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ABSTRACT

This dissertation is devoted to a theoretical and experimental study of the granular
contact lubrication, both. The theory is based on the kinetic of the granular material where the
granules interact with each other and with the boundary surfaces through instantaneous, binary
collisions, characterized by a constant coefficient of restitution. Specifically this study focuses on
granular lubrication in Couette flows. A series of simulations is reported and the results show
good agreement with several published papers. Also, a theory that ties the true temperature to the
grain mobility is developed. The true temperature of a granular material depends on the balance
between the source of energy and the dissipation of energy due to inelastic collisions.

In treating rapid shearing regime the collision is generally considered to be instantaneous.
However, in a dense regime and at relatively small sliding speeds, the contact time between the
granules is larger than the time between collisions and thus the friction between the granules
starts to play an important role. Therefore, the effect of enduring contact becomes dominant over
that of the kinetic and collisional stresses. The enduring contact between granules is into
consideration by making use of Coulomb friction model. The results reveal that the enduring
contact is a strong function of the solid volume fraction and its effect tends to dominate the
solution at relatively small sliding speeds.

A series of experimental investigations is presented that demonstrate the lift phenomenon
observed in an annular shear cell apparatus. The effects of the friction coefficient and the surface
roughness are expressed as a function of the rotational speed and the applied load. The
theoretical results and the experimental measurements are compared. The results of experiments
provide a unique quantitative evidence for the measure of the phenomenon of the lift.
Furthermore, a series of experimental investigation on the nature of stick-slip associated with
granular materials sheared at low speeds is demonstrated. The results reveal the occurrence of
stick-slip at low speed. The behavior of the stick-slip is similar to the results presented by several

researchers interested in physics and geology fields.
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CHAPTER 1. INTRODUCTION

1.1 Introduction

Research in granular flow has a rich history of development dating back to more than a
century ago. Reynolds [1] was probably the first to lay the foundation of granular flow by
describing the dilation property of closely-packed assembly of granular material. Over a half a
century later following the Reynolds’ study, researchers with expertise in fluid mechanics have
studied granular flows beginning with Bagnold [2] who performed a pioneering experimental
study of the flow of granular material under shear. In his experiment, dispersed solid spherical
granules of uniform size was used and sheared between two concentric drums. Bagnold’s
experiments shed light on two distinct regimes: granule-inertia regime and macro-viscous
regime. A third transition regime was also established and empirical relations for shear stress
were formulated.

Over the last two decades there has been significant interest in lubrication characteristics
of granular material. Conventional lubricating oils are completely ineffective beyond a certain
operating temperature. They tend to break down at operating temperature exceeding 200 °C,
degrading their ability to support load. This is in part due to the fact that viscosities of most
motor oils decay exponentially with increasing temperature. Unlike conventional lubricants,
which ordinarily become ineffective beyond 200° C, a suitable granular material can effectively
lubricate a bearing under extreme temperatures and can resist breaking down as a result of large
shear forces. For example, the viscosity of SAE-40 oil at 204 °C (400 °F) is approximately 1.3%
of its viscosity at 15.5 °C (60 °F). This presents a serious problem for the development of the
future generation of bearings that need to operate at elevated temperature of 600 °C and beyond.
Thus, alternative lubricants that could withstand extreme temperatures need to be explored. Fine
granular lubricants have been introduced as a promising solid material for this specific purpose.

Heshmat [3] reported the first documented experimental investigation of the lubrication
characteristics of powders. He injected Titanium Dioxide (TiO,) into the clearance of a slider
bearing to measure the pressure generated across the bearing length (see Figure 1.1). He found
that the powder lubricant produce pressure profiles similar to those of oils and he referred to this
type of powder flow as “Quasi-Hydrodynamic Lubrication”. He pointed out that the peak

pressure of the powder lubricant was skewed towards the bearing’s trailing edge more than the



conventional lubricants. Heshmat [4] determined that there were certain conditions related to the
range of granular size relative to the bearing surface features, which should be satisfied in order
for the quasi-hydrodynamic lubrication to hold. He reported that very small granules tend to
conglomerate and form a kind of solid wedge, while bigger granules behave more like

intermediate elastic bodies that cause abrasive wear.
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Figure 1.1 : Heshmat’s Experimental Test Rig [3]

To gain insight into granular lubrication, one must study the flow behavior of granular
materials as they undergo a shearing action within a thin clearance space. Granular flow refers to
the motion of an assembly of solid components of granules. In general, prediction of this
granular material behavior is very complex. The instantaneous motions of grains, their
transitional velocities and spins are different from the mean motion of the bulk. Individual
granules may interact with one another in various ways. The stresses are generated through
sustained rolling or sliding contacts in rigid clusters of granules, or by instantaneous collisions
through which linear and angular momentum are exchanged and the energy is dissipated because

of the inelasticity and friction.



To investigate the granular lubrication phenomenon, we concentrate our attention on
granular flows in the rapid shearing and transient regimes. In the analysis of the rapid shearing of
granular material, the collision between the particles provides the principal mechanism for the
transportation of momentum and energy. If the assumption of continuum holds, then the kinetic
theory of dense gases can be applied to derive the balance laws and the constitutive relations for
idealized granular material. The behavior of granular material in motion is compared with the
conventional fluid-mechanical phenomenon. Accordingly, the individual grains are treated as the
molecules of a granular fluid. The main difference between molecules and grains is that

collisions of the latter are inevitably inelastic; hence, there is energy loss due to grains collisions.

1.2 Literature Review

The study of powder flow has become a fascinating research topic in recent years. One
motivation for this is the development of Integrated High Performance Turbine Engine
Technology (IHPTET) which calls for engine operation at very high temperatures. Yet, a
thorough understanding of the flow characteristics of granular material within the context of
lubrication is still lacking.

For a general granular material, the procedure used for the development of governing
equations and the constitutive equations (consisting of stresses, energy flux and the collisional
rate of energy dissipation) is similar to the approach employed in the kinetic theory of dense
gases, where the granular particles are playing the role of molecules. The theory applied is an
extension of the original kinetic theory of Maxwell. Therefore, the theory of powder lubrication
is developed from the fundamental principles of fluid mechanics with appropriate formalism.
This theory is capable of providing a complete description of the behavior of powders as they
flow inside the clearance space of a hydrodynamic bearing.

From the microstructure point of view, a number of researchers have dealt with the rapid
shear flows. Savage and Jeffrey [5], made the first attempt to apply the ideas contained in the
theoretical work dealing with dense gases. They proposed a theory to determine the stress tensor
for granular material in a rapid simple shear flow. They assumed that the grains are made of
uniform, smooth, and perfectly elastic spheres. The binary collisions between the spheres were
assumed to be responsible for most of the momentum transport. The single granular velocity

distribution function was taken to be locally Maxwellian. They assumed a modification to the



radial distribution function of Carnahan and Starling [6] to account for anisotropy in the spatial
distribution of the particles. The components of the stress tensor were expressed as integrals
involving a non-dimensional parameter directly related to the dissipation properties of the
system.

Extension of Savage and Jeffrey’s work to incorporate energy dissipation was performed
by Jenkins and Savage [7] and Lun et al. [8]. Jenkins and Savage [7] developed a theory
applicable to general deformations of a granular material made up of smooth, nearly elastic,
spherical particles. Lun ef al. [8] dealt with simple shear flow with no gradients of the velocity in
the y-direction. The collision integrals involving the non-dimensional parameter related to the
dissipation properties of the system presented by Savage and Jeffrey [5], were evaluated both
numerically and by asymptotic analysis. The predicted theoretical results agreed with those
measured.

To gain more insight into the behavior of granular flows, several researchers studied the
rotational inertia and the surface friction of grains. The development of these theories came from
the study of Jenkins and Richman [9] for systems of smooth, inelastic circular discs; Jenkins and
Richman [10] for rough, inelastic circular discs and spheres; and Jenkins and Mancini [11] for
both binary mixtures of smooth, inelastic, circular discs and spheres. Moreover, Lun and Savage
[12] studied the effect of an impact velocity dependent coefficient of restitution for rough,
inelastic, spherical particles, while Walton [13] considered the effect of frictional force for the
spheres. These theories consist of the balance equations for certain mean flow fields and the
constitutive relations that measure the rate at which momentum and energy are transferred
throughout the flow.

Haff [14] put forward a general theory for the flow of granular materials. In Haff’s
theory, the behavior of granular material in motion was studied and compared with the
conventional fluid-mechanical phenomenon. The individual grains were treated as the molecules
of the granular fluid. The main difference between molecules and grains was that collisions of
the latter were inevitably inelastic. Haff [14] wrote down a set of complete equations, which
were modeled based on the usual equations of hydrodynamics. Haff’s view of granular flows
was motivated by the molecular motion within a dense gas and his theory had the same structure
as the corresponding kinetic theories. The appropriate conservation laws were expressed in terms

of macroscopic variables and a complete model was formulated by direct appeal to the nature of



grain-grain collisions. In Haff’s theory, the microscopic properties of the flow were described
without carrying out statistical averaging. Nevertheless, several unknown parameters in his
model remained unevaluated, which could have helped in more realistic predictions.

Johnson and Jackson [15] introduced a more complicated model which included the
effect of enduring contact. They assumed that some particles were sliding while others were
colliding (frictional-collisional mechanism). Both normal and tangential friction of sliding
particles was related by the Coulomb law of friction. The normal and tangential forces were
dominant when the granules were densely packed, and the momentum transfer due to collisions
was dominant when the granules were widely spaced. In Johnson and Jackson’s model, they
considered a case where interparticle contacts are of intermediate duration in the flow region.
Further reading on the applicability of this model to tribology is presented by Johnson and
Jackson [15], Elrod [16] and Khonsari [17].

The utility of granular lubricants in applications involving auxiliary bearings particularly
for use during start-up periods have already been demonstrated by Kaur and Heshmat [18]. The
application of the pelletized dry particulate that provides a long life and low power loss backup
bearing was investigated by Kaur and Heshmat [18] who developed a prototype of a self-
contained solid/powder lubricated auxiliary hydrodynamic bearing. The tests were conducted
using several durations, with a bearing operated up to 30,000 RPM, and loads up to 445 N
resulting in a validation for the powder lubricated bearings with wider range of operating
conditions.

Craig et al. [19] studied the rapid shearing flow of dry metal powders in an annular shear
cell. Their results showed the dependence of the normal and shear stresses on the shear rate, and
a significant dependence on the gap thickness and the solid volume fraction. Heshmat [20] was
the first to relate a powder lubrication mechanism to a hydrodynamic fluid film. He found that a
sheared layer of the compacted powder generates profiles resembling the fluid film bearing.
Heshmat [3] conducted the first documented experiment to investigate the Ilubrication
characteristics of powder lubricant as it flows in the clearance space of a bearing. He showed that
the ensuing pressure distribution generated is remarkably similar to that of a liquid lubricant.

Experimental evidence of Savage and Sayed [21], and Hanes and Inman [22]
demonstrated that differences in the boundaries that drive identical granular shear flows may be

responsible for very significant differences in the stress induced. Yu et al. [23] introduced an



approximate theory from momentum considerations and performed experiments based on
granular material (glass granules) contained in an annular cell formed by flat, parallel plates, and
then by a series of convergent wedges. By measuring the normal and shear stresses developed by
the cell, they validated the concept of lubrication through granular collisions. Strong boundary
effects on the stresses were also realized in the shear cell experiments of Yu and Tichy [24].

To capture some of the powder lubrication features, Dai et al. [25] addressed the variable
geometry boundary problem by applying Haff's constitutive relations and energy and momentum
equations to the powder flow of the slider bearing. They presented theoretical derivations based
on the no-slip boundary condition as well as for a situation where a slip distribution function was
imposed on the surface. Their theory replicated the trends of the pressure profile measured
experimentally by Heshmat [3]. In order to predict the powder flow using a continuum approach,
Yu et al. [23] proposed the concept of granular collision lubrication by considering the
collisional normal stress generated by kinetic energy of the granules and the lubrication normal
stress due to converging surfaces. They developed a theory, from momentum considerations, for
interpreting the experimental results.

McKeague and Khonsari [26] generalized the boundary interactions for powder
lubricated Couette flows following the work of Hui et al. [27] and Jenkins and Richman [9].
They provided a set of equations that governs the boundary conditions of the flow velocity and
the granular temperature without the need of the slip function. The results of the theory were
found to be in good agreement with other authors who have investigated granular Couette flows
using direct computer simulations of granular collisions such as those published by Campbell
[28] and Elrod and Brewe [29].

On the general modeling of granular flows, Lun et al. [8], in a frequently cited paper,
developed the complete set of constitutive equations including the viscous dissipation term in the
pseudo energy equation. This viscous dissipation was found to be important by Zhou and
Khonsari [30] in the simulations of powder lubricants. Following the work of Johnson and
Jackson [15], Zhou and Khonsari [30] derived the appropriate governing equations of the
granular material sheared between two infinitely long parallel disks to predict the mean velocity,
the pseudo temperature (fluctuation velocity), and the solid volume fraction of the granular
material across the gap. Sawyer and Tichy [31] performed numerical and particle simulations to

generate results that were compared to the granular experiments of Yu and Tichy [24]. They



found that trends of both methods were in agreement but the theory over-predicted the
experimental results of the normal load and the shear force.

The powder lubrication theory of Dai et al. [25] and McKeague and Khonsari [26] is
entirely based on the Haff’s continuum theory. In that theory, particles do not possess an
enduring contact, the friction between particles is neglected, and the viscous dissipation in the
energy dissipation is neglected to provide an analytical solution. This means, the stress field is
governed entirely by the collision and kinetic stress.

In a classification of dry particulates used as lubricants Wornyoh et al. [32] presented a
thorough literature review covering the last five decades of published papers. They categorized
the works in dry particulate tribology literature expressing the theory, experiments and numerical
simulations. Pertinent literature of interest in the present chapter include the work of Yu and
Tichy [24] whose experiments revealed that at low speeds, the rotation is accompanied by
grinding and some crushing noises due to the high frictional forces between the compressed
granules and the surfaces. By increasing the speed, the grinding and crushing noises subsided
and the lower cylinder disk began to lift off, hence, surfaces separated from each other.

To gain insight into granular lubrication, one must study the flow behavior of granular
materials as they undergo a shearing action within a thin clearance space. Based on Johnson and
Jackson [15], the recent powder lubrication theory published by Zhou and Khonsari [30], and
Pappur and Khonsari [33] predicted that powders are capable of generating a lifting force even if
placed in a configuration of two parallel disks in relative motion. This is intriguing because the
hydrodynamic theory of Newtonian fluids predicts that parallel disks are incapable of generating
any load-carrying capacity.

For several years, the science and application of third body tribology have been
investigated by researchers. A flow transition between two regimes is experienced: the kinetic
regime which occurs at low pressure and high speed and the load is essentially transmitted by
collisions between the third body granules, and the quasi-fluid regime which occurs when the
third body is compressed and the contacts between the granules last for longer periods. To shed
light on the transition between kinetic and quasi-fluid regimes, lordanoff et al. [34] proposed an
investigation concerning the interactions between microscopic properties of the solid third body
and the macroscopic behavior of the contact. Their discrete model uses the distinct element

method (DEM) in order to understand phenomena occurring in dry contact. They showed that the



particle size has a weak influence when inter-particle forces are repulsive but has a dramatic
influence when inter-particle adhesion is considered: solid third body goes from a quasi-fluid to a
quasi-solid behavior. Iordanoff and Khonsari [35] reported the development of a quasi-two-
dimensional particle dynamic simulation program, which yielded good agreement between the
predictions of the particle dynamic simulations and the kinetic model. Furthermore, they
demonstrated a link for the flow transition between both regimes.

In order to quantify the normal and shear stress behavior of binary mixtures of dry
particulate solids, Hassanpour et al. [36], conducted experiments using an annular shear cell and
performed a series of numerical simulations using the distinct element method (DEM). They
found that the mixtures of different sizes of glass granules indicate a highly non-linear particle
displacement distribution across the shear layer. They indicated that the behavior of the mixture
is an intermediate regime between quasi-static and rapid shear flows. Higgs and Tichy [37]
studied the continuum modeling of shear behavior of various granular flows using a granular
kinetic lubrication model (GKL) of simple shearing flow. New parametric curves for the local
flow properties of large-particle granules were constructed. Their numerical model showed
qualitative agreement but over-predicts quantitatively with past annular shear cell experiments
using glass granules.

Based on particle dynamic model, Fillot et al. [38] developed a third body source flow
model allowing particle detachment of a granular material. They found that there is no
correlation between degradation and friction coefficient measured, and concluded that changes in
properties of the third body — such as its cohesion and damping — provide equivalent
degradations in both kinetic and fluid regimes whereas they affect the friction coefficient
dramatically. Their examination of the friction coefficient confirmed the ideas found in the work
presented by Wang and Kato [39] concerning the non-correlation between friction and wear.

Based on Johnson and Jackson’s granular theory, Jang and Khonsari [40] developed a
general theory for characterization of powder flow within the context of the lubrication.
Specifically, they derived a 3D generalized Reynolds equation that predicts the pressure profile
in a bearing with any specified film profile. The flow velocity, volume fraction, and pseudo
temperature (granular fluctuations) were predicted simultaneously. They studied the
characteristics and analyzed the behavior of the granular powder, and showed that the pressure

profile was, indeed, very similar to the conventional fluid-film hydrodynamic lubrication.



Moreover, comparison with experimental results of Heshmat yielded good agreement both in
trend and magnitude. Tsai and Jeng [41] analyzed the performance of hydrodynamic journal
bearings using grain flow based on Haff’s grain flow theory. They found in their predicted

numerical results consistency with the experimental results found by Heshmat and Brewe.



CHAPTER 2. SCOPE OF THE RESEARCH

Granular collision lubrication is a ground-breaking subject in the field of tribology.
Recently, several investigations were done to confirm that the use of an appropriate granular
material such as Titanium Dioxide (TiO;) or Molybdenum Disulfide (MoS;) in a bearing
clearance can provide very efficient lubrication. The innovative experiment of Heshmat [3] and
related development as reported by Kaur [42] have proven the capability of powders to generate
“hydrodynamic type” pressure similar to the conventional lubricants, and thus yield positive
load-carrying capacity.

The motivation for this dissertation arises from the need for bearing technology that can
accommodate the future generation of engines aiming higher thermodynamic efficiency, less fuel
consumption, and increased thrust-to-weight ratio in turbine engines. While the need for oil-free
granular lubrication has been identified, the modeling and prediction of granular flows within the
context of lubrication still remains poorly understood.

The theory presented in this dissertation closely follows the work of Zhou and Khonsari
[30], Johnson and Jackson [15], Lun and Savage [12], Hui and Haff [27], and Jenkins and
Savage [7]. A realistic constitutive equation introduced by Lun et al. [8] is utilized to study the
mechanism of granular lubrication. The effect of viscous dissipation term, neglected by
McKeague and Khonsari [26, 43], is included in the pseudo energy equation. This theory is
applied to investigate granular lubricant sheared between two parallel plates. The distribution of
solid volume fraction together with the mean velocity and granular temperature appear naturally
in the governing equations and are directly predicted by the theory presented herein. Therefore,
unlike in Haff’s theory, there is no need for assuming thickness dilation to determine the solid
volume fraction.

This dissertation is devoted to provide a detailed development of the granular contact
lubrication theory. The collisional lubrication theory has the same structure as the corresponding
kinetic theories. The formulation of the problem starts with the first principles of fluid
mechanics, i.e., conservation of mass, momentum and pseudo temperature. The granules possess
both a flow velocity and a fluctuation velocity. The granules behavior requires implementing
appropriate boundary conditions for the slip velocity and the pseudo temperature. These

boundary conditions play a very important role along with the equations of motion and the
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pseudo energy equation in forming a complete set of equations for predicting the behavior of the
granular flows when sheared between parallel disks.

In this theory, an order of magnitude analysis is carried out to simplify the governing
granular lubrication equations. The solid volume fraction, together with the mean velocity and
the granular temperature, appear naturally in the equations and are directly predicted from a
complete set of governing equations and boundary conditions. An accurate and realistic model is
introduced to investigate the mechanism of granular lubrication in Couette flows. Because of the
complexity and nonlinearity of the governing equations and boundary conditions, an efficient
numerical scheme is used to simulate the problem. The effect of the viscous dissipation in the
energy equation is considered in the simulations, while other researchers neglect this term. A
benchmark is set up based on some published papers to compare the results obtained. Different
parameters of interest are investigated, and the results are compared with those by McKeague
and Khonsari [26], Zhou and Khonsari [30], Sawyer and Tichy [31], and Pappur and Khonsari
[33].

It was found that granular material plays a major role in determining the axial load
transmitted (lift) between the surfaces, the sliding friction and the slip velocity, but uncertainties
still remain on several issues, which require more investigation. Thus following to the theoretical
model, an experimental investigation of the friction and lift characteristics of granular lubrication
is presented. Experiments were conducted using 3-mm stainless steel balls, as well as 1.4-mm
ceramic balls to demonstrate the lift phenomenon observed in an annular shear cell apparatus.
The effects of the friction coefficient and the surface roughness have been expressed as a
function of the rotational speed and the applied load. Simulations of the kinetic theory for the
granular material are performed and compared with the experimental results for validation
purposes.

While the archival literature contains a great deal of research on granular lubrication, a
number of important issues remain largely unexplored. Of particular interest is to examine the
stick-slip phenomenon associated with granular materials within the context of lubrication. An
experimental investigation on the nature of stick-slip associated with granular materials sheared
between two parallel disks is demonstrated. In addition to that, a thorough background on the
stick-slip phenomenon is also presented and a series of experiments were carried out using

ceramic granules to demonstrate its effect on the friction coefficient and the displacement (lift).

11



Results are presented for the friction coefficient and the displacement as a function of the
rotational speed and the applied load.

To further the theory of granular lubrication, a theoretical study on the true temperature
of the granular material is presented and analysis is performed. A theory that ties the true
temperature to the grain mobility is developed by predicting the true temperature of granular
lubricants sheared between two infinitely wide parallel plates. The distribution of the true
temperature at both top and bottom interfaces along the x-direction is predicted and the variation
of a number of important parameters and their effect on the true temperature is analyzed. For
materials packed in a random assembly of microspheres, it is important to estimate correlation
for the effective thermal conductivity. An analysis to determine the effective thermal
conductivity is presented.

The majority of publications in granular lubrication dealt with the rapid shearing regime
of granular material where only kinetic and collision effects are considered whereas the effect of
a so-called enduring contact is neglected. However, most of the granular material in the context
of lubrication systems operates in a dense regime with a very small gap thickness and high solid
volume fraction where friction between granules starts to initiate. Thus, the enduring contact
effect needs to be considered. In this dissertation, the Coulomb friction model is introduced to
study the effect of the friction force caused by enduring contact between the granules. The
characteristics of the flow are investigated in a transient regime where both kinetic-collision
effect and enduring contact exists concurrently. The formulation of the governing equations and
boundary conditions of the granular flow are formulated along with an efficient numerical

simulation.
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CHAPTER 3. THEORY OF COLLISIONAL GRANULAR
MATERIAL

3.1 Development of Theory

A common feature of collisional granular flow is that grains interact with each other and
with the boundary surfaces through collisions. These collisions are responsible for the transfer of
momentum and the dissipation of energy in the flow. The granules possess both a flow velocity
and a fluctuation velocity. The latter is commonly referred to as pseudo temperature (not a
measure of the thermodynamic temperature). According to Johnson and Jackson [15], some of
the granules undergo sliding motion while the rest are colliding. Thus, the total stress tensor is
the sum of both frictional and collisional-translational stresses. In the theoretical model that
follows, granules are assumed to be identical, smooth, frictionless spheres. In chapter 12, the
friction between the granules will be considered. Therefore, it is assumed that the work done by
the frictional component of stress is translated directly into thermal internal energy; hence the
true heat flux (thermodynamic temperature) is not considered in the energy equation, and the
collisional-translational component is translated into pseudo thermal energy.

The formulation of the problem starts with the first principles of fluid mechanics, i.e.,
conservation of mass, momentum and pseudo temperature. For a discussion of the range of
applicability of this theory, one can refer to Johnson and Jackson [15] and a review paper by
Elrod [16]. The general governing equations for granular flow require consideration of the

conservation laws described below.

3.2 General Governing Equations

3.2.1 Conservation of Mass
The governing equation for conservation of mass is:

op
9L v (pU
ot (pU)

0 (3-1)

where p= p,v is the bulk density of the granular material,
p,, is the density of the individual granule,

v is the solid volume fraction,
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U is the bulk velocity defined as (uf +V) + wle);

u, v, and w are the components of velocity in x, y, and z directions, and

V is the symbol for gradient| V = ii + ji + kg .
ox "oy Oz

3.2.2 Conservation of Momentum

The governing equation for conservation of momentum is:

(3-2)

DU
=~ =pg-V.o
P =P8

where g is the gravity acceleration and o is the stress tensor (a second order tensor) defined as:

xx O_xy O-xz

o= yx O-yy O-yz
O-zx O-zy O-zz
oc=0,+0, (3-3)

where o, is the stress tensor caused by collision and the kinetic motion, and

Ci

o, represents the stress tensor caused by enduring contact force between granules.

D . ) ..
—— 1s the material derivative and defined as:

Dt
D 0 o 0 0
—= = Hu—+v—+w—.
Dt & ox oy ez

Local derivative . .
Convective derivatives

3.2.3 Conservation of Energy

The governing equation for conservation of energy is:

D(pE) o . .
2= v0-0:vU (3-4)

where V.Q represents the heat conduction term, o : VU is the viscous dissipation term and is
defined in a Cartesian coordinate system as follows:

8ui auj . . .
o:VU =0, — =0, —, since o, 1s symmetric
ij ji 2 y
©Ox; 7 Ox :

i
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Q represents the total energy flux vector:
O=qp +g, (3-6)

where ¢q,, is the flux of pseudo thermal energy that is related to the fluctuation velocity of
granular particles,q, is the true heat flux and is defined as g, =—kVT,, and k is the heat
conductivity of the granules lubricant.
The parameter E is the total energy per unit mass of the granular material and is composed of:
E=E, +E,+E, (3-7)

where E,, is the kinetic energy associated with the local average velocity,

E,, is the pseudo thermal energy associated with the fluctuation velocity, and

E, is the true thermal internal energy of single granule.

Appropriate expression for each term is given below:

1
Eye=—pUf (3-8)
1 3
Ep; :EPVZ :EPT (3-9)
E,=pc, T, (3-10)

1 ,.
where T = EVZ is often referred to as the pseudo temperature,

V' is the mean fluctuation velocity,

J*is the mean square of the velocity fluctuation velocity about the bulk velocity U,

Tr is the parameter of the true temperature, and

¢y 18 the specific heat of the granular lubricant.
Following the work of Johnson and Jackson [15], it is assumed that the work done by the
frictional component of stress contributes only to the true thermal energy. Therefore, the energy

equation (3-4) is separated into two equations given below:
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o=V =0, VU-y (3-11)
Dz()Eth) =-Vgq,-0,:VU+y (3-12)

where o, : VU is the viscous dissipation done by the component of collision stress,
o, : VU is the viscous dissipation done by the component of frictional stress, and

y 1is the rate of dissipation due to inelastic collisions between granules.

The equation of the conservation of pseudo energy is similar to the pseudo thermal energy
equation given by Haff [14] and Jenkins and Savage [7] for the case in which there is no
frictional contribution to stress. By separating the pseudo energy and the true thermal energy into
two equations (3-11) and (3-12), it is assumed that the granular pseudo temperature is not related
to the true temperature. However, the true temperature is affected by the energy dissipation

caused by inelastic collision between granules.
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CHAPTER 4. CONSTITUTIVE RELATIONS

4.1 Introduction

The governing equations show that constitutive equations are needed for the collisional-

translational stresso, , the pseudo thermal energygq,,, and the inelastic energy dissipationy .

Lun et al. [8] developed two types of constitutive relations based on an accurate evaluation of the
collision integral function. The first one was for inelastic granules in the simple shear flow, while
the second was for slightly inelastic particles in a general flow. The effects of the enduring
contact force between granules were neglected and the granules were treated as smooth, inelastic
spheres. According to their work, the stress tensor and the flux of pseudo energy are contributed

by two components: kinetic part, and collision part.

4.2 Kinetic and Collision Stress

In this dissertation, the second model is used for the analysis of granular flow. The
appropriate constitutive equations for granular material developed by Lun et al. [8] based on the
original work of Savage and Jeffrey [5] is used assuming that the collisional-translational
contribution to stress can be calculated as though it acted in isolation. The description of the

model is given below:

4.2.1 The Total Stress Tensor Caused by Kinetic and Collision

o, =[pT(+4nvg,)-nu,v. Ul -

2+a 2u 8 8 6 (4-1)
l+=nv 1+=n3n7-2)v +— S
( 3 j{n@—n)go( 57 go){ 5130 )go} Sﬂbn}
1 0 0
where [ is the identity tensor /= 0 1 0 |, and
0 0 1

v is the solid volume fraction and can be defined as:

: m
Volumeof spherical granules b= mp,

Solid VolumeFraction= s
Channel Volume AH

m, 1s the total mass the spherical granules, H is the gap height, 4 is the surface area,

17



p, is the granular material density, and

S represents the deviatoric part of the rate of deformation tensor, and given by:

200 1oV fou ov 0
30x 30y 2\0y Ox
- Ou,

S:l Ou, Lo _lou, S = 1fou ory) 20V 1ou 0 (4-2)
2\ox; ox, ) 3ox, 7 |2\doy oOx 30y 30ox
%(—/

strain rate tensor 1({ou oV
0 0 —| —+—
| 3\ox oy )
100
. Lifi=j
where o, is the Kronecker Delta; &, = =/ 010
J A 0 01

The parameters is a constant characterizing the inelastic collision between granules, and is

defined as:
1
7725(14'6!7) (4-3)

where e, denotes the coefficient of restitution of granules. e, =1 for perfectly elastic granules

and e, =0 for perfectly inelastic granules.
The factor [24__0{) was introduced by Johnson and Jackson [15] to provide one adjustable
3

parameter that could increase the shear stress. The parameter  is a constant of order unity (tends
to unity when the coefficient of restitution e, tends to unity and o tends to zero). In this
dissertation, it is assumed that o =1

The parameter g, represents the radial distribution function proposed by Carnahan and Starling
[6] based on a semi-empirical equation of state from which they obtained the spherically
symmetric equilibrium radial distribution function at contact for a single granule. The spatial pair

distribution function g, is expressed in terms of solids fraction as:

1
g = (4-4)

(%)

where v, 1is the value of v at closest random packing and is assumed to be 0.65 in this analysis.
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According to Johnson and Jackson [15], it ensures thatg,K — oo, asv = v and hence

max ?

constrains v to remain smaller thanv_, . Johnson and Jackson [15] point out that when this

parameter is inserted into the constitutive equations of Jenkins and Savage [7], they become

essentially equivalent to those of Haff [14] . Parameters x and g, represent the shear viscosity

for perfectly elastic granules and the bulk viscosity for perfectly elastic granules, respectively.

Their definitions are given below:

sufr )

=22 4-5
H=Ted? (4-5)
256 uv*
U, = OHV 8, (4-6)
Sm
where m is the mass of each spherical granule and defined by:
4 4 d°
m=p —xr =p, —r— 4-7
Pr3 Pr37g (4-7)
4.2.2 The Total Flux of Pseudo Energy
The combined flux of kinetic energy and flux of the collision energy is given by:
G =2 (1+Enugo]{1+2n2(4n—3)vgo}+ﬁ(4l—33n)(nvgo)2 VT
g, 5 5 257
(4-8)
A 12 12 d T
- 1+—=nvg, |—=n2n-1)(n-1)—Iv’g, |~V
go( = goj Sn@n=0(-1)--vs,)
where A represents the thermal conductivity for perfectly elastic granules, and defined by:
1
75m\]
_ sl : (4-9)
8n7(41-337)d
4.2.3 The Collisional Rate of Energy Dissipation Per Unit Volume
48 p,v° 2
y=—nll-n)="—g,1T’ (4-10)
T 2

where p, the density of the grains, and d is the granule diameter.
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CHAPTER 5. BOUNDARY CONDITIONS

5.1 Introduction

The prediction of the granule behavior requires implementing appropriate boundary
conditions to characterize their interaction with the bounding surfaces. Boundary conditions must
be developed for both the slip velocity and the pseudo temperature. These boundary conditions
will play a very important role together with the equations of motion and the pseudo energy
equation to form a complete set of equations that will help in the predictions of the behavior of
the granular flows. The flow characteristics and general behavior of granules near a solid surface
could differ considerably from what is commonly observed in fluids. It has been shown by
Johnson and Jackson [15] that the granular materials tend to slip at the boundary surfaces, hence
the need for predicting the slip velocity.

Granular slippage is one of the important characteristics of granular lubrication. During
shearing, it provides energy from the boundaries into the granules contained within the gap. Due
to the slip, the granules are then loosely packed near the boundaries. Thus, the fluctuation
velocity (granular temperature) increases because of the inelastic collisions between the granules

and the boundaries, which causes a heat generation.

5.2 Boundary Conditions

In granular flows, the boundaries tend to supply the momentum and the energy to the
interior flow by the means of shearing force and the normal force. The supplied energy must be
in balance with the stress and the total flux of the energy in the flow. These ideas can be used to

obtain the boundary conditions for both, the slip velocity, and the pseudo temperature.

5.2.1 Condition for the Slip Velocity
The boundary condition for the flow velocity is derived by Zhou and Khonsari [30], and Pappur

and Khonsari [33] following the work of Johnson and Jackson [15]. The rate of momentum

transfer M ,,, between the granule possessing a mass m and the wall with roughness g, is given

by:
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V 1
My = (gj () (a—J (5-1)

-0 Average Tangential

Collision frequency momentum transferred  Nymber of granules

of each granule per collision adjacent to unit area
of surface

1 . .
where — represents the number of granules adjacent to the unit area of the surface,
a

c

a, 1s the average boundary area per granule,

S denotes the average distance between the boundary and the surface of an adjacent
granule of diameter d.

Both § and a, are the functions of the solid volume fraction, as given below:

S—d (ULT i (5-2)
1%
2
a, = d(”—j (5-3)
1y

Let u represent the bulk velocity of granular flow next to the boundary, and u,,; denote the
velocity of the plate. Then, the slip velocity uy is:

U, =u—u

(5-4)

wall

Now considering a unit area at the boundary, the collision frequency for each granule is

v _Br
S

S , where V' denotes the mean fluctuation velocity of the granule. The average

tangential momentum transferred per collision is m¢, u ,, where ¢, is the specularity coefficient.

sl >

Specularity coefficient is a measure of that fraction of collisions that transfer a significant

amount of lateral momentum to the wall. If ¢, is close to zero so that most collisions are nearly

specular, i.e., a smooth wall, then the amount of slip may be relatively large. For a rough surface,
however nearly every grain-wall collision will provide a significant transfer of lateral momentum

to the wall; thus in this case @, is near unity and the amount of slip at the wall is minimized.

The tangential force F; per unit area acting on the boundary [15] is:

u, .o, .n

_ sl ck
F=——
usl

(5-5)
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0
where n=| 1| is the unit normal of the boundary pointing into the clearance gap when the
0

granular material flows (bottom plate is positive sign, and top plate is negative sign),

o, -n 1is the force exerted on the surface with unit normal n, and

usl

= [1 0 O] represents the unit tangential directed in the positive x-direction where

Z’lsl

shear take place.
A condition for the slip velocity between the granular material and a bounding surface can be
obtained by equating the tangential force per unit area acting on the boundary and the rate of
momentum transfer to unit area of the wall by granular collision (Jenkins and Richman [9]). The

boundary condition for the slip velocity is

1
Uy.Oy N n (3T)E ¢w7[pp d’ U 1

u, N 6 a.
] s Collision frequency Average Tangential No.of particl
Chor T e;p,mlldmg strﬁls S Vi'lt‘hm foreachparticle ~ momentum transfered ad(j)a(c)erlftatolﬁneif
fhe particledssembly close per collision area of the surface
to the boundary b, mu,
Tangential force per unit area exerted Rate of momentum transfer to unit area of the surface
on the boundary by the particles by collisions
1 3
u,.c, .n (3T)2 g, wp,d ug 1
=0 (5-7)
1 2
u, 3 6 v 3
d Uma/ -1 d’ ma/
1% L
1
2
N3z p, T, Uy Oy _ (5-8)
! u
1) 3 sl
[
6 U ax 1- o Tangenpital force
per unit area
max acting
on the boundary
Rate of momentum transfer to the wall
5.2.2 Energy Balance

Following the work of Jenkins and Richman [9], the boundary condition for the pseudo
temperature is obtained by equating the rate of heat generation due to slip at the boundary and

the rate of dissipation of pseudo thermal energy due to inelastic collisions of granules with unit
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area of the boundary. Each collision is characterized by a coefficient of restitution e, that varies

from zero to unity. The energy loss per granule boundary collision £, is given by the difference

of kinetic energies before and after collision is given by:

1 2 1 12
E.,=—mV: ——mV 5-9
= > (5-9)

where V'? =e V.

The rate of heat dissipation of pseudo thermal energy at the boundary is given by [9]:

Dy = (Kj [”p "dST(l_e‘z“)} (LJ (5-10)
S W O

c

Collision frequency

Number of granules
of each granule

adjacent to unit
area of surface

Energy loss per granule-
boundary collision

Substituting with equations (5-2) and (5-3), we have

1

¥ 3 : 3( O
d ( m%j -1 Energy loss per particle— d ( m%j

boundary collision
S l-el) :
= = 2 my Cw Number of particles
Collision frequency adjacent to unit area
per particle of the boundary

D,, = (7). Bn p,d>T(1- ei)} _ (5-11)

[ISRN Y

The rate of heat generation due to slip at the boundary is given by the product of the rate of

momentum transfer to the wall by the particle impact and the slip velocity,

_ ( 73 j $,p,0NTu,

slip — 6L ( o ]1/3 Uy
11— —
1)
max

The total flux of the pseudo thermal energy [9] from the wall is the difference between the rate of

(5-12)

heat generation due to slip at the boundary (5-12), and the rate of dissipation of pseudo thermal
energy at the boundary (5-11), and is given by :

2
[ mﬁ J¢pr0\/?uﬂ [ ,T\B j(l—egv)ppuTs/2
ngpr =

/3~ 1/3
v v
Ymax Umax

V3 V3
nqpr :[ “ ¢pr Ugox/; ufl |-Z (1—@31,)ppugoT3/2 (5-14)

Umax 4Umax

(5-13)

60max 4Vmax
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Equation (5-14) represents the boundary condition for pseudo temperature. In this equation when

e, 1s close to unity, the first term of the right hand side (RHS) will dominate and hence the wall
behaves as heat source. When e, is small, the second term of RHS will dominate and hence the

wall behaves as a sink.
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CHAPTER 6. GRANULAR LUBRICATION EQUATIONS

6.1 Introduction

In this chapter, Lun’s model is considered to study the mechanism of granular lubricant.
The viscous dissipation term was included in the pseudo energy equation and the solid volume
fraction, together with the mean velocity and the granular temperature are coupled and is directly

predicted from a set of complete governing equations and boundary conditions.

6.2 Analysis

In this section we shall use the constitutive relations to get a general form of the conservation
equations and boundary condition equations, which will be simplified in a later step. The
constitutive equation for the total stress tensor (4-1) caused by kinetic and collision can be

simplified by substituting the set of relations (4-3) to (4-7) as follows:
o, = [pp UT(1+4771)g0)—77,ubV. UJI—

{2—”(1+§nugoj{l+§n(3f7—2)Ugo}+§ﬂb 77}5
7 5 5

2-n)g, U 5

2
={ppuT(l+4n0g0)—2deﬁ§m)—g"V. U}I—

Jr
{2 dNT — 2 S (L+§m)]{l+§n(3n Z)Ugo}+2pp \/?8770 g"}S

967(2-n)\ g, N

. =p, T £,0)-20,dNT £,(0)V. U)I - (2p,dNT f,(v))$ (6-1)

where f,(v), f,(v),and f,(v) are non dimensional functions defined as follows:

i (v)=0(1+4nvg,)
flv)= i[i+ i an(lJr n[3n - 2]%,0) 353 n’g,

96n2-n)g, 3 T

4no’g,
fo(0)= r

The equation of the total flux of pseudo energy (4-8) can be simplified by substituting the set of

relations (4-3) to (4-7) and relation (4-9) as follows:
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Gpy =1 1.2, [1+2772(477—3)Ug0}+ﬂ(41—3377)77202g0 VT
g, 5 5 257

-2 {(L+2,7 )277(277 ~1)(n- l)i(vzgo)T}Vv

5 dv
2547

1677(41-337)

L-FEWU 1+2772(417—3)ug0 +ﬁ(41—3377)77202g0 vr
5 5 257w

- ppdﬁ%{gn(ﬂ—l)(Zﬂ—l)(L+£n} i(vzgojT}Vu

167(41-337) | 5 gv S5 ' )dv

9pr :_ppdﬁ

9 ==p,dNT [()VT = p,dTT f,(0)Vo (6-2)

where f;(v)and f,(v) are non dimensional functions defined as follows:

25y {1 12

T 16n(41-33) | g,

£:(0) s
/i) %{2 n(n—1)2n - 1)(1% + % nJi (e, )}

nvj[l +22 [y 3]vgoj + 2 (41— 3377)71202&)}
5 257

T 16n(41-334)] 5

Similarly, the collisional rate of energy dissipation per unit volume (4-10) can be simplified to:
48 p,v° 2
y=—n(l-n)~"—g, T’
= d
p,T JT
d

y= fi(v) (6-3)

where f,(v) is non dimensional function defined as follows:

fi()= %vzgﬂ(l-n)

6.3 General Governing Equations

The general conservation laws, the constitutive equations and the boundary conditions
presented are applied to a particular flow field shown in Figure 6.1. Considering the two-

dimensional bearing configuration with a film gap ~#=h (x), the upper plate is stationary while the

26



bottom plate undergoes a constant slider motion U;. The plates are assumed to be infinitely wide.
The flow is considered to be steady, two-dimensional. The Cartesian coordinate system is set up
by letting x lie along the plate’s length, and y across the thickness of the flow. The flow velocity

u, the pseudo temperature 7, and the solid volume fraction v vary across the gap.

le o:.Q 80 %0 © 9. z’ﬂogo.gog 2
Sliding Plane 5 U

Figure 6.1 : Two-Dimensional Granular Lubricant Flow

6.3.1 Conservation of Mass

Neglecting the time derivative, then the governing equation for conservation of mass (3-1) can
be written as:

V.(pU)=0

o), oov) _,
ox oy

Integrating the continuity equation across the film thickness:
h(x) ( ) h(x) )
J Ay [ € AV ),
ox oy

h(x)
f udy +(puVy = p,V,)=0
The component of velocity at the bottom plate is zero, then

"t o(pu)
J- Wy + pHVH =0

0

Oh
Furthermore, the squeeze velocity at the top plate can be written as: V,, =u,,

8x
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Recalling Lebinitz’s integration rule, we have

h(x) h(x)
! %dy =% !pudy—pHuH%
Then by substituting back in the continuity equation we have
h(x)

5% '([/)Udy_pHuH%+ pH”H% =0

That is,
%hﬁoudy =0 (6-4)
0

6.3.2 Conservation of Momentum
Substituting equation (6-1) in the momentum equation (3-2) yields to the x and y components of
the momentum equation as follow:

Vo, + ppu(uaa—l; + Vaa—l;) =0 (6-5)
Now expanding the total stress tensor caused by kinetic and collision, and substituting with the

deviatoric part of the rate of deformation tensor and the identity tensor, we have

20u_lov 1(6_u+6_Vj 0
3ox 3 2\ 0 ox
1 00 ¥ g
I= 010 ,andSzla—u+a—V 20V _1u 0
2oy ox 30 30x
0 01
0 0 _1fou oV
i 3\ox oy )

That is,
oy =lp, T £(0)=20,dNT £,0)V. U)1 - (2p,dVT £, (0))s
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U aV
ppr1 2ppd\/_f9( J 0 0
oy
ou_ oV
Ty = 0 P, T, =2p,dNT fg[ - J 0
ox Oy
ou oV
0 0 p,Tf —2p,d T f9(—+—
. ox oy
i ou 2 B L0
S NTLSE 2o dNTRES p T S 0
ox Oy 8x
ou 8V 4 oV 2 ou
p,dT 2o dNTf, S~ p dT £, 0
fz( Y axJ Py 5 o 3pp f o
0 0 ——ppd\/_fz[au
x
i 4 ou 2 ev ou v
T - pdT| | 2f, += f, | —+| 2/, == f, | =— \/_ —+—
ppfl Py (|: Jo 3f2:|5x |: Jo 3f2} ay] fz( Y axj

O-ck =

p,dNT f{a_qua_Vj

0

P, —p,,dﬁqug —%ﬁﬁ—i{% +§fﬁ—z]

P, —ppdﬁ({zfg —%fzﬁ—z{zfg —%fﬁ—jj

Gxx ny O-xz
Also, we know that collisional-translational stress tensoro,, =| o, o, o,
oy

zy

ov
Oy

)

5

Again, substituting equation (6-6) in the momentum equation (6-5), we get

Vo,+p,v ua—U+Va—U =0
b ox oy
That is,
[ Ou | _6_14
o-xx xy Xz ax ay
oV oV
A\ O'yx O'yy O'yz +ppt)ua +ppUV§ =0
zx O, zz 8_w ow
| Ox 5
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6.3.2.1 X-Momentum Equation

The x-momentum equation is given by:

i i(ax )+puu6—u+Va—u =0
ox oy 7 o ox oy

0 4 ou 2 oV
a{PPTfl —de\/?q%fg +§fz}a+[2f9 —gfz}EJ}Jr

0 ou oV ou . Ou
a{—ppdﬁfz(aﬁ'aJ}ﬁ'ppU{Maﬁ'Va} =0

(0.)+

i{p,,Tfl —ppdﬁ[ﬁ: St 6—Vj}+
X oy

ox
0 ou oV ou ou
= p dT fo| =+Z— |} + p ol u—+V=—|=0

(6-8)

where ff,(v)and ff,(v) are dimensionless functions defined as follow:

1i0)=240)+ £,0)

F0)=2£0)-3 £,60) (69)

6.3.2.2 Y-Momentum Equation

The y-momentum equation is given by:

0 0 oV oV
N R e

0 ou oV oV oV
A p dTf| =+ b p v u—+V |+
2 { P fz(&y ﬁxj} P {” }

ox oy

0 2 ou 4 oV
5{/0,3@’1 —ppdﬁ[{ng _§f2:|a+|:2f9 +§f2}5j} =0

g{_ppdﬁfz(g_ugl)}wp{ugLVa_V}
X )y Ox X Oy (6-10)

0 Ou oV
G e
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6.3.3 Conservation of Energy

Substituting equations (6-1), (6-2), and (6-3) in the energy equation (3-11) yields the following:

3 DT
EPE=—V- qpr =0y VU ~y (6-11)

The terms V. q,, and o, : VU are:
V.qpr =V.{—ppdﬁf3(u)VT— ppdTﬁf4(U)Vu}
ar dv
V. =V A= p,d VT £0)) 55 |- p,d VT 1,0) &

a oy

Vet = 2y VT 0I5+ 0, aTVT 102 -
X Oox ox

(6-12)
0 oT ov
2oV 10T 0, 4T 102
ou, Ou, . .
o,:VU=0,— x, =0 ﬂa—J because o is symmetric, then we have
i ox, i
o,:VU :%a_qu o, Cu —+o, o +0'yva—V
ox oy ox S oy
ou 0 aV 0
U= p, 5= p,dNT| 1S4 1 | Sk p T 1| E
ay ax ay o oy
(6-13)
ou oV \|oV ov
dT T, - p,d\T
{ TG &J}ax { e {ﬁ ﬁlayj}ay
Now substituting equations (6-12) and (6-13) into the energy equation (6-11), we have
3 DT
EpE'FV 4pr T+ O, VU+]/ 0

3 or T ov
Zpvlu— V|- Z| p dT dTVTf, = |-
27 (“ax ay] Gx( f3 o dINT s axj

0 oT ov ou
5(ppdﬁf35+ppﬂﬁf4 aprTﬁ —ppdﬁ[ﬁﬂ + 1 ay} P>

v ou oV Pt B
+{pPTf1—deﬁ(ﬁg ﬁay}ay d\/_fz[ 6x] TTﬁ—O
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That is,

ax[( djgf) +(p def) _—+ .
5 d

ay[( ATV o, T)Z

Viscous dissipation
Conductive terms

] ] (6-14)

5 ZJ‘Z{LZ—MJ J{%—Vj }Jr
ppd]gﬁ[a—%a—’/) —p df,NT A Tfl( u aVJ 0
oy Ox ﬁ[ 8_u+8_V ox Oy
| ox oy

Work done by collisional—translational component of the stress

Convective terms

6.4 Boundary Conditions
6.4.1 Condition on the Slip Velocity

The boundary condition of the slip velocity is obtained by substituting equation (6-1) into
equation (5-8):

z ¢w lOp Ugo\/?usl :O

max
O O O 0

zx zy zz

w

iaxy+g/§” ugoﬁusl=0

max

ou ov)] NEY:
i{—ppdﬁfz(5+—] + b, 0, Vg NTu; =0

ox )| 60U,
L|_[ou, V)], Al )¢wubl =0 (6-15)
8y ox
where f;(v) is a dimensionless function defined as follows:
g
v)=——>— 6-16
) o 0 (19
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6.4.1.1 Aty = 0 (Bottom Plate)

(ou oV fi(v) ~ _

+|: [ay—l— ax):|+ d ¢w(u uwall)_o
ou ov fg(u) ~ ]
> e d ¢,(u-U) (6-17)

where u, , =U & ¢, =9,

wall

6.4.1.2 Aty = H (Top Plate)

o oV AR)
{ (8y+8xﬂ+ p ¢w(u ”wazz)—o

o, o 40

6-18
oy o J by u ( )

where u,, =0 & ¢, =¢,

6.4.2 Energy Balance

The boundary condition for the pseudo temperature is obtained by substituting equation (6-2)
into equation (5-14):

3 73
ngpr = (6—j¢wpp Ugo\/? ”51 —( j(l — ei, )p}7 Ug0T3/2

YUmax YUmax
0 a o
ox ox
1. —ppdﬁﬂ(v) or |” ppdTﬁﬂ(v) o 1=
0 5 @
3 V3 3/2
[60 }¢prvg0\/? ufl—[% }(1 e )p ve, T
max max

{aﬂz() dTMUy}

{ w3 ]cowvgoﬁ ufl—[;ﬁ ]vgoTﬁ(l—ei)

6Dmax max
. {_ AC )80} A2 ST (12 (6-19)
dy fz.( ) &y d d
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where f,(v)and f,(v) are dimensionless functions defined as follow:

_ V3 g,
4Dmax f;; (D )

_ \/gm)go
6vlnax.f; (D)

fs(v)

/()

6.4.2.1 Aty = 0 (Bottom Plate)

oor L fb)av] _ f ouz_f;(o)T(l_ez_)

o filo)oy d " d v
alz_Tf4(D)@_¢0f7(U)ufl+Tf()(v)(l_ei)
oy filoy 4 T d

6.4.2.2 Aty = H (Top Plate)

_{_aT_Tf4(U)5U}=f7(”)(/’Hu2—fG(U)T(l—ez)
CIRVAOEY
o __p L) gy fi0) 2 T2
oy f3(o)6y d d

6.5 Functions

(6-20)

(6-21)

(6-22)

All the functions are used for simplifying the equations of motion and the boundary conditions

are summarized below in Table 6.1. They are dimensionless functions of the solids volume

fraction only.
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Table 6.1 : Definition of Functions

1(0)=0(1+40g, )

1) ﬂ[LﬁLgnvl(l +§77[311 — 2]vgoj L8mg,

“96n2— 1)l g, 5 Jr

£0) 257 { 112

12 64
—NT N 12 [an -3 22 (41-33p)”
o=l s nv]( + 4 ]vgaj+25n( v go}

AN 12 1 12 \d,
f4(v)—m{?n(n—l)(%?—l)[g+?nj%(v go)}

d (, d v’ 1 2( )%
— = | —  |=200+—0 )
dl)( gD) 1 & 3 = Amax

f5()= %028077(1"7)

T

__3mg,

0= 20 70

Vg,

H)= o 70

__ ms,
RS0

)= 1

3z

16)=250)+5 £10)

1.0)=2£0)-3 £,0)
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CHAPTER 7. ORDER OF MAGNITUDE ANALYSIS

7.1 Introduction

The following order of magnitude analysis was performed to simplify the momentum

equations and the energy equation along with their boundary conditions.

x~L, y~H, u~U , V ~%, and o,f, o.ff,./f>~1 (7-1)

7.2 Governing Equations

7.2.1 X-Momentum Equation

The x-momentum equation (6-8) can be rearranged as follows:

ou ou ou oV 0 ou oV 0
GRSl e e 1 e G i

Pressure Force

Inertia Forces Viscous Forces
(7-2)
Now, let us examine the orders of the viscous terms individually:
o oy U/ U ,du U a v ou
ﬁplax2 Lz’ﬁf2 L2’f2 “wt f2 r

Generally, in lubrication mechanisms the gap width is much smaller than the bearing length (i.e.

2 2 2
H{(L). Thus, 0 l;)) 0 124 o and make much more contribution. Therefore, the other three
oy~ Ox~ 0OxOy

terms can be neglected.

ou Ou 0 ou o
prfu et = o, diaT) 22| - 2o, 18) (7-3)
ox oy ] oy )| ox
Inertia Forces Viscous Forces ! Pressure Force

Examining the inertia terms individually, we have

ua%XN UL UYL
y Ou HUz/H_Uz/L
Yoy

Based on previous published papers, the ranges of the pseudo temperature always lie between

=1, which implies that both terms have the same order.

0.01 and 0.05. Thus, the average pseudo temperature is assumed to be of order of 0.03.
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2
The order of the inertia terms [~ TJ is very small comparable to the order of the viscous

2
forces [\/T /s % ~ %ﬁ ) . Therefore, the final form of the x-momentum equation will be:
Y

sy{(ppdfzf (gy”j}a—i(pﬂﬁ) (7-4)

7.2.2 Y-Momentum Equation

The y-momentum equation (6-10) can be rearranged as follows:

oV oV 8u GV 0 ou oV 0

B
Tnertia Forces Viscous Forces Prressure Force
(7-5)
Examining the orders of the viscous terms individually, we have
2 2
]%ZyIij({L’ﬁz;cgy fz@V % fz@x@y %
oV 0V du

R\ and can be treated as negligible in comparison to other terms.
X Yy oxoy

Consequently, equation (7-5) simplifies to:

oV oV 0 ou 0 ou ov
iz (3] afosolnons]) g

Oy

Inertia Forces Viscous Forces Pressure Force

(7-6)
Again, by taking the average pseudo temperature to be of the order of 0.03, then the order of the

2
inertia terms (~ UT] would be negligibly small comparable to that of the viscous

forces (~ UP;/L?] . Also, the order of the pressure force (~ %) has much more contribution than

the order of the viscous terms (~ —\/_ j
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Therefore, the final form of the y-momentum equation is:

g(ppr])z 0 (7-7)
ly

7.2.3 Energy Equation

The energy equation (6-14) can be rearranged as follows:

gp,[ a—“v”} 2 s T T2 |- 2 {(ppdﬁﬁ)i—}(ppdmﬁ)g—;}

ox Oy |
Convective terms Conductive terms
ou oV 0 8V 0 8V ou oV
prSTf —p,dfNT —“+— —ppdfzx/_ 2f, ( ”j + ff, —“+— 0,1 =45 =0
oy Ox 6y oy ox Oy
%f_/
Viscous dissipation o
(7-8)

By examining the order of the convective terms individually, we can see that both terms have the
uoT
/ o ML

SO

same order =1 and examining the order of the conductive terms, we

0 oT
éxlppdﬁ]% éxJ Tref/L2 _(H ’ 1 : o°T ,,0°T
have 5 \/_ or ~ T / 7\ ((I, which means that and
Ay[ppd Tf3 Ay:| ref
62
similarly —(( . Therefore, the terms containing x gradient are negligible.
X’ oy
ou, oV
Similarly by examining the work done terms individually, it results that a—»a— since
' Ox
Mo  uH (LY U L
Y / =|— | )1 . Moreover, ~ / , showing that both terms
oV H H
ox |—U|/L H
L
2
have the same order 8_u~6_V . Furthermore, it is clear that the term >>( j ou
ox Oy éy “ox
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Thus the energy equation (7-8) is simplified to:

;po[ua—ngﬂ [( djg\/_)y o drr T2 } ”ZﬁT\/_—ppdfzﬁ(g—Q:o

ox
%/—/
Viscous dissipation

Convectiveterms Conductive terms Work done

(7-9)
: . . ur) . :
Finally, we will compare the order of the convective terms (~ Tj with the order of the viscous

3/2

dTUz 3/2
, the work done term| ~———|, and the conductive terms| ~ — |
d H H

dissipation term (~

It is clear that convective term can be neglected.

Therefore, the final form of the energy equation is:

5 or oo o\ PS5 =
5{(&,%\/7 )5+ (o, df,TNT )5} ppdfzﬁ(aJ SPEETNT =0 (1-10)

7.2.4 Elimination of the Volume Fraction

The coupling term involving the volume fraction can be eliminated from the energy
equation and the pseudo temperature boundary condition to further simplify the governing
equations. Using equation (7-7) and substituting with the dimensionless functions given in Table

6.1, we have:
0
—(To(l +4nvg, ) =0
(1ol )

%(D(l + 4nug0))+ T%(l + 4nug0)+ TU[477%)g0 + 4770%] =0 (7-11)

1/3
L)

2 2/3
where g, = 1 = - and o, - & [—UZ‘”‘] Z—;j

. ( y j% V- -V o 30,
Umax

Therefore,

2 2/3
DI 2 4y, To+ dno’TSo [—Umax j ®_g
oy v 5)’ 30 \ 0 Oy

a_Tf1 Gv[Tf

oT
— Lt
oy

2/3.1/3
max

+4ngOTv+3nvago ;}:O
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P / or (7-12)

& - 4 1 5
T|:f1_|_4;7g01) +§7’102 gj 02/31/3:|

)]

Substituting back in the denominator of (7-12) with the values of g, and f; (Table 6.1), we have
oo & (D) or

- g 7-13
oy T oy ( )
where g,(v)= /i
i L3 13
1 877 UUllTl/:X 3 77 e
"o =0 o
Substituting (7-13) in the energy equation (7-10) results the following equation:
2
0 oT ou T
O £ WNT D | | 2| ST g (7-14)
oy oy oy d

7.3 Boundary Conditions
7.3.1 Condition on the Slip Velocity

Comparing the order of magnitude of the gradient of the velocity g_u»@a_V in equations (6-17)
' Ox

and (6-18), the condition on the slip velocity is simplified to:

7.3.1.1 Aty = 0 (Bottom Plate)

o _Js (, _y) (7-15)
oy d
7.3.1.2 Aty = H (Top Plate)
ou _ _fsﬂu (7-16)
oy d
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7.3.2 Energy Balance
Substituting the coupling equation (7-13) in equations (6-21) and (6-22) for the pseudo

temperature boundary conditions to eliminate the volume fraction term, results the following

simplified equations:

7.3.2.1 Aty = 0 (Bottom Plate)
or __pJadv_¢.fs (.} _+_Tf6(1_ev2v)

usl

o  fioy d d

2

o _r1s80T 9./, (u, +Tf6(1—ew
o  fiToy d 7

(&—lJa—TjtTfé(l_ei): ?,./7 (u—U)Z

1 oy d d

a_T_T(l—ei)(ﬂﬁf(, j_w_n(ij(u_mz

- - 118 d\ fi- /.8

oy d
o _pli=e) s, (w-Uy (7-17)
oy d d
S5 Js

where f1: = fi- g’ and = fgjfjji:gl

7.3.2.2 Aty = H (Top Plate)
_ 2
o __phdv ouf, o phli-el)

& Ly d d
O _7/i& 0T ouh, y_plll=c
oy fi T oy d d
[1_@J6_T+Tf6(l_ei):¢11f7 o
f; oy d d
8_T:_T{ f3f<> ](l_evzv)+¢_H[ f3f7 ]uz
Oy fi— fi& d d\ f;-1.&
al:_Tm(l_ei)+ﬁ4¢H 2 (7-18)
oy d d
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CHAPTER 8. APPLICATION TO TWO PARALLEL
PLATES FLOW

8.1 Introduction

In this chapter, Lun’s model is considered to study the mechanism of granular lubricant
passing through two parallel plates. The results are compared with those obtained by McKeague
and Khonsari [26], Zhou and Khonsari [30], Sawyer and Tichy [31], and Pappur and Khonsari
[33].

8.2 Lubrication Equations

The general conservation laws, the constitutive equations and the boundary conditions
presented in the previous sections are applied to a particular flow field where a granular lubricant

passes through two parallel plates (Figure 8.1).
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Figure 8.1: Two-Dimensional Granular Lubricant in a Couette Flow

The upper plate is stationary while the bottom plate undergoes a constant sliding motion
U. Because of the thickness of the gap is very small, the spin effect of the granules and the
gravity force are neglected. The grains are treated as smooth frictionless spheres of identical size,
and the plates are assumed to be infinitely wide. The flow is considered to be steady, two-
dimensional, and fully developed. The Cartesian coordinate system is set up by letting x lie along

the plate’s length, and y across the thickness of the flow. Since the flow is considered to be fully

developed, all the gradients in x direction are zero [63 = Oj. Therefore, the mean velocity,
X
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granular temperature, and solid volume fraction only have gradient along the y direction. The x-
momentum in equation (7-4) for the application of two parallel plates flow can be rewritten in

the form below:

d du ||
() -

The y-momentum (7-7) becomes,

d

5(/)pr1)=0

p,If, = constant = N (8-2)
where N is the normal load applied per unit area. The energy equation (7-14) along with the

boundary conditions (7-15) to (7-18), remains the same since they contain only gradients along

the y direction.

8.3 Dimensionless Forms

In what follows, we shall make use of the following dimensionless parameters:
* N * *
u=Uu,T=—T", y=Hy (8-3)
Pp
where U is the bottom plate velocity and H is the thickness of the gap. Substituting with the
above parameters (8-3) in equations (7-14), (8-1) and (8-2) yields to the following dimensionless

governing equations:
8.3.1 Dimensionless X-Momentum

Aci{ ST [d—”*ﬂ:o (8-4)
dy

dy

8.3.2 Dimensionless Y-Momentum

T f(v)=1 (8-5)
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8.3.3 Dimensionless Pseudo Energy

* %\ 2 %3/2
d ~dT + du T
P N e N [ [ (8-6)
dy dy dy C
U,
where 4 = P ,C=i
VN H

8.3.4 Dimensionless Mass Flow Rate

For a Couette type flow, the distribution of bulk velocity is independent of the flowing direction.
Hence, the mass flow rate in the gap of a Couette flow is constant. Rewriting equation (6-4)
accounting for a fixed gap and the fact that p = p v, we have:

‘ ]{
— | p,oudy=0
dx 3"’
and in dimensionless form,

m d
p,UH  dx

kS

m =

1
_ j ou’ dy’ (8-7)
0

8.3.5 Dimensionless Boundary Conditions
Substituting (8-3) in equations (7-15) to (7-18) yields to the following dimensionless boundary

condition equations:

8.3.5.1 Aty = 0 (Bottom Plate)

kS

() (8-8)
dy C
* * 2
aT _T I _g2) ALt (o) (8-9)
dy C C
8.3.5.2 Aty =1 (Top Plate):
du___ St (8-10)
dy” C
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d1’ Z_M(l_ei)Jr%u*z (8-11)
dy C C

8.4 Numerical Scheme

The momentum and the energy equation are coupled, ordinary differential equations.
Because of the complexity of these equations, numerical schemes are utilized. In the simulations
presented, the thickness of the gap is fixed and the normal load is specified. Finite difference
method is employed to discretize the dimensionless governing equations and boundary
equations, which forms a set of algebraic equations. Newton’s iteration method is used to solve
the resulting set of equations for velocity and temperature. Bisection method is used to solve the
volume fraction equation. There are three loops in the computations, the inner loop solves the
velocity, the second loop solves the temperature, and the outer loop solves the volume fraction.
The iteration is repeated until the results converge, and then the mass flow rate is computed by
integrating the volume fraction and the velocity along the gap thickness. The tolerance level used

is 107 per iteration.

8.5 Results and Discussion

The following focuses on applying the theory to predict the performance of the granular
flow between two parallel plates. A benchmark is set up based on the papers presented by
McKeague and Khonsari [26] and Zhou and Khonsari [30]. The input parameters for the
benchmark are presented in Table 8.1. The top plate is stationary, the velocity of the bottom plate
is U=4.6m/sec, and the thickness of the gap is equivalent to 14 particle diameters. The

granular material used in the lubrication is made of Titanium Dioxide (TiO,) as reported by

Heshmat [3]. The particle has a diameter of Spum and a density p, =4260kg/m’. The
coefficients of restitution for both particle and wall are assumed to bee, =¢, =0.8, and the

roughness of both moving and stationary plate isg, = ¢, =0.5.

In the simulation presented, several mesh points and error tolerances refinement were
performed. It was found that 21 grid points given along the fixed gap thickness is the optimum

number of grid points. The error tolerance is set to be 10, and the CPU time for each simulation
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is about 4 seconds. Increasing the grid points more than 21 did not improve the results. The mass

flow rate in the gap must be specified and adjusted by changing the applied load.

Table 8.1 : Input List for Benchmark Case Used in the Computer Simulations

Parameter Value Parameter Value
€, 0.8 L 0.0264 m
e, 0.8 U 4.6 m/s
Uinax 0.65 H 70 um
o, 4260kg/m’ 4, 0.5
d Sum @, 0.5

8.5.1 Benchmark Simulations

Figure 8.2 demonstrates the distribution of the flow velocity, the pseudo temperature, and
the solid volume fraction. It is clear that there is a slip velocity at the boundaries, and the energy
supplied from the boundary caused by the slip velocity is transferred to the interior gap. For a
liquid lubricated system, there would have been no slip velocity at the boundaries. Instead, when
powder is used, the theory predicted a slip velocity at both boundaries.

Granular slippage is one of the important characteristics of granular lubrication. During
shearing, it provides energy from the boundaries into the granules contained within the gap. In
addition to this energy transferred due to the slip, energy is developed within the flow field due
to viscous dissipation. Since the top and bottom plates assumed to have the same roughness, then
the velocity profile exhibit equal slip at the boundaries.

The fluctuation velocity of the granular material (pseudo temperature) decreases
gradually from the boundaries to the center of the gap. At the boundaries, the pseudo temperature
is large due to the granular slip responsible in generating energy that is transferred to the middle
of the gap. On the other hand, the inelastic collision between the granules in the middle of the
gap causes a decrease in the energy dissipation. Hence, there is less fluctuation in the middle of
the gap compared to those at the boundaries and the pseudo temperature is small. The viscous
dissipation term that appears in the pseudo energy equation (8-6) is ruled mainly by the

coefficient of restitution. The coefficient of restitution is a constant parameter that describes
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Figure 8.2 : Benchmark Simulations of the Flow Velocity, Granular Temperature, and
Solid Volume Fraction

47



the inelastic collision between the granules. Therefore, the pseudo temperature profile is
determined by both, the viscous dissipation and the slip velocity.

This behavior of the fluctuation velocity can be explained by examining the volume
fraction profile. The volume fraction increases in the middle of the gap, meaning that the grains
are densely packed. Thus, less fluctuation velocity and a decrease in the energy dissipation will
took place. Closer to the boundaries, the granules are less dense and there will be more
fluctuation velocity which results in an increase in the pseudo temperature. Therefore, the
distribution of the solid volume fraction takes a parabolic shape with the maximum value in the
middle of the gap.

These predicted results have similar trends to those obtained by other researchers. For a
specified dimensionless mass flow rate of 0.3, the normal load was found to be 7241 N/m”. The
values of the fluctuation velocity and the solid volume fraction on the boundaries are predicted to
be 0.0315 (0.053 m?/sec?) and 0.576, corresponding to 0.12 (0.1 m?/sec’) and 0.6 reported by
McKeague and Khonsari [26], 0.081 (0.046 m*/sec’) and 0.57 by Zhou and Khonsari [30], and
0.03 (0.049 m*/sec?) and 0.45 by Pappur and Khonsari [33]. The friction coefficient is predicted
to be 0.407, which is very close to 0.41 by Zhou and Khonsari [30], and 0.42 Pappur and
Khonsari [33]. In the experimental work of Savage and Sayed [21], the friction factor of granular
material is given around 0.3 to 0.4.

The predicted result of the fluctuation velocity in this dissertation differed slightly from
the one predicted by Zhou and Khonsari [30] since there was a difference in the normal load. The
difference in the prediction of the fluctuation velocity between this dissertation and McKeague
and Khonsari [26], can be attributed to the use of difficult constitutive equations as presented by
Haff [14]. McKeague and Khonsari [26] show that Haff’s approach is very simple to apply and
has a very clear physical meaning. But Lun’s model used in the simulations reported here is
more realistic because some of the parameters are function of the local solid volume fraction,

instead of some constants in the Haff’s model.

8.5.2 Effect of the Granular Coefficient of Restitution, e,

Figure 8.3 shows the sensitivity of the flow velocity, granular temperature, and the solid
volume fraction to the granules coefficient of restitution. The slip velocity decreases at the

boundaries as e, increases. The larger the e,, the more elastic the granules become. Hence, there

48



%

Dimensionless Gap Height, H

s«

Dimensionless Gap Height, H

*

Dimensionless Gap Height, H

]

| |

0.0
0.0

0.2

0.4 0.6

0.8 1.0

. . . *
DimensionlessVelocity, u

1.0

0.8 -

04

]

0.0
0.010

0.015

0.020 0.025

0.030 0.035

. . *
Dimensionless Pseudo-Temperature, T

1.0

0.8 -

04

]

| | |

| |

0.0
0.575 0.580 0.585 0.590 0.595 0.600 0.605 0.610 0.615 0.620
Volume Fraction, v

Figure 8.3 : Variation of the Flow Velocity, Granular Temperature, and Solid Volume

Fraction with the Granular Coefficient of Restitution, ¢,

49




is less energy loss by inelastic collision between granules. The trend of the granular temperature
and the solid volume fraction changes drastically at the higher values of e, (0.9 and 0.98)
compared to the benchmark case where e, = 0.8. There are two energy sources which arise in the
formulation of the granular temperature. One comes from the slip velocity at the boundary and
the other is the viscous dissipation in the interior of the flow. When e, is large, the slip velocity
at the boundary decreases and the viscous dissipation in the interior flow increases. Therefore,
there is more energy generated in the interior flow than the one generated at the boundaries by
the granular slip. Hence, the energy is transferred from the middle of the gap to the boundaries.

The solid fraction trend is directly related to the pseudo temperature. When there is more
pseudo energy generated in the interior of the flow, implies that the surrounded granules will
experience much larger fluctuation than the ones near the boundaries. Therefore, less
concentration of the granular material will occur in the middle of the gap and more accumulation
of the granules at the boundaries.

At higher e, the load is increased by almost 10 times compared to the benchmark data.
When e, is 0.8, the normal load is N = 7241 Pa, and the friction factor = 0.4 and when e, is
0.98, the normal load is N = 6293 Pa, and the friction factor /= 0.3. According to the above
analysis, as e, goes to 1, the solid volume fraction near the boundaries is larger than that at the
center of the channel. Under this condition of low shear stress and high normal stress, it is clear
that powders are likely to conglomerate at the boundaries. The results are in good agreement to

those obtained by Zhou and Khonsari [30], and McKeague and Khonsari [26].

8.5.3 Effect of the Wall Coefficient of Restitution, e,

Figure 8.4 shows the variation of the flow velocity, granular temperature, and the solid
volume fraction to the coefficient of restitution of both, top and bottom plates. The slip velocity
increases as e,, increases. An increase in e, means that the wall is more elastic. Hence, there is
less energy loss during collision between the wall and the granules which implies that more
energy is supplied from the boundaries to the flow. The granular temperature increases at the
boundaries and decreases in the middle of the gap.

As e, increases, the curvature profile of the granular temperature and the solid volume

fraction becomes greater because of the change in the normal load to match the specified mass

50



3

Dimensionless Gap Height, H

0.0 | | | ] ‘
0.0 0.2 0.4 0.6 0.8 1.0

. . . *
DimensionlessVelocity, u

1.0

*

Dimensionless Gap Height, H

0.8 -

0.6

04

| |
0.0
0.00 0.01 0.02 0.03 0.04 0.05 0.06* 0.07 0.08

Dimensionless Pseudo-Temperature, T

s

Dimensionless Gap Height, H

0.8

04

| |
0.0
050 052 054 056 058 060 062 0.64

Volume Fraction, v

Figure 8.4 : Variation of the Flow Velocity, Granular Temperature, and Solid Volume
Fraction with the Wall Coefficient of Restitution, e,

51



flow rate. As e, increases, the normal stress increases but there is no change in the trends of the
granular temperature and the solid volume fraction. The parameter e, affects only the slip
velocity, not the interior of the flow.

At higher e,, the normal load is not largely affected as compared to the benchmark data.
When e, is 0.8, the normal load is N = 7241 Pa, and the friction factor f = 0.41 and when e, is
1.0, the normal load is N = 8035 Pa, and the friction factor /= 0.37. Hence, the effect on the
normal load caused by changing e,, is much less than that of e, which implies that the coefficient
of restitution of the granules play a much more substantial role than the coefficient of restitution

of the wall. The results are in good agreement to those obtained by Zhou and Khonsari [30].

8.5.4 Effect of the Surface Roughness at the Top and Bottom Plates, ¢, and ¢,

Figure 8.5 and Figure 8.6 present the variation of the flow velocity, granular temperature,
and the solid volume fraction by varying the roughness of the top stationary wall and the bottom
moving wall respectively. The roughness ¢,, of the stationary top boundary surface ranges from 0
when it is completely smooth, to 1 when it is completely rough.

Wheng,, is large, the slip velocity at the top boundary becomes smaller. Hence, the

particles around this boundary become almost stationary which means the slip effect becomes
nil. Thus, as the roughness of the top plate becomes larger, there is more energy being
transferred from the bottom plate than from the top plate. Since the bottom plate is supplying
much more momentum to the adjacent grains through the slip velocity than that at the top plate,
the granular temperature at the bottom plate is relatively larger than the top plate. These effects
are also reflected in the solid volume fraction profile, where the larger the slip velocity at the
bottom plate tends to loosen the grains there whereas the top plate experiences the exact opposite
effect. The value of the maximum solid volume fraction appears near the top stationary plate,
and this phenomenon happens because of the viscous dissipation term. The results are in good
agreement to those obtained by Zhou and Khonsari [30].

Similarly, the roughness ¢, of the moving bottom boundary surface ranges from 0 when it
is completely smooth, to 1 when it is completely rough. When ¢, is large, the slip velocity at the

bottom boundary becomes smaller and the energy transferred from this boundary decreases.
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Therefore, more energy is being transferred from the top plate than from the bottom plate to the
middle of the gap. The reduction in the amount of energy transferred from the bottom plate,
results in a decrease in the pseudo temperature in that boundary accompanied by an increase in
the solid volume fraction. In the middle of the gap, increasing the bottom plate surface roughness

tends to increase the pseudo temperature due to the slip velocity.

8.5.5 Effect of the Gap Thickness, H

Figure 8.7 demonstrates the variation of the flow velocity, granular temperature, and the
solid volume fraction by varying the thickness of the gap. The mass flow rate decreases as the
gap thickness H is changed from 20d to 7d. As H decreases, fewer granules flow inside the
channel and the chance of collision between granules decreases. The granular material becomes
more concentrated and result a decrease in the fluctuation velocity which in turn decreases the
energy loss by inelastic collision. Therefore, there is less energy loss through the gap and more
energy will be supplied to the middle of the gap by the granular slip at the boundaries. The
granules in the middle of the channel are more influenced by the boundaries. Thus, the
distribution of the granular temperature and the solid volume fraction across the gap becomes
more flat in shape. The flow velocity becomes almost linear. As H increases, the effect of the
boundaries on the distribution of the particles in the middle of the gap becomes less distinct and
this result a “solid plug” phenomenon as mentioned in McKeague and Khonsari [26].
Simulations were performed with H=20d to illustrate this phenomenon. For a fixed mass flow
rate, the normal stress increases as H decreases. Varying the particle diameter and fixing the gap

width would results same trends.

8.5.6 Effect of the Mass Flow Rate

Figure 8.8 presents the variation of the flow velocity, granular temperature, and the solid
volume fraction by varying the mass flow rate. Increasing the mass flow rate increases the
average solid volume fraction across the gap. As the average volume fraction across the gap is
large, the granular temperature in the flow becomes smaller. Therefore, the slip velocity at the

boundaries decreases and less energy is supplied from the boundaries.
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8.5.7 Effect of the Coefficient of Restitution on the Friction Coefficient

Figure 8.9 demonstrates the effect of both coefficient of restitution of the granules and
the wall on the friction coefficient. With fixed e,, the larger the e,, the more elastic the granules
become causing more uniform distribution to the granules across the gap. Hence, there is less
energy loss by inelastic collision between granules and a decrease in the energy generated by slip
at the boundaries. Therefore, there is more energy generated in the interior flow than the one
generated at the boundaries. Thus, the friction coefficient decreases significantly. With e, fixed,
the variation of the friction coefficient with the coefficient of restitution of the wall is not
significant. An increase in e,, means that the wall is more elastic. Hence, there is less energy loss
during collision between the wall and the granules which implies that more energy is supplied

from the boundaries to the flow.
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0.10 | | | | | | |
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Coefficient of Restitution

Figure 8.9 : Effect of the Coefficient of Restitution on the Friction Coefficient

8.5.8 Effect of the Coefficient of Restitution on the Mass Flow Rate

Figure 8.10 presents the effect of both coefficient of restitution of the particles and the
wall on the mass flow rate. With fixed e,, the larger e,, the more elastic the granules become
causing the average volume fraction to decrease. Decreasing the mass flow rate decreases the
average solid volume fraction across the gap or vice versa. Thus, when e, increases, the mass
flow rate decreases. With fixed e,, as e, increases, it shows negligible effect on the mass flow

rate.
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8.6 Conclusions

This chapter deals with simulation of granular flow between two parallel plates with
infinite width. The formulation of the governing equations and boundary conditions are
formulated along with an efficient numerical simulation. The effect of the viscous dissipation in
the energy equation is considered in the simulations, similar to Zhou and Khonsari [30]. The
solid volume fraction appears naturally in the equations. The constitutive equations in this
chapter are based on the model of Lun et al [8]. The results are explained and compared with
those of McKeague and Khonsari [26] , Zhou and Khonsari [30], and Pappur and Khonsari [33].

The energy supply to the granular flow is from two sources: one from the slip velocity at
the boundaries, and the other from the viscous dissipation. For a liquid lubricated system, there
would have been no slip velocity at the boundaries. Instead, when granules are used, the theory
predicted a slip velocity at both boundaries. Granular slippage is one of the important
characteristics of granular lubrication. During shearing, it provides energy from the boundaries
into the granules contained within the gap. The slip at the boundaries increases the pseudo
temperature and hence more energy is being supplied to the interior flow.

The results with Lun’s model have similar trends to those of Zhou and Khonsari [30], and
McKeague and Khonsari [26]. The friction factor is around 0.4 that is the same as the
experimental measurement presented by Savage and Sayed [21]. The coefficient of restitution of

the granules plays a major role in the pseudo temperature and the solid volume fraction. When
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granules become nearly elastic, the simulations predict a different distribution for the granular
temperature and the solid volume fraction. There is much more energy generated in the interior
flow which is transferred to the boundaries. Hence, the distribution of the granules at the
boundaries is dense, while sparse in the interior flow. This trend was predicted because of the
viscous dissipation term included in the formulation of the equations, and could not be predicted

if we neglect this term.
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CHAPTER 9. GRANULAR COLLISION LUBRICATION:
EXPERIMENTAL INVESTIGATION AND COMPARISON
WITH THEORY

9.1 Introduction

The tribology of dry particulate lubricants is a subject of considerable interest to
researchers working on powder lubrication. Two distinct types are used: cohesive lubricants
(powder) and cohesionless lubricants (granular). Cohesive lubricants are soft particles that
accommodate slip velocity mostly by adhering to surfaces and shearing in the bulk medium, i.e.
behave similar to hydrodynamic fluids. Cohesionless lubricants are hard particles that transfer
momentum and accommodate slip velocity through shearing and rolling at low shear rates, and
through collisions at high shear rates. Granular materials can resist breaking down as a result of
large shear forces and provide a useful alternative for lubrication under extreme conditions such
as those encountered in high performance turbine engines, where the operating temperatures are
very high (~800 °C). Other applications using granular materials can vary from auxiliary
bearings particularly during start-up periods, to the use in micro-nano-scale systems such as
MEMS devices [44].

The motivation for the present chapter arises from the need for bearing technology that
can accommodate the future generation of engines aiming for higher thermodynamic efficiency,
less fuel consumption and increased thrust-to-weight ratio in turbine engines. Despite the fact
that there is a general agreement on the needs for such a new oil-free granular lubrication
mechanisms, modeling and prediction of granular flows is very complex and still distant from
being well understood. It was established that granular material plays a major role in determining
the axial load transmitted (lift) between the surfaces, the sliding friction and the slip velocity, but
uncertainties still remain on several issues which require more investigation. In the present
chapter, experiments were prepared to demonstrate the vertical displacement (lift) observed in an
annular shear cell apparatus and to study the effect of the rotational speed, the normal load, and
the surface roughness on the friction coefficient and the lift. Results of theoretical prediction are

also presented that substantiate the validity of the findings.
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9.2 Experiment

9.2.1 The Apparatus

The test rig used is an automated tribometer controlled and monitored by a computer as
illustrated in Figure 9.1. The tribometer has a DC servomotor, which provides at a low gear ratio,
a torque of 11.3 N-m (100 Ibf-in) and rotational speeds up to 1,000 rpm. It is equipped with a
computerized data acquisition system capable of recording real-time values of friction
coefficient, wear/displacement, and speed. The load on the testing component is applied from the
loading mechanism located in the bottom section of the apparatus. It can provide and maintain a
normal load up to 2224 N (500 1bs) using a 4:1 lever arm. The tribometer measures friction and
displacement to 0.635 pum (25 pin) giving an accurate assessment of displacement and friction as
a function of time. The vertical displacement and the friction coefficient values are recorded
automatically every 20 seconds.

Displacement is measured by means of the linear variable differential transformer
(LVDT). When the bottom disk moves upward or downward, the LVDT senses this rectilinear
motion. If the sensor records an upward displacement, it presents an indication of wear and if it
records a downward displacement, it gives an indication of a positive displacement due to the
fact that the granules are pushing the bottom disk away from the top disk which provides an
indication of lift. To measure the friction coefficient, the top vertical shaft is rotating but
restricted from the motion in the vertical direction while the bottom holder is restrained from
rotation by a torque arm. This torque arm is connected to a force transducer and senses the
frictional torque applied by the granular medium which measures the friction and in turn
determines the friction coefficient. Since the normal stress is originally specified, thus the shear
stress can be calculated simply by having the friction coefficient measurements.

The shear cell as shown in Figure 9.2 consists of two concentric steel disks. The upper
disk is mounted on a rotating vertical shaft but restricted from the motion in the vertical
direction. The bottom disk is restricted from rotation, but can move in the vertical direction. The
shear cell has an annular channel of 31.4 mm wide and a mean radius of 34.7 mm. The channel is
45.8 mm deep and contains the granular material to be used. The top disk has an annular
protrusion that fits into the channel of the bottom disk. This annular protrusion does not contact
the side walls of the bottom disk channel. The side walls of the granular cell are made of clear

acrylic to visualize the granular flow and a wall thickness of 6.35 mm (0.25 inches).
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Figure 9.1 : Schematic of the Experimental Apparatus

The operating temperature for the acrylic material is 0° to 66°C (0° to 150°F), and its
tensile strength is 62 MPa (9000 Psi). A high-temperature high-strength epoxy and a set of
screws were used to attach the acrylic wall to the bottom disk. The bottom disk is free to move
vertically, so as to allow for the expansion of the sheared granular material. The bottom disk is
attached to a vertical shaft with a sensor on its other end to measure the vertical displacement
and friction coefficient as a function of time and rotational speed of the top disk. The shear cell

dimensions and the steel granules properties are summarized in Table 9.1.

9.2.2 Experimental Procedures

The gap in the annular shear cell is divided into three regions. The first region is the layer
of granules adjacent to the upper moving disk; the second region is the layer of “locked
granules” adjacent to the stationary lower disk, and an intermediate layer between those two
regions (interior flow). A total of 18 experiments were conducted to illustrate the lift

phenomenon in a parallel plate configuration using granular material with six different applied
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loads. In addition, three configurations for roughness, for it are established that surface

roughness plays an important role in granular simulations and experiments.

Figure 9.2 : Shear Cell Assembly

In the kinetic theory presented in this dissertation (Chapter 8), a wall roughness
parameter is used. This parameter is a measure of the fraction of collisions that transfer a lateral
momentum to the wall and so-called specularity coefficient. Its value varies from 0 to 1
representing a very smooth to a very rough surface, respectively. When the surface of the wall is
smooth, the granule-wall collisions are very small and in turn result a large quantity of granule
slip at the wall. In the case of rough surface, the granule-wall collisions will provide a major
transport of lateral momentum to the wall and the slip at the wall becomes much less. As
described below, in the experiments, roughness was applied to the surfaces by attaching a series
of adjacent granules along the length of each surface to help drive the granules of the interior
flow. In one series of tests, the upper disk—the driver—was roughened while keeping the lower
disk smooth. In another set of tests, the configuration was reversed by making the lower disk
rough and the upper disk smooth. Finally, a series of tests was performed where both disks were

rough.
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Table 9.1 : Shear Cell Dimensions and Steel Granules Properties

Channel Width 31.4 mm
Channel Depth 45.8 mm
Mean Radius (R, ) 34.7 mm
Shearing Area (As,m,, = 72'(7’02 —r )) 6846 mm>
Mean Length (Lmean = 27[Rmean) 218.24 mm
Gap Height (H) 21 -27 mm
Particle Diameter (D) 3 mm
H/D 7-9
Particle Density 7850 kg/m’
Rotational Speed 50 — 800 rpm
Linear Speed (U =2mR,,.N/ 60) 0.18 — 3.0 m/sec

The following procedure was used in creating the desired surface roughness. Stainless
steel wire mesh was used for the rest of the experiments with the proper mesh size as shown in
Figure 9.3. The wire mesh was first glued to the surface, and then some stainless steel balls
enough to cover this surface was glued to it using high-impact high-strength epoxy. The wire
mesh along with the high-strength epoxy provided a very high shear strength and very high
torque resistance to the balls glued to it.

A typical experiment starts by placing a specified mass of granules in the lower channel
of the shear cell. The upper disk is then lowered until it just touches the granules, thereby
packing them in place. A specified normal load is applied to the granules through the bottom
surface causing them to be compressed. Corresponding counter weight need to be considered
when normal load is specified to compensate the weight of the bottom disk and the specified

mass of granules. The top disk is then given the rotational motion causing the granules to move
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and exchange places at low speeds. Then, at higher speeds they start to collide and tend to push

the bottom disk downward.

Figure 9.3 : Surface Roughness

a) Wire Mesh b) Steel Balls Glued to the Surface
Using the Wire Mesh

With a specified normal load, the drive motor is set to rotate the upper disk slowly for a
few seconds first to make sure that the granules are well distributed and initially compacted in
the channel. The motor is then stopped to adjust the positioning of the upper disk if needed after
the granules being well distributed and compacted to ensure that it just touches the granules. The
driving motor starts to rotate the upper disk again and increases the rotational speed in a step
fashion every 5 minutes ranging from 50 to 800 rpm by an increment of 50 rpm. By increasing
the rotational rate of the upper disk, the granules start to push the bottom disk downward.

Real time data for the vertical displacement and the friction coefficient are recorded to
study the lift phenomenon and the effect of the speed on the friction coefficient. To investigate
the effect of the load on the friction coefficient and the displacement, the applied load was varied
from 5.8 to 9.2 kPa. Also, the effect of the surface roughness was investigated by changing the

upper or lower disk configuration from rough to smooth and vice versa.

9.3 Experimental Results
9.3.1 Series A: Both the Sliding and Stationary Disks Are Rough

Physically, shear stress is the applied force per unit area parallel to the plane required to

produce deformation in a fluid. When applied to granular material, shear stress causes adjacent
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planes of granules to slip on one another. Normal stress is the stress acting perpendicular to the
adjacent plane. The coefficient of friction is defined as shear stress divided by normal stress. In
each set of experiments, the normal load is maintained at a specified value and shear is
introduced by means of rotation of one of the disks.

The values of the friction coefficient for two different loads (6.5 kPa and 8.5 kPa) are
shown in Figure 9.4. The experimental results were recorded every 20 seconds in each stage (i.e.
speed range), and then data were saved and averaged for each speed. Also shown are curves

fitted to the experimental data with 98% accuracy.

9.3.1.1 Effect of the Rotational Speed

The effect of the rotational speed on the friction coefficient is shown in Figure 9.4. The
contact between the granules is governed by Coulomb law of friction, which imposes a limit on
the ratio of the tangential force to the normal force at area of contact. When this limit is reached,
a relative slip motion at the contact area is possible. When the shear stress is applied and the
rotational speed is small (50 rpm and below), sliding starts gradually at a frictional force smaller
than that generated during steady sliding (steady state friction). While the shear stress gradually
increases, more and more contacts will reach the Coulomb threshold and slip occurs. Slip motion
between the granules in contacts causes dynamical rearrangements and changes in the friction
forces. With increasing shear, frictional strength increases and sliding stabilizes. The motion of
the spherical granules becomes more stable when the slip at contacts accumulates over the time.

The effect of rotational speed on the vertical displacement is shown in Figure 9.5 along
with the curve-fitted results. By increasing the speed of the top disk, the collision rate of the
granules is enhanced and more momentum is passed on to the lower disk pushing it gradually
downward, resulting in an increase in the displacement. The higher the speed, the greater the
collision rate until it reaches a value where the agitation of the granules overcome completely the
applied normal load and the lift between the top and bottom disks occurs.

The friction coefficient and displacement trends can be explained as follows: rolling is to
some extent restrained in larger size granules, and thus translation of such granules must be
contained by sliding and dilation. The friction level of spherical granules increases as granules
follow an increase in their spatial arrangement by increasing the speed. The increase in the

momentum transfer due to the spatial arrangement translates to an increase in displacement
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between the granules. In other words, at low speed the layers of the spherical steel granules must
dilate against the applied normal load to accommodate the shearing force. By increasing the
speed, the proportion of rolling to sliding decreases leading to higher friction and larger

displacement.

9.3.1.2 Effect of the Load

Sliding friction increases with increasing the applied load as shown in Figure 9.6. The
friction levels that we report for spherical material approach the levels often observed in
experiments and numerical simulations where idealized circular granules are modeled. These
results agree qualitatively with several published papers (Yu et al. [23], Yu and Tichy [24],
Hayakawa [45], Sawyer and Tichy [23], Frye and Marone [46], Mair et al. [47], lordanoff et al.
[34], Fillot et al. [38]).

Figure 9.7 presents the result of the displacement (lift) plotted as a function of load. At a
given speed, the larger the applied load the lesser the displacement (lift) produced by the
granules to push the lower disk downward due to the increase in the packing of the granules
within the gap. The results of experiments provide the first quantifiable measure of the lift,
providing clear evidence that granular material is capable of producing lift force when sheared

between two parallel disks.

9.3.2 Series B: Rough Sliding Surface and Smooth Stationary Disk

In order to study the behavior of the granular material and the effect of the surface
roughness on the friction coefficient and the displacement, several patterns of roughness need to
be investigated. Previous results of “Series A” as shown in Figure 9.4 to Figure 9.7 presented the
case when both disks were rough. Figure 9.8 and Figure 9.9 represent the case were the sliding
surface is rough while the stationary disk is smooth and Figure 9.10 and Figure 9.11 represent
the case where the sliding surface is smooth while the stationary disk is rough.

In Figure 9.8, when the moving disk is rough and the stationary disk is smooth, a slight
decrease in the friction coefficient was noticed compared to the case when both disks were rough
due to the fact that some of the layers in contact with the smooth surface do not experience
similar shear forces like the other layers. This reduces the sliding and results in a slight reduction

in the friction coefficient. Similarly when the stationary disk is smooth, the collision rate of the
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granules is enhanced and the momentum is passed on to the lower disk gradually pushing it apart
from the upper disk to create the lift as shown in Figure 9.9. Such a trend is similar to the case
where both disks are rough (Series A), except that some variations in the displacement
measurements are experienced especially for the two smallest loads (5.8 and 6.5 kPa). The
smooth surface causes disrupted collisional rate where granules do not experience similar shear

forces at low loads.

9.3.3 Series C: Smooth Sliding Surface and Rough Stationary Disk

Slip motion between the granules in contacts is the key factor that causes dynamical
rearrangements and changes in the friction forces. When the granular coefficient of friction is
large, the slip velocity at the boundary decreases and the viscous dissipation in the interior of the
gap increases as reported by Zhou and Khonsari [30]. This increase in the viscous dissipation
causes an increase in the slip motion between the granules in contacts. Therefore, there is more
energy generated in the interior of the flow than there is at the boundaries which causes the
granular dynamical rearrangements. When the roughness factor is large, the slip velocity at the
boundaries is smaller and thus more energy is transferred to the flow which also causes the
granular dynamical rearrangements.

Figure 9.10 shows the effect of the rotational speed and applied load on the friction
coefficient. When the sliding disk is smooth, slip occurs between the sliding disk and the
adjacent layer of granules which results in a decrease in the shear force and in turn a decrease in
the frictional strength. At low speed, the smooth sliding disk starts to drag gradually some of the
adjacent granules causing a slight increase in the friction coefficient. By increasing the speed, the
smooth sliding disk loses its ability to drag the granules which leads to weakening the shear
force, and in turn, reducing the friction. On the other hand, Figure 9.11 demonstrates the effect of
the rotational speed and applied load on the displacement. At low speed, small collision rate is
produced and some momentum is passed on to the lower disk, resulting in a very small
displacement. But once the speed increases and the slip between the sliding surface and the
adjacent layer increases, the shear force will decay and the momentum is no longer capable to
separate the disks.

Figure 9.6 to Figure 9.11 illustrate the effect of the surface roughness on the friction

coefficient and the displacement. Three different roughness series were used: In series “A”, both

71



0.50

2 045 ¢

o) )

'S x k kX X

2 040 ***‘:;...'.

2 035 |- *sgete =

S v $e8 gm®

o * o .l

_20.30— PN ..--I ..

k5 *omm o o ® o ® 58 KPa

Z 025 o % oo B 6.5 KPa
020_"" *7.8KPa
' m® ®8.5KPa
015 @ *9.2 KPa
0.10 | | | | | | | |

0 100 200 300 400 500 600 700 800 900
Speed (rpm)

Figure 9.8 : Effect of the Normal Load on the Friction Coefficient
(Series B: Rough Sliding Surface and Smooth Stationary Disk)

~ o.llll

g on ®  x

E o0k e $

= o n PY *

2 N aln >

£ 15 ° o8 =

S 0'0§0§***

S ® d *

= 10 8§ x % ® 5.8 KPa

2 2! 6.5 KPa
0.5~ 8 ¢ 7.8 KPa

$ ® 8.5 KPa

0.0 " o *9.2 KPa
05 l l l l l l l l

0 100 200 300 400 500 600 700 800 900
Speed (rpm)

Figure 9.9 : Effect of the Normal Load on the Displacement
(Series B: Rough Sliding Surface and Smooth Stationary Disk)

72




Friction Coefficient

0.50
B 6.5 KPa

0.40 ¢ 7.8 KPa

B ® 8.5 KPa
0.35 * 9.2 KPa
0.30
0.25
0.20 |- ‘==="::O‘::3"'

(]

015-9% 0."0.=|=.
0.10 l l l l l l l ®

0 100 200 300 400 500 600 700 800 900

Speed (rpm)

Figure 9.10 : Effect of the Normal Load on the Friction Coefficient
(Series C: Smooth Sliding Surface and Rough Stationary Disk)

Displacement (mm)

>
o

o
W

._.
o)
I

._.
o
I

e
)

S
o

® 5.8 KPa

M 6.5 KPa
¢ 7.8 KPa

® 3.5 KPa
* 9.2 KPa

=
(V)]

0

100 200 300 400 500 600 700 800 900
Speed (rpm)

Figure 9.11 : Effect of the Normal Load on the Displacement
(Series C: Smooth Sliding Surface and Rough Stationary Disk)

73




sliding and stationary disks were rough, in series “B”, the sliding disk was rough and the
stationary was smooth, and in series “C”, the sliding disk was smooth whereas the stationary disk
was rough. By looking to all three series, one can easily conclude the importance of having the
sliding disk rough since series “C” failed to produce lift. The roughness effect on the friction
coefficient and displacement in series “A” and “B” is very similar except some disturbed
collisions in the later case. It is expected that series “A” were both surfaces are rough will create

more lift than series “B” due to the continuous shearing effect while increasing the speed.

9.3.4 Series D: Rough Indents Sliding Surface and Smooth Stationary Disk

In the previous series “A, B, and C”, the surface roughnesses were manufactured by
protrusions of the steel granules to the disk surfaces, whereas in this series “D”, the roughness
was manufactured by indentations on the surface. A computer numerical control “CNC” machine
was used to provide the indentations (surface roughness) for the sliding disk by drilling a 1.6 mm
(sixteenth of an inch) holes on the surface of the disk as shown in Figure 9.12. This method is
not typical since all surfaces are usually roughened by gluing granules on top of the surface.
Experiments were conducted using the same granular material (stainless steel balls) to monitor

the effect of the roughness method on the granular behavior.

Figure 9.12 : Upper Disk Roughness Using CNC Machine

The layer of granules facing the upper disk was protruded partially from the holes of the
disk providing the roughness for the rest of the layers. The results shown in Figure 9.13 and
Figure 9.14 provide evidence that the behavior of the granular material did not change. Four
different loads were exploited and similar trends were obtained for the friction coefficient and

the displacement comparing to “Series B” in Figure 9.8 and Figure 9.9 (similar configuration).
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One can conclude that the order of magnitude was reduced by half using this method which

proves it was not effective to produce greater displacement (lift).

9.4 Theoretical Analysis

The theory presented in this chapter is based on the hypothesis of binary collision (kinetic
theory). Following the work of Johnson and Jackson [15] and utilizing the constitutive equations
developed by Lun et al. [8], the dimensionless governing equations where the conservation of
momentum is directly coupled with the pseudo energy equation along with the boundary
conditions [equations (8-4) to (8-11)] are presented in this chapter as derived and summarized in
the Chapter 8 (Johnson and Jackson [15], Lun et al. [8], McKeague and Khonsari [26], Zhou and
Khonsari [30], Jang and Khonsari [40]). The schematic model of the granular lubricated system

is shown in Figure 8.1.

9.5 Theoretical Results

Figure 9.15 shows the velocity, pseudo temperature, and solid fraction distribution for

stainless steel granular material. The granule has a diameter of 3 mm and a density of

p, =71850kg/ m’ . The bottom disk is stationary, the velocity of the top disk is U = 3m/sec, and

the thickness of the gap is equivalent to 7 — 9 granular diameters. The normal load used is 8.5
kPa, and the surface roughness of both moving and stationary disks is chosen to be

@, = ¢, =0.95 (very rough). The coefficient of restitution between the granules is e, = 0.9, and

between the wall and the granules is e,, = 0.8.

For a liquid lubricated system, the assumption of no slip velocity at the boundaries
generally holds. However, when granular material is used, the theory deemed a slip velocity at
both boundaries. There are two energy sources which arise in the formulation of the granular
temperature. One comes from the slip velocity at the boundary and the other is the viscous
dissipation in the interior of the flow. Granular slippage is one of the important characteristics of
granular lubrication. During shearing, it provides energy from the boundaries into the granules
contained within the gap. When e, is large, the slip velocity at the boundary decreases and the

viscous dissipation in the interior flow increases. Therefore, there is more energy generated in
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the interior flow than at the boundaries by the slip velocity mechanism. Hence, the boundaries

receive more heat from the interior flow. For more details, see Zhou and Khonsari [30].
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The solid fraction trend is directly related to the granular temperature. When there is
more pseudo energy generated in the interior of the flow, granules surrounding the interior of the
flow have much greater fluctuation velocity than those near the boundaries. Hence, the granular
distribution becomes less dense in the interior of the flow and much more granules accumulate at
the boundaries. According to the above analysis with large e, the solid volume fraction near the
boundaries is larger than that at the center of the channel. Under this condition of low shear
stress and high normal stress, it is clear that granular materials are likely to conglomerate at the
boundaries. The results are in good agreement to those obtained by Zhou and Khonsari [30]
which is based on Johnson and Jackson’s formulation, and McKeague and Khonsari [26] based

on Haff’s theory.

9.6 Comparison of Theory and Experiment

The analysis presented in this section is used for comparison purposes with experimental
results. The overall comparison is shown in Figure 9.16 to Figure 9.20. Shear stresses are

compared as a function of the normal stress and the nominal shear rate as well as normal stress as
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a function with the shear rate. The maximum volume fraction was approximated to be 0.6
knowing the weight of the granules, the particle density, the shearing area and the gap height.
The coefficient of restitution between the granules was chosen to be 0.9 based on several
researchers (Kudrolli ef al. [48]) where they conducted experiments to calculate the coefficient
of restitution. They used 3.2 mm diameter stainless steel granules rolling on a Delrin surface that
was machined and polished to a uniformity of 0.001 cm, and found the coefficient of restitution
for the steel granules to be 0.93 with 2% variation. Since the best experimental results for the
purpose of comparison with the theory were obtained from the case when both disks were rough,
the roughness factor used in the simulations was set to be 0.95 for both disks (i.e. very rough
surfaces).The mass flow rate was calculated from the experiments shear cell dimensions using
the equation below as a function of speed and specified in the simulations putting into

consideration the width factor considering the infinitely wide approximation.
. H7, Hr,
m= jjpu.dr.dy = ijp vu.dr.dy
0r 0r

Figure 9.16 plots the friction coefficient as a function of the rotational speed of the
moving disk. The simulation data show uniform values for the friction coefficient, while the
experimental data showed a slight increase by increasing the speed until it levels off over a
period of time. The reason for this trend is likely due to change of the granule rolling and sliding
proportions as explained in Figure 9.4. Slip motion is another reason where the spherical
granules reach stability when the slip at contacts gets accumulated over the time. In simulations
there are no gradual changes but the values of the friction coefficient were within the same
range. The trends of the theoretical simulation results are in quantitative agreement with the
experimental results. From the series of experiments conducted, investigations showed
successfully the lift phenomenon for two parallel plate’s configuration.

Additionally, Figure 9.17 illustrates the increase in the gap height by increasing the speed
at any load measured. The trends showed similarities at low speed. By increasing the speed, a
slight deviation was observed between theoretical simulation results and experimental results.
The main reason for this trend is due to the slip velocity. At low speed, the effect of the slip
velocity is small. At higher speeds, granules loose more energy through the experimental setup
more than the simulation due to the infinitely wide approximation of the latter. The energy lost

directly affects the granules collision which in turn reduces slightly the increase in gap height.
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The effect of the load on the gap height increase (dilation) was investigated and
demonstrated in Figure 9.18 relating the theory to the experiments. Load varied from 6.5 to 9.2
kPa and the speed ranged from 50 to 800 rpm. It was shown that increasing the load applied
decreases the ability of granules to expand which results a decrease in their dilation. These
results showed that the trends between theory and experiment are similar and the increase in
height was within the same order of magnitude.

Figure 9.19 shows the variations of the shear stress and the normal stress with the shear
rate. The shear stress increases linearly by increasing the shear rate. Similarly, the normal stress
shows direct dependence on the shear rate as well. It is clear that both the shear stress and normal
stress depend linearly on the shear rate. Same trend prevails with Figure 9.20 where the shear
stress shows the dependence on the normal stress. Shear stress also depends on the granules size
and the surface roughness. These trends are similar to those presented by Craig et al. [19, 49] and

Yu and Tichy [24].
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Figure 9.18 : Effect of the Normal Load on the Variation in the Gap Dilation
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9.7 Conclusions

Experiments were conducted using 3-mm stainless steel balls to demonstrate the lift
phenomenon observed in an annular shear cell apparatus. The effects of the friction coefficient
and the surface roughness have been expressed as a function of the rotational speed and the
applied load. Simulations of the kinetic theory for the granular material were performed and
compared with the experimental results. The agreement between the theory and the experiment is
illustrated. Furthermore, no adjustments for the friction coefficients or displacements were made
to obtain a better fit.

The following conclusions can be drawn from the experimental and theoretical results:

= The frictional force that can be generated within a sheared granular material is critical
to understanding its strength but has significant applications in geophysics and
technology.

= When shear stress is applied, sliding starts gradually at a frictional force smaller than
the frictional force generated during steady sliding, but by increasing the shear, the
frictional strength increases and sliding stabilizes.

= At low speed spherical granules accommodate strain preferentially by rolling, then by
increasing the speed, the proportion of rolling to sliding decreases leading to higher
friction.

» By increasing the speed of the rotating disk, the collision rate of the granules is
enhanced and more momentum is passed on to the lower disk to ensure complete lift
between the top and bottom surfaces and then reach a steady state.

= In the kinetic regime, sliding friction increases with increasing the applied load.

= The presented set of experiments provides an evidence of the phenomenon of the lift
force between two parallel plates lubricated with granular material.

= The larger the applied load the lesser the lift produced due to the increase of
compactness of the granules within the gap.

= Importance of the surface roughness is demonstrated especially the moving surface to
help drag the granules and initiate shear force.

= When the moving surface was rough and the stationary disk is smooth, similar trends

were obtained from the case when both surfaces were rough. A slight decrease in the
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friction coefficient is noticed. It is due to the fact that the layer in contact with the
smooth surface does not experience similar shear forces.
= When the moving disk is smooth, it resulted a failure of producing enough shear force

and no longer were the granules capable of creating adequate lift to separate the disks.
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CHAPTER 10. EXPERIMENTAL INVESTIGATION ON
THE STICK-SLIP PHENOMENON IN GRANULAR
COLLISION LUBRICATION

10.1 Introduction

While the archival literature contains a great deal of research on granular lubrication, a
number of important issues remain largely unexplored. Of particular interest in this chapter is to
examine the stick-slip phenomenon associated with granular materials within the context of
lubrication. In what follows, we begin by providing a pertinent background for the stick-slip
research.

Stick-slip behavior in granular materials is of vital importance in understanding the
dynamics of solid on solid friction [50, 51], avalanches [52], and earthquake dynamics [53]. The
mechanism of the stick-slip behavior of the granular layer was also addressed by Hayakawa [45]
who introduced a global order parameter (OP) which characterized the phase state of the layer.
Similar stick-slip oscillations have been observed by Albert ef al. [54] in cases when an object is
moving through granular medium.

The applied external stress results in the development of an internal structure resisting the
stress called jammed state. In a jammed state, forces do not propagate uniformly through the
granular sample but are localized along directional force chains. They found that successive
formation and collapse of jammed states resulted in fluctuations that are typically observed in
systems that exhibit stick-slip. These fluctuations were periodic when grain size was small, but
became steeped (i.e., non-periodic) when larger grains were used.

Granular flows exhibit a variety of phenomena that have both fluid and solid aspects [55,
56] and have captured the attention of scientists from different disciplines. Given the recent
interest in the tribology of powders, it is surprising that there have been limited studies relevant
to investigation of the stick-slip phenomenon in granular lubrication. In this chapter, we focus
our attention on the influence of the stick-slip of the granular material sheared between two
parallel disks. A series of experiments were carried out using ceramic granules to investigate the

influence of the rotational speed on the displacement (lift) and the friction coefficient.

84



10.2 Background

In the mid 1950’s, Rabinowicz’s research on the origin of wear led him to lay the
foundation of stick-slip in materials [57]. Burridge & Knopoff [58] established one of the first
models linking stick-slip with faulting. Byerlee & Brace [59] and Byerlee [60] were the first to
perform laboratory experiments that showed occurrence of stick-slip in geological materials like
granite materials. They proposed that stick-slip instabilities in laboratory friction experiments
might be similar to earthquakes. Additionally, they found that stick-slip was periodic in time but
their experiment demonstrated a speed weakening, which could not be explained by a simple
variation of the friction coefficient.

Following these findings, Dieterich [61] and Ruina [62] proposed a new theory which
uses an internal state parameter, called contact ageing, and a velocity-dependent friction law.
These state parameter laws have been reviewed by Persson [63] in a review of friction that
includes consideration of microscopic physics, and have been also reviewed and confirmed in a
book by Scholz [64]. According to Persson [63] and Meyer et al. [65], understanding the nature
of sliding friction is essential for nearly all practical problems with engineering applications. For
example, low friction without disturbance (stick-slip) is a necessary feature for the successful
operation in applications like information storage and micro-electro mechanical systems.

In the late 1980’s and early 1990’s, it became necessary to develop a better understanding
of the friction acting between the slipping surfaces in order to design reliable machinery. The
experimental results presented by several researchers [66-68] have provided insight into the
nature of friction and lubrication involving slip. Using a surface force apparatus (SFA), they
observed that the granular films could support a finite shear stress and exhibit either stick-slip
dynamics or steady sliding depending on a variety of experimental parameters including the
spring stiffness (k) and the pulling speed (7).

By mid 1990’s, the physicists tried to explain the stick-slip phenomenon from a different
angle. Heslot ef al. [69] and Nasuno ef al. [70] exposed granular media to shearing and observed
jerks during the movement. They introduced dilation as a new variable that played a major role
on the friction strengthening, where the static friction coefficient increases with the time of static
contact but only in the presence of an imposed shear stress. The stick-slip observed in these
experiments was periodic similar to what was observed by Byerlee [60]. They found that the

stick-slip mechanism was correlated with Hopf bifurcation [71, 72], and is now well accepted by
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geo-physicists. Recent studies of Gayvallet & Geminard [73] showed that stick-slip is associated
with the dilation effect and attributed the ageing effect (stick-slip state) to corrosion and to
surface chemical reaction.

To explore the nature of the transitions between stick-slip and steady sliding, Batista &
Carlson [71] investigated the bifurcations from steady sliding to stick-slip in models of boundary
lubrication type. The models used are based on the rate and state approach that characterizes the
behavior of dry interfaces [62]. They found that for large values of (k) and (V), both models
exhibited only steady sliding solutions, characterized by constant spring force. Conversely, when
(k) and (V) are decreased adequately, there is a transition to a series of stick-slip pulses. Batista
& Carlson [71] concluded that the transition from steady sliding to stick-slip is typically irregular
and sometimes hysteretic. When hysteresis is observed, it is associated with a sub-critical Hopt-
bifurcation. In either case, they observed a sudden and discontinuous start in the amplitude of
oscillations at the bifurcation point.

Radjai et al. [74] found that axial compression of granular matter exhibit smooth
mechanical responses, independent of the deformation rate. However, Nasuno et al. [70] showed
that there are situations where the response was not smooth but exhibited stick-slip behavior.
They found that stick-slip was not periodic and did not depend on the strain rate history.
Furthermore, Nasuno et al. [75] studied the motion of a heavy plate pushed above a thin granular
layer with a soft spring with a constant velocity of the pulling point. A general trend is that the
samples with stick-slip exhibited both smoothening and weakening when the rate of deformation
is increased. They concluded that at large pulling speed, the plate moves with a constant velocity,
whereas at smaller speeds the motion of the plate is irregular: long periods of sticks are followed
by short slip events. Research by Howell et al. [76] revealed that for a given rate of deformation,
the larger the sample, the less scattered the instabilities. For dry granular material, it was
concluded that stick-slip behavior can be either periodic or non-periodic.

Adjémian & Evesque [77] conducted experiments to study the stick-slip behavior with
glass beads and Hostun sand. They found that the mechanics of the deformation was stable and
concluded that the strain rate plays a vital role in the amplitudes of the stick-slip. When the strain
rate is very fast, the stick-slip does not have enough time to develop completely. Furthermore,
they concluded that stick-slip disappears in relatively large specimens (i.e., large H/D, where H

is the gap height and D is the granular diameter). Alshibli & Roussel [78] pointed out the
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importance of understanding the behavior of the stick-slip phenomenon for geological processes.
They performed a series of axisymmetric triaxial experiments on glass beads to investigate the
factors influencing stick-slip behavior. They observed continuous volume increase (dilation)
even at relatively high strains resulting from the uniform shape of the spherical particles used.
They found also that the load oscillations that appeared in small size beads are due to the stick-

slip phenomenon.

10.3 Experiment
10.3.1 The Apparatus

The test rig used is an automated tribometer controlled and monitored by a computer as
illustrated in Figure 10.1. The experimental apparatus presented in this chapter has been
described in details in Chapter 9 and by Elkholy & Khonsari [79] where 3-mm stainless steel
balls were used. A brief description of the test rig is as follows. The apparatus is equipped with a
computerized data acquisition system, which records real-time values of friction coefficient,
wear/displacement, and speed. The load on the testing component is applied from the loading
mechanism located in the bottom section of the apparatus. This tribometer measures friction and
displacement to 0.635 um (25 uin) giving an accurate assessment of displacement and friction as
a function of time. To measure the coefficient of friction, the top vertical shaft is rotating but
restricted from the motion in the vertical direction while the bottom holder is restrained from
rotation also senses the frictional torque applied by the granular medium, using a force load cell.
The vertical displacement and the friction coefficient values are recorded every 20 seconds.

The shear cell as shown in Figure 10.2 consists of two concentric steel disks. The upper
disk is mounted on a rotating vertical shaft but restricted from the motion in the vertical
direction. The bottom disk is restricted from rotation, but can move in the vertical direction. The
top disk has an annular protrusion that fits into the channel of the bottom disk. This annular
protrusion does not contact the side walls of the bottom disk channel. The clearance between
these two surfaces is ~100 microns, to prevent granular material jamming or overflow. The
bottom disk is free to move vertically, so as to allow for the expansion of the sheared granular
material. The bottom disk is attached to a vertical shaft with a sensor on its other end to measure
the vertical displacement and friction coefficient as a function of time and rotational speed of the

top disk.
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10.3.2 Experimental Procedures

The gap in the annular shear cell is divided into three regions. The first region is the layer
of granules adjacent to the upper moving disk; the second region is the layer of locked granules
adjacent to the stationary lower disk, and an intermediate layer between those two regions
(interior flow). A total of 12 experiments were conducted to investigate the stick-slip
phenomenon in a parallel plate configuration using ceramic granular material with six different
applied loads. A summary of the cell dimensions and the granular material properties is shown in
Table 10.1.

Surface roughness plays an important role on the performance of granular materials.
Upon coming into contact with a smooth surface, the granule-wall collisions are very small and
granule slip at the wall is relatively large. In the contrast, when interacting with rough surfaces,
the granules slippage at the wall is small and granule-wall collisions will provide a major
transport of lateral momentum to the wall. To provide this roughness in the experiments, the disk
surfaces are constructed by attaching a series of adjacent granules along the length of each
surface to help drive the granules of the interior flow.

Experiments are conducted where both the stationary and sliding disks are rough. The
following procedure is used in creating the desired surface roughness. Stainless steel wire mesh
is used with the proper mesh size. The wire mesh is first glued to the surface, and then some
ceramic granules enough to cover this surface are glued to it as shown in Figure 10.3 using high-
impact high-strength epoxy. The wire mesh along with the high-strength epoxy provided a very
high shear strength and very high torque resistance to the granules glued to it.

Figure 10.3 : Granular Material & Surface Roughness
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Table 10.1 : Shear Cell Dimensions and Granular Material Properties

Channel Width 31.4 mm
Channel Depth 45.8 mm
Mean Radius (Rmean) 34.7 mm
Shearing Area (AShear = 7[(7/'02 -7 )) 6846 mm’
Mean Length (L, =27R,,) 218.24 mm
Gap Height (H) 9.8 —12.6 mm

Granular Material Name

Zirconium Silicate (QBZ-58A)

Composition ZrO2 — 58 % + Si02 - 37 %

Hardness 800 Vickers

Sphere Count 95 %
Average Crush Strength > 133,000 PSI
Granule Diameter (d) 1.4 mm

H/d 7-9

Particle Density 4000 kg/m’

Rotational Speed 5—-950 rpm

Linear Speed (U = 22R,, N / 60)

mean

0.02 — 3.5 m/sec
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Experiments are divided into two series in order to detect the region where stick-slip took
place. They are: relatively high speed tests where the speed ranged from 150 to 950 rpm at an
increment of 50 rpm, and low speed tests from 5 to 100 rpm with a 5 rpm increment. It is
necessary to have a small increment in the low-speed tests since stick-slip typically occurs at low
speed. The testing procedure is as follows. First, a specified mass of granules is placed in the
lower channel of the shear cell. The upper disk is then lowered until it just touches the granules,
thereby packing them in place. A specified normal load is then applied to the granules through
the bottom surface causing them to be compressed. Corresponding counter weight is specified to
compensate the weight of the bottom disk and the specified mass of granules. The top disk is
then given the rotational motion causing the granules to move and exchange places at low
speeds. At higher speeds the granules start to collide and tend to push the bottom disk downward,
creating a lift.

With a specified normal load, the drive motor is set to rotate the upper disk slowly for a
few seconds first to make sure that the granules are well distributed and initially compacted in
the channel. The motor is then stopped to adjust the positioning of the upper disk if needed. To
start each experiment, the driving motor is set to rotate the upper disk again by increasing the
rotational speed from 5 to 100 rpm in a step-wise fashion every 2 minutes ranging an increment
of 5 rpm for the slow-speed tests and an increment of 50 rpm for the relatively high-speed range
of 150 to 950 rpm. Data for the vertical displacement and the friction coefficient are recorded to
analyze the fluctuations for every load during each speed range. To investigate the effect of the

load on the stick-slip phenomenon, the applied load is varied from 5.8 to 9.2 kPa.

10.4 Experimental Results

Generally the stick-slip phenomenon occurs in the granular material when the granules
begin to exhibit both rolling and sliding, and its behavior is usually detected during shearing. The
shear resistance between two granules is the force that must be applied to cause a relative sliding
and rotation between the granules. The experimental work discussed was performed by shearing
uniform spherical ceramic granules with known size (1.4 mm). Different sources contribute to
the frictional resistance which is represented by the coefficient of friction and in turn contribute

to the friction force, such as rolling and sliding of the granular material, granule
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interlocking/resistance to dilatancy. Dense granular materials have exhibit an increase in volume

(dilatancy) when they are sheared.

10.4.1 Friction Pattern

In the experiments, the normal load applied is not necessarily uniform on each granule
because of the scattered arrangements of granules. Granular material form chains of granules to
support the applied load. When the chain becomes unstable, some granules will slide out of the
column causing the load to drop. This drop causes a sudden reduction in the stresses during
compression. The load then builds up again as new chains of columns form followed by a
collapse and so on. Each granule may be carrying a low-to-moderate stress, or it may be possible
that sets of highly localized granule chains (stress chains of aligned granules) where fewer
granules are involved but each experience much higher local contact stresses [76, 78]. Breaking
these stress chains results in redistributions of the granular packing.

Upon applying a shearing force, the stress chains tend to break and reform continuously,
thereby creating small fluctuations in the global stress of the granular material [74, 80]. This
phenomenon is also thought to be responsible for the granular material to dilate [81]. Sudden
releases (slip events) are observed during the deformation of the granular material, whereas
during sticking the granules are closely packed and have high shear resistance [78].

In order to investigate the effect of stick-slip phenomenon closely, it is important to focus
our attention the pertinent range of speed. Figure 10.4 demonstrates the effect of the rotational
speed and the normal load on the friction coefficient for the two ranges of speed (5 to 100 and
150 to 950 rpm). Cases A through F in all figures presented thereafter correspond to the variation
of normal load from 5.8 to 9.2 kPa. To effectively capture the behavior of the granular material,
six data point were recorded for each speed. The distinction between the stick-slip region and the
sliding region are shown. ]

The results show that at the low speed range (5 to 100 rpm) there exist large fluctuations
in the friction coefficient due to the continuous stick-slip events. At the higher range, a much
smoother behavior was experienced where sliding starts gradually at a frictional force smaller
than that generated during steady sliding (steady state friction). In this later case, slight

fluctuations were recorded at some locations of the speed, but they were followed by a smoother
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trend. Such behavior is due to the low strength of the granular jammed state at this higher speed

range [54].
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10.4.2 Identification of Stick-Slip

Let us now turn our attention to the low speed range (5 to 100 rpm) where the stick-slip
events took place. Figure 10.5 presents the effect of the rotational speed and the normal load on
the friction coefficient for this low speed range. Translation of the granular material must be
achieved by both sliding and dilation. Slip motion between the granules in contacts causes
dynamical rearrangements and fluctuation in the friction forces occurs. As the speed is increased,
the shearing resistance (friction level) of the spherical granules initially increases as granules
rearrange spatially. When shear strain is applied sliding starts gradually and while the stress
increases gradually, more and more contacts causes slip events.

With increasing shear strain, the frictional strength stabilizes and the magnitude of the
stick-slip spikes decreases. The motion of the spherical granules becomes more stable when the
slip at contacts accumulates over time and less stick-slip occurs. Noticeably small random
pattern of stick-slip was due to the relatively large grain size used in the experiments [77]. Also
shown in Figure 10.5 are a series of magnified snapshots where we have zoomed into several
speed values in order to investigate the stick-slip events more closely. All cases with six different
applied loads clearly revealed stick-slip events. Four different speed locations were chosen for
each load case. Each zoomed frame represents the variation of the friction coefficient at a
particular speed for two minutes of recorded data showing a stick-slip event.

The results presented in this chapter illustrating the occurrence stick-slip phenomenon in
granular lubrication are qualitatively in agreement with the results published by several
researchers. For example, Batista & Carlson [71] explored the nature of the transitions between
stick-slip and steady sliding in boundary lubrication. They observed a sudden and discontinuous
onset in the amplitude of oscillations at the bifurcation point as they increase the speed. Their
observations agreed with the results presented in Figure 10.4 where we show that the bifurcation
point from stick-slip to continuous sliding occurs by increasing the speed. Nasuno et al. [70]
showed that the dynamics of spherical granules is always irregular. Microscopic events for the
non-periodic (irregular) stick-slip motion at high stiffness and low driving velocity were also
demonstrated.

Their results showing the behavior of the granular material before and after a major slip
event agreed with our magnified snapshots presented in Figure 10.5. Johansen et al. [50] showed

that the stick-slip exists at small speed, whereas a damped harmonic motion (continuous sliding)
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at higher speed in a spring-block system as a function of the pulling velocity. The spring force

can be somewhat comparable to the friction coefficient in the case presented in this chapter.
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The behavior of the stick-slip is similar to the results presented in Figure 10.4 and Figure
10.5. Adjémian & Evesque [77] demonstrated the mechanical behavior of a macroscopic
ensemble of glass beads where they presented the evolution of the vertical overload as a function
of the sample strain. The strain behavior resemble to the friction behavior presented in Figure
10.4. Also they showed the effect of the velocity on the stick-slip which is similar to the results
found in Figure 10.4.

10.4.3 Displacement/Lift Behavior

The effect of the rotational speed and the normal load on vertical displacement is
depicted in Figure 10.6. The shear forces move the granules, causing an increase in the volume
(dilation) which in turn causes an increase in the displacement. Displacement was measured
using the linear variable differential transducer (LVDT) where it senses the relative displacement
of the bottom cup from the upper disk. When this relative displacement is positive, it means that
there is a separation that took place between the cup and the disk which in turn indicates a lift.

At low speed, layers of the spherical ceramic granules must dilate against the applied
normal load to accommodate the shearing force. By increasing the speed slightly, the proportion
of rolling to sliding decreases leading to larger displacement. At this low speed range, the
increase in the momentum transfer due to the granules spatial arrangement translates to an
increase in displacement between them but the stick-slip ceases to have any significant effect on
the displacement due to its small magnitudes.

Figure 10.7 presents the result of the displacement (lift) plotted as a function of the wide
range of speed for a better understanding for the effect of the normal load. The results indicated
that under the conditions tested at low speed range (5 — 100 rpm) the applied normal load had a
minimal influence on the displacement. On the other hand, at the higher speed range, the larger
the applied load the lesser the displacement (lift). In other words, when the applied load is
greater, the displacement —produced by the granules that push the lower disk downward— due
to the increase in the packing of the granules within the gap is reduced.

By increasing the normal load, the lift produced by the granules decreases since higher
normal load suppress dilatancy of the material. Also when the sliding speed is much higher (100
— 1000 rpm), the collision rate of the granules is enhanced and more momentum is passed on

from the rotating disk (top) to the stationary disk (bottom) pushing it gradually downward, thus
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increasing the separation between the two disks. The results of the experiments provide a

quantifiable measure and evidence that granular material can produce lift between two parallel

disks.
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Figure 10.7 : Effect of the Normal Load on the Vertical Displacement

10.5 Conclusions

Stick-slip is a complex phenomenon that depends on many parameters. Experiments were
conducted using 1.4-mm ceramic balls to study the stick-slip phenomenon in an annular shear
cell apparatus. The results reveal the occurrence of stick-slip within the context of granular
lubrication. Specifically, the effect of stick-slip on the friction and the change in the spatial
arrangement of granules in a granular shear cell are demonstrated.

The following conclusions of this experimental study can be summarized as follow:
= The experiments provide an evidence of the existence of the stick-slip phenomenon at
low speed and provide an evidence of formation of granular lift force between two
parallel disks.

= The higher the speed of the rotating disk, the greater the collision rate of the granules

and the higher the momentum which is passed on to the lower disk to bring about a
lift.

= The larger the applied load, the lesser the lift produced due to suppressing dilatancy

tendency.
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Stick-slip fluctuations are strongly influenced by the long range nature of the force
propagation in granular materials at low speed, and at higher speed the jamming
originates from a localized applied stress.

The velocity of the sliding surface influences the stick-slip spikes. At slow speed, the
surrounding grains are displaced causing dynamical rearrangements which result in
large fluctuations. By increasing the speed, the granular material no longer sticks to

the moving surface and instead we observe continuous sliding.
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CHAPTER 11. THE TRUE TEMPERATURE BETWEEN
TWO PARALLEL PLATES

11.1 Introduction

Heat transport through complex and often dynamic porous materials such as granular
materials is an essential requirement for modern technology such as high performance cryogenic
insulation, heterogeneous catalysts and catalytic reactors. The true temperature of a granular
material depends on its entropy, and is difficult to measure in the laboratory. It is important to
develop a theory that ties the true temperature to the grain mobility. Under certain conditions, the
behavior of individual granules is qualitatively similar to the motion of a gas molecule. However,
there is a significant difference between a fluidized granular material and a gas molecule. The
temperature of the gas, gives the magnitude of the velocity fluctuations (the so-called pseudo
temperature in granular material), while the true temperature of a granular material depends on
the balance between the source of energy, and the dissipation of energy due to inelastic
collisions.

The purpose of this chapter is to focus our attention on evaluating the granular material’s
true temperature considering the case where the flow of a granular material lubricant is sheared

between two infinitely wide parallel plates as shown in Figure 8.1.

11.2 Theory

The grains are treated as smooth frictionless spheres of identical size, and the plates are
assumed to be infinitely wide. The governing equations are derived, normalized and solved
numerically. A series of results are presented to show the distribution of the true temperature
across the gap, and to investigate the effect of the true temperature on the top and bottom
interfaces. The upper plate is stationary while the bottom plate undergoes a constant sliding
motion, U. It is assumed that the spin effect of the granules and the gravity force are neglected
due to the smallness of the thickness of the gap. The flow is considered to be steady, two-
dimensional, and fully developed. As shown in Figure 11.1, a Cartesian coordinate is set up by
letting x lie along the plate’s length, and y across the thickness of the flow.

The analysis of this problem requires consideration of the heat transfer within the gap,

heat conduction into the bounding plates, and heat convection into the surroundings. Therefore,
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the problem is divided into the granular domain as well as the heat transfer in the upper and

lower plates. In what follows the governing equations and the related boundary conditions are

presented.
F
ok i;face Stationary Plate
Inte{face ¢
Stider Plate e
TW

Figure 11.1 : True Temperature Regions

11.3 Governing Equations
11.3.1 Granular Flow

The governing equation for the conservation of energy (3-4) of the granular material is given by:

DWE)_ _yo-oivu
D

Following the work of Johnson and Jackson [15], it is assumed that the work done by the
frictional component of stress contributes only to the true thermal energy. Therefore, the energy
equation is separated into two equations (3-11), (3-12) given below. The energy equation of the

pseudo temperature is,

D\E,
(Dt ): ~Vdpr =0, VU -~y (11-1)
and the energy equation of the true temperature is,
%z—v.qh—af:VU+y (11-2)

whereD— is the material derivative; E, is the true thermal internal energy of single granule
¢

defined as £, =c,T;; ¢, is the specific heat of the granular material; g, represents the true heat

flux defined as g, =—k,VT,; k, denotes the heat conductivity of the granular material; T
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represents the true temperature of the granular material; o, represents the stress tensor caused
by enduring contact force between granules; o, : VU is the viscous dissipation done by the

component of frictional stress; and y is the rate of dissipation due to inelastic collisions between

p, L)
.

It is assumed that the flow is two-dimensional, fully developed, and steady state. Thus, the

granules defined from equation (6-3) as y =

energy equation of the true temperature is simplified as follows:
D
E(pcp T)=-V.(-k,VT,)+y (11-3)

Now, let us examine the orders of the conduction terms individually:

0 oT, 0 oT,
V(kaTR): a(kp a;j'i‘g{kp 8;]

The following order of magnitude analysis was performed to simplify the energy equation as
°(, )

tollow, S 85 T/ =(£)2<<1 hich that the t
ollow, = (k GTR] Tref/Hz I which means that the term

oy

2

> has a greater

Y

2
contribution to the granular material governing equation than

7 -
X

Practically, the thermal conductivity of the granular flow is a function of the solid volume
fraction. It is, therefore, necessary to obtain an effective thermal conductivity for treating the true
temperature in granular flow. For this purpose, the granular material is treated like a solid with
continuous pores of air.

There are mainly two phases present in the porous material: air which is a continuous

medium of conductivity k,, and granules (spheres, dispersed phase) with conductivity k,and a

solid volume fractionv. For materials packed in a random assembly of microspheres, the

effective thermal conductivity is essentially affected by the relation between the thermal

conductivities of the two phases (air and Titanium Dioxide, for example), the solid volume

fraction of the dispersed phase, and the thermal polarizability which is defined by Gonzo [82] as:
k

B= Ky K (11-4)
k, +2k,
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To estimate correlations for the effective thermal conductivity of granular materials,
Gonzo [82] classified three main groups of materials. Type (A): low-dense porous materials
(volume fraction of spheres up to 10%); Type (B): medium-dense materials with volume fraction
in the range 0.15-0.85; and Type (C): high-dense materials (volume fraction higher than 90%).
The Type (B) porous materials address the class of granular material used in this work. Gonzo
[82] demonstrated an improved form of Maxwell’s model [83] proposed by Chiew and Glandt
[84] in the early 1980’s for this type of granules and given by the following expression:

1+2pv+k, -3p8° b’
ko (0)=k,, 1_( s b (11-5)

The energy equation for evaluating the true temperature 7, =7, (u) can be then rewritten as:

D
E(pcp T)=V.(k;VT)+y

2 3/2
p vCu 8TR(U) — keﬂ.(l))é TRz(U) + ake.ff(u) aTR(U) + Py fS(U)T (11-6)
Por ox oy oy oy d
Convection Conduction Dissipation

where u represents the component of the bulk velocity, p,is the density of the individual
granule, v represents the solid volume fraction, and &, (0) is the effective thermal conductivity.

In order to solve the above heat equation, the granular flow governing equations for the velocity,

pseudo temperature, and solid volume fraction must be solved.

11.3.2 Bottom Plate

The general form of the heat equation with a moving surface is:

pBottcBott I_/:(V TBott ) = k VZT

Bott Bott

(11-7)
where p, , 1s the density of the bottom plate material; cp,, 1s the specific heat of the bottom

plate; Vv represents the velocity vector and since the plate move only with a constant velocity U
in x-direction, then we can rewrite:

orT, 0°T,, O°T,
c Uﬂ — k Bott + Bott 11-8
pBott Bott ax Bott( axz ayé(m J ( )
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The final form of the governing equation for the true temperature of the bottom plate is:

oT, o°T, o°T,
U (,;;:tt = aBott( aszon + 8y23 mt} (1 1'9)
Bott

where (x,y,,,) represents the Cartesian coordinate for the bottom plate, andx,,, represents the

thermal diffusivity of the bottom plate defined as:
k

Bott

p Bott cBott

aBott =

11.3.3 Top Plate

The general form of the heat equation with constant thermal conductivity is:

o’y

1 0T,

o°T,
o (11-10)
Qy,, Ot Ox OViop

where (x,y;,, ) represents the Cartesian coordinate for the top stationary plate, p;,, the density
of the top plate material, cr,, represents the specific heat of the top plate, and «,,, represents the

thermal diffusivity of the top plate defined as:
k

Top

aT op =
p Top cTop

For steady state condition and no heat generation, the Laplacian equation will be simplified as

follows,
o’T, T,
o T2 =0 (11-11)
Ox 8yTop

11.4 Boundary Conditions

Figure 11.2 illustrates the boundary conditions for the granular flow, the bottom plate, and the

top plate respectively.

11.4.1 Granular Flow

In the x-direction the inlet temperature of the granular material may be taken to as the granular

supply temperature. In the y-direction, the heat generated transfers into the boundary surfaces
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only by conduction. At the interface between the granules and the upper and lower plates (disks),
the heat flux is continuous and the temperatures are equal.
At x = 0 (Inlet):

T,(0.y) =T, (11-12)

Aty = 0 (Matching boundary condition at the bottom Interface):

keff (%J = kBott (%J a‘nd TR| =0 = TBott —t (1 1'13)
R 8)) y=0 ayB(m Y son = 5on y= Y Bott =L Bott
Aty = H (Matching boundary condition at the top interface):
oT orT,,
y=H Top Y1 =0

where H represents the film thickness, T}, is the inlet temperature, kg, is the heat conductivity of

the bottom plate, 7, , is the true temperature of the bottom plate, ¢, is the thickness of the

ott Bott

bottom plate, kr,, is the heat conductivity of the top plate, and T7,, is the true temperature of the

top plate.
Convection
Yrap " | 1 .
Fnvectional Stationary Plate L‘Top‘ ==t Convection
R I Top Interf: 1
Conduction P ace
jnm :To 4 Granular Flow H
Condyction
L »x Bottom Interface «
yi 1t : U
- ¢
Sliding Plate | ;—*ms e
L —»7x "
Convection
Figure 11.2 : Boundary Conditions
11.4.2 Bottom Plate

This plate is the sliding plate and due the symmetric condition at the inlet and outlet, the

temperature at the inlet and outlet is assumed to be adiabatic.
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At x = 0 (Inlet):

(—OTB””] =0 (11-15)
ox ).
Atx = L (Outlet):
(aTB"”j =0 (11-16)
ox ).,

At ypou = tpon (Matching boundary condition at the bottom Interface):

kBO”(aTBottj :keﬁ(aTRj and TBott = = R| =0 (11-17)
ayB()tt yBul[ :tEU[/ ” ay y:0 } . o g
At ¥, = 0 (Convection boundary condition):
oT,
kBott( a = ] Butt( Bott (x 0) T ) (1 1‘ 1 8)
yBott Y gou =0

where 4, , represents the convection heat transfer coefficient at the interface between the bottom

Bott

plate and the ambient.

11.4.3 Top Plate

The boundary conditions for the top plate are specified considering the continuity of the heat flux
at the granular-solid interface (yr,,= 0) and at the solid-ambient boundaries (x = 0, x = L, and
Yrop= =1r op)

In x-direction at both inlet and outlet, the plate is subjected to convection boundary condition

At x = 0 (Inlet):

or,
kTOp( a;Pj Top( Top(O yTop) T) (11-19)
x=0

where /i, 1s the convection heat transfer coefficient at the interface between the top plate and the

ambient.

Atx = L (Outlet):

oT,,
_kTO,{ a;pj = TO,,(TO,,(L Vi) — T, ) (11-20)
x=L
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At yr,p= 0 (Matching boundary condition at the top interface):

0Ty, oT
krop(_ Top ] :keﬁ{_Rj and T,,| » =T, o (11-21)
Ebjfbp Vrop=0 ézV y=H YVrop =
At Y7, = trop (Convection boundary condition):
oT;,
_anp{a Tp} :thp(TTap(x’tTop)_Too> (11-22)
yTOP Ytop =trop

where;,, is thickness of the top plate

11.5 Dimensionless Form

In what follows, we shall make use of the following dimensionless parameters:

2
X * y * yTop * VBou * u * ppU * TR * T'OO
) = 5 o ’ ot — o U :_aA = 9T :_9Too:_’
L T T e e U "~ " *TT T

Top

* Totz * TTo * P T * keﬂ
TBott: ;i;n 4 TTop: ana T = ]1;] 5 keﬁ":E (11-23)

Substituting in the governing equations and boundary conditions with the above parameters

yields to the non-dimensional equations below:

11.5.1 Granular Flow

11.5.1.1 Dimensionless Governing Equation

* * * 3/2
Pp CpU];n Uu* aTR — ];nkeﬁ' 82TR +£akeff 6TR + ppN T
L o' H' g H & o pld

%3/2

Js

e kL Ty K, L Ok oy o, . NL__N"

* eff %2 + * * f
o p,c, UH> " "  p, c,UH* & & p,c,T,d Up >
* : * * T * ak* ¥ . *
o' Do (g, OTe ()P O [ A\ e (11-24)
ox 7 0oy oy Oy 4
* % % * pl/zU a L k * NL

where 4, , A,, A, are constants defined as 4, =”—1/2, A=, a,=—"t—, 4j=——
N uH®* " p,c, p,c,T,d
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11.5.1.2 Dimensionless Boundary Conditions
Atx" =0 (Inlet):
T, (0,y") =1

At y" =0 (Bottom interface):

oT,
6y*

ky, H

“Bott™ "

where 4 = o
p

Bott

At y" =1(Top interface):

[GT;] ~
),

where A4; = Ky
PtTOP
11.5.2 Bottom Plate

11.5.2.1 Dimensionless Governing Equation

0 o°T, 0
gBott _ (A9\ xBott ( 10) 8yTBott

A* _ LaBott
10— 2
t, U

Bott

Boz‘t

where 4, =

11.5.2.2 Dimensionless Boundary Conditions

aT;{)tl — O
ox” 2o

aT;OIZ _ 0
ox’ o
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Atx" =0 (Inlet):

At x" =1 (Outlet):

j _ (/i J(@Tmnj and T}: .
¥ =0 ke/f 8_)}30” yz(m:l .

)

Bott

=T,

(11-25)
o Yior=! (11-26)
=Ty . o (11-27)
(11-28)
(11-29)
(11-30)



At y;,, =1(Bottom Interface):

(W_] _ {"—J[GTJ "
; * * Bott| * _
amet y;otr =1 A4 ay y" =0 Y Bout =1
At yy, =0:
T, v *
[a—fmJ - (All XTBott (X 70) - Tw)
ay Bott /% —0
where 4, = %

Bott

11.5.3 Top Plate

11.5.3.1 Dimensionless Governing Equation

2* 2m*
0 TTOP (A*)8 TTap _0
%2 6 %2
ox 8yT0p
2
where 4, =

Top

11.5.3.2 Dimensionless Boundary Conditions

Atx" =0 (Inlet):
oT,, RV . .
(WT*[;J :(A7XTTop(0’yTop)_Too)
x'=0

hy, L

Top

where 4; =
Top

At x" =1 (Outlet):

*

or, NI (v YT
[anl*—l - (_ 4, XTTop (L yr,) =T, )

At y;op = 0(Top Interface):

* - * * Top | *
6.yTop y;bp:O AS ay y*:1

Y1op = 0
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= TR

*

=T,

y'=0

y =l

(11-31)

(11-32)

(11-33)

(11-34)

(11-35)

(11-36)



Aty;op =1:
aT* * * * *
[—f””J =4 ), D -T)) (11-37)
p

Pyt
* Top™ T
where 4, = ——%

Top

11.6 Numerical Scheme

The energy equation for the granular flow (11-24), the heat conduction equations for both
the bottom and the top plates (11-28), (11-33) are coupled through their respective boundary
conditions. These equations must be solved numerically in an iterative fashion. A finite
difference method is employed to discretize the dimensionless governing equations and
boundary conditions, which forms a set of algebraic equations. Newton’s iteration method and
the marching technique are used to solve the resulting set of equations for the true temperature of
the granular material and the top and bottom plates. In order to solve the governing equation of
the true temperature, the characteristics of the granular flow (i.e. velocity, pseudo temperature,
and solid volume fraction) need to be first obtained. The true temperature of the granular
material and the plates’ temperature were solved using the main iteration loop. The procedure is
repeated until the results of all temperatures converge. The error tolerance used is 10™. There are

21 mesh points across each plate and across the gap and 51 along the length of the pad.

11.7 Discretization

The appropriate finite difference equations and the detailed discretization are as follow.

Parameter i represents the index for the x-direction. j,, , j,, and j, represent the indexes for

the y-direction of the granular flow, the bottom plate, and the top plate respectively. Since the
inlet temperature is specified, the temperature is solved at every fixed i-section by using the
marching technique. Newton’s iteration method is also applied in the simulations. In the granular
flow governing equation (11-24), first order forward differentiation formula was used for the
convection term since the flow is moving in the x-direction with a specified inlet temperature,

while a second order central differencing formula was used for the conduction and dissipation
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terms. Second order forward and backward approximations were used to discretize the interface
equations (11-26) and (11-27) respectively.

Given below are the set of discretized equations along with their boundary conditions

used in the Newton’s iteration method:

11.7.1 Granular Flow
(Uu% [T R~ LRi1 ]: [AA_;ZJ(keﬁ ), Trion [T Rt~ 2Lk e T TRi g1 ]+

A; A; ( 32 )
[A_y]DKDY:’/ (TRiJHaw"'l - TRi:fF/ow—l )+ (Al* J f5 L, J Flow

k. —k,
where DKDY, ; = £ pion 1 I rion 1
' Ay

(ou),, (24, (o)., A A
{ ij ot Ayé (keff )i»./'Frow TRi»./F/,,‘1= - A): - TRi—],./F/,,‘1= + 322 (keff )l',jmw B A_; DKDK*J TRi?jF/uw_]
A ), 4, A (32 )
+ {(Ezzj(keff )i,jmw + (A_;jDKDY’»J }TRi7jF/UW+l + (A} j(T f5 L, J Flow
That is,
A, " A,
(U“ix] - {( Ay2 2 j(k off )iij/uw B (A;JD KDY, ; }
TRi,./F/,m, - * T, Ri=1, + * T Ri, jrpm—]
{(Uu)isfﬂuw + [2A2 j(k* ) } {(Uu)i,jnow + (2A2 J(k* ) }
2 i o 2 i frion
A\ j Av j (11-38)

A* %32
( A3* J (T f‘5 )iij'low

" 1

y ' T
Ri,jpiet] B * .
), ) e 25, ]

le/‘Flaw :1
TR. :[EJTR. _(leR. + - # TButt- + ﬂi TButt- - # TButt-
il 3 i2 3 i3 k i.mBost 3k i,mBog—1 3k i,mBott—2
efil ef il efi
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4 1
[ng Fonpir (EJT R[

11.7.2 Bottom Plate

m ,2+ - :4—5TT"P;1+ {‘i
M Elow keffi,m ' 3keffi,m

A*
]TTOP:J - {ﬁ]TT"Pm }

+ 7 A* o) * TBott,H_/-B +
ﬁ + 7149 + 1]

2 AL 2
Ay Ax Ay Ax (11-39)
AXAI*O AxAl*O
AyZ . AyZ
ZAXAI*O 27[4; 1 Bott, JBoit -1 ZAXAI*O +27A9*+1 BOU‘,’J’BM”I
A Ax A Ax
4 1
Bo”‘-.fBazr - (EjTBDnll&m N (EJTBOU-" JBott
4 1
TButt Bot = (5 Bott, y (E}TBM 2. g
4 1 2APA’ :
TBO“;,l = 2A—* TBott,-’z YU TBottu + —*” Too
VA +3 204, +3 2ApA4, +3
11.7.3 Top Plate
[lj (lj
Ax? Ax?
=2/ 7 RN A
Top; iz, o) o) A; Topiy iz, o) o) As Topia iy,
At A
) Y
(11-40)

A
Ay2

I
2AxA; +3

TT0p1<jTop - (

24; 2 24,

Ay2

1
2AxA; +3

jTTopz-anp _(
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2 TOpi-.fTop"
(sz A J (Ax "

]TTOP3 +JTop +
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Top; ~JTop+1

2AxA,
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4 1 2AxA,
TTop e T I TTop e | AYAAT LA TTUP oy T * : T°°
n.jTop 2A.XA7 +3 n=1.JTop 2A_xA7 +3 #=2.Top 2A_XA7 +3

4 1 2AVA;
T === Ty —| == Ty ., + e Vot T )
o\ 2ApAg +3 ) TPt |\ 2Apdy +3 ) TP 2Av4; +3 ) 7 |

11.8 Results and Discussion

The results presented in this section focus on applying the theory to determine the true
temperature of the granular flow between two parallel plates and also predict how hot the
interfaces of the top and bottom plates can become. These predictions are based on the solution
of the flow velocity, pseudo temperature, and solid volume fraction presented in Chapter 8. The
input parameters used in the simulations are summarized in Table 11.1. The thermal properties
presented were evaluated at room temperature and assumed to remain constant.

Both the top and the bottom plates are made of Stainless Steel. They both have a length
of 26 mm and thickness of 13 mm. The top plate is stationary, while the velocity of the bottom

plate is U = 4.6m/sec. The properties of the Stainless Steel are chosen from the CRC Materials

Science and Engineering handbook [85]. The thermal conductivity is selected as

ky, =k

op Bott

=16.3W/mK, the specific heat is ¢, =c,, =500 J/kgK, and the density is

Prop = Phon =8000kg/m’. The effective thermal conductivity is computed based on the

prediction of the solid volume fraction. The Value of the convection heat transfer coefficient (%)
for the moving plate is unknown, but was estimated based on Holman [86] and Incropera &
DeWitt [87]. Assuming that the conditions for convective heat transfer were the same as for
laminar air flow over isolated flat plates of the same dimensions one can determine Reynolds

number from: Re =u,, x/v, , where x is the length of the section of the body in the direction of

air ?

air flow (length of the moving plate), U=4.6m/sec is the plate velocity, and v, is the

kinematic viscosity of air (v, =15.69x10°m”/s at 300K ). The Reynolds number can be

rewritten as:Re =UL/v,, =7.74x10° <10’ and the mean Nusselt number (Nu) was determined

from Nu =0.664Re"’ Pr®*** =52.07, where Pr is the dimensionless Prandtl number (Pr = 0.708
for air at 300K ). The mean value of 4 was calculated from &= Nuk, /L =51.3 W/m’K , where
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k. 1s the air thermal conductivity (&, =0.026 W/mK ). The convection heat transfer coefficient

for the moving plate is assumed then to be 4,,, =50 W/m°K , while for the stationary plate the

convection heat transfer coefficient is much smaller and is assumed to be 4;,, =15 W/m’K .

Table 11.1 : Input List for Benchmark Case Used in the Computer Simulations

Parameter Value Parameter Value

U 4.6 m/sec L 0.0264 m
Unax 0.65 H 70 um

e, 0.8 b, 0.5

e, 0.8 by 0.5

Py 4260kg/m’ d Sum

c, 711 J/kgK 1, 30°C

k, 8.79 W/mK T, 30°C
Pou 8000kg/m’ Prop 8000kg/m’
Chout 500 J/kgK Crop 500 J/kgK
kg, 16.3 W/mK kz,, 16.3 W/mK
hyg,, 50 W/m’K Dy 15 W/m°K
Lpout 0.013 m Lrop 0.013 m

Based on the benchmark simulations in Chapter 8, the particle of granular lubrication

used is made of Titanium Dioxide (TiO,) and the thickness of the gap is equivalent to 14 particle

diameters. The particle has a diameter of 54m and a density p, = 4260kg/m’ . The coefficients
of restitution for both particle and wall are assumed to bee, =e, =0.8, and the roughness of

both moving and stationary plate is@, = @,, = 0.5. The properties of the Titanium Dioxide are
chosen from the literature [88]. The density, thermal conductivity, and the specific heat are

selected as p, = 4260 kg/m’ ,k,=8.79 W/mK, and ¢, =711 J/kgK respectively. The effective
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thermal conductivity is computed based on the prediction of the solid volume fraction using

equation (8-5).

11.8.1 Benchmark Simulations

Figure 11.3 presents the predicted distribution of the true temperature at the bottom and
top interfaces along the moving direction (x-direction). The true temperature at both interfaces
increases from inlet to outlet. The temperature rise predicted over the stationary disk is greater
than the one predicted over the moving disk. This phenomenon can be explained by examining
the energy equation of the granular flow. Three terms governed this equation: the convection
term, the conduction (diffusion) term, and the dissipation (source) term.

The convection term represents the rate of temperature transported through the movement
of the flow from inlet to outlet by convection relative to the interfaces. The dissipation term
supplies the energy to the flow as a result of inelastic collision between the granules. As a result
of the convection and dissipation terms, heat is produced due to the inelastic collision between
the granules and thus the true temperature is predicted to increase from the inlet to the outlet.
Since the effective thermal conductivity for the granular flow used is very small, it results in a
prediction of small rise in the temperatures at the interfaces and heat is retained within the
granular flow.

Figure 11.4 demonstrates how the true temperature is distributed within the granular flow
and in the fields of both bottom and top plates. The energy is transferred to the top and bottom
plates via the thin layer of the plates’ thickness that is in contact with the temperature produced
within the flow of the granular material. It is noted that the temperature at the top plate interface
is slightly larger than the bottom plate interface due to the high heat convection coefficient of the
moving plate. The true temperature distribution within the granular flow demonstrates the effect
of the viscous dissipation term. The temperature builds up from the inlet to the outlet due to the
heat source. The energy dissipated due to the inelastic collision between the granules is the major
factor affecting the increase of the true temperature in the granular flow. This energy dissipated
is related to the viscous dissipation term that appears in the pseudo energy equation, which is a
function of the fluctuation velocity (pseudo temperature) and the solid volume fraction. The
larger the fluctuation velocity becomes, the greater the chance of the collision between the

granules and associated energy dissipation.
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Figure 11.3 : The Film Temperature at Both Interfaces (Benchmark Simulations)
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Figure 11.4 : The Distribution of the True Temperature in the Granular Flow and the
Fields of the Top and Bottom Plates (Benchmark Simulations)

11.8.2 Variation of the True Temperature with the Granular Coefficient of
Restitution, e,

The change in the true temperature profiles along the moving direction at the top and
bottom interfaces is shown in Figure 11.5 by varying the granular coefficient of restitution while

restraining the wall coefficient of restitution to 0.8. As e, increases, the true temperature
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decreases at both top and bottom interfaces. The reason for that can be explained from the true
temperature energy equation (11-6) along with the constitutive relations of the energy dissipation
(6-3). The true temperature is related to the rate of energy dissipation due to inelastic collisions
between granules, which is related to the granular coefficient of restitution. At low granular
coefficient of restitution, more energy is dissipated due to the inelastic collision leading to an

increase in the true temperature from the interior of the flow to the interfaces. The larger thee,,

the more elastic the granules become. As a result, there is less energy loss by inelastic collision
between granules (less heat dissipation) and the true temperature drops. The distribution of the
true temperature within the granular flow and in the top and bottom fields for the case when

e,=0.98 is also demonstrated in Figure 11.6. Similar trends were obtained for the true

temperature of the flow and both plate fields along the x-direction with a decrease in the heat

dissipated compared to the benchmark case in Figure 11.4.

11.8.3 Variation of the True Temperature with the Roughness for Both Top
Plate (¢, ) and Bottom Plate (¢,)

The change in the true temperature profiles at the top and bottom interfaces by varying
the roughness of the top and the bottom plates is shown in Figure 11.7. When the roughness
factor of the top plate is varied, the bottom plate roughness is kept constant and when the
roughness factor of the bottom plate is varied, the top plate roughness is kept constant.

Generally, the roughness factor ¢ of the boundary surface ranges from 0 when it is completely
smooth, to 1 when it is completely rough. As¢,, increases, it causes a decrease in the slip

velocity at the top boundary. Hence, the granules around this boundary become almost
stationary which means the slip effect becomes nil and less fluctuation velocity occurs. Thus, as
the roughness of the top plate becomes larger, there is less energy being transferred from the top
plate to the adjacent layer of granules which decreases in turn the true temperature at this

interface. Likewise, when¢, is large, the slip velocity at the bottom boundary becomes smaller

and less energy being transferred and similar explanation to the trend happens but for the bottom

plate roughness.
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11.8.4 Variation of the True Temperature with Velocity of the Moving Plate

Figure 11.8 presents the change in the true temperature profiles on the top and bottom

interfaces by varying the sliding velocity of the bottom plate. The temperature tends to increase

by increasing the sliding velocity for both interfaces. To explain this trend, one must consider the

energy equations for the granular flow (11-6) and the governing equation of the bottom plate

(11-8). The effect of the convection terms in those two equations have a clear influence and
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become more pronounced on the true temperature of the granular flow and the moving plate as
the speed of the moving plate increases. As shown in Figure 11.4 the distribution of the true
temperature on both the stationary and the moving plates indicate that only a thin layer of both
plates that are close to the granular material and are affected by the heat generated in the granular
flow. Therefore, there is less energy out through the bottom and top plates which make them
behave as if they were insulated. Thus the true temperature in the channel is increased with

increasing the sliding velocity.

11.9 Conclusions

The true temperature of the granular material flowing between two parallel plates is
studied. The distribution of the true temperature at both top and bottom interfaces along the x-
direction is predicted and the variation of a number of important parameters and their effect on
the true temperature is analyzed. The results show that the temperature increases from the inlet to
the outlet for both top and bottom interfaces. The viscous dissipation term is found to play a role
on predicting the true temperature. It supplies the energy to the flow as a result of inelastic
collision between the granules. In addition, the specific heat and the effective thermal
conductivity have their effect on predicting the true temperature. The viscous dissipation appears
in the pseudo energy equation and is a function of the fluctuation velocity (pseudo temperature)
and the solid volume fraction. The larger the fluctuation velocity, the greater becomes the chance
of collision between granules. Therefore, the energy dissipation caused by the inelastic collision
increases which cause the true temperature to increase. Increasing the granular material
coefficient of restitution results a lower temperature at the interfaces due to the fact that the more
elastic the material, the less energy loss by inelastic collision between granules (less heat
dissipation). As the roughness factor increases, it causes a decrease in the slip velocity at the top
boundary and the granules around this boundary become almost stationary which means the slip
effect becomes nil. Thus, as the roughness becomes larger, less fluctuation velocity occurs and
there is less energy being transferred to the adjacent layer of granules which in turn decreases the
true temperature at this interface. On the other hand, the temperature tends to increase by
increasing the sliding velocity of the bottom plate for both interfaces due to the pronounced

effect of the convection terms in the granular flow and the bottom plate equations.
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It is concluded that for a flow between two parallel plates, a very small rise of the true
temperature is experienced in the direction of motion from inlet to outlet. Whereas, Heshmat and
Brewe [89] described experimentally the thermal phenomena and the heat characteristics of a
slider-type powder lubricated bearings. At 30,000 rpm, the rise of the true temperature was
approximately 60°C. They also showed that the thermal stability was achieved at different load
and speed combinations. This is an interesting phenomenon since it indicates that in thrust-type

bearings, the wedge effect has a pronounced effect on the true temperature.
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CHAPTER 12. ENDURING CONTACT IN GRANULAR
LUBRICATION

12.1 Introduction

In most of the published literature in granular material, the formulation is restricted to
rapid shearing where the kinetics and collision effect and granular stresses are generated by the
instantaneous binary inelastic collisions between the granules. As such, the effect of the so-called
“enduring contact” is neglected. However, in a dense regime the granules are sliding and the
contact may not be necessarily instantaneous. The enduring contact can play an important role on
the friction behavior. Hence, the effect of enduring contact must be carefully examined,
particularly in the view of relatively small clearance gaps and high solid volume fraction in
applications involving granular lubrication.

Pioneering experiments of Bagnold [2] dating back to 1954 have revealed the
development of the so-called transient regime where both collision and enduring contact between
the granules exist simultaneously. Johnson and Jackson [15] developed a model that takes into
account the effect of the enduring contact between the granules using the Coulomb law of
friction to relate the tangential and normal forces of the sliding granules. Jang and Khonsari [89]
applied the theory to study the enduring contact between granules of powder lubricant in a
bearing. They found that the enduring contact tends to dominate the kinetic regime of a powder
lubricant at low speed. Another important effect that is often neglected is the true temperature of
a granular material during the shearing process and its influence on the grain mobility. In
contrast, the influence of the so-called pseudo temperature in granular material which represents
the velocity fluctuation has been studied in many papers [25, 26, 33, 40, and 43].

In this paper, the effect of the enduring contact and the true temperature are investigated
for a granular lubricant sheared between two parallel plates. The appropriate equations are
derived including both the enduring contact as well as the inelastic collision between the

granules.

12.2 Theory

In this section, The theory presented in this paper closely follows the work of Johnson

and Jackson [15], Lun and Savage [12], Hui and Haff [27], and Jenkins and Savage [7] and Zhou
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and Khonsari [30]. A realistic constitutive equation introduced by Lun et al. [8] is utilized to
study the mechanism of powder lubrication. The effect of viscous dissipation term is included in
the pseudo energy equation and the distribution of solid volume fraction together with the mean
velocity and the pseudo temperature appear naturally in the governing equations and are directly
predicted by the theory presented herein. The general conservation laws, the constitutive
equations and the boundary conditions are applied to a particular flow field where a granular
lubricant sheared between two parallel plates taking into consideration the enduring contact
effect between the granules. As shown in Figure 8.1, the upper plate is stationary while the
bottom plate undergoes a constant slider motion U. For parallel plates, the conservation of mass
is satisfied automatically.

This kinetic theory is based on the binary collision hypothesis in which enduring contact
is to be considered, the stress tensor is composed of the collision and kinetic motion as well as
the enduring contact. The characteristics of the flow are investigated in a transient regime where
both kinetic-collision effect and enduring contact exists concurrently. The Coulomb friction
model is introduced to study the effect of the friction force caused by enduring contact between
the granules. The formulation of the enduring contact developed by Johnson and Jackson [15] is

used in this paper.

12.3 Governing Equations

The general governing equation (3-1), (3-2), (3-4), along with the constitutive relations (4-1), (4-

8) and (4-10) are reduced to the following set of equations:

12.3.1 Conservation of Mass

The governing equation for conservation of mass is:

d(pu) _ )
=0 (12-1)

12.3.2 Conservation of Momentum

The governing equation for conservation of momentum is:

DU
“~ =pg-V.o 12-2
P Y pg (12-2)
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whereo =0, +0,, 0, is the stress tensor caused by collision and the kinetic motion, and o,

represents the stress tensor caused by enduring contact force between granules.

Based on Coulomb failure criterion, the shear stress is proportional to the normal stress in
a fully developed plane shear and the granules are assumed to be cohesionless (Figure 12.1). The
contribution of the enduring contact to shear stress is:

S, =N,Sing (12-3)
where ¢ is the internal angle of friction and N, represents the frictional normal stress (enduring

contact contribution to normal stress) and defined by:

F
N, =—— (12-4)
(Umax - U)
where F is a dimensional stress constant carrying units of kg/ms® and 7 is an integer constant.

At the boundaries, the magnitude of the tangential component of enduring contact is N, tand,

where o is the angle of friction between the surface and the granule.

(i

o

Figure 12.1 : Mohr Stress Diagram

qV

The stress tensor by enduring contact presented by Johnson and Jackson [15] is given by,
N, -TN,Sing 0
o,=|-IN,Sing N, 0 (12-5)

0 0 N,

1 for du/0y>0

where, I' =
{—1 for du/0y<0
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12.3.2.1 X-Momentum Equation

i(()‘xy): 0
dy
That is,
d du
= p,diNT | == |- N, Sing | =0 12-6
dy{(p’]ﬁ Idyj ! 4 (0
12.3.2.2 Y-Momentum Equation
d d
d—y(a}y)zO:d—y(pprl +N,)=0 (12-7)
p,If, +N, =N (12-8)

12.3.3 Conservation of Energy
The general conservation of energy given by equation (3-4) is divided into two parts,

conservation of pseudo energy and conservation of true thermal energy as shown below:

12.3.3.1 Pseudo Energy Equation

M:—V.qPT—ack:VU—y (12-9)
Dt
12.3.3.2 True Thermal Energy Equation
%B;”):—V.qh—af VU +y (12-10)

where o, : VU is the viscous dissipation done by the component of collision stress, o, : VU

represents the viscous dissipation done by the component of frictional stress, and y is the rate of

dissipation due to inelastic collisions between granules.

Using equations (6-12) and (6-13) for V.q,, and o, : VU, the conservation of pseudo energy

equation can be rewritten as follow:
2 3/2
d dT dv du) p,fsT
— o, dfNT =+ (p,df, T )= |+ p,df, NT| — | - 22— =0 (12-11
dy{(p,, If )dy (pp If, )dy P, & y (12-11)
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12.4 Boundary Conditions
The boundary conditions shown in Figure 12.2 are obtained by substituting the Lun’s
constitutive equations into the boundary condition equations (5-8) and (5-14) including the effect

of enduring contact.

uxI: uTap > 0
(m=1)

g, | uﬂ| Hy=tg,,-U<0
(mx= -1)

Figure 12.2 : Slip Velocity Boundary Conditions

12.4.1 Slip Velocity Boundary Condition

The condition for the slip velocity (5-1) to (5-8) between the boundary and the granules is
derived following the work of Johnson and Jackson [15]. In granular flows, the boundaries tend
to supply the momentum and the energy to the interior flow by the means of shearing force and
normal force. The supplied energy must be in balance with the stress and the total flux of the
energy in the flow. The condition for the slip velocity is obtained by equating the total tangential
force acting on the boundary and the rate of momentum transfer to unit area of the surface by
collision. The tangential component of the enduring contact is also added to (5-6) and the general

form of the slip boundary condition is given by:

¢Wx/§7zpp UT% us,.(ack +0'f).

U, n
+N,tand=0 (12-12)
3 usl
1%
6 Umax 1 - — Tangential force per unit area
Umax acting on the boundary

Rate of momentum transfer to the wall
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Again we can rewrite the slip velocity equation as follow:

&.ack+a .n+ﬁ¢wp Ugoﬁus,nLN tano =0
S 6U P S

sl

max

That is,
xx O-xy O-xz 0
u, NEY:
u—j. O Oy O [ EH g, p, 0g VT |u [+ N, tan5 =0 (12-13)
' zx O-zy O-zz 0 -

Using equations (6-1) and (12-5), the total stress tensor is defined by:

p,Tf+N, ~ p,d T fz(g—“j +N,Sing 0
O-XX Xy Xz y
ou .
c=o0,+t0,=|0, O, O, |=|— ppdﬁfz(aJ + N, Sing p,If + N, 0
o-zx Gzy Gzz 0 O pp Tfl + Nf

(12-14)
where o, is the stress tensor caused by collision and the kinetic motion, and o, represents the

stress tensor caused by enduring contact force between granules.

12.4.1.1 Top Plate

+than5:0

usl

Yo )+ f” 4, p, Vg NT
. D,

usl

max

V37

6v

max

P, P, ugox/?|usl|+Nf tano =0

= [ p,dfNT (@J +TN, Sin ¢] +
dy

sl

du . NCY:
{ppdfzﬁ(aJ+FN_/,Sm¢+F¢w o, Ugoﬁusl}mx +N,tano =0

max

and since u, is positive and I' is negative at the top plate, we can rewrite the top boundary

condition as follow:

du ) \/572'
{ppdfzﬁ[d—yj +IN Sing+—=—¢, p, ugoﬁu} N, tand =0

max
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du \/572 .
ppdﬁﬁ[d_yj+v¢’1 P, Ugnx/?u+ Nf(tané—Szmﬁ): 0

max

@+\/§ﬂugo¢H u—+
dy  6uv,,frd  pdf f

The slip boundary conditions for the top plate can be reduced to the following form:

(tan & — Sing)=0

N,
I ¢H (tan & — Sing) =0 (12-15)
dy p,df; f
12.4.1.2 Bottom Plate

M o, +ﬁ¢w P, Ugaﬁ|usl|+ N,tand =0

usl 6Umax
el {ppdfzﬁ(%j+FNfSin¢J— vg NT uy|—N,tan6 =0
usl y A max A

du NEY
{ppdfzx/_(dyj+FN Sin ¢_0—¢pr Ugoﬁus,}mx—Nf tand =0

max

and because u and I' are negative at the bottom plate, we can rewrite the bottom boundary
condition as follow:

{—ppdfzx/_[f;j I'N Sm¢+ 37

max

9, P, Ugoﬁ(u—U)}—than5=O

ppdfzx/_(f;j EL: ¢,0pu NT (u~U)+ N, (tan 5~ Sing) =0
@_M@,_W

tan o — S
dy  6v_ fod df(an ing)=0

The slip boundary conditions for the bottom plate can be reduced to the following form:

du_ fs#,

u—-U)+——L—(tanS - Sing)=0 (12-16)
dy d ) p,,dfzﬁ( )
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12.4.2 Pseudo Temperature Boundary Condition
The boundary condition for the pseudo temperature is obtained by equating the rate of
heat generation due to slip at the boundary to the rate of heat dissipated due to the granules

inelastic-collision. The general form of the pseudo temperature boundary condition is given by:

3 3
Ny = (6”_[}%% vg NT u’ - (4’“[ j(l —e )pp vg, T (12-17)

Umax max

The boundary conditions for the pseudo temperature at both top and bottom plates are obtained

from equations (6-21) and (6-22) as follow:

12.4.2.1 Top Plate

_ 2
ar __pfodv outr(, y _pldl=e, (12-18)

12.4.2.2 Bottom Plate

_ 2
u P +1s ld S (12-19)

The above equations are in agreement with Jang and Khonsari [89].

12.5 Elimination of the Volume Fraction

The equations can be simplified by eliminating the coupling term of the volume fraction
from the pseudo energy equation (12-11), and the pseudo temperature boundary conditions (12-
18) and (12-19) as follow:
By using the y-momentum equation (12-7), and substituting with the functions given in Table 6.1

we have:
d d
—Toll+4nve )+—N, =0
Py (1+4nvg,) Y
dT dv dv dg d
— (ol +4novg, )+ T—1+4nog, )+ Tv| 4n—g, +4n0—=>||+—N, =0
p,,[dy(( nog,)) dy( nog,) (ndygo " dyﬂ P

where f;(v)=0v(l+47vg,)
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‘ 1 ) 2/3
Also since g, = —=—5""5, and as, - _& (Uma"j @ then we have,
vV o-v dy 3v v dy

(v )

dT d d g, ||, 4
Pp[d—y(0(1+4ﬂ0go))+Td—;(1 +4nog, )+ TU(‘“?d_;go +4’7Uiﬂ +d_Nf =0

max

T 2 2/3
o, ﬂfl +@£ —477g0T1)+4;11) 780 | Dma @ d —N,=0
dy dy v dy 3v ) dy

max

dT Tf, 4 1 1 d
+4dng To+—no'l g5 —— |+ —— N =0
f [ > ng, 3'7 go 273 r1n/a3X P, dy !
@ dT 1 _de 1
dy T 4 1 4 1
{ i +4ng,To+ 3;71)2Tg0 27173 } [ 7, +4ng To+— 3 m)zTgu 702/301/3 }
dv £ dT 1 dn ,

& 7 4 1 ] i 4 1 dy
{v +477g01)+3111) go IEYENTE p ) +477g01)+3771) go NN

max max

Substituting with the values of g, and f; in the denominator, we have

dN,
dv_ g(v)dr 1 dN, (12-20)
dy r \dy p, dy
where gl(u)= / 7]
v —noPol’

|4 S0V 3
3 _ 13 2
o2 _p (Um _01/3)

max max

12.5.1 Pseudo Energy Equation
Using equation (12-20) back in the energy equation (12-11) we have the final form of the pseudo
temperature energy equation as follows:

{fodT T - %f pe }%J—("zj LT

2
B d

d[(f ﬁglﬂdﬂ Hf“gljf f}fzf(d“j—ﬂj:o (12:21)
dy dy dy dy d

dy P,
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12.5.2 Pseudo Temperature Boundary Condition

Similarly, substitute equation (12-20) in the pseudo temperature boundary condition equations

(12-18) and (12-19) yield the following equations:

12.5.2.1 Top Plate

dN _e?
ar _ _,fs|_&|dT 1 a1 onfs (uSl)z_Tfél e,
dy Ll T\dy p, dy d d

ar__ fig VAN, . fify (=€) A s
dy (f;i-f.8)p, dy (fs-fig) d (fs-fig) d

dN . _p2
ar_ N, =€), Sy, )
dy p, dy d d
12.5.2.2 Bottom Plate
dN 2
d—T:—TA _& £+L f _¢Uﬁ (uvl)2+T_f61 ew
dy Ll Tldy p, dy d d

ar = a8 Lde +T fifs (1 _evzv)_ it &(u _U)z

dy (f3_f4g1)pp dy (f3_f4g1) d (f3_f4g1)d

ar _ N, fi-e) s, (w-UY (12-23)
dy p, dy d d
Ny iS5 f.&
h y=————, fly=——"7—, and ffi=—""—"°—
e Al Ty

12.6 True Temperature Energy Equation

Let us now consider the equation of the conservation of the true thermal energy (12-10).
By substituting with the values of the true heat flux and the true thermal internal energy of single
granule (3-10) along with the correlation of the effective thermal conductivity (11-5) discussed

in Chapter 11, the true thermal energy equation can be rewritten as follow:

D
E(pcp ;) ==V.(-k;VT;)—0,:VU+y
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By dropping the low order terms and substituting with the stress tensor by enduring contact (12-

5), we have
2 Ok
pyoeu St =k, s SL ey sin ¢—+% (12:24)
x d- oy Oy d
Convection Conduction Dissipation
1+28v+\k, -3p° b’
where keﬁ,( )=k, p ( , =3P )U
1-pv
12.7 Normalization
In what follows, we shall make use of the following dimensionless parameters:
N N U N
w=—,T"=-+—,y == N =—£ 12-25
U N T H TN (12-29)

where N is the normal load per unit area, and H is the gap thickness.

12.7.1 Dimensionless Governing Equations

Using the dimensionless parameters (12-25) yields to the following dimensionless governing

equations and boundary conditions:

12.7.1.1 X-Momentum Equation

i{ ACEAT] (diJ -~ N;Sin4 =0 (12-26)
dy dy '

12.7.1.2 Y-Momentum Equation
T fi+N,=1 (12-27)

12.7.1.3 Pseudo Energy Equation

#3/2

[ -1 l)de} {A&WW{}A%W(WJ S —0 (1228)
dy dy C

Up, _d
JN T H

where 4 =
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12.7.1.4 True Temperature Energy Equation
Using of the dimensionless parameters (11-23) in addition to the dimensionless parameters (12-

25) yields to the true thermal energy equation in dimensionless form as follow:

*

. 0T, k L . O°T, k L ok . . 32 .
ol 6T§ g 0 73; N il off 5T5 _NL NfSin¢au* N l;/2 32
ox  p,c,UH Oy p,c,UH dy" Oy p,c,TH oy ¢, TUp,"d

pin prin
That is,

Js

* ¥ * * e * ak* : : * i *
vu aif=(A2)keﬁa—7:f+(Az)—e’fai§— 4 NfSin¢a 6 (12-29)
X © Oy oy Oy C oy’ A

L A /)
3

N? 2T unT Y peTd

pin

where 4,, A4,, A4;, and C are constants defined as 4, =

b

a,=—"—,and C=i
P,c, H

12.7.1.5 Continuity Equation

For a Couette flow, the distribution of bulk velocity is independent of the flowing
direction. Hence, the mass flow rate in the gap of a Couette flow is constant, and the
conservation of mass is automatically satisfied. Rewriting equation (12-1) accounting for a fixed
gap and the fact that p = p v, we have

d H
Kj.ppvudyzo

0

and in dimensionless form, we can write:

.
£

m =" (12-30)
p UH dx’ 0
12.7.2 Dimensionless Boundary Conditions
The results of the dimensionless boundary conditions are summarized below:
12.7.2.1 At y'= 1 (Top Plate)
* * N*
du___Jsbutt _ (tand — Sing) (12-31)

dy’ C ACf2\/—
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*

dN*- * 2 ) %2
ar” _ v, _THl-e), 4 o (12:32)
dy dy C C
12.7.2.2 At y'= 0 (Bottom Plate)
* * _ N*
du__ Al =1)_ N _(tan & — Sing) (12-33)
dy C ACIAT
ar’ AN, T f(1-e) A ffe, 1]
“r S/ 3 w) _ 4P, 12-34
c= st ( )
dy dy C C

12.8 Discretization

The following focuses on presenting the appropriate finite difference equations and the
detailed discretization for equations (12-26) to (12-34). Parameter i represents the index for the

x-direction and parameter jrepresents the index for the y-direction. Parameters j., . , jz..
and j,,, are used in the true temperature equation (12-29) and represent the indexes for the y-

direction of the granular flow, the bottom plate, and the top plate respectively.

A second order central differencing formula was used for the x-momentum and pseudo
energy equation, while a second order forward and backward schemes were used for the bottom
and top boundaries respectively. Since the inlet temperature for the true temperature equation is
specified, the temperature is solved at every fixed i-section by using the marching technique.
Newton’s iteration method is also applied in the simulations. In the granular flow governing
equation (12-29), first order differentiation formula was used for the convection term since the
flow is moving in the x-direction with a specified inlet temperature, while a second order central

differencing formula was used for the conduction and dissipation terms.

12.8.1 X-Momentum

d ] d e
ACd—y*[ ST (—ﬂ —d—y*(N_,.quﬁ)— 0

dy
- df, dNT || du’ {d ) Sing(dN;)
{\/T—[dy*}rf{—dy* H(dy*}ﬁx/T_(dyﬂJ AC(dy* j_o
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fzzy\z/jui,j [f2 ]\/27 ;'/;féljﬂ_f;ljl) 8Af2\/17 ij+l i,' )] +

[le]r \/Tj f2”+1 _fzu 1) fzz 7 (T* T*l)}u* +

2 4A2
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*
,j

; (12-35)
2 (o . . 2AySing (, .« .
{4&] Saijn T o ja ﬁ(&n‘ﬁnﬂ%ﬁ [T],/(Nf N )}

12.8.2 Pseudo Energy Equation

(5 fw{ e o S e O

dy dy dy
A d(ﬁgl)) T (dN f N
e [ dy* f4 1{ dy* f4g1)\/7 dy*z
(fs _f4g1 ), L+l (fs f4g1 i, j-1 i,j+1 7:/ 1 f4g1) l /+1 ]fj—l 2
( 2Ay JF 2T, 20y ’

% * 2 %3/2
T, -2T,+T,, e I I S b
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4Ny’ 1. .
o1 s 45) 1
i

f3i,j+1 - (f4g1 )i,j+1 o f35,/—1 + (f4g1 )i,j—l + (4f3 _4f4g1) [ﬂglJ (N;i,jﬂ - N;r,jfl) 7;:-“ +

27,

f31‘,_/_1 —(f4g1 )i,j—l _f3i,j+1 + (f4g1 )i,j+1 + (4f3 _4f4g1 )i,j (/;f ) (N;,,+1 _N;H) ij—l + (12-36)

2T
I:(fztgl ),',/'_1 - (f4g1 )j,j+1 + (4f4g1 - 4f3 )i,j ]IV;;»M + [(legl )i,j+1 - (f4g1 ),',/'_1 + (4f4g1 - 4f3 )[,j ]]V;,k/._,

(fz» ﬁglj (7;:;41 T, . 1)Z+A lej( Ui o — U 1) (8f3 Sﬁtgl)z‘,jN;f,, +

iL,j

12.8.3 Boundary Conditions
12.8.3.1 At y'=1 (Top Plate)

%

Uu.

i,m—2

s

—4u

$3,  Pufun o N, (tand - Sing)
2Ay C i,m ACf‘ZI,m\/]:Tm

i,m—1

2AyN; (tans - Sing)

2A ; * * :
[ M + 3]%’”1 =4u, | —U;, ,— [+
C AC-fZi,m T;’m
C i 249N, (tan & - Sing) (12:37)

Hion = 2Ny S Ay, [, m
(c + 3} ACH,, mr(c 3)

T, ,— AT,  +3T . . o =) o Aoyt
i,m— 1 Lmo_ fﬂz,m (Nf _4va + 3Nf )_ ( W)f];z,m 7—; i + gDHf];lz,m i,m
24y 20y ¥ C ’ C
2891 &2 ), . , . 20, ff . . .
[ y( Cw)f];l,m + 3}7-;”" — 4];’”1_1 _ 7—;,’"_2 + y (ol—éjﬂl,mul,m + f];i’m (N/l B _ 4th » + 3Nflm )
: 28040, [y 0
47;,m71 - 7;,/71—2 + , ff . ( - 4N + 3N* )
* C Si,m Jim- -1 Sim
T, = . + (12-38)
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12.8.3.2 At y = 0 (Bottom Plate)

“3ul, -y By, o Aty N (tans = Sing)
- il - "
28y ¢ c ACE, T,

20V 8, 1y, C3 b —au 2094, fir, +2AyN;] (tan 5 — Sing)
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.. 204 S
PR 48/ )
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12.8.4 True Temperature Equation

(Uu* )i,  Flow * * 14’k * [ * * « ]
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(12-41)

12.9 Numerical Scheme

The momentum and the energy equation are ordinary differential equations coupled
through their boundary conditions. Because of the complexity of these equations, they were
solved numerically. A benchmark input parameters are chosen based on the theory of granular
lubrication. In the simulations presented, the thickness of the gap is fixed and the normal load is
specified. Finite difference method is employed to discretize the dimensionless governing
equations and boundary equations, which forms a set of nonlinear algebraic equations. There are
three loops in the computations, the inner loop solves the velocity, the second loop solves the
pseudo temperature, and the outer loop solves the volume fraction.

The Newton iteration method is used to solve the resulting set of equations for the
velocity (12-35) and pseudo temperature (12-36) along with their boundary conditions (12-37) to
(12-40). Bisection method is then used to solve the volume fraction from equation (12-27) since
it cannot be computed analytically. The iterations are repeated until the results converge when
the difference in the computed velocity, pseudo temperature and volume fraction between two
successive iterations are below the specified tolerance. Then the mass flow rate is computed by
integrating the volume fraction and the velocity along the gap thickness. The tolerance level used
is 107 per all iterations in each loop. The mesh points are 21 in the lateral direction for the film
thickness. The numerical simulations indicate that a finer mesh does not influence the results but
necessitates more computational time. After convergence of the velocity, pseudo temperature
and volume fraction, the granular flow true temperature equation (12-41) is then solved
numerically using the Newton iteration method along with the equations for the top and bottom

plates and necessary boundary conditions presented in Chapter 11.
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12.10 Results

The input parameters used in the simulations are given in Table 12.1. The operating
conditions and properties are chosen to mimic the simulations of McKeague & Khonsari [26]
and Zhou & Khonsari [30]. The lower plate undergoes a sliding velocity while the top plate is

stationary. The thickness of the gap is assumed to be 14 particle diameters and the granular

material used is Titanium Dioxide (TiO,) with a 5pm diameter and density 4260kg/m” .

Table 12.1: Data for Benchmark Simulations

Parameter Value Parameter Value
U 4.6 m/s L 0.0264 m
Uinax 0.65 H 70um
€ 0.8 ?, 0.5
e, 0.8 Py 0.5
Py 4260kg/m’ Sum
F, 4.0x10 kg/m.s> 25°
n 23 22.9°

To characterize enduring contact, two additional constant parameters are introduced in
the simulations: F and » that appear in the coulomb friction model equation (12-3) as described
by Johnson and Jackson [15]. Based on experimental measurements for two different types of
beads, they proposed the following values for the stress constant F. and the integer constant n:
F.=3.65x10"kg/m.s> for glass beads and F, =4.0x10* kg/m.s* for polystyrene beads with n
= 40 for both cases. However, there are no experimental data available for the Titanium Dioxide
(TiO,). To carry on the analysis, it is assumed that F. is fixed at F. =4.0x10""kg/m.s’. To

estimate values for n for the type of granular material used in the simulations, the following
analysis is used based on the work of Zhou [90] and Jang & Khonsari [40]: The normal stress

contributed by the enduring contact N, must be less than or equal to the specified normal load N

applied on the plate. Thus, the parameter n can be determined by the following equation,
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< log(F,/N)
~log(v

max

(12-42)
—0)

Appropriate range of the parameter n can be evaluated for different values of (v

o —U). The
results are summarized in Table 12.2. It is clear that the difference of volume fraction plays an
important role on n, while the normal load does not have much significance on n. At N = 7.25

kPa (benchmark), the value of (v,

max

—v)1is roughly 0.05 and Table 12.2 shows that the parameter

n should be less or equals to 27. Then n = 23 is selected as the benchmark input in the

simulations presented.

Table 12.2 : The Range of Parameter n

(Uyax —0) 0.014 { 0.017 | 0.021 | 0.025 | 0.029 | 0.034 | 0.039 | 0.044 | 0.05

N=725kPa|n| 19 20 21 22 23 24 25 26 27

N=10kPa |n|19.09 20.01 |21.10|22.09 |23.02 | 24.1 |25.12|26.09 | 27.2

N=30kPa |n|19.35(20.27 | 21.38 | 22.39 | 23.33 [ 24.43 | 25.46 | 26.44 | 27.6

12.10.1 Benchmark Simulations

In this section, the results of a series of simulations are presented that predict the
performance of the granular material as they are sheared between two parallel plates. Figure 12.3
shows the variations of the flow velocity, pseudo temperature, and volume fraction for the
Couette-type flow across the gap. The results with and without the consideration of the enduring
contact are shown for comparison purposes.

The parameter n controls the influence of the enduring contact. At n = 20, the results
show that the effect of enduring contact is negligibly small and yield nearly identical trends and
magnitudes to the results without enduring contact. As n increases, the effect on enduring contact
becomes more significant. The profiles of the volume fraction and the pseudo temperature across
the gap become more flattened when the enduring contact force between the granules begins to

play a role in supporting the applied load. The velocity profile is roughly linear across the gap.
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The enduring force between the granules tends to limit the relative motion between the
granules and causes the pseudo temperature (fluctuation velocity) to decrease around the
boundaries and increases in the middle of the gap compared to the case without the enduring
contact effect. As the friction force between the granules increases, the rate of collisions
decreases. Therefore, the granules in the middle of the gap become more packed causing a
decrease in the pseudo temperature. Since the solid volume fraction is directly related to the
pseudo temperature, it becomes greater around the boundaries and smaller in the middle of the

gap, thus tending to flattened across the gap thickness to support the applied load.

12.10.2 Effect of the Sliding Velocity, U
Research by Jang and Khonsari [89] shows that if the operating speed is below 4 m/s, the

effect of the enduring contact becomes large and cannot be neglected. Figure 12.4 shows the
velocity, pseudo temperature, volume fraction, and the shear stress distributions with the
consideration of the enduring contact as a function of the sliding speed. The simulations
presented here are under the same operating conditions as Jang and Khonsari [89], where the
speed ranges from 2.6 to 10.6 m/s. At a moderately high speed, the effect of enduring contact is
very small and, the trends are analogous to the cases without the consideration of the enduring
contact. On the other hand, as the sliding speed decreases, the enduring contact force between the
granules begins to play a role in supporting the applied load. The results of Fig. 5 demonstrate
that at a sliding speed U = 4.6 m/s and below, the effect of the enduring contact is significant.
When the sliding speed is very small, the shear stress due to the enduring contact becomes
noticeable over the kinetic and collisional stresses. In this case, the load is solely carried by the
dense granules across the gap.

Under the conditions simulated, at very low sliding speeds (less than 4.6 m/s), the volume
fraction is predicted to be around 0.6 and its distribution across the gap becomes nearly flat to
support the load. At the boundaries, the effect of the enduring contact is relatively small since the
pseudo temperature is higher due to the energy added to the system through the slip velocity and
by the boundary through the disks surface roughness. The lower the speed, the greater the
enduring contact and the smaller the kinetic-collisional stress becomes due to the small number
of collision between granules. As the speed increases, the enduring contact effect becomes less

and kinetic energy due to collision between granules increases and the total shear
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stress increases. Beyond a certain sliding speed, the effect of enduring contact becomes
negligibly small and the total shear stress and the shear stress due to enduring contact becomes

constant across the gap.

12.10.3 Variation of the Friction Coefficient with the Sliding Speed

Figure 12.5 demonstrates the variation of the friction coefficient with the sliding speed
from 2 m/s to 30 m/s. Above a certain speed (approximately 4.6 m/s), the predicted friction
coefficient for both cases is identical since the effect of the enduring contact is nil as explained in
Fig. 5. Below this speed, the friction coefficient tends to drop when considering the enduring
contact effect. On the other hand, when the enduring contact is neglected, the friction coefficient
is predicted to be high even at these very low speeds.

This behavior of friction can be explained as follows. At very low sliding speed, due to
the enduring contact effect, the total shear stress is small and since the normal stress is fixed in
these simulations, a reduction in the total shear stress causes a decrease in the friction coefficient.
At a relatively high speed, the effect of the enduring contact is nil. Therefore, the friction
coefficient is identical to the case without the effect of the enduring contact. In addition, as the
speed increases beyond 8.6 m/s, a small reduction in the friction coefficient is observed. The
reason for this drop is due to the fact that by increasing the speed, the collision rate between the
granules increases causing an increase in the displacement between the top and bottom discs and
in turn a slight reduction in the friction coefficient. At approximately 26 m/s, no more reduction
in the friction coefficient is obtained and the trend starts to stabilize indicating that a complete

lift between the two discs occurs.

12.10.4 Effect of the Sliding Speed on the Total Shear Stress

Figure 12.6 further explores the behavior of the friction coefficient through a comparison
of the solid volume fraction and the dimensionless shear stresses at different speeds for the cases
with and without the effect of enduring contact. At a relatively high speed (6.6 m/s), there is an
increase in the collision rate between the granules where the grains become loosely packed.
Hence, there is no possibility for the granules to slide against each other which causes the
frictional stress to be zero across the gap. Therefore, at this relatively high speed, the collisional-

kinetic stress for the case with enduring contact is equal to the total stress and is identical to the
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case without the consideration of enduring contact. Hence, the volume fraction profiles for both
cases are also identical.

As the speed decreases, the effect of the frictional stress starts to become visible causing a
reduction in the total stress compared to the total stress without enduring contact. Therefore, the
friction coefficient starts to decrease. By lowering the speed to 2.6 m/s, the frictional stress is
more pronounced and the total stress becomes smaller than its corresponding stress without
enduring contact and hence, a reduction in the friction coefficient is observed. Also, as the speed
decreases, the distribution of the solid volume fraction is nearly flat and the load is exclusively

carried by the stationary granules.

12.10.5 Granular Flow Time Scales

There are essentially two time scales that describe the granular shear flows, the time

between granule-granule collisions (7,) and the contact time between collisions (7, ). The kinetic

theory is valid if the contact time is much shorter than the time between collisions (Jang &
Khonsari [40]). The time between granule-granule collisions depends on the volume fraction,
granule size, and the fluctuation velocity. Gidaspow [91] derived the time between collisions for

monosized granules as follow:

P (12-43)
- 24g v\ T

where d represents the granule diameter, 7 is the pseudo temperature, v represents the solid

volume fraction, and g, is the radial distribution function defined by equation (4-4).

The contact time between collisions is defined as:

m
ly= WW (12-44)

where K represents the stiffness constant, m is the granule mass, and ¢ is the damping

coefficient defined by: ¢ =—Ine,/,/z° +In’e, .

According to the Hertzian model, the stiffness constant (Johnson [92]) is equal to:

1
K= [SE dF/ 8(1 — vz)z]/3 , where E represents the Young’s modulus, v is the Poisson’s ratio and
F represents the load acting on the granule. For TiO,, £ =270 GPa , £ =0.07085 and v =0.27.

The load acting on the granule F' can be determined from the conservation of momentum as
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follow: Ft,/2=mV , where m is the granule mass as given in equation (4-7), and V is the mean

fluctuation velocity.

Appropriate calculations for the time between collisions and the contact time for different
sliding speeds are summarized in Table 12.3. The parameter n, which controls the influence of
the enduring contact, is 23 in this analysis. It is clear that the volume fraction plays an important

role on ¢, and ¢, at different speeds. As shown in Table 12.3, an increase in the solid volume

fraction causes a decrease in the pseudo temperature, which results in a decrease in the time

between collisions (z,). In addition, increasing the solid volume fraction results in a decrease in
the stiffness constant, which causes an increase in the contact time between collisions (¢, ). This

explanation concurs with equations (12-43) and (12-44). On the other hand, as the sliding speed

increases, /, increases and 7, decreases. Therefore, the results agree with the previous discussion

that the larger the sliding speed becomes, the smaller the effect of the enduring contact until it

becomes nil. Furthermore, Table 12.3 demonstrates that the ratio t /t,1s less than 1; hence the

kinetic theory is valid for all the presented cases.

Table 12.3 : Effect of the Sliding Speed on the Time between Collisions

i . Time

Ssh(ilélég Volume . Re.1d1a! Pseudo between Stiffness antact

p Fraction, | Distribution, | Temperature, Collisi Constant, Time, i
U ) oli1s10ns, ( )

(m/s) ) g, T (m/s%) tc(s) K (N/m) I8 t,
2.6 0.601 38.039 0.034 8.763x107° | 0.687x10* | 1.003x10™° | 1.145x10™"
3.6 0.596 35.133 0.037 9.123x10°* | 0.688x10* | 1.002x10° | 1.098x10~"
4.6 0.589 31.029 0.043 9.717x10~* | 0.690x10* | 1.001x10™° | 1.029x10~"
5.6 0.556 19.773 0.075 1.223x107 | 0.701x10* | 9.928x10™° | 8.116x107>
6.6 0.536 16.092 0.099 1.361x1077 | 0.708x10* | 9.879x10™° | 7.261x107>
7.6 0.518 13.705 0.124 1.479x107 | 0.715x10* | 9.833x107° | 6.647x107>
8.6 0.501 12.029 0.149 1.584x1077 | 0.721x10* | 9.789x10™° | 6.179x107>

12.10.6 Effect of the Granular Coefficient of Restitution, e,

Figure 12.7 shows the predictions of the flow characteristics with the variation of the

granular coefficient of restitution e,. All the other input data are the same as listed in Table 12.1.
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As the coefficient of restitution increases, the collision between the granules becomes more
elastic and there is less energy loss by inelastic collision between the granules. Therefore, the
fluctuation of the granules in the middle of the gap becomes larger, resulting in an increase in the
pseudo temperature. The behavior of the volume fraction and the pseudo temperature are
inversely related: As the volume fraction decreases, the pseudo temperature increases. The slip
velocity decreases at the boundaries and the velocity gradient increases in the middle of the gap
which causes the viscous dissipation to increase. The granular coefficient of restitution is directly

related to the viscous dissipation: The parameter 7 that appears in the viscous dissipation
equation (4-10) is a constant characterizing the inelastic collision between granules (4-3) and

defined as 7 = 0.5(1+ep). The coefficient of restitution parameter e, =1 for perfectly elastic

granules, and e, =0 for perfectly inelastic granules. On the boundaries, since increasing the
coefficient of restitution causes a reduction in the slip velocity, the pseudo temperature becomes
smaller.

Figure 12.7 also demonstrates the effect of the granular coefficient of restitution on the
dimensionless total shear stress and the stress due to the enduring contact. The shear stress due to
the enduring contact is slightly larger when e, is small. As e, increases, the fluctuation of the
granules in the middle of the gap becomes larger and the effect of the enduring contact
diminishes. The total shear stress is mostly influenced by the change in volume fraction. As e,
increases, the volume fraction decreases and causes the total shear stress to decrease but remains
constant across the gap. When e, is 0.98, the friction coefficient is 0.16 at the bottom plate and
the normalized mass flow rate is 0.2. Thus, the mass flow rate is reduced compared to the
benchmark case where the friction coefficient is 0.4 and the normalized mass flow rate is 0.3.
Note that the normal load is specified and the gap height is fixed in the simulations.

It is noted that the trend of the pseudo temperature and the solid volume fraction changes
considerably at the higher values of e, (0.9 and 0.98) compared to the benchmark case where e, =
0.8. This interesting phenomenon can be explained by examining to the two energy sources that
supply energy to the granules. One comes from the slip velocity at the boundary and the other is
the viscous dissipation in the interior of the flow. When e, is large, the slip velocity at the
boundary decreases and the viscous dissipation in the gap increases. Therefore, there is more
energy generated in the gap than at the boundaries by the slip velocity mechanism. Hence, the

boundaries receive more heat from the interior flow. The solid fraction trend is directly related to
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Figure 12.7 : Effect of the Granular Coefficient of Restitution, e,
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the granular temperature. When there is more pseudo energy generated within the gap thickness,
the surrounding granules within the gap have much larger fluctuation velocity than the ones near
the boundaries. Hence, the granular distribution becomes less dense within the gap and much

more granules accumulate at the boundaries.

12.10.7 Effect of the Wall Coefficient of Restitution, e,

Figure 12.8 shows the variation of the flow velocity, granular temperature, solid volume
fraction, and the normalized shear stress to the coefficient of restitution of both, top and bottom
plates. In these simulations, the granular coefficient of restitution e, is kept at 0.8 and the wall
restitution e, is varied from 0.8 to 1. The slip velocity increases as e,, increases. An increase in e,,
means that the wall is more elastic. Thus, near the boundaries the granules are loosely packed
and there is less energy loss during collision between the wall and the granules which implies
that there will be a rise in the pseudo temperature as a result of greater fluctuation. Therefore,
more energy is supplied from the boundaries to the flow. Since the granular temperature
increases near the wall, the solid volume fraction decreases at the boundaries. Away from the top
and bottom boundaries and towards the middle of the gap, the volume fraction increases
implying a greater concentration of granular solids, associated with a reduction in the fluctuation
velocity. Hence, in the middle of the gap where the granules are more densely packed, there will
be less fluctuation and the amount of energy dissipation is lower, and the pseudo temperature is
reduced. As e, increases, the curvature profile of the granular temperature and the solid volume
fraction becomes greater because of the change in the mass flow rate to match the specified
normal load.

As e, increases, the mass flow rate decreases but there is no change in the trends of the
granular temperature and the solid volume fraction. The parameter e, affects only the slip

velocity, not the interior of the flow. When e, is large, no significant effect is noticed on the

%
.

mass flow rate. When e,, = 1.0, the mass flow rate is m =0.298 and the friction coefficient

%
]

is f =0.37 and at benchmark simulations when e,, is 0.8, the mass flow rate is m = 0.3 and the
friction coefficient is f =0.4. Hence, the effect on the mass flow rate caused by changing e, is

much less than that of e, which implies that the coefficient of restitution between the granules

play a much more substantial role than the coefficient of restitution between the granules and the
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Figure 12.8 : Effect of the Wall Coefficient of Restitution, e,,
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wall. Similarly the effect on the shear stress and the stress due to enduring contact is almost
negligible. As e, increases, the total shear stresses and the shear stresses due to enduring contact

does not show any changes and remain constant across the gap.

12.10.8 Effect of the Enduring Contact on the True Temperature, Tg

The results presented in this section focus on applying the theory to determine the true
temperature of the granular flow sheared between two parallel plates and also predict how hot
the interfaces of the top and bottom plates can become. These predictions are based on the
solution of the flow velocity, pseudo temperature, and solid volume fraction presented earlier.
Both the top and the bottom plates are made of Stainless Steel. They both have a length of 26
mm and thickness of 13 mm. The top plate is stationary, while the velocity of the bottom plate is

U =4.6m/sec. From the properties of the Stainless Steel [85], the thermal conductivity, the

specific heat, and the density are selected as k;,, =k,

=16.3W/mK, ¢, =c,,, =500 J/kgK,
Prop = Pou = 8000kg/m’ respectively. The properties of the Titanium Dioxide [88] are assumed

to be p, =4260kg/m’, k,=8.79 W/mK, and c,=711 J/kgK. The effective thermal

conductivity is computed based on the prediction of the solid volume fraction. The value of the
convection heat transfer coefficient () for the moving plate is unknown. Based on Holman [86]

and Incropera & DeWitt [87], the convection heat transfer coefficient for the moving plate is

assumed to be h,, =50 W/m°K , while for the stationary plate the convection heat transfer

Bott

coefficient is much smaller and is assumed to be A;,, =15 W/m’K .

Figure 12.9 represents the predicted distribution of the true temperature including the
enduring contact effect at the bottom interface, mid-plane and top interface along the moving x-
direction. The results are compared to the benchmark simulations without the consideration of
the enduring contact. The true temperature increases from inlet to outlet and the rise predicted
over the stationary disc is greater than the one predicted over the moving disc. This phenomenon
can be explained by examining the energy equation of the granular flow. Three terms governed
this equation: the convection, the conduction, and the dissipation. The convection term
represents the rate of temperature transported through the movement of the flow from inlet to

outlet by convection relative to the interfaces. The dissipation term supplies the energy to the
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flow as a result of inelastic collision between the granules. As a result of the convection and
dissipation terms, heat is produced due to the inelastic collision between the granules and thus
the true temperature is predicted to increase from the inlet to the outlet. Since the effective
thermal conductivity for the granular flow used is very small, it results in a prediction of small
rise in the temperatures at the interfaces and heat is retained within the granular flow.

It is clear that the magnitude of true temperature with consideration of enduring contact is
greater than the case without enduring contact at the interfaces, as well as in the middle of the
gap. This increase is a result of the role of enduring contact between the granules. When the
enduring contact exists, it causes an increase in the friction between the granules and therefore a
higher temperature within the flow. The increase in the friction between the granules means that
the frictional stress due to the enduring contact starts to become noticeable. An increase in the
frictional stress results in a reduction in the total shear stress as explained in Figure 12.6, which
causes reduction in the friction coefficient. In addition, as shown in Figure 12.3, the solid volume
fraction decreases and the pseudo temperature tends to increase due to the existence of enduring
force. The larger the pseudo temperature, the greater the dissipation causing the true temperature
to increase compared to the case without enduring effect. This phenomenon indicates that the
enduring contact plays a significant role in predicting the true temperature.

Figure 12.10 demonstrates how the true temperature is distributed within the granular
flow and in the fields of both bottom and top plates. The energy is transferred to the top and
bottom plates via the thin layer of the plates’ thickness that is in contact with the temperature
produced within the flow of the granular material. It is noted that the temperature at the top plate
interface is slightly larger than the bottom plate interface due to the high heat convection
coefficient of the moving plate. The true temperature distribution within the granular flow
demonstrates the effect of the viscous dissipation term. The true temperature builds up from the

inlet to the outlet due to the heat source.

12.11 Conclusions

This chapter deals with the granular flow sheared between two parallel plates with
consideration of the enduring contact. The formulation of the governing equations and boundary
conditions are presented. The characteristics of the flow are investigated in a “transient regime”

where both kinetic-collision effect and enduring contact exists concurrently.
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The results of this chapter reveal that the effect of enduring contact between granules is
very important and must be considered especially at low operating speeds and when dealing with
high solid volume fractions, which is typically the case when dealing with granular lubrication,
and it also show a definite effect on the true temperature. At a moderately high speed, the effect
of enduring contact is very small and the trends are analogous to the case without the
consideration of the enduring contact. As the sliding speed decreases, the enduring contact force

between the granules begins to play a role in supporting the applied load. In this case, the
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profiles of the volume fraction and the pseudo temperature across the gap become more flattened
and the load is solely carried by the stationary granules. The lower the speed, the larger the effect
of the enduring contact and the less is the collision between the granules. As a result, the total
shear stress becomes smaller. As the speed increases, the enduring contact effect becomes less
and more collision occurs in the flow. Thus, the total shear stress increases. Furthermore, at very
low speed the granules are almost stationary and a lower friction coefficient is predicted.
However, at relatively high speed where the effect of enduring contact is nil, the friction
coefficient is identical to the case without the effect of the enduring contact.

The true temperature is also studied. The distribution of the true temperature at both top
and bottom interfaces along the x-direction is predicted. The true temperature increases from the
inlet to the outlet for both top and bottom interfaces, as well as the mid-plane. When comparing
with the case without the enduring contact effect, it is found that the enduring contact has
noticeable influence on increasing the true temperature due to the friction between the granules.
The viscous dissipation term is found to play a role on predicting the true temperature. It supplies
energy to the flow as a result of inelastic collision between the granules. The viscous dissipation
appears in the pseudo energy equation and is a function of the fluctuation velocity (pseudo
temperature) and the solid volume fraction. The larger the fluctuation velocity, the greater
becomes the chance of collision between granules. Therefore, the energy dissipation caused by
the inelastic collision increases which cause the true temperature to increase.

It is concluded that for a flow between two parallel plates, a very small rise of the true
temperature is experienced in the direction of motion from inlet to outlet, whereas Heshmat and
Brewe [89] experienced a higher temperature rise but with a larger speed as previously explained

in Chapter 11.
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CHAPTER 13. CONCLUDING REMARKS

It is well known that conventional lubricating oils are completely ineffective beyond a
certain operating temperature. They tend to break down at operating temperature exceeding 200
°C, thereby degrading their ability to support load. Unlike conventional lubricants, a suitable
granular material can effectively lubricate a bearing under extreme temperatures and can resist
breaking down as a result of large shear forces. Thus, it has been identified as a promising
lubricant for this purpose.

The motivation for this dissertation arises from the need for bearing technology that can
accommodate the future generation of engines aiming for higher thermodynamic efficiency, less
fuel consumption and increased thrust-to-weight ratio in turbine engines. Other applications
using granular materials can vary from auxiliary bearings particularly during start-up periods, to
the use in micro-nano-scale systems such as MEMS devices. Despite the fact that there is a
general agreement on the needs for such a new oil-free granular lubrication mechanisms,
modeling and prediction of granular flows still remains distant from being well understood.
While the archival literature contains a great deal of research on granular lubrication, a number
of important issues remain largely unexplored.

In this dissertation, a detailed study of the granular collision lubrication, both
theoretically and experimentally is presented based on the kinetic theory of the granular material
where the granules interact with each other and with the boundary surfaces through
instantaneous, binary collisions, characterized by a constant coefficient of restitution. The
granular lubrication in Couette flows is of particular interest. The governing equations and the
proper boundary conditions are derived based on the Lun’s constitutive relations and Johnson
and Jackson’s general model for the frictional-collisional mechanism of the granular material
sheared between two infinitely parallel plates. A series of simulations are reported where the
effect of the viscous dissipation in the energy equation is considered. It was found that the
energy supply to the granular flow arises from the slip velocity at the boundaries, and from the
viscous dissipation in the middle of the gap.

Granular slippage is one of the important characteristics of granular lubrication. During
shearing, the slip velocity provides energy from the boundaries into the granules contained

within the gap. The slip at the boundaries increases the pseudo temperature and hence more
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energy is being supplied to the interior flow. The viscous dissipation term that appears in the
pseudo energy equation is ruled mainly by the coefficient of restitution. The coefficient of
restitution is a constant parameter that describes the inelastic collision between the granules
where it plays a major role in predicting the pseudo temperature and the solid volume fraction.
When the granules become nearly elastic (large e,), there is less energy loss by inelastic collision
and the viscous dissipation in the interior flow increases. The results show good agreement with
several published papers.

Also, a theory that ties the true temperature to the grain mobility is developed by
predicting the true temperature of granular lubricants sheared between two infinitely wide
parallel plates. The true temperature of a granular material depends on the balance between the
source of energy, and the dissipation of energy due to inelastic collisions. The distribution of the
true temperature at both top and bottom interfaces along the x-direction is predicted and the
effect of a number of important parameters investigated. The results show that the temperature
increases from the inlet to the outlet for both top and bottom interfaces. The viscous dissipation
term appears in the pseudo energy equation and is a function of the fluctuation velocity (pseudo
temperature) and the solid volume fraction. As the fluctuation velocity increases, the chance of
collision between granules becomes larger. Therefore, the energy dissipation caused by the
inelastic collision increase results in an increase in the true temperature.

Increasing the coefficient of restitution of the granular material reduces the energy loss
by inelastic collision between the granules (less heat dissipation). Therefore, a reduction in the
true temperature at the interfaces is predicted. Additionally, it is found that the pseudo
temperature tends to increase by increasing the sliding velocity of the bottom plate for both
interfaces.

While most of the previous published researches on granular lubrication have dealt with
rapid shearing regime where collisions are considered instantaneous, the effect of so-called
enduring contact between granules has been largely ignored. However, in a dense regime and at
relatively small sliding speeds, the contact time between the granules is larger than the time
between collisions and thus the friction between the granules starts to play an important role.
Therefore, the enduring contact becomes dominant over the kinetic and collisional stresses. To
characterize the effect of enduring contact, the Coulomb friction model is utilized to take

enduring contact into consideration. The characteristics of the granular flow are investigated in a
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transient regime, where both kinetic-collision effect and enduring contact exist concurrently. The
results reveal that the enduring contact is a strong function of the solid volume fraction and its
effect tends to dominate the solution at relatively small sliding speeds.

The results reveal that at a moderately high speed, the effect of enduring contact is very
small and the trends are analogous to the case without the consideration of the enduring contact.
As the sliding speed decreases, the enduring contact force between the granules begins to play a
role in supporting the applied load. In this case, the profiles of the volume fraction and the
pseudo temperature across the gap become more flattened and the load is solely carried by the
stationary granules. Furthermore, at very low speed the granules are almost stationary and a
lower friction coefficient is predicted. However, at relatively high speed where the effect of
enduring contact is nil, the friction coefficient is identical to the case without the effect of the
enduring contact. In addition, it is found that the enduring contact has a noticeable effect on
increasing the true temperature at the interfaces due to the friction between the granules.

In addition, it is established that granular material plays a major role in determining the
axial load (lift) transmitted between the surfaces, the sliding friction and the slip velocity, but
uncertainties still remain on several issues which require more investigation. Experimental
investigations are presented to demonstrate the lift phenomenon observed in an annular shear cell
apparatus using 3-mm stainless steel balls. The effects of the friction coefficient and the surface
roughness are expressed as a function of the rotational speed and the applied load. Simulations of
the kinetic theory for the granular material are performed and compared with the experimental
results. The agreement between the theory and the experiment is illustrated. Furthermore, no
adjustments for the friction coefficients or displacements were made to obtain a better fit.

It is found that the frictional force that can be generated within a sheared granular
material is critical to understanding its strength but has significant applications in geophysics and
technology. When shear stress is applied, sliding starts gradually at a frictional force smaller than
the frictional force generated during steady sliding, but by increasing the shear, the frictional
strength increases and sliding stabilizes. At low speed spherical granules accommodate strain
preferentially by rolling, then by increasing the speed, the proportion of rolling to sliding
decreases leading to higher friction. Consequently, by increasing the speed of the rotating disk,
the collision rate of the granules is enhanced and more momentum is passed on to the lower disk

to ensure complete lift between the top and bottom surfaces and then reach a steady state. The
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larger the applied load, the lesser the lift produced due to the increase of compactness of the
granules within the gap. As such, these above presented set of experiments provide a unique
quantitative evidence for the measure of the phenomenon of the lift.

Granular flows exhibit a variety of phenomena that have both fluid and solid aspects.
Stick-slip is a complex phenomenon that depends on many parameters. Given the recent interest
in the tribology of granules, it is surprising that there have been limited studies relevant to
investigation of the stick-slip phenomenon in granular lubrication. Therefore, a series of
experimental investigation on the nature of stick-slip associated with granular materials sheared
at low speeds is demonstrated using 1.4-mm ceramic balls. Specifically, the effect of stick-slip
on the friction and the change in the spatial arrangement of granules in a granular shear cell are
demonstrated. Microscopic events for the non-periodic stick-slip motion at high stiffness are also
demonstrated. The results revealed the occurrence of stick-slip phenomenon at low speed and its

behavior is found to be similar to the results presented by several researchers.
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