissipation in the interior flow increases. The results show good agreement with 

several published papers. 

Also, a theory that ties the true temperature to the grain mobility is developed by 

predicting the true temperature of granular lubricants sheared between two infinitely wide 

parallel plates. The true temperature of a granular material depends on the balance between the 

source of energy, and the dissipation of energy due to inelastic collisions. The distribution of the 

true temperature at both top and bottom interfaces along the x-direction is predicted and the 

effect of a number of important parameters investigated. The results show that the temperature 

increases from the inlet to the outlet for both top and bottom interfaces. The viscous dissipation 

term appears in the pseudo energy equation and is a function of the fluctuation velocity (pseudo 

temperature) and the solid volume fraction. As the fluctuation velocity increases, the chance of 

collision between granules becomes larger. Therefore, the energy dissipation caused by the 

inelastic collision increase results in an increase in the true temperature.  

Increasing the coefficient of restitution of the granular material reduces the energy loss 

by inelastic collision between the granules (less heat dissipation). Therefore, a reduction in the 

true temperature at the interfaces is predicted. Additionally, it is found that the pseudo 

temperature tends to increase by increasing the sliding velocity of the bottom plate for both 

interfaces. 

While most of the previous published researches on granular lubrication have dealt with 

rapid shearing regime where collisions are considered instantaneous, the effect of so-called 

enduring contact between granules has been largely ignored. However, in a dense regime and at 

relatively small sliding speeds, the contact time between the granules is larger than the time 

between collisions and thus the friction between the granules starts to play an important role. 

Therefore, the enduring contact becomes dominant over the kinetic and collisional stresses. To 

characterize the effect of enduring contact, the Coulomb friction model is utilized to take 

enduring contact into consideration. The characteristics of the granular flow are investigated in a 
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transient regime, where both kinetic-collision effect and enduring contact exist concurrently. The 

results reveal that the enduring contact is a strong function of the solid volume fraction and its 

effect tends to dominate the solution at relatively small sliding speeds. 

The results reveal that at a moderately high speed, the effect of enduring contact is very 

small and the trends are analogous to the case without the consideration of the enduring contact. 

As the sliding speed decreases, the enduring contact force between the granules begins to play a 

role in supporting the applied load. In this case, the profiles of the volume fraction and the 

pseudo temperature across the gap become more flattened and the load is solely carried by the 

stationary granules.  Furthermore, at very low speed the granules are almost stationary and a 

lower friction coefficient is predicted. However, at relatively high speed where the effect of 

enduring contact is nil, the friction coefficient is identical to the case without the effect of the 

enduring contact. In addition, it is found that the enduring contact has a noticeable effect on 

increasing the true temperature at the interfaces due to the friction between the granules. 

In addition, it is established that granular material plays a major role in determining the 

axial load (lift) transmitted between the surfaces, the sliding friction and the slip velocity, but 

uncertainties still remain on several issues which require more investigation. Experimental 

investigations are presented to demonstrate the lift phenomenon observed in an annular shear cell 

apparatus using 3-mm stainless steel balls. The effects of the friction coefficient and the surface 

roughness are expressed as a function of the rotational speed and the applied load. Simulations of 

the kinetic theory for the granular material are performed and compared with the experimental 

results. The agreement between the theory and the experiment is illustrated. Furthermore, no 

adjustments for the friction coefficients or displacements were made to obtain a better fit.  

It is found that the frictional force that can be generated within a sheared granular 

material is critical to understanding its strength but has significant applications in geophysics and 

technology. When shear stress is applied, sliding starts gradually at a frictional force smaller than 

the frictional force generated during steady sliding, but by increasing the shear, the frictional 

strength increases and sliding stabilizes. At low speed spherical granules accommodate strain 

preferentially by rolling, then by increasing the speed, the proportion of rolling to sliding 

decreases leading to higher friction. Consequently,  by increasing the speed of the rotating disk, 

the collision rate of the granules is enhanced and more momentum is passed on to the lower disk 

to ensure complete lift between the top and bottom surfaces and then reach a steady state. The 
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larger the applied load, the lesser the lift produced due to the increase of compactness of the 

granules within the gap. As such, these above presented set of experiments provide a unique 

quantitative evidence for the measure of the phenomenon of the lift.  

 Granular flows exhibit a variety of phenomena that have both fluid and solid aspects. 

Stick-slip is a complex phenomenon that depends on many parameters. Given the recent interest 

in the tribology of granules, it is surprising that there have been limited studies relevant to 

investigation of the stick-slip phenomenon in granular lubrication. Therefore, a series of 

experimental investigation on the nature of stick-slip associated with granular materials sheared 

at low speeds is demonstrated using 1.4-mm ceramic balls. Specifically, the effect of stick-slip 

on the friction and the change in the spatial arrangement of granules in a granular shear cell are 

demonstrated. Microscopic events for the non-periodic stick-slip motion at high stiffness are also 

demonstrated. The results revealed the occurrence of stick-slip phenomenon at low speed and its 

behavior is found to be similar to the results presented by several researchers. 
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