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Summary 

 

Gas-solid two-phase flows are encountered in a wide variety of industrial applications. 

The complex hydrodynamics of these systems is still not fully understood which renders 

the scale-up of these units difficult. Therefore the development and va lidation of 

fundamental hydrodynamic models is of utmost importance to gain more insight into the 

complex hydrodynamics.  

 

The study reported in this thesis is concerned with the granular dynamics of gas-solid 

two-phase flows. In granular dynamics simulations the Newtonian equations of motion 

are solved for each individual particle in the system while taking into account the mutual 

interaction between particles and between particles and walls. The gas-phase 

hydrodynamics is described by the volume averaged Navier-Stokes equations for two-

phase flow. The gas-phase flow is resolved on a length scale that is larger than the 

particle size. Two types of discrete particle models have been developed to be 

incorporated into the granular dynamics simulations. The first is a (2-D and 3-D) hard-

sphere model where the particles are assumed to interact through instantaneous, binary 

collisions. A sequence of collisions is processed one collision at a time. The second is a 

(2-D) soft-sphere linear spring/dash-pot model where contact forces between the particles 

are calculated from the overlap between the particles. This soft-sphere model was chosen 

since it is the most frequently used model in the literature and hence it is best suited for a 

comparison with the hard-sphere model. The key collision parameters in both models are 

the coefficient of restitution (1 ≥ e ≥ 0), the coefficient of friction (µ  ≥ 0) and the 

coefficient of tangential restitution (1 ≥ β0 ≥ 0). The linear spring/dash-pot model also 

requires a spring stiffness to describe the particle interaction. The soft-sphere model is 

capable of handling multiple particle interactions and can handle static situations in 

contrast to the hard-sphere model. 

 

The effect of the collision parameters on the bed dynamics in a gas-fluidised bed with 

homogeneous inflow conditions was investigated. The collision parameters (except for 
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β0) turned out to have a profound influence on the fluidisation behaviour. When the 

collisions were assumed to be fully elastic and perfectly smooth (e = 1, µ = 0) no bubbles 

were observed and pressure fluctuations inside the bed were rather small. When more 

realistic values for the collision parameters were used (e < 1, µ > 0) bubbles did appear 

and the pressure fluctuations were larger. These trends were observed in 2-D simulations 

as well as in 3-D simulations. The Root Mean Square (RMS) of the pressure fluctuations 

inside the bed showed an almost linear dependency on the energy dissipation rate by 

collisions during the simulation at low values of the energy dissipation rate. The 

influence of a (log-normal) particle size distribution on the bed dynamics was less 

pronounced than the influence of the collision parameters. When a wider size distribution 

was taken into account the pressure peaks inside the bed were smaller. 

 

The case of bubble formation at a single central orifice was chosen for a comparison 

between the (2-D) hard-sphere model and the (2-D) soft-sphere model. Preliminary soft-

sphere simulations revealed that a minimum value of the spring stiffness was required to 

ensure stable simulations. For higher values of the spring stiffness the influence of the 

value of the spring stiffness on the simulation results was negligible but the required CPU 

time increased significantly. Incorporation of a (log-normal) particle size distribution 

improved the agreement between simulation and experiment. Hardly any difference could 

be observed between the results of the hard-sphere simulations and the soft-sphere 

simulations indicating that the assumption of binary collisions in the hard-sphere model is 

not limiting. With both types of models it was found that the assumption of fully elastic 

and perfectly smooth collisions resulted in much worse agreement between simulation 

and experiment: hardly any bubble could be observed. 

 

Segregation was successfully simulated with the (2-D) hard-sphere model for systems 

consisting of particles of equal size but different density as well as for systems consisting 

of particles of equal density but different size. In the latter case a clear steady state was 

not reached since the larger particles were continuously transported to the upper layers of 

the bed in bubble wakes. A statistical analysis showed a rather wide spread in segregation 

profiles indicating the limited value of a single frame analysis. A simulation assuming 
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fully elastic and perfectly smooth collisions showed a rapid and almost perfect 

segregation due to the absence of bubbles in this system. Preliminary experimental 

validation showed rather poor agreement between simulation and experiment. The 

simulation predicted segregation at a lower gas velocity than used in the experiment. 

 

The results of simulations of the riser section of a circulating fluidised bed proved to be 

very sensitive with respect to the collision parameters. In the case of fully elastic and 

perfectly smooth collisions hardly any clustering of particles could be observed as 

opposed to the case where these collision parameters were assigned realistic values. 

Particle-wall collisions turned out to have very little influence on the flow structure. A 

strong effect of the collision properties on the axial solids profile was found where a 

pronounced build-up of solids was observed in the simulation with realistic values for the 

collision parameters. In the simulation assuming fully elastic and perfectly smooth 

collisions no build-up of solids was observed. This result is supported by experimental 

findings reported in the open literature. Lift forces acting on the suspended particles 

turned out to have a slightly redispersive effect on the flow structure which made the 

radial segregation of the solids a little less pronounced. 

 

The (2-D) hard-sphere model was experimentally validated using the Positron Emission 

Particle Tracking (PEPT) facility at the University of Birmingham. A quasi 2-D, gas-

fluidised bed with homogeneous inflow conditions was used for the validation. In the 

experiment the motion of a single tracer particle was tracked during one hour. The PEPT 

data was time-averaged to allow for a comparison with the results of a simulation where 

15,000 particles were tracked during 45 seconds. The collision parameters required for 

the simulation were obtained from independent measurements at the Open University at 

Milton Keynes. The results showed good agreement between experiment and simulation 

when the measured values for the collision parameters were used. When the collisions 

were assumed to be fully elastic and perfectly smooth the agreement was much worse. 
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Samenvatting 

 

Gas-vast tweefasenstromingen vormen een belangrijk onderdeel van een grote 

verscheidenheid aan industriële processen. Het opschalen van dergelijke processen wordt 

bemoeilijkt door de complexiteit van de hydrodynamica van dergelijke systemen. Het is 

daarom van het grootste belang meer inzicht te krijgen in deze complexe hydrodynamica 

door het ontwikkelen en valideren van fundamentele hydrodynamische modellen. 

 

Het onderzoek dat ten grondslag ligt aan dit proefschrift houdt zich bezig met de 

granulaire dynamica van gas-vast tweefasenstromingen. In granulaire dynamica 

simulaties worden de Newtonse bewegingsvergelijkingen opgelost voor elk individueel 

granulair deeltje in het systeem waarbij de interactie tussen deeltjes onderling alsmede de 

interactie tussen deeltjes en systeemwanden wordt verdisconteerd. De hydrodynamica 

van de gasfase wordt beschreven door de volume-gemiddelde Navier-Stokes 

vergelijkingen voor tweefasenstroming. De stroming van de gasfase wordt opgelost op 

een lengteschaal die groter is dan de grootte van een afzonderlijk vaste stof deeltje. Voor 

de granulaire dynamica simulaties zijn twee soorten discrete deeltjes modellen 

ontwikkeld. De eerste is een (2-D en 3-D) harde bollen model waar de interactie tussen 

de deeltjes wordt ve rondersteld te verlopen via instantane, binaire botsingen. De 

opeenvolgende botsingen worden hierbij één voor één afgehandeld in chronologische 

volgorde. Het tweede model is een (2-D) zachte bollen lineaire-veer/smoorpot model 

waarbij de contactkrachten tussen de deeltjes worden berekend uit hun onderlinge 

overlap. Dit zachte bollen model is gekozen omdat het het meest gebruikt is in de 

literatuur en daardoor het best geschikt is voor een vergelijk met het harde bollen model. 

De belangrijkste botsingsparameters in beide modellen zijn de restitutiecoëfficiënt (1 ≥ e 

≥ 0), de frictiecoëfficiënt (µ ≥ 0) en de tangentiele restitutiecoëfficiënt (1 ≥ β0 ≥ 0). In het 

lineaire-veer/smoorpotmodel is behalve deze parameters ook nog een veerkonstante 

vereist om de deeltjesinteractie te beschrijven. In tegenstelling tot het harde bollen model 
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is het zachte bollen model in staat om meervoudige deeltjesinteractie te verdisconteren en 

tevens is het geschikt om statische situaties te simuleren. 

 

De invloed van de botsingsparameters op het stromingsgedrag van een gas-gefluidiseerd 

bed met homogene instroomcondities is onderzocht. De botsingsparameters (met 

uitzondering van β0) bleken een grote invloed te hebben op het fluïdisatiegedrag. Als 

werd aangenomen dat de botsingen volledig elastisch en perfect glad verliepen (e = 1, µ = 

0) werden geen bellen waargenomen en waren de drukfluctuaties in het bed klein. Met 

realistische waarden voor de botsingsparameters (e < 1, µ > 0) werden wel bellen 

waargenomen en waren de drukfluctuaties in het bed aanzienlijk groter. Deze trend werd 

zowel in 2-D als in 3-D simulaties waargenomen. De gemiddelde kwadratische waarde 

van de drukfluctuaties vertoonde een zo goed als lineaire afhankelijkheid van de 

energiedissipatiesnelheid bij lage waarden van deze laatste. The invloed van een (log-

normale) deeltjesgrootteverdeling op het fluïdisatiegedrag was minder groot dan de 

invloed van de botsingsparameters. Met een bredere deeltjesgrootteverdeling werden de 

drukpieken in het bed iets lager. 

 

Een vergelijk tussen het (2-D) zachte bollen en het (2-D) harde bollen model werd 

gemaakt aan de hand van simulaties van belvorming aan een centraal inspuitpunt. 

Verkennende berekeningen met het zachte bollen model lieten zien dat een minimum 

waarde van de veerkonstante vereist was om verzekerd te zijn van een stabiele simulatie. 

Voor hogere waarden van de veerkonstante werd de invloed ervan op de resultaten van de 

simulaties verwaarloosbaar waarbij echter wel de benodigde rekentijd drastisch toenam. 

Wanneer een (log-normale) deeltjesgrootteverdeling werd verdisconteerd verbeterde de 

overeenkomst tussen simulatie en experiment aanzienlijk. Er kon echter nauwelijks enig 

verschil worden waargenomen tussen de resultaten van het harde bollen model en die van 

het zachte bollen model. Dit gaf aan dat de aanname van binaire botsingen in het harde 

bollen model niet beperkend is. Met beide typen modellen werd de overeenkomst tussen 

simulatie en experiment veel slechter wanneer een simulatie werd uitgevoerd onder de 

aanname van volledig elastische en perfect gladde botsingen. 

 



Samenvatting 

________________________________________________________________________ 

 7

Het (2-D) harde bollen model werd met succes ingezet bij het simuleren van segregatie in 

systemen die bestaan uit deeltjes van gelijke grootte maar verschillende dichtheid 

alsmede systemen bestaande uit deeltjes van gelijke dichtheid maar verschillende grootte. 

In dit laatste geval werd geen stationaire toestand bereikt omdat de deeltjes continu 

omhoog werden getransporteerd in het zog van bellen. Een statistische analyse liet een 

grote spreiding zien in het segregatieprofiel wat aangeeft dat een analyse op basis van een 

tijdsopname beperkte waarde heeft. Een simulatie waarbij de botsingen volledig elastisch 

en perfect glad werden verondersteld liet een zeer snelle en bijna volledige segregatie 

zien wat toegeschreven kon worden aan de afwezigheid van bellen in dit systeem. Een 

eerste experimentele validatie liet een matige overeenkomst zien tussen simulatie en 

experiment. De simulatie voorspelde segregatie bij lagere gassnelheden. 

 

In simulaties van de riser-sectie van een circulerend gefluïdiseerd bed werd gevonden dat 

het stromingsgedrag sterk afhankelijk is van de botsingsparameters. Clustervorming werd 

niet of nauwelijks waargenomen als de botsingen volledig elastisch en perfect glad 

werden verondersteld. Met realistische waarden voor deze parameters kon clustervorming 

wel degelijk worden waargenomen. De botsingsparameters voor deeltjes-wand botsingen 

bleken nauwelijks invloed op het stromingsgedrag te hebben. In de simulatie met 

realistische waarden voor de botsingsparameters werd een duidelijke opbouw van een 

axiaal vaste stof profiel geconstateerd in tegenstelling tot de simulatie met ideale 

botsingsparameters. Dit is in overeenstemming met experimenteel waargenomen trends 

gerapporteerd in de open literatuur. Liftkrachten bleken slechts een klein dispersief effect 

te hebben wat er toe bij droeg dat de radiële segregatie van de vaste stof wat minder groot 

was. 

 

Het (2-D) harde bollen model werd experimenteel gevalideerd met behulp van Positron 

Emission Particle Tracking (PEPT) experimenten uitgevoerd aan de universiteit van 

Birmingham. Een quasi 2-D gas-gefluïdiseerd bed met homogene instroomcondities werd 

gebruikt voor de validatie. In het PEPT experiment werd de beweging van een tracer-

deeltje gevolgd gedurende een uur. De data van dit experiment werd tijd-gemiddeld om 

een vergelijk mogelijk te maken met een simulatie waarin 15000 deeltjes werden gevolgd 
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gedurende 45 seconden. De botsingsparameters benodigd voor de simulatie werden 

onafhankelijk gemeten aan de Open University in Milton Keynes. De resultaten van een 

simulatie waarin deze waarden werden gebruikt vertoonde goede  overeenstemming met 

het experiment. De overeenstemming tussen het experiment en een simulatie waarin de 

botsingen volledig elastisch en perfect glad werden verondersteld was beduidend minder 

goed. 
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Chapter 1.  

 

GENERAL INTRODUCTION 

 

 

Abstract: 

 

In this chapter a brief introduction to fluidisation is presented. The hydrodynamics of 

gas-fluidised beds is very complex and still not very well understood which renders the 

scale-up of these units difficult. Therefore fundamental hydrodynamic models are 

required to gain more insight into the hydrodynamics of gas-fluidised beds. These 

fundamental models can be classified into three categories based on the level of 

microscopy featured in the model. In this thesis the focus is on discrete particle models 

which form the intermediate category in the concept of multi-scale modelling. The 

position of discrete particle models within the multi-scale modelling concept is explained 

and the objective of the work presented in this thesis is formulated. Finally the outline of 

this thesis is presented. 
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1. Fluidisation 

 

Gas-fluidised beds are widely applied in the chemical process industry (Kunii and 

Levenspiel, 1991) because of several advantageous properties including isothermal 

conditions throughout the bed, excellent heat and mass transfer properties and the 

possibility of continuous operation. Typical applications cover a wide variety of physical 

and chemical processes such as fluidised bed combustion, catalytic cracking of oil, gas-

phase polymerisation of olefins and fluidised bed granulation (detergents, fertilisers) to 

name a few.  

 

In gas-fluidised beds the gravity force acting on the solid particles is compensated by the 

drag forces exerted on the particles by the upward flowing gas. The minimum fluidisation 

velocity (umf) is defined as the superficial gas velocity at which the gravity force acting on 

the particles is just counterbalanced by the drag forces exerted on the particles by the gas 

phase. When operated at gas velocities above umf several regimes are encountered. The 

three regimes that are featured in this thesis are presented in Figure 1.1. In this figure the 

gas velocity increases from left to right. 

 
 
 
 
Figure 1.1. The three fluidisation regimes featured in this thesis. From left to right: 

the bubbling regime, the slug flow regime and the fast fluidisation regime. 
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At velocities exceeding umf usually gas bubbles are present in the bed. These bubbles 

have a decisive influence on the hydrodynamics of a bubbling fluidised bed and hence on 

its performance as a chemical reactor and/or a heat exchange unit. When the gas velocity 

is increased further also the size of the bubbles increases. The bubble size may approach 

the bed diameter in which case the slug flow regime prevails. When the gas velocity is 

increased beyond the terminal fall velocity of the particles the fast fluidisation regime is 

encountered. In this regime the particles are entrained with the gas flow and transported 

upward through the riser. At the top of the riser the particles are separated from the gas in 

a cyclone and fed back to the bottom of the riser. Such systems are commonly referred to 

as Circulating Fluidised Beds (CFB’s). In between the slug flow and the fast fluidisation 

regime the turbulent fluidisation regime can be distinguished and when the gas velocity is 

further increased starting in the fast fluidisation regime the pneumatic transport regime is 

encountered. In this thesis however, the focus is on the bubbling, slug flow, and fast 

fluidisation regime. 

 

Although gas-fluidised beds are widely applied, the scale-up of these systems is still very 

complicated which is mainly due to the complex hydrodynamics of these systems. 

Therefore it is of crucial importance to develop a thorough understanding of the 

hydrodynamics of gas-fluidised beds. Together with the development of dedicated 

experimental techniques the development of fundamental hydrodynamic models is of 

utmost importance to achieve a better understanding of fluidisation. Eventually this will 

lead to the improvement of existing processes, improved scale-up and the design of more 

efficient future processes. In the work presented in this thesis the development of such a 

fundamental hydrodynamic model is described and the results obtained with it are 

presented. 

 

2. Hydrodynamic modelling 

 

During the last few decades Computational Fluid Dynamics (CFD) has become a very 

powerful and versatile tool for the numerical analysis of transport phenomena (Kuipers 
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and van Swaaij, 1998). With continuously increasing computer power combined with the 

development of improved physical models CFD has become a very useful tool for 

chemical engineers. CFD modelling of gas-fluidised beds has proven to be successful and 

new developments in this area are promising. The majority of studies on modelling of 

fluidised beds is concerned with the hydrodynamics only. Although attempts have been 

reported where the hydrodynamics were modelled combined with mass transfer and 

chemical reaction (Samuelsberg and Hjertager (1996), Gao et al., 1999) the results of 

such attempts depend strongly on how well the hydrodynamics is modelled. Kuipers et al. 

(1998) demonstrated that the predicted performance of a riser reactor in terms of 

chemical conversion depends strongly on the prevailing flow structure in the riser. If the 

flow structure is not well captured by the hydrodynamic model a sensible prediction of 

the reactor performance is impossible. Therefore the development of reliable 

hydrodynamic models is of utmost importance in order to arrive ultimately at models that 

are capable of predicting the performance of fluidised beds reactors. Hence, the focus of 

the present study is on the hydrodynamics only. 

 

2.1 Multi-scale modelling 

Due to the complexity of the hydrodynamics of multi-phase flows it has become accepted 

that a single generalised CFD model cannot cover the wide variety of phenomena 

encountered in multi-phase flows (Delnoij et al. 1997, Kuipers and van Swaaij, 1997). 

Instead, specific models have to be developed that are tailor made to capture the relevant 

phenomena occurring at the length scale to which they are applied. By incorporating 

microscopic information from sub scale models and passing on information to super scale 

models a multi-scale modelling concept can be established.  

 

Three different classes of fundamental hydrodynamic models (learning models according 

to van Swaaij, 1985) of gas-fluidised beds can be distinguished. These models can be 

combined together in a multi-scale concept for fundamental hydrodynamic models of 

gas-fluidised beds as is schematically represented in Figure 1.2. 
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In order to model a large (industrial) scale fluidised bed a continuum model, where the 

gas phase and the solids phase are regarded as interpenetrating continuous media, is the 

appropriate choice. This Eulerian-Eulerian type of model have been developed and 

successfully applied over the last two decades (Kuipers et al., 1992, Gidaspow, 1994 

among many others). These models require closure relations for the solids phase stress 

tensor and the fluid-particle drag where commonly empirical relations are used in the 

absence of more accurate closures. Improved closure relations for the solids phase stress 

tensor can be obtained by using the kinetic theory of granular flow (Sinclair and Jackson, 

1989, Nieuwland et al., 1996, among many others).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Multi-scale modelling concept for fundamental hydrodynamic models of 

gas-fluidised beds. 

 

In discrete particle models the Newtonian equations of motion are solved for each 

individual solid particle in the system. In this Eulerian-Lagrangian type of model a 

closure relation for the solids phase rheology is no longer required since the motion of the 

individual particles is solved directly. However, the number of particles that can be taken 

into account in this technique is limited (< 10-6). Therefore it is not yet possible, even 

with modern day super computers, to simulate a large (industrial) scale system. However, 

this type of model can be used to arrive at improved closure equations for continuum 

models by employing techniques from statistical mechanics. Also assumptions made 

Continuum models Large (industrial) scale 
simulations 

Discrete particle models Particle-particle interaction 
closure laws 

Lattice Boltzmann models Fluid particle interaction 
closure laws 
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within the framework of the kinetic theory of granular flow, as incorporated in advanced 

continuum models, can be verified. Since discrete particle models are very well suited to 

study the influence of particle properties on the hydrodynamics of gas-fluidised beds this 

makes them very useful models within the multi-scale modelling concept. However, 

discrete particle models still require closure relations for the fluid-particle drag since the 

gas flow is resolved on a length scale larger than the particle size. In the absence of better 

closures empirical relations for the fluid-particle drag have to be used.  

 

When the gas flow is resolved on a length scale smaller than the particle size these 

closure relations for fluid-particle drag are no longer required. Instead they can actually 

be obtained from the simulations. The Lattice Boltzmann technique seems to be best 

suited for such simulations because it is very flexible in dealing with complex flow 

geometries. In Chapter 3 some additional techniques besides Lattice Boltzmann 

simulations are presented that can be used for the same purpose. It is important to realise 

that such simulations are limited to systems consisting of a number of particles that is 

significantly smaller (<10-3) than the number of particles that can be taken into account 

using discrete particle models (<10-6). 

 

In short the multi-scale concept as presented in Figure 1.2 consists of three classes of 

models where more detail of the two-phase flow is resolved going from continuum 

models to discrete particle models to Lattice Boltzmann models. This goes at the cost of 

increased computational requirements which necessitates a size reduction of the 

simulated system. The model capable of simulating a larger system is fed with a closure 

relation obtained from a more microscopic simulation. In return the results of these 

simulations can be used to pass on information to models capable of simulating the flow 

on a larger scale. Before such a connection between separate scales can be established the 

individual simulation techniques must be well developed, verified and experimentally 

validated. In the work presented in this thesis the focus is on the development and the use 

of discrete particle models.  
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3. Discrete particle modelling 

 

In granular dynamics simulations of gas-fluidised beds the Newtonian equations of 

motion are solved for each individual solid particle by using a discrete particle model. For 

the fluid-particle interaction empirical relations have to be used since the hydrodynamics 

of the gas-phase is resolved on a length scale larger than the particle size.  

 

The discrete particle approach for gas-fluidised beds was pioneered by Tsuji et al. (1993) 

who developed a two-dimensional soft-sphere discrete particle model of a gas-fluidised 

bed based on the work of Cundall and Strack (1977). Kawaguchi et al. (1998) extended 

this model to three dimensions as far as the motion of the particles is concerned. Hoomans 

et al. (1996) presented a hard-sphere approach in their two-dimensiona l discrete particle 

model of a gas-fluidised bed. Ouyang and Li (1998) developed a slightly different version 

of this model. Xu and Yu (1997) presented a hybrid simulation technique that features 

elements from both hard-sphere and soft-sphere techniques. Mikami et al. (1998) 

extended the model originally developed by Tsuji et al. (1993) to include cohesive forces 

between the particles. Recent developments in this area include the (2-D) simulation of 

fluidised bed with internals (Rong et al., 1999) and the (2-D) simulation of gas-phase 

olefin polymerisation (Kaneko et al., 1999) where energy balances and chemical reaction 

rates were taken into account. 

 

As far as particle interaction is concerned a multi-scale modelling concept can be 

distinguished as is schematically presented in Figure 1.3. As mentioned in the previous 

section continuum models require closure relations for the solids phase rheology (i.e. 

viscosity, solids phase pressure). These relations can be obtained from discrete particle 

models by employing techniques from statistical mechanics. Discrete particle models can 

also be used to verify assumptions made in the kinetic theory of granular flow which is 

used in most of the recently developed continuum models. 

 

 



General Introduction 

______________________________________________________________________________________ 

 17

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Multi-scale modelling concept for models involving particle interaction.  

 

The particle interaction parameters required for the discrete particle models can be 

obtained from experiments as was the case in the work presented in this thesis. However, 

it is important to realise that these parameters can also be obtained from microscopic 

particle interaction models. By using the appropriate contact theory the particle 

interaction parameters can be obtained using only material properties as input. In this way 

a multi-scale concept for particle-interaction models arises. Transport properties for the 

solids-phase in a continuum model are obtained from discrete particle models and the 

particle interaction parameters required in discrete particle models are obtained from 

contact theory based on material properties.  

 

4. Outline of this thesis 

 

The objective of the work presented in this thesis is to study the influence of particle 

properties on the dynamics of gas-solid two-phase flows using discrete particle models. 

In chapters 2 and 3 the theoretical framework of the granular dynamics simulations of 

gas-fluidised beds will be presented and in the chapters 4, 5, 6, 7 and 8 several 

applications and experimental validation of these models will be discussed. 

Solids phase rheology Continuum models 

Particle interaction 
 parameters 

Discrete particle models 

Material properties Contact theory 
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Chapter 2 deals with granular dynamics. The two types of discrete particle models used in 

this work, the hard-sphere and the soft-sphere model, are presented in detail. The hard-

sphere model has been developed both in 2-D and in 3-D whereas the soft-sphere linear 

spring/dash-pot model has been developed in 2-D only. The two types of models are 

thoroughly discussed and a comparison will be presented. Furthermore an experimental 

technique to measure the collision parameters required in both types of models is 

presented. Finally the external forces acting on a single (Lagrangian) particle in a gas-

fluidised bed are presented. 

 

In Chapter 3 the gas phase dynamics is discussed for which the Eulerian approach was 

adopted. Alternative techniques will be discussed briefly. The volume averaged 

continuity and momentum conservation equations are presented together with the closure 

equations. Special attention is paid to the two-way coupling between the motion of the 

solid particles and the motion of the continuous gas-phase. 

 

In Chapter 4 the hard-sphere model is applied to gas-fluidised beds with homogenous 

inflow conditions. The dependency of the bed dynamics on the collision parameters will 

be investigated. Furthermore the influence of the incorporation of a (log-normal) particle 

size distribution on the bed dynamics is studied. Finally the results obtained with the 2D 

model are compared with the results obtained with the 3D model. 

 

In Chapter 5 the hard-sphere model is compared with the soft-sphere model. The 

formation of a single bubble at a central orifice will be used as a test case for the 

comparison. The dependency of the results of the soft-sphere model on the value of the 

spring stiffness is investigated and the influence of the incorporation of a (log-normal) 

particle size distribution will be studied. The results of the hard-sphere and soft-sphere 

model will be compared with each other and with experimental data. Finally the influence 

of the collision parameters on the bubble formation process will be investigated. 
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Chapter 6 deals with segregation phenomena in bubbling gas-fluidised beds. Simulations 

of systems consisting of particles of equal size but different density and systems 

consisting of particles of equal density but different size will be presented. Both the hard-

sphere (2-D) and the soft-sphere models are used. Segregation will be demonstrated for 

each of these systems and a statistical analysis of the segregation dynamics is presented 

for the system consisting of particles of equal density but different size. For the latter 

system the influence of the collision parameters on the segregation is investigated. Finally 

an experimental validation is performed using a specially designed set-up. 

 

In Chapter 7 the hard-sphere model is applied to riser flow. The model is modified to 

allow for a continuous transport of particles throughout the riser duct. The influence of 

the collision parameters on the flow structure in the riser will be investigated. The 

formation of clusters is studied and radial and axial solids profiles are obtained after time 

averaging of the data. The results will be compared with experimental data available in 

the open literature. 

 

Finally in Chapter 8 experimental validation of granular dynamics simulations of a gas-

fluidised bed with homogeneous inflow conditions is performed using the Positron 

Emission Particle Tracking (PEPT) facility at the University of Birmingham. In the PEPT 

experiment the motion of a single radioactive tracer particle is tracked during one hour. 

The time averaged data obtained from the experiment will be compared with the results 

of a simulation where 15,000 particles are tracked during 45 seconds. The results will be 

compared on the basis of velocity maps, occupancy plots and speed histograms. The 

results of a simulation where independently measured collision parameters are used will 

be compared with the results of a simulation assuming fully elastic, perfectly smooth 

collisions and the results of the PEPT experiment. 
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Chapter 2.  

 

GRANULAR DYNAMICS 

 

Abstract: 

 

In this chapter a review is presented of the various granular dynamics simulation 

techniques available in the literature. The approaches can be divided into three groups: 

hard-particle techniques, soft-particle techniques and Monte Carlo techniques. These 

three types of simulation are discussed with emphasis on their application to simulation 

of gas-solid two-phase flow. In this work two types of models were developed. The first is 

a hard-sphere model where the particles are assumed to interact through instantaneous, 

binary collisions. A sequence of collisions is processed one collision at a time. The 

second is a soft-sphere linear spring/dash-pot model where contact forces between the 

particles are calculated from the overlap between the particles. Both models are 

described in detail. The key parameters in these models to describe a collision are the 

coefficient of restitution (e), the coefficient of friction (µ) and the coefficient of tangential 

restitution (β0). The effect of these parameters on a single collision is demonstrated. A 

comparison between the hard-sphere and the soft-sphere model is presented. The soft-

sphere model is capable of simulating static situations unlike the hard-sphere technique. 

However in the soft-sphere model special care must be taken in the choice of time step 

and the spring stiffness required for the calculation of the repulsive force. It is shown that 

the spring stiffness of the tangential spring should not be taken equal to the stiffness of 

the normal spring in order to avoid unrealistic behaviour. Experiments are described that 

enable measurement of the three collision parameters by careful observation of single 

impacts. Finally the external forces acting on the particles used in the simulations of gas-

fluidised beds in this work are presented. 
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1. Introduction 

 

Measured by tons granular matter is after water the most manipulated material in the 

world (de Gennes, 1999). However, roughly 40% of the capacity of industrial plants is 

wasted due to problems related to transport of granular matter (Knowlton et al., 1994). 

Therefore it is not surprising that Granular Dynamics (GD) has attracted the interest of a 

large number and a wide variety of researchers over the last decades. The interest not 

only originates from industrial needs but there is also an increasing interest in granular 

media from a more fundamental perspective. Phenomena like heap fo rmation and arching 

provide both theoreticians and experimentalists with challenging problems concerning the 

statics of granular matter (de Gennes, 1999). However the greatest challenge is provided 

by the dynamics of this material which unveils a wealth of phenomena, such as standing 

waves in vibrated beds, segregation, clustering and inelastic collapse, that we are just 

beginning to understand (Jaeger et al., 1996). In this work the focus will be on the 

granular dynamics of gas-solid two-phase flow which is a field of research that has 

gained an increasing amount of attention over the last decade. 

 

The systems considered in this work are all operated in the grain inertia regime according 

to Bagnold (1954) which implies that particle-particle and particle-wall interactions are 

dominated by inertia rather than viscous forces. This holds for gas-solid flow with rather 

coarse particles which is the subject of study in this work. In the case of liquid-solid 

fluidised beds lubrication forces have to be taken into account (Schwarzer, 1995) and for 

liquid-solid systems with smaller particles (< 100 µm) direct particle interaction does not 

even occur. Such systems can be studied by means of Stokesian dynamics simulations 

(Ichiki and Hayakawa, 1995). The modelling approaches adopted in Granular Dynamics 

can be roughly divided into two groups: soft particle and hard particle approaches. Before 

the two approaches adopted in this work (hard-sphere and soft-sphere linear-spring/dash-

pot) will be described in detail in the preceding paragraphs a short review of the different 

approaches that are available in the literature will be presented. These approaches can be 

divided into three types of simulations: hard-particle approaches, soft-particle approaches 
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and Monte-Carlo approaches. Hard-particle simulations can be typified as event driven 

because the interaction times are small compared to free flight times. In event driven 

simulations the progression depends on the number of collisions that occurs. Soft-particle 

simulations can be typified as time driven because the interaction times are large 

compared to free flight times. In time driven simulations a constant time step is used to 

progress through the dynamics of the system. 

 

1.1 Hard-Particle Approaches 

 

The hard-sphere simulation technique was first presented by Alder and Wainwright 

(1957) in order to study phase transitions in molecular systems by means of numerical 

simulations. In a later paper (Alder and Wainwright, 1959) the technique was presented 

in more detail including a way to deal with a square well interaction potential apart from 

merely hard-sphere interaction. In hard-sphere simulations the particles are assumed to 

interact through instantaneous, binary collisions. A sequence of collisions is processed 

one collision at a time in order of occurrence. For this purpose a list of future collisions is 

compiled and updated when necessary. For a comprehensive introduction to this type of 

simulation the reader is referred to Allen and Tildesley (1990). A lot of effort has been 

put into the further optimisation and development of this event driven type of simulation 

technique (Marin et al., 1993). Over two decades after the publications by Alder and 

Wainwright the hard-sphere approach was discovered as a useful tool for granula r 

dynamics simulations (Campbell, 1985). The dissipative particle interaction in granular 

media makes these systems significantly different from molecular systems where energy 

is always conserved. Hence energy has to be continuously supplied to a granular system 

in order to keep the particles in motion. This can for instance be achieved by applying a 

shear rate through a proper choice of boundary conditions (Campbell, 1985). In granular 

dynamics simulations of gas-solid two-phase flow there is a constant stream of energy 

supplied to the particles through gravity and the drag force exerted on the particles by the 

gas-phase. For the remainder of this paragraph the focus will be on the various techniques 

used in granular dynamics simulations of gas-solid two-phase flow. 
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Tsuji et al. (1987) presented a hard-sphere granular dynamics model for dilute gas-solid 

flow in a horizontal channel. They neglected the particle-particle interaction but instead 

focussed on particle-wall interaction where an irregular bouncing model was used. This 

can be justified since the solids fraction in their system was very low (εs < 0.01). 

Sommerfeld (1990) and Frank et al. (1992) presented similar approaches where also 

attention was paid to experimental validation. 

 

For denser flows the particle-particle interaction can no longer be neglected. The problem 

in these simulations is not so much the description of the particle-particle interaction 

itself since accurate collision models are available. The main problem is the large number 

of particles and hence the large number of collisions that have to be detected and 

processed. A technique that takes particle-particle interaction into account without 

detecting and processing every single collision that occurs in the system is the Direct 

Simulation Monte Carlo (DSMC) technique that was originally developed by Bird (1976) 

for molecular simulations. This technique was employed by Yonemura et al. (1993) in 

their simulations of gas-solid flow in a vertical channel. A more detailed description of 

this technique was presented by Tsuji et al. (1998). The particles tracked in this 

simulation technique are not actual particles but ‘sample’ particles that represent several 

‘real’ particles. The DSMC method can therefore be regarded as a coarse grained model 

of the actual dynamics. The occurrence of a collision as well as the geometry of a 

collision (i.e. the collision coordinate system) are determined by a random number 

generator where the probability of a collision depends on the local solids fraction (the 

greater the solid fraction the greater the probability of a collision). However one should 

be careful when applying this technique since the modified Nanbu method used by Tsuji 

et al. (1998) does not guarantee exact conservation of energy in the absence of dissipative 

terms (Frezzoti, 1997). Oesterlé and Petitjean (1993) presented a technique that resembles 

the DSMC technique strongly but differs in the sense that the particles in their 

simulations are ‘real’ particles instead of ‘sample’ particles. 
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Hopkins et al. (1991) developed a type of hard-particle simulation technique where 

collisions were detected at constant time intervals. Although they did not apply it directly 

to gas-solid flow the technique is worthwhile mentioning here since Ge and Li (1997) and 

Ouyang and Li (1999) adopted this approach in their simulations of gas-fluidised beds. In 

this computational strategy the particles are assumed to interact as hard-spheres but the 

motion update is performed at constant time steps. After each time step the whole system 

is scanned for overlap between particles and when this is detected the particles involved 

are assumed to have collided during that time step and subsequently their new velocities 

are calculated. This technique works fine for relatively dilute systems when the time step 

is chosen relatively small. For denser systems overlap may be found between more than 

two particles which gives rise to incorrect dynamics. In the case of larger time steps it 

may be possible that collisions are overlooked. Hogue and Newland (1994) used a similar 

strategy in their simulations where a technique was used that was especially designed to 

handle non-spherical (i.e. polygonal) particles. In addition to the model of Hogue and 

Newland, Müller and Liebling (1995) presented a triangulation technique that enables a 

sequence of collisions between polygonal particles to be correctly processed.  

 

Hoomans et al. (1996) presented a true hard-sphere type of simulation technique for gas-

fluidised beds. This was the first time that this technique was developed and applied with 

success to such a dense system as a bubbling gas-fluidised bed. In this two-dimensional 

model a sequence of collisions is processed proceeding from one collision to the next by 

using a collision list that is compiled and updated in a highly efficient manner. In the 

following chapter this technique will be explained in detail. Lun and Liu (1997) presented 

a three-dimensional hard-sphere model for a more dilute gas-solid flow where they used a 

granular dynamics model presented earlier by Lun (1996).  

 

1.2 Soft-Particle Approaches 

 

The Distinct Element Method (DEM) developed by Cundall and Strack (1979) was the 

first granular dynamics simulation technique published in the open literature. They used a 
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two-dimensiona l soft particle model where the particles were allowed to overlap slightly. 

The contact forces were subsequently calculated from the deformation history of the 

contact using a linear spring/dash-pot model. This method allowed for multiple particle 

overlap although the net contact force was obtained from pair-wise interactions. Soft-

particle approaches differ in the choice of force scheme used to calculate the inter-particle 

forces. A review of various popular schemes for repulsive inter-particle forces is 

presented by Schäfer et al. (1996). Before the various soft-particle approaches used in 

fluidised bed simulations will be discussed, two alternatives to the Cundall and Strack 

model are briefly outlined here.  

 

Walton and Braun (1986) presented a model that uses two different spring constants to 

model energy dissipation instead of a dash-pot. The spring constant for the compression 

phase (loading) of the constant is taken to be lower than the constant used for the 

restitution phase (unloading). The coefficient of restitution can be related to the ratio of 

the two spring constants. This model was used by McCarthy and Ottino (1998) and 

Wightman et al. (1998) in their studies of granular mixing in a rotating container. 

 

Langston et al. (1994) presented a force scheme that was based on a continuous potential 

of an exponential form containing two unknown parameters, the stiffness of the 

interaction and an interaction constant. In a later paper (Langston et al., 1995) they 

presented a three-dimensional version of this model. The repulsive force was obtained by 

taking the gradient of this potential while the stiffness parameter was chosen in such a 

way that particle overlap could not become too high without requiring too small a time 

step. The interaction constant was chosen in such a way that the net force would be zero 

when a particle would rest on top of another particle in a gravity field. One should be 

careful when applying this model since it features rather unrealistic behaviour when using 

a cut-off distance greater than the particle diameter. When two particles that do not touch 

each other are positioned at the same height within the cut-off distance of the potential 

they will still experience a repulsive force. This is not physically correct behaviour for 

dry granular material. 
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The soft-sphere approach was first applied to gas-fluidised beds by Tsuji et al. (1993). In 

their two-dimensional model the particle interaction was calculated using a soft-sphere 

interaction model similar to the one presented by Cundall and Strack (1979). Previously 

Tsuji et al. (1992) presented a three-dimensional model (as far as the particles were 

concerned) for gas-solid flow in a horizontal pipe. However, in this model the gas-phase 

dynamics was represented by a one-dimensional model with hardly any dynamic features. 

A three-dimensional version of their fluidised bed model was presented by Kawaguchi et 

al. (1998). In that model the particle motion was resolved in full 3-D whereas the gas-

phase dynamics was still calculated in 2-D. This can be justified because the system used 

in their simulations was a rather flat (quasi 2-D) fluidised bed. In such a system the 

motion of the gas-phase in the third dimension can be neglected.  

 

Schwarzer (1995) presented a two-dimensional model of a liquid-fluidised bed. Apart 

from the inter-particle forces, for which the Cundall and Strack model was used, also 

lubrication forces were taken into account. These lubrication forces can be neglected for 

gas-fluidised beds but play an important role in liquid-fluidised beds. Also a Gaussian 

particle size distribution was taken into account in these simulations although the effect 

of the size distribution on the flow behaviour was not investigated. 

 

Xu and Yu (1997) presented a two-dimensional model of a gas-fluidised bed that was 

based on the model developed by Tsuji et al. (1993). However in their simulations a 

collision detection algorithm that is normally found in hard-sphere simulations was used 

to determine the first instant of contact precisely. The spring constants used in their 

simulations were much higher than the ones used by Tsuji et al. (1993). Unfortunately no 

results were reported that could show the importance of the detection algorithm for the 

overall simulation results. 

 

Mikami et al. (1998) extended the model developed by Tsuji et al. (1993) by 

incorporating liquid bridge forces to simulate cohesive particle fluidisation. The particles 

used in their simulations are still Geldart D particles but due to the liquid bridge forces 

the fluidisation behaviour resembles the behaviour of Geldart C particles strongly. 
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Mikami (1998) was also the first to present full 3-D simulations (also with respect to the 

gas-phase) where no less than 500,000 particles were used. 

 

1.3 Monte Carlo techniques 

 

Another popular method to study many particle systems is the Monte Carlo technique 

(Frenkel and Smit 1996). This method has been applied to granular systems by Rosato et 

al. (1986). In their Monte Carlo simulations a new overlap-free particle configuration is 

generated at each step. The change in the system energy is then calculated and if this 

change is negative the new configuration is accepted. If the system energy has increased 

the new configuration is accepted with a probability obtained from Boltzmann 

distribution based on the change in energy. Using this method Rosato et al. were able to 

simulate segregation phenomena in shaken or vibrated systems where effects due to an 

interstitial fluid were neglected. It is important to realise that time is not a variable in 

Monte Carlo simulations. A Monte Carlo step can only be linked to an actual time step by 

means of calibration but this is not a straightforward task. Therefore this method is not 

capable of simulating the dynamics of a granular system without the input of a-priory 

knowledge. 

 

The Monte Carlo technique is capable of predicting steady state (i.e. equilibrium) 

conditions and for that purpose it has certain advantages over dynamic simulations. 

Seibert and Burns (1998) were able to predict segregation phenomena in liquid-fluidised 

beds using an extended version of their previously developed model (Seibert and Burns, 

1996). In their model they used a net force (calculated from gravity and fluid drag) to 

calculate the change of energy involved with a particle movement. Although the results 

compared rather well with experimental data no statement was made about the time scale 

over which the phenomena occurred. This is of course to be expected for this type of 

simulation technique. 
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2. Hard-Sphere approach  

 

In the hard sphere model used in this work the particles are assumed to interact through 

binary, quasi- instantaneous collisions where contact occurs at a point. The particles are 

perfect, homogeneous spheres and the interaction forces are impulsive. In between 

collisions the particles are in free flight. First the collision model will be presented and 

then the computational strategy and some optimisation techniques will be described. 

Since the hard-sphere model was developed in 3-D as well as in 2-D the collision model 

will be presented in vector notation. For the 2-D version the z-component of the position 

and velocity vectors are zero and only rotation about the z-axis is considered.  

2.1 Collision model 

In the collision model it is assumed that the interaction forces are impulsive and therefore 

all other finite forces are negligible during collision. The original 2-D collision model 

was mapped after the model presented by Wang and Mason (1992). In this work however 

we will mainly adopt the notation used by Foerster et al. (1994) since that is more widely 

accepted (see for example Lun, 1997 and Tsuji et al. 1998). The coordinate systems used 

in our model are defined in Figure 2.1. 

 

Consider the two colliding spheres a and b in Figure 2.1 with position vectors ra and rb. 

The normal unit vector can now be defined: 

 

 
ba

ba

rr

rr
n

−
−

= . (2.1) 

 

Hence the normal unit vector points in the direction from the centre of particle b to the 

centre of particle a. The point of origin is the contact point. Prior to collision, the spheres 

with radii Ra and Rb and masses ma and mb have translation velocity vectors va and vb and 
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rotational velocity vectors ωa and ωb (clockwise rotation is negative by definition). 

Velocities prior-to-collision are indicated by the subscript 0. 
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Figure 2.1. Definition of the coordinate systems. 

 

For a binary collision of these spheres the following equations can be derived by applying 

Newton’s second and third laws: 
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The impulse vector J is defined as follows: 



Chapter 2 

______________________________________________________________________________________ 

 

 34

 

 ∫
=

=

=
ctt

t

abdt
0

FJ , (2.9) 

 

where tc stands for the contact time (i.e. the duration of the contact).  

 

From equations 2.6 and 2.7 it is clear that the post-collision velocities of both particles 

can be calculated when the impulse vector J is known. If the force Fab in equation 2.9 

were known as a function of all the parameters involved, the impulse J could be 

calculated directly. Thornton (1997) demonstrated that based on a simplified theoretical 

model for the normal interaction between elastic-perfectly plastic spheres an analytical 

solution could be obtained for the rebound velocity. Walton (1992) used two types of 

finite element codes (DYNA2D and NIKE2D) to simulate the collision process in detail 

on a sub-particle level. The only input parameters necessary in these calculations are 

material properties although assumptions have to be made about the deformation 

behaviour (elastic/plastic) of the material. In simulations of gas-fluidised beds a large 

number of collisions (typically 106-109) have to be processed and therefore the actual 

physics of a binary collision has to be simplified to some extent and constitutive relations 

have to be introduced.  

 

Before these constitutive relations will be introduced first the relative velocity at the 

contact point (vab) has to be defined: 

 

 )( ,, cbcaab vvv −≡  . (2.10) 

 ( ) ( )nvnvv bbbaaaab RR ×ω+−×ω−=  . (2.11) 

 nvvv ×ω+ω−−= )()( bbaabaab RR  . (2.12) 

 

From this relative velocity, the tangential unit vector can be obtained since the normal 

unit vector is already defined in equation 2.1: 
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n)n(vv

n)n(vv
t

⋅−
⋅−

=
0,0,

0,0,

abab

abab
 . (2.13) 

 

Equations 2.6 and 2.7 can now be rearranged using ( )nJnJnJn ⋅−=×× )(  and equation 

2.12 to obtain: 

 

 ( ) )(2110, nJnJvv ⋅−−=− BBBabab  , (2.14) 

 

where 

 





+=

ba mm
B

11

2

7
1  (2.15) 

and 

 
ba mm

B
11

2 += . (2.16) 

 

At this point constitutive relations are required to close the set of equations. Through 

these constitutive relations three parameters enter the model. The first parameter is the 

coefficient of (normal) restitution, ( )10 ≤≤ e : 

 

 ( )nvnv ⋅−=⋅ 0,abab e  . (2.17) 

 

For non-spherical particles this definition can lead to energy inconsistencies (Stronge, 

1990) but for spherical particles this definition holds. The second parameter is the 

coefficient of (dynamic) friction, ( )0≥µ : 

 

 ( )JnJn ⋅−=× µ  . (2.18) 

 

The third parameter is the coefficient of tangential restitution, ( )10 0 ≤≤ β : 
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 ( )0,0 abab vnvn ×−=× β  . (2.19) 

 

Notice that this relation does not affect the components parallel to n and that the 

components orthogonal to n are related by a factor –β0. Although it is accepted that these 

coefficients depend on particle size and impact velocity this is not taken into account in 

this model. The only exception is made for the coefficient of normal restitution where 

collisions occurring at a normal impact velocity less than a threshold value ‘MINC0’ 

(typically 10-4 m/s) are assumed to be perfectly elastic (e = 1.0).  

 

Combining equations 2.14 and 2.17 yields the following expression for the normal 

component of the impulse vector: 

 

 ( )
2

0
1

B
eJ

ab,

n

nv ⋅
+−=  (2.20) 

 

For the tangential component two types of collisions can be distinguished that are called 

sticking and sliding. If the tangential component of the relative velocity is sufficiently 

high in comparison to the coefficients of friction and tangential restitution that gross 

sliding occurs throughout the whole duration of the contact, the collision is of the sliding 

type. The non-sliding collisions are of the sticking type. When β0 is equal to zero the 

tangential component of the relative velocity becomes zero during a sticking collision. 

When β0 is greater than zero in such a collision, reversal of the tangential component of 

the relative velocity will occur. The criterion to determine the type of collision is as 

follows: 

 

 
( )

1

001

BJ n

ab, tv ⋅+
<

β
µ  sliding (2.21) 

 
( )

1

001

BJ n

ab, tv ⋅+
≥

β
µ  sticking (2.22) 
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For collisions of the sticking type, the tangential impulse is given by: 

 

 ( ) ( )
1

0

0

1

0

0 11
BB

J
ab,ab,

t

tvvn ⋅
+−=

×
+−= ββ  . (2.23) 

 

For collisions of the sliding type, the tangential impulse is given by: 

 

 nt JJ µ−=  . (2.24) 

 

The total impulse vector is then simply obtained by addition: 

 

 tnJ tn JJ += . (2.25) 

 

The post-collision velocities can now be calculated from equations 2.6 and 2.7.  

 

In particle-wall collisions the mass of particle b (i.e. the wall) is infinitely large which 

makes all terms 1/mb equal to zero. It is possible to implement a moving/rotating wall 

through the velocity vectors vb and ωb but in the simulations performed for this work 

these velocities are all set equal to zero. 

 

The energy dissipated during a collision can be obtained by solving the following integral 

over the duration of the collision: 

 

 ∫∫ += ttabnnabtotdsp dJvdJvE ,,, . (2.26) 

 

The energy dissipated by the normal component in a collision is: 

 

 ( )2

2

2
0

1
2

e
B

v
E

ab,n,

dsp,n −= . (2.27) 
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For the energy dissipated by the tangential component the two types of collision have to 

be distinguished aga in. If the collision is of the sticking kind, the dissipated energy is: 

 

 ( )2
0

1

2
0

1
2

β−=
B

v
E

ab,t,

dsp,t , (2.28) 

 

and if the collision is of the sliding type, the dissipated energy is: 

 

 





 −⋅−= nab,ndsp,t BE J

2

1
J 10 µµ tv . (2.29) 

 

The total amount of energy dissipated in a collision is then obtained by adding the 

tangential and normal contributions: 

 

 dsp,tdsp,ndsp,to EEE +=t . (2.30) 

 

2.2 Key parameters of the collision model 

Since the three key parameters of the collision model are of crucial importance for the 

remainder of this work the effect of each of the three will now be highlighted. The system 

considered here is a particle that collides with a flat wall under the influence of gravity 

(g). For all these examples the particles do not experience any friction of the gas phase. In 

Figure 2.2 the effect of the coefficient of restitution is illustrated.  

 

When a particle collides perfectly elastically, without any energy dissipation (e = 1) with 

a horizontal flat wall it will bounce back to the same height as it was initially released 

from. No energy is dissipated in this process and the particle will eternally continue to 

bounce.  When e < 1, which is always the case for granular material, energy is dissipated 

in the collision and the particle will not bounce back to the same height as it was initially 

released from. Eventually the particle will come to rest on the wall. 
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Figure 2.2. The effect of the coefficient of restitution (e). 

 

The effect of the coefficient of friction (µ) is demonstrated in Figure 2.3. Consider the 

same case as before but now the particle initially rotates as well (β0 = 0). In the case of a 

perfectly smooth particle (µ = 0) this rotation does not affect the translation motion of the 

particle after collision. No energy is dissipated in this case. When the particle is not 

perfectly smooth (µ > 0), which is always the case for granular material, the rotation does 

affect both the translation and the rotation after collision as illustrated. In this case energy 

is dissipated during the collision. For sticking collisions this effect is much more 

pronounced than for sliding collisions.  

 

 

 

 

 

 

 

 

 

 

Figure 2.3. The effect of the coefficient of friction (µ). 

 

g 

e = 1 e < 1 

µ = 0 µ > 0 
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The effect of the coefficient of tangential restitution is demonstrated in Figure 2.4. The 

case is identical to the one above for the coefficient of friction except that now the 

coefficient of friction is high enough to ensure that the collision is of the sticking type.  

 

 

 

 

 

 

 

 

 

Figure 2.4. The effect of the coefficient of tangential restitution (β0). 

 

In the case of β0 = 0 the result is identical to the case described above provided the 

collision is of the sticking type. The tangential component of the relative velocity at the 

contact point is equal to zero at the end of the collision and energy is dissipated. 

However, when β0 = 1 the tangential component of the relative velocity at the contact 

point reverses and the particle bounces back in the opposite direction. No energy is 

dissipated in this case.  

 

In section 5 experiments are described that enable determination of these collision 

parameters from careful observation of single impacts. 

 

2.3 Sequence of collisions 

In the hard-sphere model a constant time step DT is used to take the external forces acting 

on the particles into account. Within this time step DT the velocities are assumed to 

change only due to collisions and a sequence of collisions is processed one collision at a 

time like in a regular hard-sphere simulation in Molecular Dynamics. So in fact a separate 

MD hard-sphere simulation is performed within each time step. To do so it is necessary to 

β0 = 0 β0 = 1 

g 
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determine what pair of particles will collide first which requires the determination of the 

collision times of all relevant collision pairs. The collision time tab of a pair of particles 

(a,b) is defined as the time remaining until these particles will collide. It can be calculated 

from the initial positions and velocities of both particles.  

 

 

 

 

 

 

 

 

Figure 2.5. Determination of the collision time tab. 

 

When particles a and b collide the distance between the two centres of mass is equal to 

the sum of the two radii as is shown in Figure 2.5. This yields a quadratic equation in tab 

the smallest solution of which corresponds to collision (Allen and Tildesley, 1990): 

 

  
( ) ( )( )

2

2222

ab

baabababababab

ab
v

RRrv
t

+−−⋅−⋅−
=

vrvr
 , (2.31) 

 

where baab rrr −≡  and baab vvv −≡ (in this definition of vab the particle rotation is not 

taken into account unlike in equation 2.12). Note that if 0>⋅ abab vr  the particles are 

moving away from each other and will not collide.  

 

a 

b 

vatab vbtab 

Ra + Rb 

rab 
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In case of a collision with a wall the collision time follows simply from the distance to 

the wall and the normal velocity component toward that wall which leads for a vertical 

wall to the following expression: 

 

 
ax

axawall

walla
v

Rx
t

,

,

,

)( r−+
=  . (2.32) 

 

The algorithm used to process a sequence of collisions within a constant time step DT is 

presented in Figure 2.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Computational strategy of a hard-sphere simulation within a time step DT.  
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First the collision lists are initialised in which for each particle a collision partner and a 

corresponding collision time are stored. For each particle the smallest collision time is 

determined by scanning all relevant collision partners. The variable acctim (accumulated 

time) keeps track of the time spent since the beginning of the time step. In the routine 

move(tab) the collision times of all particles are reduced with tab and the particle positions 

are updated using a first order explicit integration: 

 

 abaaaba tttt vrr +=+ )()(  . (2.33) 

 

The calculation of the collision dynamics involves the collision model presented in the 

previous paragraph. Subsequently the routine reset collision lists is entered where new 

collision times and partners have to be found all the particles involved in the collision. 

This does not only effect the particles a and b but also the particles that were about to 

collide with either a or b. Finally a new collision pair has to be detected and acctim can 

be incremented with the new collision time tab. As soon as a minimum collision time is 

found that after addition to acctim is greater than the time step DT, the loop is finished. 

After the loop is finished the particles have to be moved forward until acctim equals DT. 

During this motion no collision occurs. 

 

2.4 Optimisation 

To perform simulations of relatively large systems for relatively long times it is essential 

to optimise the hard-sphere computational strategy. The first step to achieve this is to 

minimise the number of particles that have to be scanned for a possible collision by 

employing a neighbour list. In the neighbour list of particle a all the particles that are 

found within a square of size Dnblist with particle a located at the centre, are stored. When 

looking for a collision partner for particle a only the particles in the neighbour list need to 

be scanned. In Figure 2.7 particle a is coloured black and its neighbour particles are 

shaded. The neighbour lists are updated at each time step dtnblist.  
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Figure 2.7.  The neighbour list principle: all shaded particles are stored in the 

neighbour list of the black particle. 

 

When updating the neighbour list it is still not necessary to scan all particles. The solution 

of the gas flow field (Chapter 3) requires the computational domain to be divided into 

cells; for each cell the particles whose centre can be found in that cell are stored in a list. 

When updating the neighbour list, only the cell where the particle’s centre is found and 

the three nearest adjacent cells are scanned for possible neighbours. 

 

With the implementation of the neighbour lists substantial speed up has been achieved 

and simulations with over 1,000 particles are easily possible. The search for collision 

partners (set up collision lists and reset collision lists in Figure 2.6) is no longer the most 

CPU time consuming routine in the algorithm. Instead the update of the particle motion 

(move in Figure 2.6) takes up 50 % of the CPU time in a typ ical fluidised bed simulation. 

This can be optimised by applying a more efficient motion update strategy. In the original 

version of the code all particles were moved to their new positions before each collision. 

This implies Nparticles*Ncollisions motion updates per time step which means that particles 

that do not collide are moved over a straight line in far too many steps as illustrated in 

Figure 2.8.  

Dnblist 
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Figure 2.8. Efficient motion update. 

 

Since the particles in Figure 2.8 collide only once, two motion updates will suffice for 

both particles. In the previous version the particles were moved to their new position in a 

total of seven steps for this specific example, that is five motion updates too many. This 

does not only slow down the algorithm but also gives rise to numerical errors. In typical 

fluidised bed simulations the total number of collisions per time step is of the same order 

as the total number of particles (i.e. 104-105) indicating that the total number of 

unnecessary motion updates is of the same order as the total number of particles. In the 

new algorithm special care must be taken when looking for new collision partners for 

particles that just collided, since the positions stored in memory for the particles not 

involved in that collision are not their actual positions. This causes some overhead for the 

new algorithm but nonetheless the speed gain is substantial since the routine move(tab) in 

Figure 2.6 went down from 50% to less than 1% of the total amount of CPU time.  

 

After optimising the motion update strategy the search for the smallest collision time 

(locate minimum collision time in Figure 2.6) is the main CPU time consumer in the hard-

sphere routine. This search has to be performed after each collision and in the old version 

all particles were scanned and the smallest collision time was stored. In the new strategy 

advantage is taken of the fact that the computational domain is already divided into cells 

as illustrated in Figure 2.9. This figure is rather idealised for clarity but on average a 

typical grid cell can contain up to 100 particles. 



Chapter 2 

______________________________________________________________________________________ 

 

 46

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. Efficient search for smallest collision times using grid cells. 

 

When for each grid cell the smallest collision time is stored it is not necessary to scan all 

particles after each collision. Instead all the grid cells are scanned and since the total 

number of grid cells is at least one order of magnitude smaller than the total number of 

particles (i.e. 2,340 cells vs. 40,000 particles for the bubble formation simulations in 

Chapter 5) this is much faster. Of course a new smallest collision time has to be found in 

the grid cells containing particles that were involved in the last collision but this causes 

negligible overhead. 

 

After implementation of these optimised routines the main CPU time consumer is again 

the search for possible collisions even though this search is performed only within the 

neighbour list! A suitable choice of the size of the neighbour list and the time step for 

updating the neighbour list is now critical. These choices however depend on the sort of 

system that is simulated. For instance in bubbling beds (Chapters 4 and 5) a relatively 

small neighbour list (Dnblist = 3 Dp) can be used that is updated every second time step. 

For risers (Chapter 7) however a larger neighbour list has to be used  (Dnblist = 8 Dp) since 

the velocity differences between the particles are larger as well. If a neighbour list is 

chosen to be too small it is possible that a collision is not detected and overlap between 
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particles can occur. This cannot be tolerated in hard-sphere simulations and if such an 

overlap is detected in our code the simulation is stopped immediately. On the other hand 

if the neighbour list is chosen to be rather large all collisions will be detected but this will 

go at cost of the computational speed. 

 

A hard-sphere simulation is an event driven simulation which implies that the amount of 

collisions to be processed per time step depends on the dynamics of the system. The 

number of collisions to be processed can be considerably higher in a dense region of the 

bed than in a dilute region. Hence the CPU time required to progress a time step can vary 

significantly. It is therefore not straightforward to benefit from parallel computing with a 

highly optimised event driven code. 

 

3. Soft-Sphere approach 

 
Although the hard-sphere model was used for the majority of the simulations in this work 

also a soft-sphere model was implemented. It was not the objective to select the best soft-

sphere model available but the aim was to compare the results obtained with the most 

popular soft-sphere model for fluidisation simulations with the results obtained with the 

hard-sphere model. The linear spring/dash-pot model (Cundall and Strack, 1979) is the 

most popular soft-sphere granular dynamics model since it was used by Tsuji et al. 

(1993), Schwarzer (1995), Xu and Yu (1997), Kawaguchi et al. (1998) and Mikami et al. 

(1998). For a review of various contact force models used in soft-sphere simulations the 

reader is referred to Walton (1992) or Schäfer et al. (1996).  

 

The soft-sphere model was implemented in 2-D. In the vector notation employed in the 

preceding paragraphs the z-component of the position and velocity vectors is equal to 

zero and only rotation about the z-axis is considered. The notation and some definitions 

can differ somewhat from the ones used for the hard-sphere model. Unfortunately there is 

no standard notation in Granular Dynamics (yet) and therefore it was attempted here to 

stay close to the notations used in the references above. 
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3.1 The linear spring/dash-pot model  

In soft-sphere models the following equations of motion are used: 

 

 externalcontact
dt

d
m FF

r +=
2

2

, (2.34) 

 T=ω
dt

d
I , (2.35) 

 

where r is the position vector of the centre of the particle, m is the mass of the particle, 

Fcontact is the contact force acting on the particle,  Fexternal is the external force acting on 

the particle, ω is the rotation velocity, T is the torque acting on the particle and I is the 

moment of inertia of the particle as defined in equation 2.8. In this section the focus will 

be on the contact forces between the particles, the external forces will be discussed in 

section 6.  

 

The particle velocities are updated using the accelerations from equations 2.34 and 2.35 

by means of a first order explicit integration: 

 

 DT00 vvv &+= , (2.36) 

 

 DT00 ωωω &+= . (2.37) 

 

The new particle positions are subsequently also obtained from a first order explicit 

integration: 

 

 DTvrr += 0 , (2.38) 

 

where the subscript 0 denotes the value at the previous time step. 
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The interaction forces between particles in contact are modelled with a spring, a dash-pot 

and a friction slider, as shown in Figure 2.10. 

 

 

spring

friction slider dash-pot

 

 

 

Figure 2.10. The linear spring/dash-pot model. 

 

The contact forces are evaluated from the overlap between the particles and their relative 

velocities. Two particles a and b are in contact (i.e. have mutual overlap) if the distance 

between their centres is less than the sum of their radii: 

 

 bpapab RR ,, +<− rr  (2.39) 

 

The repulsive force acting on the particles is divided into a normal (Fn) and a tangential 

(Ft) component. The procedure of evaluating these contact forces starts with defining a 

normal unit vector, pointing from the mass centre of particle a to the mass centre of 

particle b as is presented in Figure 2.11. 
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Figure 2.11. Definition of the coordinate system used in the soft-sphere model 

 

Note that this definition differs from equation 2.1 used in the hard-sphere model: 

 

 
ab

ab

ab
rr

rr
n

−
−

= . (2.40) 

 

The relative velocity of particle a with respect to b is given by: 

 

 abbbaabaab RR nvvv ×ω+ω+−= )()( . (2.41) 

 

The normal component of the relative velocity is given by: 

 

 ( ) ababababn nnvv ⋅=, . (2.42) 

 

The tangential relative velocity, or slip velocity of particle a with respect to b can now be 

obtained as follows: 
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 abnabt,ab ,vvv −=  (2.43) 

 

The tangential unit vector is defined as follows: 

 

 
abt

abt

ab

,

,

v

v
t = . (2.44) 

 

By defining the tangential unit vector this way the vector is always pointing in the 

direction of the slip velocity.  

 

The overlap in the normal direction can immediately be calculated as the difference 

between the sum of the particle radii and the distance between the particles: 

 

 ( )
baban RR rr −−+=ξ  (2.45) 

 

The tangential displacement that has been established since the beginning of the contact 

is obtained by integrating the relative velocities with respect to time: 

 

 ( ) ∫=
t

t

abtt dtt

0

,vξ  (2.46) 

 

The contact forces are now given by:  

 

 abnnabnnn,ab k ,vnF ηξ −−=  (2.47) 

 

 t,abtttt,ab k v?F η−−=  (2.48) 

 

If however the following relation is satisfied: 
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 abnt,ab ,FF µ> , (2.49) 

 

then sliding occurs and the tangential force is given by: 

 

 abn,abt,ab tFF µ−= . (2.50) 

 

For contacts between particles and walls, the walls are assumed to be non-moving and of 

infinite mass just like in the hard-sphere model.  

 

The energy dissipated during contact between particles a and b can be calculated by 

solving the following integral over the duration of the contact: 

 

 ∫ ⋅−= dtE abababdsp vF, . (2.51) 

 

Particle a can be in contact with several particles at the same time. Therefore the resulting 

force and torque acting on particle a are obtained by summation of the forces with respect 

to b: 

 

 ( )∑ +=
b

t,abn,abacontact FFF , , (2.52) 

 

 ( )∑ ×=
b

t,ababaa R FnT . (2.53) 

 

Since the contact forces are in general at least an order of magnitude larger than the 

external forces a separation of time scales was introduced. At each time step DT the 

external forces were taken into account while at 0.1DT the equations of motion were 

solved by taking only the contact forces into account. 

 

It should be stressed here once again that the contact force model presented above was 

used because it is the most popular model for fluidised bed simulations. Therefore it is 
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the most useful model for a comparison with the hard-sphere model. However, it is not 

necessarily the best contact force available. In fact, the expression for the tangential 

contact force (equation 2.48) can lead to very unrealistic behaviour if no special measures 

are taken as will be demonstrated in the following paragraph. 

  

3.2 Model parameters 

The linear spring/dash-pot model features three key parameters that will be discussed 

here. The first is the spring stiffness (k) for both the linear normal and the linear 

tangential spring. Measurements by Mullier et al. (1991) for 6 mm diameter cellulose 

acetate spheres showed a linear dependency of the normal load upon the normal 

displacement apart from a short initial stage (Walton, 1992). Therefore the use of the 

linear spring can be justified for this type of material although it is one of the simplest 

models available. For a more elaborate discussion on contact theory the reader is referred 

to Johnson (1985). In most simulations the value of the spring stiffness is chosen rather 

low for computational convenience. Tsuji et al. (1993), Kawaguchi et al.  (1998) and 

Mikami et al. (1998) all used a spring stiffness of 800 N/m for aluminum particles 

whereas Xu and Yu (1997) used a much higher value of 50,000 N/m in their simulations. 

The measurements by Mullier et al. (1991) suggest a value of about 400,000 N/m for the 

spring stiffness of the 6 mm diameter cellulose acetate spheres. It is likely that the values 

for the spring stiffness of 4 mm diameter aluminum spheres used in the work mentioned 

above are even higher. At higher values for the spring stiffness the duration of the contact 

becomes smaller and this requires a smaller time step to ensure numerical stability. From 

equation 2.47 (harmonic oscillator with (weak) damping) a solution for the displacement 

and relative velocity as a function of time can be obtained using the initial conditions (ξn 

= 0 at t = 0, and vn = vn0 at t = 0): 
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 From this solution the (normal) contact time between two particles can be found using ξn 

= 0 at t = tcontact, n, and vn = -e vn0 at t = tcontact, n : 

 

 
( )

n

ncontact
kB

e
t

2

22

,

ln+= π
, (2.55) 

 

where B2 is defined in equation 2.16 and e is the normal coefficient of restitution defined 

in equation 2.17. In a similar way a relation for the normal damping coefficient ηn can be 

obtained: 

 

 
ncontact

n
tB

e

,2

ln2−
=η . (2.56) 

 

Note that this result differs from the result presented by Mikami et al. (1998) which is 

only valid for a particle-wall contact.  

 

In the case of (e = 0) the system is a critically damped harmonic oscillator and the contact 

time will be infinite. In that case the following relation should be used to obtain the 

damping coefficient η n : 

 

 
2

2
B

k
n

n =η . (2.57) 

 

Xu and Yu (1997) presented a trial and error method to obtain the value of the damping 

coefficient that is far less elegant. They simulated a particle wall collision similar to the 

case presented in Figure 2.2 and adjusted the damping coefficient until the rebound 

height of the particle matched the expected value for that particular coefficient of 

restitution. 
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Another important issue is the difference between the normal and the tangential spring 

stiffness. In all soft-sphere simulations of fluidised beds reported in the literature the 

tangential spring stiffness is chosen to be equal to the normal spring stiffness. This can 

lead to energy inconsistencies as will be demonstrated here.  

 

 

 

 

 

Figure 2.12. Binary collision between rough spheres. 

 

Consider the case of a binary collision between rough particles (no sliding occurs) where 

there is a significant tangential component of the relative velocity as depicted in Figure 

2.12 (see also Figure 2.13a). When applying the same analysis as for the normal contact 

time starting from equation 2.48 the following expression is found for the tangential 

contact time: 
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where B1 is defined in equation 2.15 and β0 is the coefficient of tangential restitution 

defined in equation 2.19. Since B1 and B2 are not equal and e and β0 are not necessarily 

equal as well, the following relation must be satisfied to ensure that the normal and 

tangential contact times are equal: 
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If this relation is not satis fied the tangential spring will still be loaded at the instant of 

detachment. This implies that energy is stored in the spring that causes a defect in the 

a b 
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energy balance over the contact period. In the following section this will be 

demonstrated.  

 

For the tangential damping coefficient the following result is obtained: 

 

 
tcontact

t
tB ,1

0ln2 β
η

−
= . (2.60) 

 

Note that also the tangential damping coefficient differs from the normal damping 

coefficient. This has never been addressed befo re in any of the soft-sphere simulations of 

gas-fluidised beds presented in the literature. 

 

In the case of (β0 = 0) the system is a critically damped harmonic oscillator and the 

contact time will be infinite. In that case the following relation should be used to obtain 

the tangential damping coefficient η t: 

 

 
17

4

B

k
t

t =η . (2.61) 

 

The coefficient of friction (µ) plays the same role in the linear spring/dash-pot model as it 

does in the hard-sphere model. It can be obtained from experiments as will be explained 

in section 5. 

  

4. Hard-Sphere vs. Soft-Sphere 

 

For the majority of the simulations presented in this work the hard-sphere model is used. 

However, there are certain cases where a soft-sphere model is to be preferred. In the 

following paragraphs the key differences between the two approaches will be highlighted.  
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4.1 Static situations 

For dynamic systems in general a hard-sphere simulation is computationally faster than a 

soft-sphere simulation as long as there is sufficient motion in the system and the void 

fraction does not become too low. Severe problems are encountered when static situations 

like for example de-fluidisation occur. The particles become very closely packed with 

very low relative velocities. The number of collisions then increases exponentially whilst 

the impulse concerned with a single collision becomes negligible. Despite of the double 

precision accuracy used in the simulations the particles eventually overlap (although this 

overlap is far smaller than the atomic length scale) due to number loss and the algorithm 

breaks down. A soft-sphere model has no problems in dealing with static situations and is 

therefore to be preferred for simulations where such situations can occur. This includes 

systems where attractive forces between particles (like for example the liquid bridge 

forces in the simulations by Mikami et al. 1998) play an important role. 

 

4.2 Spring stiffness 

In the limit of an infinitely high value of the spring stiffness the soft-sphere model meets 

the hard-sphere model. However the soft-sphere model cannot be run at very high values 

of the spring stiffness due to computational limitations. The assumption of instantaneous 

collisions in the hard-sphere model does not capture the whole physics of the collision 

process but neither does the assumption of using an artificially low value for the spring 

stiffness in the soft-sphere model. It is important to realise that where a soft-sphere model 

in principle is capable of predicting the contact time between particles (which is of great 

importance for studying heat and mass transfer phenomena in gas-fluidised beds) these 

predictions have no value when an artificially low spring stiffness is used.  

 

Furthermore there is the issue of the tangential spring stiffness versus the normal spring 

stiffness. In the vast majority of the linear spring/dash-pot soft-sphere models presented 

in the literature the tangential spring stiffness is chosen to be equal to the normal spring 

stiffness. This can lead to energy inconsistencies as will be demonstrated here. Consider 

the case presented in Figure 2.12. where two particles collide perfectly elastically and 



Chapter 2 

______________________________________________________________________________________ 

 

 58

perfectly rough (e = 1, β0 = 1 and µ is large enough to ensure a sticking collision). 

Particle a moves at a velocity of 0.01 m/s and a rotation velocity of 1.0 1/s toward 

particle b which does not rotate and moves at a velocity of –0.01 m/s. In Figure 2.13a the 

rotation velocity of particle a is plotted as a function of time for three cases: a hard-sphere 

simulation, a soft-sphere simulation with a tangential spring stiffness (kt) at 2/7 of the 

normal spring stiffness (kn) and a soft-sphere simulation with kt  = kn.  

 

 

 

Figure 2.13.  a) Rotation velocity of particle a as a function of time. b) Tangential 

contact forces as a function of time.  

 

It is clear that in the case where kt  = kn the rotation velocity after collision is not predicted 

correctly. From Figure 2.13b) it can be seen that the tangential contact force is non-zero 

at the end of collision implying that not all the energy that is put into the spring is 

recovered. Hence energy inconsistencies can arise when kt is chosen to be equal to kn. It 

should be noted however that these inconsistencies are rather small since in general the 

rotation energy is two orders of magnitude smaller than the kinetic energy.  

 

The particles in these simulations were 4 mm diameter aluminium spheres (ρ = 2700 

kg/m3) as previously used by Tsuji et al. (1993) and a value of 1000 kg/m was used for 

the normal spring stiffness. A time step of 10-7 s was used for the numerical integration. 
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4.3 Energy considerations 

The main advantage of the hard-sphere model is that there is an analytical solution 

available for the collision model. Given the velocities of the particles prior to collision 

together with the particle properties the post-collision velocities can be calculated 

exactly. Hence numerical errors cannot cause any problems concerning energy 

conservation. This is not guaranteed for soft-sphere models where the accuracy of the 

solution depends on the time step used for the numerical integration. The time step should 

always be chosen carefully in such simulations to avoid energy inconsistencies. Consider 

the same case as in the previous paragraph (see Figure 2.12) but now none of the particles 

do rotate. A spring stiffness of 800 kg/m was chosen in order to match the parameter 

settings used by Tsuji et al. (1993) and Kawaguchi et al. (1998). For this binary head-on 

collision with the coefficient of (normal) restitution (e) set equal to 0.9 a contact time of 

7.47 10-4 s can be calculated using equation 2.55. Tsuji et al. (1993) and Kawaguchi et al. 

(1998) used a time step of 2 10-4 s in their simulations with these particles. Mikami et al. 

(1998) performed simulations of a different system but used the same ratio between 

contact time and time step of 3.7. In Figure 2.14 the effect of the time step on the 

resolution of the normal contact force as a function of time is presented.  

 

Figure 2.14. The normal contact force as a function of time for a binary head-on 

collision at two different time steps (e = 0.9). 
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It can be seen that the curve for the case with biggest time step (2 10-4 s) is by far not as 

smooth as the curve for the case with the smallest time step (1 10-5 s). However this 

results in a relative error in the energy balance that is surprisingly low (1.64 % for the 2 

10-4 s case and 0.05% for the 1 10-5 s case). Nonetheless one should keep in mind that in a 

typical fluidised bed simulation a lot of collisions occur and this error can accumulate 

quite rapidly. Another typical feature of the linear spring/dash-pot model can be observed 

in this figure as well: in the final stage the contact force becomes attractive instead of 

repulsive (DT = 10-5 s). This is due to the damping term in equation 2.47: at the end of 

the contact, when the overlap approaches zero, the relative velocity increases and hence 

the damping term causes the contact force to become negative (i.e. attractive). 

 

Another error arises due to the determination of contact between particles at a constant 

time step. In Figure 2.14 this can be observed very well since the time at which the 

particles first come into contact is not the same for both time steps. The strategy used by 

Xu and Yu (1997) who determine the instant of first contact precisely by employing a 

collision search algorithm from hard-sphere simulations would prevent this. However the 

additional search for first contact goes at a cost of the computational speed whereas the 

actual integration is still performed at a rather large time step. Improvements can be 

achieved by employing higher order numerical schemes. 

 

4.4 Multiple particle interactions 

A drawback of the hard-sphere model is the assumption that the particles interact via 

instantaneous binary collisions. Consider the case presented in Figure 2.15 where a 

particle approaches two other particles at constant velocity in the absence of an external 

force. The particles are positioned in such a way that a three body collision should occur. 

The collision times for both pairs of particles are identical. In the hard-sphere routine one 

of the two possible collisions is detected as the first collision to occur and this binary 

collision (in this case a perfectly elastic, perfectly smooth collision) is processed first. 

The second collision is processed immediately afterwards where the post-collision 



Granular Dynamics 

______________________________________________________________________________________ 

 61

velocity of the first collision is used as the initial velocity for the second collision. This 

renders the rebound pattern shown in Figure 2.15. which is physically not correct. 

 

 

 

 

 

 

 

 

 

 

Figure 2.15. Three-body collision simulated with a hard-sphere model. 

 

When the same case is repeated with the soft-sphere model the result presented in Figure 

2.16 is obtained. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16. Three-body collision simulated with a soft-sphere model. 

 

Because the soft-sphere model is capable of handling multiple particle interactions the 

rebound pattern is predicted correctly here. It should be noted that this specific test case 
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was carefully selected to demonstrate the effect of the assumption of instantaneous, 

binary collisions. 

 

5. Measurement of collision parameters 

 

In the hard-sphere model used in this work three parameters are required to describe to 

describe a collision: the coefficient of restitution (e), the coefficient of tangential 

restitution (β0) and the coefficient of friction (µ). These three parameters are also required 

for the linear spring/dash-pot model besides the spring stiffness. Unfortunately 

experimental data for these collision parameters are scarce in the open literature. This is 

rather surprising since rigid-body impact was already a research subject in the days of 

Galilei (1638) and the concept of the coefficient of restitution was introduced by Newton 

(1686) accompanied by the first experimental data. The book by Goldsmith (1960) 

provides a good review of both theory and experiments concerning impacts. 

Measurements of the coefficient of restitution are reported there as well including the 

dependency of this parameter upon impact velocity and particle size. In more recent years 

the attention was focussed on the impact of particles on flat plates (Maw et al., 1981 and 

Sondergaard et al., 1990) where more detailed data was obtained. 

 

It was not until the last decade that also particle-particle collisions became a subject of 

experimental investigations. Foerster et al. (1994) presented a method to obtain the three 

collision parameters (e, µ and β0) by careful experimentation and image processing. The 

difficulty in these experiments lies in the control of the geometry of the impact. Lorenz et 

al. (1997) presented a refinement of this technique together with additional data for more 

types of particles then the cellulose acetate and soda lime glass spheres used by Foerster 

et al. 1994). Bernasconi et al. (1997) presented an advanced image processing technique 

employing three synchronised CCD cameras that enables accurate measurements of the 

particle position as well as the orientation of the particles. Labous et al. (1997) presented 

an experimental technique to measure collisional properties of spheres using high-speed 

video analysis. They studied the dependency of the coefficient of restitution on impact 
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velocity and particle mass. Despite the fact that quite a number of research groups are 

capable of measuring collision properties there is still a lack of collision data in the 

literature.  

 

The Impact Research Group of the Open University at Milton Keynes has developed an 

accurate technique to measure collision properties. The collision properties of the glass 

particles used in simulations reported in Chapters 6 and 8 were measured at this facility. 

The technique to measure particle impact parameters accurately was first developed for 

particle impacts on flat plates and is described in detail by Kharaz et al. (1999). This set-

up was used to measure the particle-wall impact parameters used for a simulation 

reported in Chapter 6. To enable measurement of particle-particle impact parameters 

some adjustments to the set-up were required that are reported by Gorham and Kharaz 

(1999) and will be briefly outlined here. The set-up used for the measurements is 

schematically represented in Figure 2.17.  

 

 

 

 

 

 

 

 

 

 

 

a) b) 

 

Figure 2.17.  Schematic representation of the experimental set -up used for the 

measurement of particle-particle collision properties: a) before collision 

b) after collision. 
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A particle is released from a vacuum nozzle with zero rotation. It then falls through an 

optical- fibre triggering device which generates a sequence of pulses to control the CCD 

camera, the strobe light and the solenoid (Figure 2.17a). The lever-arm is then quickly 

moved away at 0.3 ms before collision leaving the stationary particle entirely free and in 

the correct position for a collision (Figure 2.17b). By following this procedure the particle 

can be assumed to be non-moving, non rotating and still at the same initial position. The 

collision is then recorded on a single frame of the CCD camera using strobe flashes that 

are timed in such a way that particle images do not overlap. This is required for accurate 

determination of the particle positions from the recording by digital image processing 

which finally yields the particle velocities before and after collision.  

 

The coefficient of restitution (e) can easily be obtained from the normal components of 

the relative velocity before and after impact. Since the particles do not rotate before 

collision it is not necessary to know the particle rotation after impact since the velocity 

after impact (vab), which includes a rotation contribution, can be calculated using 

equations 2.6 and 2.14. The two other collision parameters can now be obtained from a 

plot of Ψafter as a function of Ψbefore that are defined as follows: 
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Such a plot is schematically represented in Figure 2.18. Each data point represents one 

collision measurement where the impact velocity was about 1.0 m/s.  

 

Two straight lines are fitted through the data points: one for the sticking regime and one 

for the sliding regime. The coefficient of tangential restitution can be obtained from the 

slope of the sticking line: 

 

 afterbefore Ψ−=Ψ 0β , (2.64) 
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and the coefficient of friction can be obtained from the intercept of the sliding line: 

 

 ( )µeafterbefore +−Ψ=Ψ 1
2

7
 . (2.65) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18.  Schematic representation of a plot of Ψafter  vs. Ψbefore  for a typical result 

of a measurement. 

 

Each individual measurement yields either a value for e and β0, or e and µ depending on 

the collision regime. Nevertheless a series of measurements is required to obtain the two 

linear fits that determine the two regimes. Typical results obtained with this technique for 

glass particles show the following values for the collision parameters: e = 0.97 ±0.01, µ = 

0.1 ±0.01 and β0 = 0.33 ±0.05. For nearly head-on collisions (low values of Ψbefore) the 

measurements show positive values of Ψafter. This phenomenon is referred to as micro-

slip and cannot be explained by our hard-sphere model. The model developed by Maw et 

al. (1976) however is capable of predicting this phenomenon. Nevertheless it is believed 

Ψafter 
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that the three-parameter hard-sphere collision model contains sufficient physics to be 

capable of reliable predictions. 

 

6. External Forces 

 

The incorporation of external forces differs somewhat from the approach followed by 

Hoomans et al. (1996). In this work the external forces are used in accordance with those 

implemented in the two-fluid model presented by Kuipers et al. (1992) where, of course, 

the forces now act on a single particle: 
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where mp represents the mass of a particle, vp its velocity, u the local gas velocity and Vp 

the volume of a particle. A similar equation of motion was used by Kawaguchi et al. 

(1998). In equation 2.66 the first term on the right hand side is due to gravity. The second 

term is due to the drag force where β  represents an inter-phase momentum exchange 

coefficient as it usually appears in two-fluid models. For low void fractions (ε < 0.80) β  is 

obtained from the well-known Ergun equation: 
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where Dp represents the particle diameter, µg the viscosity of the gas and ρg  the density of 

the gas. For high void fractions (ε ≥ 0.80) the following expression for the inter-phase 

momentum transfer coefficient has been used which is basically the correlation presented 

by Wen and Yu (1966) who extended the work of Richardson and Zaki (1954): 
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The drag coefficient Cd is a function of the particle Reynolds number: 
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where the particle Reynolds number in this case is defined as: 
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The pressure gradient in the third term on the right hand side of equation 2.66 is 

calculated by using a first order approximation. The local value was obtained from an 

area weighted averaging technique using the values of the pressure gradients at the four 

surrounding grid nodes. This technique is also used to obtain local gas velocities and 

local void fractions at the position of the centre of the particle. The area weighted 

averaging technique used to obtain the local averaged value Q  of a quantity Q(i,j) from 

the four surrounding computational nodes is shown in Figure 2.19. The local averaged 

value is calculated as follows: 
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The distances δx and δy, necessary in this averaging technique, are calculated from the 

position of the particle in the staggered grid. 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

Figure 2.19.  Area weighted averaging. 

 

For the integration of equation 2.66 an explicit first order scheme is used to update the 

velocities and the positions of the particles. Other external forces than the ones included 

in equation 2.66 can be taken into account as well. In Chapter 7 simulations of more 

dilute flows in the riser section of a circulating fluidised bed are presented where lift 

forces were also taken into account.   

 

 

Notation 

 

B1, B2 collision constants, 1/kg 

Cd drag coefficient, [-] 

Dnblist diameter of neighbour square 
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Dp particle diameter, m 

dtnblist time step for neighbour list update, s 

DT time step, s 

e coefficient of restitution, [-] 

E energy, J 

F force, N 

g gravitational acceleration, m/s2 

I moment of inertia, kgm2 

J impulse vector, kgm/s 

k spring stiffness, N/m 

m particle mass, kg 

n normal unit vector, [-] 

ntot total number of particles, [-] 

ncoll total number of collisions, [-] 

Rp particle radius, m 

r position, m 

T torque, Nm 

t tangential unit vector, [-] 

t time, s 

tab collision time, s 

u gas phase velocity, m/s 

v velocity, m/s 

 

Greek symbols 

β volumetric inter-phase momentum transfer coefficient, kg/(m3s) 

β0 coefficient of tangential restitution, [-] 

δ distance, m 

ε void fraction, [-] 

µg gas shear viscosity, kg/(ms) 

µ friction coefficient, [-] 

η damping coefficient, Ns/m 



Chapter 2 

______________________________________________________________________________________ 

 

 70

ρ density, kg/m3 

ω angular velocity, 1/s 

ξ displacement, m 

Ψ defined in equations 2.62 and 2.63, [-]  

 

Subscripts 

0 initial condition 

a,b particle indices 

av average 

cp contact point 

dsp dissipated 

gyr gyration 

nblist  neighbour list 

p particle 

w wall 
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Chapter 3.  

 

GAS PHASE HYDRODYNAMICS 

 

 

Abstract: 

 

In this chapter the model for the gas phase hydrodynamics is presented. The two-

dimensional model is based on the volume averaged Navier-Stokes equations for two-

phase flow and is solved on a scale larger than the particle size. This requires the drag 

force exerted on the particles by the gas phase to be incorporated in the model through 

empirical relations. A short review of techniques that allow the flow around each 

individual particle to be calculated, and thus do not require any empirical input 

concerning fluid-particle drag, is presented as well. The numerical solution technique 

and the applied boundary conditions are briefly outlined. Two-way coupling between the 

motion of the particles and the motion of the gas-phase is established via the void 

fraction and a source term in the momentum conservation equation for the gas phase. A 

detailed description of the calculation of the void fraction from both the 2-D and the 3-D 

granular dynamics model is presented. The incorporation of the momentum source term 

in the gas phase hydrodynamics model is explained as well. 

 



Chapter 3 

______________________________________________________________________________________ 

 80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parts of this chapter are based on the papers: 
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1. Introduction 

 

The drag force exerted on a particle by the gas phase requires the velocity of the gas 

phase at the position of the particle. In the approach used in this work the gas phase 

hydrodynamics is resolved on a length scale that is larger than the particle size. Hence 

empirical relations are required to determine the drag force exerted on the particles by the 

gas phase. This implies that special care has to taken to achieve correct two-way 

coupling. The technique adopted in this work is reminiscent of the Particle-Source-In Cell 

method developed by Crowe et al. (1977). An alternative for this method was presented 

by Pan and Banerjee (1996) where the particle effects on the fluid motion were fed back 

by calculating the velocity disturbance caused by the particles assuming that the flow 

around them is locally Stokesian. This technique is however rather expensive in terms of 

CPU time and is limited to rather dilute flows of particles that are slightly heavier than 

fluid.  

 

The approach followed in this work is described in the preceding sections. However, it is 

worthwhile to discuss some techniques here that are capable of solving the flow field 

around each individual particle and therefore enable the calculation of the force exerted 

on the particle by the fluid without any empirical input. This can provide improved 

closure relations for the drag force that can be used in Eulerian Lagrangian simulations 

where the flow field is resolved on a scale larger than the particle diameter. 

 

1.1 Direct solution of the Navier-Stokes equations 

When the flow around a particle is solved using a no-slip boundary condition on the 

particle surface, the drag force exerted on the particle can be obtained by integration of 

the stress tensor over the particle surface. There are several methods available to solve the 

Navier-Stokes equations in such a complex geometry. Guj and de Matteis (1986) 

presented a technique to solve the two-dimensional flow field around an arrangement of 

particles using boundary fitted co-ordinates. Hu (1996) used a finite element technique 
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based on moving unstructured grids to simulate the two-dimensional motion of solid 

particles in a liquid. Kalthoff et al. (1997) developed a technique where a finite difference 

Navier-Stokes solver is used to solve the two-dimensional liquid motion. Since the grid 

size is smaller than the particle diameter a forcing technique was used to ensure no-slip 

boundary conditions on the particle surface. The drag force exerted on a particle was then 

obtained by numerical integration of the stress tensor over the particle surface using an 

analytical expansion of the fluid field. 

 

Although these techniques provide a lot of detail without requiring any empirical input, 

the number of particles that can be used in these simulations is still limited (102 -103). 

Furthermore these are still two-dimensional simulations and hence three-dimensional 

models would put even higher demands on computing power. 

 

1.2 Lattice Boltzmann simulations  

A flow simulation technique that has become very popular in recent years is the lattice 

Boltzmann technique pioneered by McNamara and Zanetti (1988). In this technique a 

one-particle velocity distribution function rather than ‘real particles’ (as in lattice gas 

cellular automata as described by Frisch et al., 1986) is transported on a carefully 

selected lattice. A time step in a lattice Boltzmann simulation consists of two phases: a 

collision phase and a propagation phase. The transport properties of the system (for 

example the viscosity) are defined by the eigenvalues of the collision operator used in the 

collision phase. This technique is capable of dealing with complex geometries which is 

important for the majority of flows encountered in industry. Eggels and Somers (1995) 

extended the technique by including a turbulent stress tensor as well as a scalar transport 

equation. Eggels (1996) used this model to perform large-eddy simulations of baffled 

stirred tank reactors in full 3-D. 

 

The lattice Boltzmann technique is also capable of performing simulations of multiphase 

systems. Ladd (1994) used this technique to simulate colloidal systems. In these 3-D 

simulations special attention was paid to ensure no-slip boundary conditions on the 
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particle- fluid boundaries. In principle this method can also be applied to gas-solid 

systems as encountered in gas-fluidised beds. However the system should be of limited 

size (several solid particles instead of thousands) due to computational limitations. The 

method is therefore very well suited to obtain improved closure relations for the gas-

particle drag force on the length scale at which it is applied in granular dynamics 

simulations of gas-fluidised beds as described in this work. 

 

1.3 Dissipative Particle Dynamics 

A somewhat similar approach to flow simulations is the dissipative particle dynamics 

technique originally developed by Koelman and Hoogerbrugge (1992). Hoogerbrugge 

and Koelman (1993) applied this technique to perform 3-D simulations of hard-sphere 

suspensions under steady shear. This technique is based on the dynamics of particles that 

should be regarded as momentum carriers rather than physical particles. Unlike in lattice 

Boltzmann simulations these particles are not restricted to lattice sites. The dynamics of 

these particles consists of a collision phase, where the interaction between the particles is 

taken into account, and a propagation phase, where the particles are moved according to 

an equation of motion that contains contributions of a random and a dissipative force. 

Español and Warren (1995) have shown that the dissipative force as used by 

Hoogerbrugge and Koelman (1993) needs to be modified in order to obey the fluctuation-

dissipation theorem. Simulations of suspensions are possible by local freezing of particles 

that are found within the volume defined by the suspended particle. By summation of the 

forces experienced by all the particles that constitute the suspended particle, the net force 

exerted on the suspended particle is obtained. The DPD technique is capable of handling 

complex geometries and has been used to study colloidal systems. It seems however that 

the DPD technique is limited to low Reynolds number flow and therefore its use for 

inertia dominated systems, like gas-fluidised beds, is doubtful. 

 

Ge and Li (1997) presented a technique that resembles DPD in the sense that the gas-

phase is represented by discrete particles rather than the Navier-Stokes equations. Despite 

the fact that this method is rather original it leaves quite some questions unanswered. For 
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example it is not clear how physical properties of the gas are incorporated into the model. 

Furthermore it is not clear what equation of motion is used for the gas particles. It would 

be helpful if it could be demonstrated that this model is capable of predicting key 

fluidisation phenomena such as the minimum fluidisation velocity and the terminal 

velocity of a particle falling under the influence of gravity in a quiescent gas. 

 

2. Governing Equations 

 

The calculation of the gas-phase hydrodynamics mainly follows the lines presented by 

Kuipers et al. (1992). It is based on the numerical solution of the following set of partial 

differential equations that can be seen as a generalised form of the Navier-Stokes 

equations for a gas interacting with a solid phase as originally derived by Anderson and 

Jackson (1967).  

 

Continuity equation gas phase: 

 

 
( ) ( )∂ ερ
∂

ερ
g

gt
+ ∇ ⋅ =u 0 . (3.1) 

 

Momentum equation gas phase: 

 

  
( ) ( ) ( )∂ ερ

∂
ερ ε ε ερg

g p g g
t

p
u

uu S g+ ∇ ⋅ = − ∇ − − ∇ ⋅ +τ  . (3.2) 

 

In this work isothermal, two-dimensional motion is considered which implies that three 

basic variables have to be specified. The three basic variables in the model are the 

pressure (p) and the two velocity components of the gas-phase (ux and uy). The void 

fraction (ε) and the momentum exchange source term (Sp) are obtained from the discrete 
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particle model as will be explained in section 6. All remaining variables have to be 

specified in terms of the three basic variables and/or the variables obtained from the 

discrete particle model through constitutive equations. 

 

3. Constitutive Equations 

3.1  Gas phase density 

The gas phase density (ρg) is related to the pressure  (p) and the gas phase temperature (T) 

by the ideal gas law: 

 

 p
RT

M
?

g

g =  , (3.3) 

 

where R is the gas constant (8.314 J/(mol K)). The average molecular weight of air (Mg = 

28.8 10-3 kg/mol) was used and the temperature was set to a constant value of T = 293 K. 

  

3.2  Gas phase stress tensor  

The viscous stress tensor τg is assumed to depend only on the gas motion. The general 

form for a Newtonian fluid (Bird et al., 1960) has been implemented: 

 

 ( ) ( ) ( )( )
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 −−= T

gggg uuIu µµλ
3

2τ . (3.4) 

 

In the simulations the bulk viscosity of the gas phase λg was set equal to zero which is 

allowed for gases (Bird et al., 1960) whereas for the gas phase shear viscosity a constant 

value of µg = 1.8 10-5 kg/ms was used. I denotes the unit tensor. 

 

Note that no turbulence modelling was taken into account. For bubbling beds this can be 

justified since the turbulence is damped out in the bed due to the very high solids fraction. 
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4. Numerical Solution 

 

The numerical solution follows the lines of Kuipers et al. (1993) and will not be 

discussed in detail here. A finite difference technique, employing a staggered grid to 

ensure numerical stability, is used to solve the gas-phase conservation equations 3.1 and 

3.2. This implies that the scalar variables (p and ε) are defined at the cell centre and that 

the velocity components are defined at the cell faces as is shown in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Lay out of the staggered grid. 

 

A pressure correction technique was employed to solve the set of partial differential 

equations. The model is capable of performing transient two-dimensiona l calculations in 

a Cartesian or an axi-symmetrical geometry. In the simulations reported in this work only 

the Cartesian option was used. 
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5. Boundary Conditions 

 

For the incorporation of the boundary conditions a flag matrix is used which allows 

boundary conditions to be specified for each single cell. A variety of boundary conditions 

can be applied by specification of the value of the cell flag fl(i,j) which is associated with 

the relevant boundary condition for that cell(i,j). The typical set of boundary conditions 

used in the simulations performed in this study is shown in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Cell flags for the boundary conditions for the hydrodynamic model 
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The cell flags and the corresponding boundary conditions that are featured in the present 

code are listed in Table 3.1.  

 

Table 3.1. Cell flags and corresponding cell types. 

 

fl(i,j)  Cell type of cell(i,j) 

1 Interior cell, no boundary conditions have to be specified 
2 Impermeable wall, free slip boundaries 
3 Impermeable wall, no slip boundaries 
4 Influx cell, velocities have to be specified 
5 Prescribed pressure cell, free slip boundaries 
6 Continuous outflow cell, free slip boundaries 
7 Corner cell, no boundary conditions have to be specified 

 

To mimic a distributor plate the void fraction in the influx cells (fl(i,j) = 4) was set to a 

constant value of 0.4. 

 

6. Two-way coupling 

 

An important issue in granular dynamics simulations of two-phase flow is the two-way 

coupling. The calculation of the drag force is based on empirical relations and therefore 

not exact. Hence it is required that two-way coupling is achieved in such a way that the 

model is capable to predict typical fluidisation phenomena such as the pressure drop over 

the bed at minimum fluidisation conditions. This pressure drop, multiplied by the cross 

sectional area, should balance the force exerted by gravity on the particles. Xu and Yu 

(1997) used a technique similar to the one used by Schwarzer (1995) where the total drag 

force exerted on a particle was fed back to the gas phase with a minus sign. With this 

technique the pressure drop over the bed at minimum fluidisation conditions in the 

simulations of Xu and Yu (1997) was over predicted by a factor 1.5 (Hoomans et al., 

1998). Therefore special care has to be taken in order to select a two-way coupling 

technique that ensures the key fluidisation features to be incorporated correctly. 
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Two-way coupling is achieved via the calculation of the void fraction and the 

incorporation of an interaction term in the momentum conservation equation for the gas-

phase (equation 3.2). In the following paragraphs it is explained how two-way coupling is 

achieved in the model used in this work. 

 

6.1 Void fraction 

6.1.1 Calculation of the void fraction in 2-D 

The solution of equations 3.1 and 3.2 requires specification of the void fraction (ε) which 

can be obtained from the discrete particle model. Since the particle positions are known 

the void fraction ε(i,j) can be calculated based on the area occupied by the particles in 

that cell i,j. Since the void fraction is an important parameter which considerably 

influences the motion of the gas phase, a detailed check for overlap was performed in 

which multiple cell overlap was taken into account as illustrated in Figure 3.3. In this 

figure a case is presented where a particle overlaps four different grid cells. The distances 

from the particle centre to the nearest boundaries of the grid cells are indicated by δ1 and 

δ2. 

 

 

 

 

 

 

Figure 3.3. Multiple particle-cell overlap. 
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The smallest overlapping area of the particle Aii,jj can be calculated as follows:  
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For the area Ajj overlapping with the upper two cells in Figure 3.3 the following relation 

can be obtained: 
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Keeping in mind that: 

 

 
2

,,,, pjiijjiijjiji RAAAA π=+++ , (3.7) 

 

all four areas can now be calculated using basic subtractions. In the case where a particle 

overlaps with only two cells the area of overlap can simply be obtained from equation 

3.6. 

However, the void fraction calculated in this way is based on a two-dimensional analysis 

that is inconsistent with the applied empiricism in the calculation of the drag force 

exerted on a particle (Chapter 2, section 6). To correct for this inconsistency the void 

fraction calculated on the basis of area (ε2D) is transformed into a three-dimensional void 

fraction (ε3D) using the following equation:  

 

 ( )ε
π

ε3 2

3
21

2

3
1D D= − −  . (3.8) 
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This equation has been derived on the basis of a comparison between a two-dimensional 

hexagonal lattice and a three-dimensional FCC unit cube assuming equal inter-particle 

distances. It ensures that the closest packing in the 2-D hexagonal lattice is transformed 

into the closest packing in the 3-D FCC case. Ouyang and Li (1999) used a 

transformation similar to equation 3.8 but used the square root of 2 instead of 2 in the 

second term on the right hand side. This renders void fractions that in general are too 

high. 

 

Tsuji et al. (1993), Xu and Yu (1997), Kawaguchi et al. (1998) and Mikami et al. (1998) 

all used a different approach. They calculated the void fraction on the basis of volumes 

assuming that the system consists of one particle layer. Hence the third dimension is 

equal to the particle diameter. This method yields void fractions that are in general too 

high as well. Using this method the closest packing can never be obtained and therefore it 

is not a correct representation for a three-dimensional system. 

 

6.1.2 Calculation of the void fraction in 3-D 

In the  3-D model the problem with the conversion of a 2-D void fraction to a 3-D void 

fraction no longer exists. Since the gas phase hydrodynamics is still resolved in 2-D each 

particle can still have overlap with four cells at maximum. Consider Figure 3.3 but now 

read volumes instead of areas. The main difficulty in the 3-D void fraction calculation is 

to obtain an expression for the volume Vii,jj. Since there is no analytical expression 

available for this volume an approximation has to be used. When a particle overlaps with 

two cells the volume of a spherical cap can be calculated exactly by: 
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with δ1 being the distance from the centre of the particle to the cell boundary. Vii,jj can 

now be approximated by:  
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Since Vii,jj+Vi.jj and Vii,jj+Vii,j are sphere caps, these volumes can be calculated using 

equation 3.9. Each of the 4 volumes can subsequently be obtained using basic 

subtractions. 

 

6.2 Momentum transfer 

The method used in this work is based on Newton’s third law and was also used by 

Delnoij et al. (1997). It differs from the technique used by Hoomans et al. (1996). The 

reaction force to the drag force exerted on a particle per unit volume is included in the 

momentum conservation equation 3.2 via a source term Sp that has the dimension N/m3 : 
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The δ-function ensures that the reaction force acts as a point force at the position of the 

particle in the system. In the numerical implementation this force-per-volume term is 

distributed to the four nearest grid nodes using the area weighted averaging technique 

described in Chapter 2, section 6, where also the expression for the volumetric 

momentum exchange coefficient β  can be found. A mixed explicit implicit numerical 

treatment was applied similar to the one used by Kuipers et al. (1993) to solve the gas 

phase conservation equations. 

 

Since the source term Sp has the dimension of force per unit volume the force exerted on 

the particles has to de divided by the volume of a grid cell. In the 3-D model this is 

straightforward since the third dimension is determined by the depth of the bed. In the 2-

D model a virtual third dimension has to be introduced. This virtual third dimension is 
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estimated based on the same calculation as the conversion from ε2D to ε3D. In the 2-D 

simulations the volume of a computational cell was chosen to be: 

  

 pcell DDZDRV
75.032 −= , (3.12) 

 

in which the third dimension is slightly less than the particle diameter. Note that this 

volume depends on the particle size and hence is not a constant in simulations where a 

particle size distribution is taken into account. 

 

Tsuji et al. (1993), Kawaguchi et al. (1998) and Mikami et al. (1998) use a technique 

where the coupling was achieved in a similar way as in two-fluid models. This technique 

was also employed by Hoomans et al. (1996). A two-fluid model requires averaged 

values of particle velocities and these can be obtained by averaging over all the particles 

in a computational cell. However, this technique is limited to systems consisting of 

particle of uniform size and therefore the technique used in this work was preferred. 

 

 

Notation 
 

A area, m2 

Dp particle diameter, m 

DX horizontal computational cell dimension, m 

DY vertical computational cell dimension, m 

fl(i,j) cell flag [-], defined in Table 1 

g gravitational acceleration, m/s2 

I unity tensor, [-] 

i,j cell indices, [-] 

M molecular weight, kg/mol 

NX number of computational cells in x-direction, [-] 

NY number of computational cells in y-direction, [-] 

p pressure, Pa 
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r particle position vector, m 

Rp particle radius, m 

R gas constant, J/mol K 

Sp source term defined in equation 3.11 

t time, s 

T temperature, K 

u gas phase velocity, m/s 

V volume, m3 

v velocity, m/s 

 

Greek symbols 

β volumetric interphase momentum transfer coefficient, kg/(m3s) 

δ distance, m 

ε void fraction, [-] 

λg gas bulk viscosity, kg/(m.s) 

µg gas shear viscosity, kg/(m.s) 

ρ density, kg/m3 

τ gas phase stress tensor, kg/ms2 

 

Subscripts 

g gas phase 

i,j cell indices 

p particle 

x x-component 

y  y-component 

 

Superscripts 

T transposed 
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Chapter 4.  

 

THE EFFECT OF PARTICLE PROPERTIES ON THE 

HYDRODYNAMICS OF GAS-FLUIDISED BEDS WITH 

HOMOGENOUS INFLOW CONDITIONS 

 

Abstract: 

 

A hard-sphere Granular Dynamics model was used to study the influence of particle 

properties on the hydrodynamics of gas-fluidised beds with homogeneous inflow 

conditions. In the model the Newtonian equations of motion are solved for each solid 

particle while taking into account the particle -particle and particle -wall collisions. 

The gas phase hydrodynamics is described by the spatially averaged Navier-Stokes 

equations for two-phase flow. The hydrodynamics of a homogeneously fluidised bed 

(0.5 m height, 0.15 m width, 2400 particles of 4 mm diameter, ρ = 2700 kg/m3, ugas = 

1.5 umf) was strongly affected by the collision parameters (i.e. the coefficients of 

restitution and friction): the more energy is dissipated in collisions the more bubbling 

and slugging could be observed. The Root Mean Square (RMS) of the pressure 

fluctuations inside the bed showed an almost linear dependency on the energy 

dissipation rate by collisions during the simulation for low dissipation rates. The 

effect of a particle size distribution on the bed hydrodynamics was studied as well. 

Pressure peaks inside the bed decreased with increasing geometric standard deviation 

of the log-normal size distribution. Simulations with a three-dimensional model (as 

far as the particles are concerned) required a minimum depth of the bed of five 

particle diameters for stable simulations. The results of the three-dimensional 

simulations confirmed the trends observed in the two-dimensional simulations 

concerning the effect of the collision parameters on the bed hydrodynamics. Time 

series of the pressure inside the bed showed a lower frequency and a lower RMS 

value in the 3-D simulations. The particle-wall interaction had a more pronounced 

influence on the hydrodynamics in the 3-D simulations than in the 2-D simulations. 
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1. Introduction 

 

With increasing computer power Granular Dynamics simulations have become a very 

useful and versatile research tool to study the dynamics of dense gas-particle flows. In 

these models the Newtonian equations of motion are solved for each individual 

granular particle in the system. The mutual interactions between particles and the 

interaction betwee n particles and walls are taken into account directly. Applications of 

this type of models are very diverse ranging from agglomerate dynamics (Thornton et 

al., 1996) to hopper flow (Langston et al., 1995) and gas-fluidised beds (Hoomans et 

al., 1996).  

 

In fluidisation simulations the Granular Dynamics models have a clear advantage over 

continuum models since the particle interactions are taken into account directly and 

consequently the necessity to specify closure relations for the solids-phase stress 

tensor, as encountered in continuum models (Kuipers et al., 1992 among many others), 

is circumvented. Furthermore a discrete particle model is very well suited to take an 

arbitrary particle size distribution into account which is far more complex, if not 

impossible, in case a continuum modelling approach is adopted. 

 

Tsuji et al. (1993) developed a two-dimensional soft-sphere discrete particle model of 

a gas- fluidised bed based on the work of Cundall and Strack (1977). In this approach 

the particles are allowed to overlap slightly and this overlap is subsequently used to 

calculate the contact forces. Kawaguchi et al. (1998) extended the model developed by 

Tsuji et al. (1993) to three-dimensions as far as the motion of the particles is 

concerned. Hoomans et al.  (1996) used a hard-sphere approach in their two-

dimensional discrete particle model of a gas-fluidised bed which implies that the 

particles interact through binary, instantaneous, inelastic collisions with friction. Xu 

and Yu (1997) used a two-dimensional soft-sphere model similar to the one used by 

Tsuji et al. (1993) in their fluidised bed simulations but they also employed techniques 

from hard-sphere simulations in order to determine the instant when the particles first 

come into contact precisely. Mikami et al. (1998) presented a two-dimensional soft-
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sphere model of a gas-fluidised bed where cohesive forces between the particles were 

taken into account. A more detailed discussion of the models mentioned above is 

presented in Chapter 2. 

 

In Granular Dynamics simulations particle-particle and particle-wall interactions are 

taken into account directly which is a clear advantage over continuum models. 

Collision parameters like the coefficient of restitution can be included in continuum 

models by employing the kinetic theory of granular flow to arrive at improved closure 

relations for the solids-phase stress tensor (Sinclair and Jackson (1989), Gidaspow 

(1994), Nieuwland et al. (1996)). However, these improved closures rely on a one -

parameter collision model, do not take particle rotation into account and more 

importantly show an extreme and non-realistic sensitivity of the overall bed 

hydrodynamics to very small deviations from one for the coefficient of restitution 

(Hrenya and Sinclair, 1997). Within the framework of a discrete particle model the 

collision parameters are included in a more natural way and therefore this type of 

model is to be preferred when investigating the influence of particle parameters on the 

bed hydrodynamics. 

 

Hoomans et al. (1996) have shown that the dynamics of a fluidised bed depends 

strongly on the collision parameters ( i.e. coefficients of restitution (e) and friction (µ)). 

In the case where no energy is dissipated (i.e. e  = 1 and µ = 0) no bubble or slug 

formation was observed and the bed showed a rather homogeneous fluidisation 

behaviour. In the case where the impact parameters were given more realistic values 

(i.e. e = 0.9 and µ = 0.3) and hence energy is dissipated in collisions, bubble formation 

was observed and the bed behaviour appeared to be in much better agreement with that 

observed in reality. Van den Bleek and Schouten (1993) already showed that the 

coefficient of restitution has an effect on the dynamics of a fluidised bed. They used a 

one-dimensional five-particle-array model to generate time series of particle position 

and voidage which is described in more detail by Schouten and van den Bleek (1992). 

These time series were subsequently analysed by applying techniques from 

deterministic chaos theory. They found that for increasing values of the coefficient of 

restitution (up to 0.9) the bed dynamics became less chaotic. The coefficient of 
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restitution was varied over a range from 0.0 to 0.9, which is unfortunately not the most 

interesting range. Typical values for this parameter of granular material generally used 

in fluidisation are found within 0.8 and 1.0. However, it is clear that despite the fact 

that this five-particle -array model is a rather crude representation of the dynamics of a 

fluidised bed, it does capture the essential feature that the collision parameters have a 

pronounced effect on the bed hydrodynamics. 

 

Experimental studies on the influence of particle interaction parameters on the 

dynamics of gas-fluidised beds are unfortunately rather scarce. For example the 

Geldart (1974) classification of the fluidisation behaviour of powders does not include 

any particle interaction parameters. Thiel and Potter (1977) reported an influence of 

the particle-particle interaction on the dynamics of slugging fluidised beds. They 

characterised this interaction through the angle of internal friction (Zenz and Othmer, 

1960). This is a bulk property rather than a particle property but in general it can be 

assumed that the rougher the particles the lower the angle of internal friction. Chen et 

al. (1997a and 1997b) investigated the influence of solid frictional interactions on 

pressure fluctuations in fluidised beds. They also characterised the particle interaction 

through the angle of internal friction. For relatively shallow beds they found larger 

root mean square (RMS) values for the pressure fluctuations in beds consisting of 

particles with lower angles of internal friction. They also reported a negligible 

influence of the wall roughness on the RMS values of the measured pressure 

fluctuations. Chang and Louge (1992) studied the hydrodynamics in a riser where they 

applied a coating to glass particles in order to make them smoother and hence obtain a 

lower coefficient of friction. Although this system is operated in a completely different 

regime compared to those prevailing in the experiments mentioned above and the 

simulations presented in this chapter, the experimental results obtained by Chang and 

Louge (1992) are worthwhile mentioning here. For the coated particles a completely 

different axial pressure profile was measured than for the regular glass particles. In the 

case of the coated particles (i.e. lower coefficient of friction) the solids hold- up in the 

riser section (and thus the axial pressure gradient) was a lot smaller. Since the only 

difference between the two experiments was the use of the coated particles instead of 

the regular glass particles their experiments indicate that particle-particle interaction 

has a significant effect on the flow structure in the riser. 
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In this chapter the dependency of the hydrodynamics of a gas- fluidised bed with 

homogeneous inflow conditions on the collision parameters is investigated in more 

detail using the hard-sphere model. Furthermore the model was used to study the 

influence of a particle size distribution on the hydrodynamics of gas- fluidised beds 

with homogeneous inflow conditions. The majority of the simulations was performed 

with the two-dimensional model, but also simulations with the three-dimensional 

model were performed. 

 

2. Model 

 

Since a detailed description of the model is presented in Chapter 2 and Chapter 3, the 

key features will be summarised briefly here. 

 

2.1 Granular dynamics 

The collision model as originally developed by Wang and Mason (1992) is used to 

describe a binary, instantaneous, inelastic collision with friction. The key parameters 

of the model are the coefficient of restitution (0 ≤ e ≤ 1) and the coefficient of friction 

(µ ≥ 0). Foerster et al. (1994) have shown that also the coefficient of tangential 

restitution (0 ≤ β0 ≤ 1) should be used in order to describe the collision dynamics more 

accurately. These three collision parameters are all included in the model. 

 

In the hard-sphere approach a sequence of binary collisions is processed. This implies 

that a collision list is compiled in which for each particle a collision partner and a 

corresponding collision time is stored. A constant time step is used to take the external 

forces into account and within this time step the prevailing collisions are processed 

sequentially. In order to reduce the required CPU time neighbour lists are used. For 

each particle a list of neighbouring particles is stored and only for the particles in this 

list a check for possible collisions is performed. 
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2.2 External forces 

The incorporation of external forces differs somewhat from the approach followed by 

Hoomans et al. (1996). In this work the external forces are used in accordance with 

those implemented in the two- fluid model presented by Kuipers et al. (1992) where, of 

course, the forces now act on a single particle: 
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where mp represents the mass of a particle, vp its velocity, u the local gas velocity and 

Vp the volume of a particle. In equation (4.1) the first term is due to gravity and the 

third term is the force due to the pressure gradient. The second term is due to the drag 

force where β represents an inter-phase momentum exchange coefficient as it usually 

appears in two-fluid models. For low void fractions (ε  < 0.80) β  is obtained from the 

well-known Ergun equation: 
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where Dp represents the particle diameter, µg the viscosity of the gas and ρg  the 

density of the gas. For high void fractions (ε  ≥ 0.80) the following expression for the 

inter-phase momentum transfer coefficient has been used which is basically the 

correlation presented by Wen and Yu (1966) who extended the work of Richardson 

and Zaki (1954): 
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The drag coefficient Cd is a function of the particle Reynolds number and given by: 
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where the particle Reynolds number (Rep)  in this case is defined as follows: 
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For the integration of equation (4.1) a simple explicit first order scheme was used to 

update the velocities and positions of the particles. 

 

2.3 Gas phase hydrodynamics 

The calculation of the gas phase hydrodynamics mainly follows the lines presented by 

Kuipers et al. (1992). It is based on the numerical solution of the following set of 

partial differential equations that can be seen as a generalised form of the Navier-

Stokes equations for a gas interacting with a solid phase as originally derived by 

Anderson and Jackson (1967). 

 

Continuity equation gas phase: 
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Momentum equation gas phase: 
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In this work transient, two-dimensional, isothermal (T = 293 K) flow of air at 

atmospheric conditions is considered. The constitutive equations can be found in 

Chapter 3. There is one important modification with respect to  the model presented by 

Hoomans et al. (1996) and that deals with the way in which the two-way coupling 

between the gas-phase and the dispersed particles is established. In the present model 

the reaction force to the drag force exerted on a particle per unit of volume is fed back 

to the gas phase through the source term Sp which has the dimension of force per unit 

of volume N/m3.  

 

3. Effects of collision parameters 

A large number of simulations was performed in order to investigate the influence of 

the collision properties on the bed dynamics. As a test system the same system as used 

before by Tsuji et al. (1993), Hoomans et al. (1996) and Xu and Yu (1997) was 

chosen. The most important system parameters are summarised in table 4.1. 

 

Table 4.1.  Parameter settings for all simulations 

 

Particles  Bed  

Shape Spherical Width  0.15 m 

Diameter, Dp 4.0 mm Height 0.50 m 

Material Aluminium Number of x-cells 15 

Density, ρ 2700 kg/m3 Number of y-cells 25 

Number, Npart 2400   

 

 

In all simulations the minimum fluidisation conditions were used as initial conditions 

while the values for the coefficients of restitution (e) and friction (µ) were varied. A 

time step of 10-4 seconds was used in all simulations and the gas inflow at the bottom 

was set equal to 1.5 um f for the whole width of the bed (umf = 1.78 m/s). The 

simulations were continued for 8 seconds real time and during the simulations the 

pressure in the bed 0.2 m above the centre of the bottom plate was monitored. 
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Figure 4.1. Snapshots of particle configurations for three simulations with ug = 1.5 

um f. Upper: e = 1, µ = 0, middle: e = 0.99, µ = 0, bottom: e = 0.9, µ = 

0.3. 
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A typical (no n- ideal) run takes about 6 minutes of CPU-time per simulated second on 

a Silicon Graphics Origin200 server (R10000 processor, 180 MHz). Snapshots of the 

particle configurations for three different simulations are presented in Figure 4.1. The 

two extreme cases (e  = 1.0, µ = 0.0 (ideal) and e = 0.9, µ = 0.3 (non-ideal)) are shown 

there together with a simulation where e = 0.99 and µ = 0.0. A number of particle 

layers was marked by colour at t = 0 s in order to visualise the induced particle mixing 

during the fluidisation process. It can be seen that in the ideal case barely any bubbles 

or slugs are being formed which enables the initial structure to remain intact for quite 

some time. In the non- ideal case the formation of bubbles and slugs can be observed 

clearly and due to these instabilities the particle mixing in the bed is much better. 

After 2 seconds the initial structure can still be observed in the ideal case whereas it 

has completely disappeared in the non-ideal case. The simulation with e = 0.99 

resembles the ideal case very much although the particle mixing appears to be slightly 

better. This is a much more natural dependency than the one reported for instance by 

Hrenya and Sinclair (1997). They reported simulations of riser flow using a two-fluid 

model that incorporates the kinetic theory for granular flow a change in e from 1.0 to 

0.99 completely changed the hydrodynamic behaviour.  

 

 

 

Figure 4.2.  Pressure at 0.2 m above the centre of the distributor plate as a function 

of time. 

 

e µ
e µ
e µ
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However, it should be noted that these simulations were concerned with a different 

hydrodynamic regime than encountered in the simulations reported here and therefore 

a direct comparison may not be justified. 

 

The computed pressure signals at 0.2 m above the centre of the bottom plate for the 

three simulations are presented in Figure 4.2. It can be observed that the pressure 

fluctuations in the non- ideal case are much stronger than in the ideal case. In fact the 

pressure fluctuations turn out to depend strongly on the collision parameters. In Figure 

4.3 the root mean square (RMS) of the pressure signals is presented as a function of 

the coefficient of restitution (e).  

 

 

Figure 4.3.  Root Mean Square (RMS) of the pressure fluctuations as a function of 

the coefficient of restitution. 

 

It can clearly be observed that the RMS increases with decreasing value of e. The fact 

that, for instance, the RMS value for the simulation with e = 0.96 is higher than that 

for the simulation with e = 0.95 is due to the different dynamics. Despite of the lower 

value for the coefficient of restitution a higher amount of energy is dissipated in 

collisions during the simulation. Because the total number of collisions in these 

simulations is about the same (8.3 million) the average impact velocity was apparently 

higher in the case of e = 0.96. With a slightly different initial condition this might 

change which is due the complex (i.e. chaotic) nature of the system’s dynamics. In all 

the simulations that were performed in order to obtain the RMS values presented in 

e
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Figure 4.3, the coefficient of friction was set equal to zero. In the calculation of the 

RMS the initial stages of the simulation (approximately 2 s) were not taken into 

account in order to avoid start-up effects from influencing the results. 

 

In Figure 4.4 the RMS is presented as a function of the value of the coefficient of 

friction (µ). For all the simulations that were performed in order to obtain the RMS 

values presented in Figure 4.4 the coefficient of restitution (e) was set equal to 1.0.  

 

Figure 4.4.  Root Mean Square (RMS) of pressure fluctuations as a function of the 

coefficient of friction. 

 

Here it can be observed that the RMS increases with increasing value for the 

coefficient of friction.  In Figure 4.4 the value for the RMS is lower for the simulation 

with µ = 0.25 than for the simulations with µ = 0.2 which is not expected. However 

the amount of energy dissipated in collisions for both simulations is no t the same; in 

fact more energy is dissipated in the simulation with µ = 0.2 than in the simulation 

with µ = 0.25. In the latter case fewer collisions occurred and apparently the collisions 

that occurred had less impact. 

 

Also the influence of the coefficient of tangential restitution (β0) was investigated. 

However, this parameter turned out to have little influence on the overall bed 

hydrodynamics. This is probably due to the low (but realistic) values used for the 

coefficient of friction (µ). When the coefficient of friction  was increased (µ = 1000) 

µ
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to ensure that all collisions were of the sticking type the influence of β0 was much 

more pronounced. With e =1.0, µ = 1000 and β0  = 1.0 similar results were obtained as 

for the case with e = 1.0, µ = 0.0 and β0 = 0.0. However, the influence of the 

coefficient of tangential restitution for realistic values of the coefficient of friction (µ 

< 1.0) was negligible. 

 

In all simulations mentioned above the values of the collision parameters for particle -

wall collisions were taken to be equal to the values for particle -particle collisions. The 

influence of the particle -wall interaction on the overall bed hydrodynamics was 

investigated as well. This influence was found to be negligible. The particle -particle 

interaction is very much dominant over the particle-wall interaction in the 2-D model 

used here. A simulation with ideal particle-particle interaction (e = 1.0, µ  = 0.0) but 

non-ideal particle -wall interaction (ew = 0.9 , µw = 0.3) showed very similar results as 

in the fully ideal case. 

 

In Figure 4.5 the RMS of the pressure is plotted as a function of the energy dissipation 

rate by collisions during the simulation. All simulations performed in this study are 

included in this figure.  

 

 

Figure 4.5. Root Mean Square (RMS) of pressure fluctuations as a function of the 

energy dissipation rate by collisions during the simulation. 
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It can be seen that the RMS increases almost linearly with the energy dissipation rate 

by collisions in the system. For higher values of the dissipation rate (i.e. lower 

coefficients of restitution and/or higher coefficients of friction) the data points show 

some scatter. This is due to the richer dynamics of the system (i.e. more vigorous 

bubbling and slugging which causes a more irregular pressure signal) at higher 

dissipation rates which requires longer simulation times than the 8 seconds employed 

here in order to obtain better statistics. 

 

4. Energy conservation 

 

Since the amount of energy dissipated in collisions turns out to have a profound 

influence on the bed hydrodynamics the energy housekeeping during a simulation was 

investigated in more detail. The energies concerned with the particle positions and 

velocities (i.e. kinetic energy, potential energy and rotation energy) can be calculated 

(instantaneously) as follows: 
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The energy dissipated in collisions is calculated using the equations presented in 

Chapter 2. This dissipated energy is taken to be positive by definition. The energy that 

the particles receive from the interaction with the gas phase can be obtained as 

follows: 
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All the five different energies mentioned above are calculated independently. Since 

the dissipated energy is taken to be positive by definition the sum of the potential, 
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kinetic, rotation and dissipated energy should equal the amount of energy that the 

particles receive from the interaction with the gas phase. The total amount of energy 

in the system can now be obtained as follows:  

 

 
dragdisprotkinpottot EEEEEE −+++= , (4.12) 

 

and this amount should remain constant during a simulation.  

 

In Figure 4.6 the energy housekeeping during a simulation with non-ideal collision 

parameters (e  = 0.9, µ = 0.3) is presented. It can be observed that the potential energy 

is larger than the kinetic energy. The rotation energy is about 2 orders of magnitude 

smaller than the potential energy and therefore appears to be zero in this figure. The 

energy dissipated in collisions increases almost linearly with time and its behaviour is 

closely followed by the energy supplied by the drag force. In Figure 4.7 the energy 

housekeeping during a simulation with ideal collision parameters (e = 1.0, µ = 0.0) is 

presented. It should be stressed that the only differences between the system in Figure 

4.6 and 4.7 are the values of the collision parameters. 

 

 

Figure 4.6.  Energy housekeeping for a simulation with non-ideal collision 

parameter settings (e = 0.9, µ = 0.3) with a homogenous gas-inflow 

velocity ugas = 1.5 um f. 
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Figure 4.7.  Energy housekeeping for a simulation with ideal collision parameter 

settings (e = 1.0, µ = 0.0) with a homogenous gas-inflow velocity ug = 

1.5 um f. 

 

In Figure 4.7 it can be observed that the amount of energy dissipated in collisions 

remains zero throughout the whole simulation. The energy put into the system by drag 

force remains constant after a short initial stage (2 seconds). This is the amount of 

energy required for the expansion of the bed. Note that in both the non- ideal and the 

ideal cases the total energy remains constant throughout the whole simulation as 

required. It can also be observed that the potential energy in the non-ideal case (Figure 

4.6) fluctuates more strongly than in the ideal case (Figure 4.7) which is obviously 

due to the bubbling and slugging in the non- ideal case. Due to this vigorous bubbling 

and slugging the pressure fluctuations in the bed are stronger than in the ideal case as 

reported in the previous section. The energy required for these stronger fluctuations is 

supplied by the drag force which puts a lot more energy into the system in the non-

ideal case (Figure 4.6) than in the ideal case (Figure 4.7).  
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5. Influence of a particle size distribution 

 

Hardly any distribution of particle size encountered in fluidisation studies is 

symmetrical, most of them are skewed to larger diameters (Seville et al. (1997)). A 

symmetrical size distribution like a normal or a Gaussian distribution is therefore not 

representative for particles used in laboratory or industrial practice. In this work the 

particle diameters are obtained from a log-normal distribution which is asymmetrical 

and can be represented in mathematical terms as follows: 
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where df is the fraction of particles having diameters whose logarithms lie between ln 

Dp and ln Dp + d(ln Dp). In equation 4.13 Dp,CM is the count median diameter and σg  is 

the geometric standard deviation. When creating the particle size distribution all the 

diameters which are smaller than Dp,CM -σg  or larger than Dp,CM -σg are rejected to 

mimic the effects of sieving. An example of a particle size distribution generated with 

this method is represented in a (discrete) frequency histogram in Figure 4.8.  

 

Figure 4.8.  Frequency histogram of a log-normal particle size distribution with a 

count median diameter of 4.0 mm and a geometric standard deviation 

(GSD or σg) of 0.1 mm. 
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The influence of the distribution width on the bed hydrodynamics at homogeneous 

inflow conditions was studied. Simulations were performed using the  parameter 

settings presented in table 4.1 where the particle diameter of 4 mm is now the mean 

particle diameter. A time step of 10-4 s was used and all simulations were run for 10 s. 

The coefficient of restitution (e) was set equal to 0.9 and the coefficient of friction (µ) 

was set equal to 0.3 for both particle -particle and particle-wall collisions. The initial 

configurations were obtained by placing the particles in the system and allowing them 

to fall under the influence of gravity while the homogeneous gas inflow was set equal 

to umf. Simulations were performed for a system consisting of particles of uniform size 

and systems consisting of particles with a log-normal size distribution with a 

geometric standard devia tion σg = 0.1, 0.5 and 1.0 mm respectively. A homogeneous 

gas inflow at 1.5 umf was specified at the bottom of the system. 

 

In Figure 4.9 the pressure fluctuations inside the bed at 0.2 m above the centre of the 

bottom plate are presented for all the four cases. 

 

 

Figure 4.9.  Pressure at 0.2 m above the centre of the distributor plate as a function 

of time for the four cases, GSD = Geometric Standard Deviation (σg). 

 

It can be observed that the pressure peaks decrease with increasing geometric standard 

deviation of the size distribution. This can be explained by the lower void fraction in 

the uniform case due to the closer packing which results in a higher force acting on 
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the particles which in turn causes the higher pressure peaks. After the first 1.5 s the 

differences become less pronounced which indicates that especially in situations 

where close packing can occur, such as at minimum fluidisation conditions, it is 

important to take poly-dispersity into account. 

 

6. 3-D simulations 

 

A three-dimensional version of the hard-sphere model was developed. Similar to the 

model presented by Kawaguchi et al. (1998), the gas phase hydrodynamics is still 

resolved in two dimensions. This can be justified since the simulated system is a flat 

fluidised bed with a depth of 22 mm where the motion of the gas phase in the third 

dimension can be neglected. The 3-D bed is schematically represented in Figure 4.10. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10.  Schematic representation of the 3-D bed. 

 

All other parameter settings are the same as used for the two-dimensional system 

presented in table 4.1. In preliminary tests it became clear that a minimum depth of 5 

particle diameters was required to ensure stable simulations. At smaller depths the 

particles get stuck between the front and back walls and the hard-sphere algorithm 

breaks down. Eventually the simulation crashes due  to particle overlap. With a depth 

22 mm 
0.5 m 

0.15 m 
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of 22 mm (5.5 particle diameters) such problems did not occur and therefore this 

depth was used in the simulations. The number of particles used in the 3-D 

simulations was 14,000 in order to match initial bed height in the 2-D simulations. 

 

6.1 Influence of collision parameters  

The collision parameters turned out to have a key influence in the two-dimensional 

simulations and therefore their influence was also investigated using the three-

dimensional model. The set-up of the 3-D simulations was the same as for the 2-D 

simulations. The bed was homogeneously fluidised with a gas inflow of 1.5 um f.  

 

In Figure 4.11 snapshots obtained from three different 3-D simulations are presented. 

A simulation with non-ideal collision parameters (e = ew = 0.9, µ = µw = 0.3) was 

performed as well as a simulation with ideal collision parameters (e = ew = 1.0, µ = µw 

= 0.0). A simulation with ideal particle-particle interaction but non-ideal particle-wall 

interaction (e = 1.0, ew = 0.9, µ = 0.0, µw = 0.3) was also carried out. The snapshots 

presented in this figure are front views similar to the snapshots of the 2-D simulations 

in Figure 4.1. A number of particle layers was marked by colour based on the position 

at t = 0 s in order to visualise the induced particle mixing during the fluidisation 

process. For the 3-D case it should be noted that the bed is 5.5 particle diameters deep 

and this affects the visualisation: the particles near the front wall dominate the image.  

 

The trends observed in the 2-D simulations are clearly confirmed in the 3-D 

simulations. In the ideal case no bubbles are observed and after a vigorous expansion 

the bed remains rather homogeneously fluid ised. In the non- ideal case bubbles are 

observed and the bed height is continuously fluctuating. In the snapshots this may not 

be very clear due to the visualisation technique employed here, but this fluctuating 

motion could clearly be observed in animatio ns. Also the potential energy of the 

system showed these fluctuations in the non- ideal case.  
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Figure 4.11.  Snapshots of particle configurations for three 3-D simulations with ug 

= 1.5 um f. Upper: e = ew = 1.0, µ = µw = 0.0, middle: e = 1.0, ew = 0.9, 

µ = 0.0, µw = 0.3 bottom: e = ew = 0.9, µ = µw = 0.3. 
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The particle-wall interaction has a significant influence on the hydrodynamics. In the 

snapshots this can be observed especially during the initial stages of the simulation. 

Also the potential energy of this system shows stronger fluctuations than the ideal 

system.  

 

6.2 2-D versus 3-D 

The snapshots of the 3-D non-ideal simulation in Figure 4.11 show less bubbling and 

slugging than the snapshots in the 2-D equivalent in Figure 4.1. This can be partially 

due to the visualisation technique employed here but also the pressure fluctuations 

inside the bed are less strong and have a lower frequency (2.3 Hz in 3-D vs. 3.3 Hz in 

2-D for the non-ideal case).  

 

In Figure 4.12 the pressure 0.2 m above the centre of the distributor plate is plotted as 

a function of time for the 2-D and 3-D simulation with ideal values for the collision 

parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12.  Pressure 0.2 m above the centre of the distributor plate as a function of 

time (e = ew = 1.0, µ = µw = 0.0): 2-D simulations compared to 3-D 

simulations 

 

Although in both the 2-D and the 3-D simulations the fluctuations are not very strong, 

the fluctuations in the 2-D case are more pronounced compared to the 3-D case. The 
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RMS value is about 70 Pa higher for the 2-D simulation. The same difference was 

found for the non- ideal case. These differences may be explained in terms of 

improved statistics since the number of particles in a computational cell is much 

higher in the 3-D case. Also the absence of a degree of freedom of motion in the 2-D 

case can cause the system to show a more constrained behaviour and hence cause 

stronger fluctuations. 

 

In Figure 4.13 the pressure fluctuations in the 2-D and 3-D simulations are compared 

for the case with ideal particle -particle interaction and non-ideal particle-wall 

interaction (e = 1.0, ew = 0.9, µ = 0.0, µw = 0.3).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13.  Pressure 0.2 m above the centre of the distributor plate as a function of 

time (ew = 0.9, µ = 0.0, µw = 0.3): 2-D simulations compared to 3-D 

simulations. 

 

For this case the fluctuations are stronger in the 3-D simulation. The RMS value of 

the fluctuations was 60 Pa higher in the 3-D case. Baring in mind that in the other 

cases the fluctuations in the 2-D simulations were stronger than in the 3-D simulations 

it can be concluded that the particle -wall interaction has a more pronounced effect on 

the hydrodynamics in 3-D simulations than in 2-D simulations. This is obviously due 

to the presence of the front and the back wall in the 3-D simulations of the ‘flat’ bed 
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which renders a much higher number of particle-wall collisions than in the 2-D 

simulations. 

 

The 3-D simulations are much more computational intensive than the 2-D 

simulations. It takes 6 minutes of CPU time per simulated second on a Silicon 

Graphics Origin200 server (R10000 processor, 180 MHz) with the 2-D model (2400 

particles) whereas it takes 220 minutes per second to perform the same (non-ideal) 

simulation with the 3-D model (14,000 particles). 

 

7. Conclusions 

 

A hard-sphere Granular Dynamics model was used to study the effect of the particle 

properties on the hydrodynamics of gas-fluidised beds with homogeneous inflow 

conditions. The bed dynamics is strongly affected by the values of the collision 

parameters (i.e. the coefficients of restitution (e) and friction (µ)). When ideal particle 

interaction was assumed (e = 1.0, µ = 0.0, i.e. no energy is dissipated in collisions) 

non-realistic bed dynamics is observed: no bubble or slug formation occurs and 

particle mixing is poor. When realistic particle interaction was assumed (e = 0.9, µ = 

0.3) bubble and slug formation are observed and the fluidisation behaviour is in much 

better accordance with that inferred from experimental observations. The coefficient 

of tangential restitution (β0) has little influence on the overall behaviour. The particle -

particle interaction parameters turned out to be much more important than the 

particle-wall interaction parameters in the two-dimensional simulations. Pressure 

fluctuations inside the bed are much stronger in the non-ideal case than in the ideal 

case. With intermediate values for the collision parameters the behaviour also changes 

gradually with pressure fluctuations becoming less strong when the coefficients are 

changed toward their ideal values. It turned out to be more convenient to determine 

the root mean square (RMS) of the pressure fluctuations as a function of the energy 

dissipation rate since this is affected both by the collision parameters and the system 

dynamics. The RMS values of the fluctuations show an almost linear increase with the 

energy dissipation rate during a simulation. The higher the energy dissipation rate the 

more energy was put into the system by the drag force. 
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Two-dimensional simulations have been performed with particles which diameters 

have been obtained from a log-normal distribution. The main influence of the poly-

dispersity could be observed when the particles were in a rather close packing. 

Pressure peaks inside a slugging fluidised bed decreased with increasing geometric 

standard deviation of the log-normal size distribution during the initial stages of a 

simulation starting from minimum fluidisation conditions. This indicates that it is 

especially important to take a particle size distribution into account in systems where 

locally very dense particle configurations can occur. 

 

Also a three-dimensional model (as far as the particles are concerned) was developed. 

A minimum depth of the bed of 5 particle diameters was required to ensure stable 

simulations. The 3-D model confirmed the trends observed in the 2-D model with 

respect to the dependency of the overall bed hydrodynamics on the collision 

parameters. Time series of the pressure inside the bed showed a lower frequency and a 

lower RMS value in the 3-D simulations than in the 2-D case. The particle-wall 

interaction had a more pronounced influence on the hydrodynamics in the 3-D 

simulations than in the 2-D simulations. As anticipated the 3-D simulations required 

considerably more CPU time than the 2-D simulations. 

 

 

Notation 

 

Cd drag coefficient, [-]  

e coefficient of restitution, [-] 

Dp particle diameter, m  

g gravitational acceleration, m/s2 

mp particle mass, kg  

p pressure, Pa   

r position vector, m 

Sp momentum source term N/m3  

T temperature, K 

t time, s 
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u gas velocity vector, m/s 

vp particle velocity vector, m/s  

Vp particle volume, m3 

 

Greek symbols 

β volumetric interphase momentum transfer coefficient, kg/(m3s) 

β0 coefficient of tangential restitution, [-] 

ε void fraction, [-] 

µ coefficient of friction, [-] 

µg gas viscosity, kg/ms 

τ gas phase stress tensor, kg/ms2 

ρ density, kg/m3 

σg Geometric Standard Deviation (GSD), m 

 

Subscripts 

CM Count Median 

dsp dissipated 

drg drag 

GSD Geometric Standard Deviation 

g gas phase 

kin  kinetic 

mf minimum fluidisation 

p partic le 

pot potential 

rot rotation 

tot total 

w wall 
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Chapter 5.  

 

GRANULAR DYNAMICS SIMULATION OF BUBBLE 

FORMATION IN A GAS FLUIDISED BED: HARD-SPHERE 

VS. SOFT-SPHERE APPROACH 

 

Abstract: 

 

Two types of Granular Dynamics models have been developed to study bubble formation 

in a gas-fluidised bed. For each individual particle the Newtonian equations of motion 

are solved taking into account the external forces (i.e. gravity and drag). In the hard-

sphere simulations a sequence of binary, instantaneous collisions is processed one 

collision at a time while a collision model is used to describe the inelastic collisions with 

friction. In the soft-sphere model the particle-particle and particle-wall interactions are 

taken into account through a linear spring/dash-pot contact force model. The gas phase 

hydrodynamics is described by the spatially averaged Navier-Stokes equations for two-

phase flow. Bubble formation at a central jet in a bed of 0.2 m width and 0.3 m height 

with 40,000 glass ballotini particles of 850 µm diameter was chosen as a test case for the 

simulations. Preliminary simulations with the soft-sphere model revealed that the results 

are rather insensitive to the time step used for the integration of the contact forces as well 

as the value of the spring stiffness. The agreement between simulation and experiment 

was improved by incorporation of a log-normal particle size distribution. Hardly any 

difference could be observed between the results of the hard-sphere and the soft-sphere 

simulations that both compared well with the experiment. The computational efficiency of 

the hard-sphere simulations depends strongly on the dynamics of the system in contrast to 

the computational efficiency of the soft-sphere simulations. The collision parameters 

turned out to have a key influence in both types of simulations. When the collisions were 

assumed to be fully elastic and perfectly smooth the agreement with the experiment was 

much worse. 

 



Chapter 5 

______________________________________________________________________________________ 

 

 130

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parts of this chapter are based on the papers: 

 

B.P.B. Hoomans, J.A.M. Kuipers, W.J. Briels and W.P.M. van Swaaij, (1996). Discrete particle simulation 

of bubble and slug formation in two-dimensional gas-fluidised beds: a hard-sphere approach, Chem. Engng 

Sci., 51, 99.  

 

J.A.M. Kuipers, B.P.B. Hoomans and W.P.M. van Swaaij, (1998). Hydrodynamic models of gas-fluidized 

beds and their role for design and operation of fluidized bed chemical reactors, in Fluidization IX, L.-S. Fan 

and T.M. Knowlton (eds), 15. 

 

B.P.B. Hoomans, J.A.M. Kuipers and W.P.M. van Swaaij, (1998). The influence of a particle size 

distribution on the granular dynamics of dense gas -fluidized beds: a computer simulation study, AIChE 

Symp. Ser. No. 318, Vol. 94, 15. 



Hard-Sphere vs. Soft-Sphere 

______________________________________________________________________________________ 

 131

1. Introduction 

 
Due to increasing computer power Granular Dynamics simulations have become a very 

useful and versatile research tool to study the hydrodynamics of gas-fluidised beds. In 

these simulations the Newtonian equations of motion for each individual particle in the 

system are solved. Particle-particle and particle-wall interactions are taken into account 

directly which is a clear advantage over two-fluid models which require closure relations 

for the solids-phase stress tensor (Gidaspow (1994), Sinclair and Jackson (1989) and 

Kuipers et al. (1992) among others). Furthermore a discrete particle model is very well 

suited to take an arbitrary particle size distribution into account which is far more 

complex, if not impossible, in case a continuum modelling approach is adopted. 

 

Tsuji et al. (1993) developed a soft-sphere discrete particle model of a gas-fluidised bed 

based on the work of Cundall and Strack (1977). In their approach the particles are 

allowed to overlap slightly and from this overlap the contact forces are subsequently 

calculated. Kawaguchi et al. (1998) extended the model developed by Tsuji et al. (1993) 

to three-dimensions as far as the motion of the particles is concerned. Hoomans et al. 

(1996) used a hard-sphere approach in their discrete particle model of a gas-fluidised bed 

which implies that the particles interact through binary, instantaneous, inelastic collisions 

with friction. Xu and Yu (1997) used a two-dimensional soft-sphere model similar to the 

one used by Tsuji et al. (1993) in their fluidised bed simulations but they also employed 

techniques from hard-sphere simulations in order to determine the instant when the 

particles first come into contact precisely. Mikami et al. (1998) presented a two-

dimensional soft-sphere model of a gas-fluidised bed where the model developed by Tsuji 

et al. (1993) was extended in order to take cohesive forces between the particles into 

account. 

 

In all the soft-sphere models used for fluidised bed simulations a linear-spring/dash-pot 

model is used to describe the normal contact forces. In these simulations the value of the 
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spring stiffness is chosen artificially low for computational convenience. It is assumed 

that this is allowed but it has never been demonstrated that the simulation results are not 

affected by the value of the spring stiffness. In order to investigate the effect of the spring 

stiffness on the simulation results and to allow for a comparison with hard-sphere 

simulations, a soft-sphere linear spring/dash-pot model was developed. Since for both 

types of models the gas phase hydrodynamics and the two-way coupling was incorporated 

in exactly the same manner it is possible to make a direct comparison that highlights only 

the effects due to the choice of model. The formation of a single bubble at a central orifice 

in a gas-fluidised bed was chosen as a test case because of the availability of a well 

defined experiment (Hoomans et al., 1996) that allows for validation. 

 

2. Models  
 

Since a detailed description of the models is presented in Chapter 2 and Chapter 3, the 

key features will be summarised only briefly here. 

2.1 Hard-sphere granular dynamics 

The collision model as originally developed by Wang and Mason (1992) is used to 

describe a binary, instantaneous, inelastic collision with friction. The key parameters of 

the model are the coefficient of restitution (0 ≤ e ≤ 1) and the coefficient of friction (µ ≥ 

0). Foerster et al. (1994) have shown that also the coefficient of tangential restitution (0 ≤ 

β0 ≤ 1) should be used in order to describe the collision dynamics more accurately. These 

three collision parameters are all included in the model. 

 

In the hard-sphere approach a sequence of binary collisions is processed. This implies that 

a collision list is compiled in which for each particle a collision partner and a 

corresponding collision time is stored. A constant time step is used to take the external 

forces into account and within this time step the prevailing collisions are processed 

sequentially. In order to reduce the required CPU time neighbour lists are used. For each 
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particle a list of neighbouring particles is stored and only for the particles in this list a 

check for possible collisions is performed. 

 

2.2 Soft-sphere granular dynamics 

The linear spring/dash-pot model (Cundall and Strack, 1979) is the most popular soft-

sphere granular dynamics model since it was used by Tsuji et al. (1993), Schwarzer 

(1995), Xu and Yu (1997), Kawaguchi et al. (1998) and Mikami et al. (1998). For a 

review of various contact force models used in soft-sphere simulations the reader is 

referred to Walton (1992) or Schäfer et al. (1996).  

 
In soft-sphere models the following equations of motion are used: 

 

 externalcontact
dt

d
m FF

r +=
2

2

, (5.1) 

 T=ω
dt

d
I , (5.2) 

 

where r is the position vector of the centre of the particle, m is the mass of the particle, 

Fcontact is the contact force acting on the particle,  Fexternal is the net external force acting 

on the particle, ω is the rotation velocity, T is the torque acting on the particle and I is the 

moment of inertia of the particle. In this paragraph the focus will be on the contact forces 

between the particles, the external forces will be discussed in the following paragraph.  

 

The contact forces are given by:  

 

 abnnabnnn,ab k ,vnF ηξ −−=  (5.3) 

 

 t,abtttt,ab k v?F η−−=  (5.4) 

 

If however the following relation is satisfied: 
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 abnt,ab ,FF µ> , (5.5) 

 

then sliding occurs and the tangential force is given by: 

 

 abn,abt,ab tFF µ−= . (5.6) 

 

For contacts between particles and walls, the walls are assumed to be non-moving and of 

infinite mass just like in the hard-sphere model. 

 

The resulting force and torque for particle a are now simply obtained by adding the pair 

wise contributions of all the particles that are in contact with a: 

  

 ( )∑ +=
b

t,abn,abacontact FFF , , (5.7) 

 

 ( )∑ ×=
b

t,ababaa R FnT . (5.8) 

 

Since the contact forces are in general at least an order of magnitude larger than the 

external forces a separation of time scales was introduced. By default at each time step 

DT the external forces were taken into account while at 0.1DT the equations of motion 

were solved by taking only the contact forces into account. Hence the external forces 

remain constant during a time step DT. 

 

2.3 External forces 

The incorporation of external forces differs somewhat from the approach followed by 

Hoomans et al. (1996). In this work the external forces are used in accordance with those 

implemented in the two-fluid model presented by Kuipers et al. (1992) where, of course, 

the forces now act on a single particle: 
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where mp represents the mass of a particle, vp its velocity, u the local gas velocity and Vp 

the volume of a particle. In equation (5.9) the first term is due to gravity and the third term 

is the force due to the pressure gradient. The second term is due to the drag force where β 

represents an inter-phase momentum exchange coefficient as it usually appears in two-

fluid models. For low void fractions (ε < 0.80) β  is obtained from the well-known Ergun 

equation: 
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where Dp represents the particle diameter, µg the viscosity of the gas and ρg  the density of 

the gas. For high void fractions (ε ≥ 0.80) the following expression for the inter-phase 

momentum transfer coefficient has been used which is basically the correlation presented 

by Wen and Yu (1966) who extended the work of Richardson and Zaki (1954): 

 

 
( ) 65.21

4
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p
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D
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The drag coefficient Cd is a function of the particle Reynolds number and given by: 
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where the particle Reynolds number (Rep)  in this case is defined as follows: 
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g

ppg

p

D

µ

ερ vu −
=Re      . (5.13) 

 

For the integration of equation (5.9) a simple explicit first order scheme was used to 

update the velocities and positions of the particles. 

 

2.4 Gas phase hydrodynamics  

The calculation of the gas phase hydrodynamics mainly follows the lines presented by 

Kuipers et al. (1992). It is based on the numerical solution of the following set of partial 

differential equations that can be seen as a generalised form of the Navier-Stokes 

equations for a gas interacting with a solid phase as originally derived by Anderson and 

Jackson (1967). 

 

Continuity equation gas phase: 

 

 
( ) ( )∂ ερ
∂

ερ
g

gt
+ ∇ ⋅ =u 0 . (5.14) 

 

Momentum equation gas phase: 

 

  
( ) ( ) ( )∂ ερ

∂
ερ ε ε ερg

g p g g
t

p
u

uu S g+ ∇ ⋅ = − ∇ − − ∇ ⋅ +τ . (5.15) 

 

In this work transient, two-dimens ional, isothermal (T = 293 K) flow of air at atmospheric 

conditions is considered. The constitutive equations can be found in Chapter 3. There is 

one important modification with respect to the model presented by Hoomans et al. (1996) 

and that deals with the way in which the two-way coupling between the gas phase and the 

dispersed particles is established. In the present model the reaction force to the drag force 
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exerted on a particle per unit of volume is fed back to the gas phase through the source 

term Sp which has the dimension of force per unit of volume N/m3.  

 

3. Preliminary simulations 

 

At first several preliminary simulations were performed using the soft-sphere model to 

investigate the influence of the spring stiffness on the simulations results. The formation 

of a bubble at a central orifice was chosen as a test case. The parameter settings for these 

simulations are presented in table 5.1. 

 

Table 5.1. Parameter settings bubble formation simulations 

 

Particles:  Bed:  
    
Shape spherical width 195 mm 
diameter, Dp 850 µm height 300 mm 
Material ballotini glass orifice diameter, do   15 mm 

density, ρp 2930 kg/m3  cell width, DX     5 mm 
e 0.96 cell height, DY     5 mm 
ew 0.86 number x-cells, NX   39 
µ  0.15 number y-cells, NY   60 

µw 0.15     
Number, Np 40,000 time step, DT  10-4 s   

 

The values of the collision parameters are taken from Hoomans et al. (1996). The 

coefficient of tangential restitution (β0) is assumed to be equal to zero. Unless indicated 

otherwise a time step DT = 10-4 s is used while DTcontact = 0.1 DT. At the side walls no-

slip boundary conditions were applied and at the upper boundary cells a prescribed 

pressure was chosen. At the bottom row of cells the gas inflow velocity was set equal to 

the minimum fluidisation velocity of the glass particles (umf = 0.5 m/s). In the three 

central cells the gas velocity was set equal to 5 umf during the first 0.2 s of the simulation 

to generate a single bubble.  
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The effect of the spring stiffness was studied for a system consisting of particles of 

uniform size. The contact time for such particles within the framework of the linear 

spring/dash-pot model can be calculated as follows: 

 

 
( )

n

p

contact
k

em
t

2

ln 22 +
=

π
. (5.16) 

 

The values of the spring stiffness were varied from 1 to 10,000 N/m. The contact times 

for these values of the spring stiffness are presented in table 5.2. Unless indicated 

otherwise the value of the stiffness of the tangential spring was chosen as 2/7 times the 

normal spring stiffness (kt = 2/7 kn). Note that the contact times in the linear spring/dash-

pot model do not depend on the impact velocity. 

 

Table 5.2.  Contact times and results of simulations* for various values of the normal 

spring stiffness. In all cases DT = 10-4 s. 

 

kn  

N/m 

tcontact 

s 

DTcontact. 

10-4 s 

DTcontact. 

10-5 s 

DTcontact. 

10-6 s 

     
1 3.05 10-3 No No No 

10 9.64 10-4 Yes Yes Yes 

100 3.05 10-4 No Yes Yes 

1000 9.64 10-5 No Yes Yes 

10000 3.05 10-5 No No Yes 

 

* No: simulation not completed successfully, Yes: simulation completed successfully 

 

With a normal spring stiffness of 1 N/m no successful simulations could be performed. 

The repulsive force is simply not strong enough compared to the external forces (gravity 

and drag) to prevent the particles from excessive overlap. During the simulation this leads 

to extremely low local void fractions (ε < 0.2) which eventually causes the simulation to 

crash. With a spring stiffness of 10 N/m or higher such problems were not encountered. 
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However, at higher values of the spring stiffness the time step for the numerical 

integration of the contact forces should be chosen sufficiently small in comparison with 

the contact time in order to perform stable simulations. It turned out that in the case of kn 

= 100 N/m (tcontact = 3.05 10-4 s) a time step of 10-4 s was not sufficiently small to perform 

a stable simulation. However, when a time step of 5 10-5 s was used, the simulation was 

successfully completed. Hence the ratio of the contact time and the time step should at 

least be greater than 3 (tcontact/DTcontact > 3) to ensure the stability of the simulation. In 

Figure 5.1 the sum of the potential energy of all the particles in the system is plotted as a 

function of time for several time steps (DTcontact). 

 

Figure 5.1. The potential energy of the system as a function of time for several time 

steps. In all cases kn = 100 N/m. 

 

From Figure 5.1 it can be observed that there is hardly any influence of the time step used 

for the integration of the contact forces on the overall results of the simulation which is 

rather surprising. Snapshots of the simulations do not reveal a significant difference 

either. There is however a big difference in CPU time because a simulation requires 

nearly 10 times as much CPU time when the time step is reduced by a factor 10. In the 

simulations presented by Tsuji et al. (1993), Kawaguchi et al. (1998) and Mikami et al. 

(1998) a time step was used that was 3.7 times smaller than the contact time for the 

particles used in their systems. In the simulations presented by Xu and Yu (1997) the 
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ratio of the contact time and the time step was 6.2.  Although a ratio of 3.7 appears to be 

rather close to the stability limit the results presented in Figure 5.1 suggest that it is not 

required to choose a very small time step. This result is somewhat surprising since in 

Chapter 2, Figure 2.14, it was demonstrated that the effect of the time step on the time 

resolution of the contact force was rather large. However, the error in the energy balance 

over the collision was rather low in that particular case. This could explain the minor 

influence of DTcontact on the simulation results. The results presented in Figure 5.1 also 

indicate that the technique employed by Xu and Yu (1997) to determine the precise 

instant of first contact within a time step does not improve the results of a simulation. 

 

Additional simulations were performed using the hard-sphere model where the overall 

time step (DT) for the integration of the external forces was varied (DT =10-3 s, DT = 10-4 

s, DT = 10-5 s). In all these cases DTcontact = 10-5 s. For all three time steps very similar 

results were obtained. The simulation with DT = 10-5 s was significantly slower in terms 

of CPU time than the simulation with DT = 10-4 s but the difference between the 

simulations with DT = 10-3 s and DT = 10-4 s was remarkably small. This is due to the fact 

that in the simulation with DT = 10-3 s a larger neighbour list was required since this list 

could only be updated at every time step. 

 

In Figure 5.2 snapshots at t = 0.2 s are presented for simulations with various values of 

the spring stiffness: kn = 10 N/m, kn = 100 N/m and kn = 10000 N/m. A simulation with kn 

= 1000 N/m was not included in the figure but showed very similar results. By default the 

value for the tangential spring stiffness is set equal to 2/7 times the value of normal 

spring stiffness (kt = 2/7 kn) for reasons discussed in Chapter 2. In Figure 5.2 a snapshot at 

t = 0.2 s is included of a simulation where the value for the tangential spring stiffness is 

set equal to the value of normal spring stiffness (kt = kn = 100 N/m). 

 

All snapshots in Figure 5.2 appear to be surprisingly identical. Apparently the value of 

the spring stiffness has a negligible effect on the simulation results as long as it is high 

enough compared to the net external force to prevent the particles from overlapping too 

much (more than roughly 10% of the particle diameter). However, the choice of spring 
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stiffness does affect the CPU time required for a simulation significantly since the time 

step used for the integration of the contact forces should at least be three times smaller 

than the contact time corresponding to the spring stiffness used in the simulation.  

 

a) b) 

 

c) d) 

 

Figure 5.2. Snapshots of particle configurations at t = 0.2 s for various values of the 

spring stiffness a) kn = 10 N/m b) kn = 10000 N/m c) kn = 100 N/m d) kn = 

kt = 100 N/m. 
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In Chapter 2 it was demonstrated that the value of the tangential spring stiffness should 

be set equal to 2/7 times the value of normal spring stiffness (kt = 2/7 kn) in order to 

ensure equal normal and tangential contact times. From the snapshot in Figure 5.2d (kt = 

kn = 100 N/m) hardly any difference can be observed with the snapshot in Figure 5.2c (kn 

= 100 N/m,  kt = 2/7 kn). This is however not surprising because of the low value of the 

coefficient of friction (µ) that causes a considerable amount of sliding contacts. For the 

same reason the coefficient of tangential restitution (β0) had a negligible influence on the 

simulation results (compared to the coefficients of normal restitution (e) and friction) 

presented in Chapter 4. Furthermore the effect is most pronounced for sticking contacts 

with a coefficient of tangential restitution equal to one (β0 = 1.0) while in the simulation 

presented in Figure 5.2 the coefficient of tangential restitution is set equal to zero (β0 = 

0.0). However, an additional simulation with β0 = 1.0 showed very similar results and 

hence the effect due to the low coefficient of friction is dominant.  

 

4. Experimental validation 

 

The hard-sphere and the soft-sphere codes were compared with each other and validated 

using data of a bubble formation experiment obtained from the experimental set-up 

described below. 

 

4.1 Experimental 
The set-up used for the experiment is shown schematically in Figure 5.3 (Nieuwland, 

1994). The primary fluidising gas was introduced into the bed through two equally sized 

distribution chambers. From these distribution chambers the primary fluidisation gas was 

introduced into the fluidised bed section through a porous sintered stainless steel plate 

with a mean pore diameter of 10 µm.  This porous plate, which served as the main 

distributor of the primary fluidising gas, was equipped with a central rectangular pipe 

(internal dimensions: 15.0 x 15.0 mm) to inject secondary fluidising gas. This rectangular 
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jet was covered with a piece of stainless steel gauze to prevent the particles from entering 

it. 

 

Figure 5.3.  Schematic representation of the experimental set-up.  

 

During the experiments three different gas flow rates were adjusted independently by 

means of calibrated thermal mass flow controllers: a gas flow through the distributor 

section to keep the bed at incipient fluidisation conditions, a gas flow through the 

rectangular orifice to fluidise the particles above the orifice and a gas flow for the bubble 

formation at the orifice. Prior to bubble injection, the secondary gas was purged, while 

the primary gas flowed through the gas distributor and the orifice to keep the bed at 

minimum fluidisation conditions. Rapidly responding, computer controlled, magnetic 

valves were used to inject secondary gas through the orifice into the bed to form a bubble 

and to purge the primary gas during the period of injection. In the experiment the primary 

gas was introduced at a superficial velocity of 0.5 m/s (umf) and during a period of 0.2 s 

secondary gas was injected through the central orifice at a superficial velocity of 2.5 m/s 

(5 umf).  An S-VHS video camera was used to observe the bed during the whole process 
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of bubble formation. A sieve fraction of glass ballotini particles (ρp = 2930 kg/m3) with 

diameters between 800 and 900 µm was used.  

 

4.2 Influence of a particle size distribution 

In order to test whether the simulation results were improved by taking a particle size 

distribution into account, a simulation with particles of uniform size was compared with a 

simulation where a log-normal particle size distribution was taken into account (Hoomans 

et al., 1998). The results of these simulations were validated using data of a bubble 

formation experiment obtained from the experimental set-up described above. 

 

The main parameter settings for the simulations are presented in Table 5.1. Apart form a 

simulation with particles of a uniform diameter of 850 µm a simulation was performed 

where the particle diameters were obtained from a log-normal distribution with a count 

median average of 850 µm and a geometric standard deviation of 50 µm.  The particle 

size distribution employed in the simulation is presented in Figure 5.4. 

 

Figure 5.4. Particle size distribution for the bubble formation simulations 
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Snapshots at t = 0.2 s of the two simulations and corresponding video images of the 

experiment are presented in Figure 5.5. The simulations presented here were performed 

using the hard-sphere code. 

 

a) b) c) 

Figure 5.5. Snapshots at t = 0.2 s of: a) experiment, b) simulation with uniform 

particles, c) simulation with log-normal particle size distribution. 

 

It can be observed that in the system with particles of uniform size small ‘satellite’ 

bubbles appear above and alongside the main bubble. This is not observed in the 

experiment nor in the simulation with the poly-disperse particle assembly. These 

‘satellite’ bubbles are probably due to locally low void fraction due to close packing. In a 

system consisting of particles of uniform size such locally low void fractions can occur 

since it is possible for an assembly of particles to gather in a lattice- like structure. When 

locally low void fractions prevail the drag force (which depends strongly on the void 

fraction) can become strong enough to generate a bubble. The size of the main bubble 

agrees reasonably well with the experiment for both of the (2-D) simulations which is 

rather encouraging especially since the model parameters were obtained on beforehand 

and independently. 
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4.3 Hard-sphere vs. soft-sphere 

The simulations were performed using the parameter settings presented in Table 5.1. For 

the soft-sphere simulations a normal spring stiffness (kn) of 100 N/m was used and the 

time step for the integration of the contact forces (DTcontact) was set equal to 10-5 s. In 

both simulations the particle size distribution presented in Figure 5.4 is taken into 

account. In Figure 5.6 snapshots of the hard-sphere (middle) and the soft-sphere (right) 

simulations are presented together with the corresponding pictures of the experiment 

(left). The initial conditions were identical in both simulations and hence there was no 

overlap between particles at t = 0 s. which is required for the hard-sphere simulation. 

 

In the snapshots presented in Figure 5.6 it can be observed that the bubble is being 

formed at the central orifice during the first 0.1 s which is in good agreement with the 

experiment. After 0.1 s the bubble detaches from the distributor plate and starts to rise in 

the bed. Since the jet remains active during the first 0.2 s the formation of a second 

bubble is initiated but the jet does not remain active long enough for this second bubble to 

grow to full size. After 0.1 s the shape of the bubble predicted in the simulations starts to 

deviate from the bubble shape observed in the experiment although the main bubble size 

as well as the position of the bubble in the bed is fairly well predicted. The bubble shape 

observed in the experiment is more round and the gas-solid boundary appears to be 

sharper than in the simulations. This can be very well due to the two-dimensional nature 

of the simulations. Although the experimental set-up was quasi two-dimensional the bed 

was still more than 17 particle diameters deep (16 mm) which is a significant difference 

with the simulations where the particle motion is restricted to two dimensions. In addition 

a higher order numerical scheme for the convective fluxes in the gas phase momentum 

conservation equations is known to yield results with sharper bubble boundaries in 

Eulerian simulations. The use of such a higher order scheme (like for instance the Barton 

scheme) may also improve the bubble definition in (already 2-D) Lagrangian simulations. 
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a) t = 0.05 s 

 

 

 

b) t = 0.10 s 

 

Figure 5.6. Snapshots of bubble formation simulations compared with an experiment. 

From left to right: experiment, hard-sphere simulation and soft-sphere 

simulation, a) t = 0.05 s b) t = 0.10 s… 



Chapter 5 

______________________________________________________________________________________ 

 

 148

 

 

c) t = 0.15 s 

 

 

 

d) t = 0.20 s 

 

Figure 5.6. (…continued)  Snapshots of bubble formation simulations compared with 

an experiment. From left to right: experiment, hard-sphere, soft-sphere c) t 

= 0.15 s d) t = 0.20 s.  
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It is remarkable however that hardly any difference can be observed between the results 

of the hard-sphere and the soft-sphere simulations. The snapshots appear to be almost 

identical. In the hard-sphere all collisions are assumed to be binary whereas the soft-

sphere code is able to handle multiple contacts. Since the results show hardly any 

difference it can be concluded that the assumption in the hard-sphere code that all 

collisions are binary is not limiting. There was however a difference in computational 

efficiency between the two simulations. The hard-sphere simulation required about 220 

minutes of CPU time on a Silicon Graphics Origin200 server with a R10000 processor 

(180 MHz, 1Mb cache memory) for a simulation of 0.3 s whereas the soft-sphere 

simulation required 250 minutes of CPU time on the same machine. The main difference 

between the two simulations is that the soft-sphere simulation progresses in time at a 

rather constant speed whereas this is certainly not the case in the hard-sphere simulation. 

In the hard-sphere simulation the first 0.2 s (with an active jet) only require 30% of the 

total amount of CPU time. This is due to the strong increase in the number of collisions 

after 0.2 s when the jet is no longer active. From t = 0.0 s to t = 0.2 s a total number of 

37,8 million collisions was processed whereas from t = 0.2 s to t = 0.3 s the respectable 

number of 110 million collisions was processed. Hence the computational efficiency of a 

hard-sphere simulation depends strongly on the dynamics of the system. 

 

4.4 Effect of collision parameters 

Kuipers et al. (1998) demonstrated the effect of the collision parameters on bubble 

formation at a single, central orifice using a hard-sphere simulation. When the collisions 

were assumed to be fully elastic and perfectly smooth (e = 1.0, µ = 0.0, also referred to as 

ideal collision parameters) no bubble could be observed after 0.2 s.  The difference with 

the simulation where realistic values for the collision parameters were specified (e = 0.96, 

µ = 0.15, also referred to as non-ideal collision parameters) was tremendous. This 

simulation was repeated here using the soft-sphere code with, apart from the collision 

parameters, the same parameter settings as used for the simulation in the previous 

paragraph. Snapshots of both the hard-sphere and the soft-sphere simulations are 

presented in Figure 5.7 together with video images of the experiment.  
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a)  t = 0.1 s 

 

 

 

b)  t = 0.2 s 

 

Figure 5.7. Snapshots of bubble formation simulations with ideal collision parameter 

settings (e = 1.0, µ = 0.0, β0 = 0.0) compared with an experiment. From 

left to right: experiment, hard-sphere, soft-sphere a) t = 0.1 s b) t = 0.2 s. 
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In Figure 5.7 it can clearly be observed that the result presented earlier by Kuipers et al. 

(1998) obtained with a hard-sphere code is reproduced here with a soft-sphere code. The 

snapshot at t = 0.1 s is still quite similar to the snapshot of the simulation with the non-

ideal collision parameters presented in Figure 5.6 as well as the experiment. But in the 

snapshot at t = 0.2 s in Figure 5.7 the bubble seems to have disappeared which is no t in 

agreement with the snapshot at t = 0.2 s in Figure 5.6 and more importantly the 

experiment. This stresses the importance of the collision parameters in granular dynamics 

simulations of gas-fluidised beds. When non-realistic values for the collision parameters 

are specified non-realistic behaviour is predicted. This is found in both the hard-sphere 

and soft-sphere granular dynamics simulations. 

 

5. Conclusions 

 

A hard-sphere and a soft-sphere granular dynamics model of a gas-fluidised bed have 

been developed. These two-dimensional models were compared with each other and 

validated experimentally using the formation of a single bubble at a central orifice as a 

test case.  Preliminary simulations with the soft-sphere code revealed that the time step 

used for the integration of the contact forces should be more than 3 times smaller than the 

contact time. The results of the simulations did not change significantly when the time 

step for the integration of the contact forces was decreased. The results of the simulations 

were also rather insensitive to the value of the normal spring stiffness. The value of the 

normal spring stiffness should be high enough compared to the net external force in order 

to prevent the particles from overlapping too much (more than roughly 10% of their 

diameter). Although the use of very high values for the spring stiffness does not change 

the results significantly it requires more CPU time since smaller time steps have to be 

used. A simulation were the value of the tangential spring stiffness was set equal to the 

value of the normal spring stiffness (kt = kn) showed hardly any difference with the 

default simulations where kt = 2/7 kn. 

 



Chapter 5 

______________________________________________________________________________________ 

 

 152

The incorporation of a particle size distribution turned out to improve the agreement 

between simulation and experiment. In a bubble formation simulation with particles of 

uniform size small ‘satellite’ bubbles appeared above and alongside the main bubble. 

This could not be observed in the experiment nor in the simulation where a log-normal 

particle size distribution was taken into account. 

 

A hard-sphere and a soft-sphere simulation where a log-normal particle size distribution 

was taken into account were compared with each other and with an experiment. Both 

simulations agreed rather well with the experiment especially during the initial stages. 

The main bubble size and the position of the bubble in the bed were found to be in good 

agreement with the experiment. The shape of the bubble observed in the experiment was 

more round than the one observed in the simulations. Also the gas-solid boundary 

appeared to be sharper in the experiment than in the simulations. This is probably due to 

the two-dimensional nature of the simulations. Further improvement can be achieved by 

extending the model to three dimensions because although the bed used in the experiment 

was quasi two-dimensional it was still 16 mm deep. However, a full 3-D system 

simulation of this system would require about 750,000 particles which is extremely 

challenging even for state of the art computing resources of today. Applying periodic 

boundary conditions in the z-direction would reduce the total number of particles required 

in the simulation but in that case the influence of the front and back walls would be 

eliminated as well. Another improvement can be achieved by employing a higher order 

numerical scheme for the convective fluxes in the gas phase momentum equations that 

suffer less from numerical diffusion. Results of Eulerian simulations with such higher 

order schemes show sharper bubble boundaries and that could also be the case for 

Lagrangian simulations. The results of both the hard-sphere and the soft-sphere 

simulation were nearly identical. Therefore it can be concluded that the assumption in the 

hard-sphere code that all collisions are binary is not limiting. However, there was a 

difference in computational efficiency. Where the soft-sphere simulation progresses 

through the simulation at a rather constant speed the computational efficiency of the hard-

sphere simulation depends strongly on the dynamics of the system. The more collisions 
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occur the slower the progress. The overall CPU time requirements of the two codes were 

very similar for a simulation of 0.3 s. 

 

The collision parameters (i.e. coefficients of restitution and friction) turned out to have a 

key influence on the bubble formation process. When the collisions were assumed to be 

fully elastic and perfectly smooth (e = 1.0, µ = 0.0) no bubble could be observed after 0.2 

s. This result was obtained with both the hard-sphere and the soft-sphere model.  

 

 

Notation 

 

Cd drag coefficient, [-]  

Do orifice width, m  

Dp particle diameter, m  

DT time step, s 

DX horizontal computationa l cell dimension, m 

DY vertical computational cell dimension, m 

e coefficient of restitution, [-] 

F force, N 

g gravitational acceleration, m/s2 

I moment of inertia, kgm2 

k spring stiffness, N/m 

m particle mass, kg  

Np number of particles, [-] 

NX number of computational cells in x-direction, [-] 

NY number of computational cells in y-direction, [-] 

n normal unit vector, [-] 

p pressure, Pa   

Rp particle radius, m 

r position vector, m 

Sp momentum source term, N/m3   
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T torque, Nm 

T temperature, K 

t time, s 

u gas velocity vector, m/s 

v particle velocity vector, m/s  

Vp particle volume, m3 

 

Greek symbols 

β volumetric interphase momentum transfer coefficient, kg/(m3s) 

β0 coefficient of tangential restitution, [-] 

ε void fraction, [-] 

µ coefficient of friction, [-] 

µg gas viscosity, kg/ms 

η damping coefficient, Ns/m 

τ gas phase stress tensor, kg/ms2 

ρ density, kg/m3 

ξ displacement, m 

 

Subscripts 

g gas phase 

mf minimum fluidisation 

p particle 

w wall 
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Chapter 6.  

 

GRANULAR DYNAMICS SIMULATION OF 

SEGREGATION PHENOMENA IN BUBBLING GAS-

FLUIDISED BEDS 

 

Abstract:  

 

Granular dynamics simulations of gas-fluidised beds were performed in order to simulate 

segregation phenomena in systems consisting of particles of different size and density. In 

the model the gas-phase hydrodynamics is described by the spatially averaged Navier-

Stokes equations for two-phase flow. For each solid particle the Newtonian equations of 

motion are solved taking into account the particle-particle and particle-wall interactions. 

The (2-D) model was applied to a system consisting of particles of three different densities 

but equal size and to systems consisting of particles of two different sizes but equal 

density. In the different density system segregation was observed over a time scale of 

several seconds. In the different size systems segregation was also observed but a clear 

steady state was not reached since the larger particles were continuously transported to 

the upper regions of the bed in bubble wakes. A statistical analysis of the segregation in 

terms of mass fraction distributions is presented. When the particle-particle and particle-

wall interactions were assumed to be fully elastic and perfectly smooth, segregation 

occurred very fast and was almost complete due to the absence of bubbles. Preliminary 

experimental validation showed rather poor agreement between simulation and 

experiment. The simulation predicts segregation at a lower gas velocity than used in the 

experiment. 
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1. Introduction 

 

Segregation phenomena can play an important role in fluidised systems consisting of 

particles of different size and/or density. Typical examples of such processes are fluidised 

bed polymerisation and fluidised bed granulation among others. In order to improve the 

performance of these processes detailed knowledge about the distribution of the different 

solids species throughout the bed in different operating conditions is required. In a system 

consisting of particles of equal density but different size the bigger (heavier) particles tend 

to reside at the bottom of the bed if the fluidisation velocity does not exceed the minimum 

fluidisation velocity (umf) of the big particles. The big particles are in this case referred to 

as jetsam. The smaller (lighter) particles show the tendency to float and reside at the bed 

surface. These particles are referred to as flotsam. At gas velocities much higher than the 

umf of the jetsam better mixing is normally achieved. In case of a system consisting of 

particles of equal size but different density the denser particles are referred to as jetsam 

whereas the lighter particles are referred to as flotsam. 

 

Segregation phenomena in gas-fluidised beds have been the subject of several 

experimental studies reported in the literature. Nienow et al. (1987), Hoffmann et al. 

(1993) and Wu and Baeyens (1998) studied systems consisting of particles of equal 

density but different size. Nienow and Naimer (1980) performed experiments on systems 

consisting of particles of equal size but different density. Rowe et al. (1972) presented 

experimental results for both types of systems. In general the different density systems 

tend to segregate more easily than the poly-disperse systems. 

 

Due to increasing computer power discrete particle models have become a very useful and 

versatile research tool in order to study the hydrodynamics of gas-fluidised beds. In these 

models the Newtonian equations of motion for each individual particle are solved. 

Particle-particle and particle-wall interactions are taken into account directly which is a 

clear advantage over two-fluid models that require closure relations for the solids-phase 
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stress tensor (Kuipers et al. (1992) and Gidaspow (1994) among many others). When 

simulating gas-fluidised beds with particles of different size and/or particles of different 

density multi- fluid models can be used (Gidaspow et al., 1990) but several difficulties are 

encountered due to the fact that large sets of continuum equations have to be solved. In 

addition, and more fundamentally, significant problems arise when closure laws for the 

mutual interaction of particles belonging to different classes have to be formulated. 

Although the Kinetic Theory of Granular Flow (KTGF) offers a theoretical framework to 

overcome this problem this approach is not very flexible and the computationa l cost 

increases dramatically with each additional solid phase. Kumaran and Koch (1993) and 

Manger (1996) applied this theory to binary mixtures and recently Mathiesen et al.  

(1998) extended the work of Manger (1996) in order to handle three solid phases. A 

discrete particle approach offers a more natural way to overcome these problems since 

each individual particle in the simulation is tracked. Hence discrete particle models are 

very useful in order to study segregation phenomena in gas-fluidised beds consisting of 

particles of different size and/or density in detail. Moreover they can be used to generate 

data which can subsequently be used to develop closure models for continuum models. 

However the number of particles that can be taken into account in a simulation is limited 

(typically < 106) which implies that currently the method can only be applied to rather 

small systems consisting rather coarse particles. 

 

The discrete particle approach for gas-fluidised beds was pioneered by Tsuji et al. (1993) 

who developed a soft-sphere discrete particle model based on the work of Cundall and 

Strack (1979). In this approach the particles are allowed to overlap slightly and this 

overlap is subsequently used to calculate the contact forces. Recently Kawaguchi et al. 

(1998) presented results for a three-dimensional version of this model. Schwarzer (1995) 

used a model similar to that of Tsuji et al. (1993) to simulate liquid fluidised beds in 

which lubrication forces were also taken into account. Hoomans et al. (1996) were the 

first to present a hard-sphere granular dynamics model of a gas-fluidised bed. In this 

discrete particle model the particles interact through binary, instantaneous, inelastic 

collisions with friction. Xu and Yu (1997) presented a hybrid technique where they used a 

contact force model in order to determine the inter-particle forces and a collision detection 
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algorithm in order to determine the precise instant at which the particles first come into 

contact. Mikami et al. (1998) recently extended the model of Tsuji et al. (1993) in order to 

include cohesive forces between the particles. Seibert and Burns (1998) were able to 

predict segregation phenomena in liquid fluidised beds using a Monte Carlo simulation 

technique. However, the Monte Carlo technique is only capable of predicting a certain 

steady state and is not suitable to simulate the dynamics of segregation.  

 

In this chapter two-dimensional granular dynamics simulations will be used to study 

segregation phenomena in bubbling gas-fluidised beds. The majority of the simulations is 

concerned with systems consisting of particles of equal density but different size but also 

a system consisting of particles of uniform size but different density is included. 

 

2. Models 

 

Since a detailed description of the models is presented in Chapter 2 and Chapter 3, the 

key features will be summarised only briefly here. 

2.1 Hard-sphere granular dynamics 

The collision model as originally developed by Wang and Mason (1992) is used to 

describe a binary, instantaneous, inelastic collision with friction. The key parameters of 

the model are the coefficient of restitution (0 ≤ e ≤ 1) and the coefficient of friction (µ ≥ 

0). Foerster et al. (1994) have shown that also the coefficient of tangential restitution (0 ≤ 

β0 ≤ 1) should be used in order to describe the collision dynamics more accurately. These 

three collision parameters are all included in the model. 

 

In the hard-sphere approach a sequence of binary collisions is processed. This implies that 

a collision list is compiled in which for each particle a collision partner and a 

corresponding collision time is stored. A constant time step is used to take the external 
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forces into account and within this time step the prevailing collisions are processed 

sequentially. In order to reduce the required CPU time neighbour lists are used. For each 

particle a list of neighbouring particles is stored and only for the particles in this list a 

check for possible collisions is performed. When simulating a binary system of particles 

of different size two cut off distances are used as schematically shown in Figure 6.1.  

 

 

 

 

 

 

 

 

 

 

Figure 6.1. The neighbour list principle using two cut off distances. The shaded 

particles are stored in the neighbour list of the black one. 

 

The neighbour list consists of all the small particles which are found within the small 

square (coloured grey) and the big particles which are found within the big square 

(coloured grey). By using this approach the number of particles in the neighbour list will 

never become too high which significantly reduces both CPU time and memory space 

requirements. 

 

2.2 Soft-sphere granular dynamics 

Although the majority of the simulations presented in this chapter were performed with 

the hard-sphere code also a simulation with the soft-sphere code was performed and 

therefore that model is described briefly here as well.  

 
In soft-sphere models the following equations of motion are used: 

 

Dnblist,small Dnblist ,big 
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 externalcontact
dt

d
m FF

r +=
2

2

, (6.1) 

 T=ω
dt

d
I , (6.2) 

 

where r is the position vector of the centre of the particle, m is the mass of the particle, 

Fcontact is the contact force acting on the particle,  Fexternal is the net external force acting 

on the particle, ω is the rotation velocity, T is the torque acting on the particle and I is the 

moment of inertia of the particle. In this paragraph the focus will be on the contact forces 

between the particles, the external forces will be discussed in the following paragraph.  

 

The contact forces are given by:  

 

 abnnabnnn,ab k ,vnF ηξ −−=  (6.3) 

 

 t,abtttt,ab k v?F η−−=  (6.4) 

 

If however the following relation is satisfied: 

 

 abnt,ab ,FF µ> , (6.5) 

 

then sliding occurs and the tangential force is given by: 

 

 abn,abt,ab tFF µ−= . (6.6) 

 

For contacts between particles and walls, the walls were assumed to be non-moving and 

of infinite mass just like in the hard-sphere model. 

 

The resulting force and torque for particle a are now simply obtained by adding the pair 

wise contributions of all the particles that are in contact with a: 
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 ( )∑ +=
b

t,abn,abacontact FFF , , (6.7) 

 

 ( )∑ ×=
b

t,ababaa R FnT . (6.8) 

 

Since the contact forces are in general at least an order of magnitude larger than the 

external forces a separation of time scales was introduced. By default at each time step 

DT the external forces were taken into account while at 0.1DT the equations of motion 

were solved by taking only the contact forces into account. 

 

2.3 External forces 

The incorporation of external forces differs somewhat from the approach followed by 

Hoomans et al. (1996). In this work the external forces are used in accordance with those 

implemented in the two-fluid model presented by Kuipers et al. (1992) where, of course, 

the forces now act on a single particle: 

 

 

( ) ( )m
d

dt
m

V
V p

p

p

p

p
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v
g u v= +

−
− − ∇

β
ε1

    , (6.9) 

 

where mp represents the mass of a particle, vp its velocity, u the local gas velocity and Vp 

the volume of a particle. In equation (6.9) the first term is due to gravity and the third term 

is the force due to the pressure gradient. The second term is due to the drag force where β 

represents an inter-phase momentum exchange coefficient as it usually appears in two-

fluid models. For low void fractions (ε < 0.80) β  is obtained from the well-known Ergun 

equation: 
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where Dp represents the particle diameter, µg the viscosity of the gas and ρg  the density of 

the gas. For high void fractions (ε ≥ 0.80) the following expression for the inter-phase 

momentum transfer coefficient has been used which is basically the correlation presented 

by Wen and Yu (1966) who extended the work of Richardson and Zaki (1954): 

 

 
( ) 65.21

4

3 −−−= ερεεβ pg

p

d
D

C vu  . (6.11) 

 

The drag coefficient Cd is a function of the particle Reynolds number and given by: 

 

 

( )
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=

1000      Re                             44.0

1000 Re      Re0.15+1 
Re

24 0.687

p

pp

pd
C , (6.12) 

 

where the particle Reynolds number (Rep)  in this case is defined as follows: 

 

 
g

ppg

p

D

µ

ερ vu −
=Re      . (6.13) 

 

For the integration of equation (6.9) a simple explicit first order scheme was used to 

update the velocities and positions of the particles. 

 

2.4 Gas phase hydrodynamics  

The calculation of the gas phase hydrodynamics mainly follows the lines presented by 

Kuipers et al. (1992). It is based on the numerical solution of the following set of partial 

differential equations that can be seen as a generalised form of the Navier-Stokes 

equations for a gas interacting with a solid phase as originally derived by Anderson and 

Jackson (1967). 
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Continuity equation gas phase: 

 

 
( ) ( )∂ ερ
∂

ερ
g

gt
+ ∇ ⋅ =u 0 . (6.14) 

 

Momentum equation gas phase: 

 

  
( ) ( ) ( )∂ ερ

∂
ερ ε ε ερg

g p g g
t

p
u

uu S g+ ∇ ⋅ = − ∇ − − ∇ ⋅ +τ . (6.15) 

 

In this work transient, two-dimensional, isothermal (T = 293 K) flow of air at atmospheric 

conditions is considered. The constitutive equations can be found in Chapter 3. There is 

one important modification with respect to the model presented by Hoomans et al. (1996) 

and that deals with the way in which the two-way coupling between the gas phase and the 

dispersed particles is established. In the present model the reaction force to the drag force 

exerted on a particle per unit of volume is fed back to the gas phase through the source 

term Sp which has the dimension of force per unit of volume N/m3. For the calculation of 

the void fraction (ε) the technique described in Chapter 3 was used. No special 

modifications were made to take the effect of the particle size distribution into account. 

 

3. Ternary density distribution  

 

A simulation was performed of a system that consisted of three types of particles of 

uniform size but of different density using the hard-sphere code. The system was filled 

with 800 particles with a density of 2700 kg/m3 (umf = 1.79 m/s), 800 particles with a 

density of 1800 kg/m3 (umf = 1.42 m/s) and 800 particles with a density of 900 kg/m3
 (umf 

= 0.98 m/s). The main parameter settings for this simulation can be found in table 6.1. The 
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gas inflow velocity was set equal to the minimum fluidisation velocity of the densest (ρp = 

2700 kg/m3) particles (umf = 1.79 m/s). 

 

Table 6.1.  Parameter settings for the simulation with a different density mixture 

 
Particles:  Bed:  
    

shape spherical width 0.15 m. 
diameter 4.0 mm height 0.50 m 
ρp = 2700 kg/m3 Np = 800 number x-cells, NX   15 

ρp = 1800 kg/m3 Np = 800 number y-cells, NY   25 

ρp =   900 kg/m3 Np = 800  cell width, DX   10 mm 
e = ew 0.9 cell height, DY   10 mm 

µ = µw 0.3   
Np,total 2400 time step, DT 10-4 s 
 

The coefficients of tangential restitution were assumed to be equal to zero. The bed was 

fluidised at the minimum fluidisation velocity of the densest particles (ug = 1.79 m/s) for 

15 s starting from perfectly mixed initial conditions. In Figure 6.2 snapshots of the 

particle configurations are presented. 

 

Figure 6.2. Snapshots of the particle configurations in a system with a ternary density 

distribution. 



Chapter 6 

______________________________________________________________________________________ 

 168

 

In Figure 6.2 the segregation effect can clearly be observed. After only 15 seconds three 

distinct layers can be identified. In Figure 6.3 the mass fractions are plotted as a function 

of the bed height at t = 15 s.  The mass fractions are obtained by averaging over the full 

width of a bed section of 0.05 m height. In this figure it can be observed that the mass 

fraction of the jetsam particles (ρp = 2700 kg/m3) is nearly one in the bottom region where 

the mass fraction of the flotsam particles (ρp = 900 kg/m3) is zero. In the upper regions of 

the bed the mass fraction jetsam is zero whereas the mass fraction flotsam approaches 

one. The middle section of the bed clearly shows a peak in the mass fraction of the 

particles with ρp  = 1800 kg/m3. 

 

Figure 6.3. Mass fractions as a function of the bed height at t = 15 s for the simulation 

with a ternary density distribution. 

 

It is remarkable that even though the two less dense types of particles are both fluidised 

well above their umf there is a clear segregation effect between these two layers as well. 

Even though the fluidisation velocity is 1.3umf of the particles with ρp = 1800 kg/m3, the 

segregation between the upper two layers is rather clear. However, this is in agreement 

with the experimental observations by Rowe et al. (1972) who reported that different 
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density systems still show segregation above the umf of the jetsam particles. Since the 

particle size is rather large in this relatively small system wake effects due to bubbles are 

less pronounced. A dispersive mechanism was therefore not dominantly present and this 

may have enhanced the segregation. 

 

4. Binary size distribution 

 

4.1 Base case 

A simulation was performed of a system that consisted of two types of particles of 

different size but equal density using the hard-sphere code. A homogeneous mixture of 

250 particles of 4.0 mm diameter and 4750 particles of 1.5 mm diameter (50/50 wt.) was 

fluidised at the minimum fluidisation velocity of the bigger particles (umf,big  = 1.7 m/s). 

The simulation was run for 50 seconds using the parameter settings presented in table 6.2. 

The collision parameters for the glass particles were obtained from Hoomans et al. (1996). 

 

Table 6.2.  Parameter settings for the simulations with a binary size distribution 

 
Particles:  Bed:  
    
shape spherical width 0.15 m. 
density, ρp 2480 kg/m3 height 0.25 m 

Dp = 1.5 mm Np = 4750 number x-cells, NX   15 
Dp = 4.0 mm Np = 250 number y-cells, NY   25 
e 0.96 cell width, DX   10 mm 
ew 0.86 cell height, DY   10 mm 

µ = µw 0.15   
Np,total 5000 time step, DT   10–4 s 
 

The coefficients of tangential restitution were assumed to be equal to zero. Snapshots of 

particle configurations are shown in Figure 6.4.  In this figure it can be observed that 

segregation does occur with the bigger particles accumulating at the bottom of the bed. 
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However, this is a very dynamic situation as could be observed in animations where it 

became clear that the bigger particles are continuously transported to the upper regions of 

the bed in the wake of a bubble and descend again in the denser regions. This process 

continued throughout the simulation.  

 

Figure 6.4.  Snapshots of the particle configurations for a binary system of particles of 

different size. 
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A typical simulation took about 25 minutes of CPU time per simulated second on a 

Silicon Graphics Power Challenge with a 196 MHz R10000 processor. In Figure 6.5 the 

mass fraction jetsam at t = 20 s is plotted as a function of the height in the bed. Since all 

particle positions are known at each instant during a simulation such a plot can be 

calculated instantaneously. In experiments normally the gas supply is first shut off after 

which the bed is sectioned and each section is analysed separately. In the figure an 

additional line at the average mass fraction of 0.5 is included to guide the eye. 

 

Figure 6.5. Mass fraction jetsam as a function of the bed height at t = 20 s for the 

simulations with a binary size distribution at three different gas velocities 

(u_mf refers to the umf of the big particles) 

 

It can be observed that the mass fraction jetsam is indeed higher in the lower part of the 

bed although the fraction does not become one. This is not surprising since it could 

already be observed from the snapshots in Figure 6.4 that there is no pure layer of jetsam 

particles being formed on the bottom of the bed. The common knowledge that different 

density systems tend to segregate more easily than different size systems (Rowe et al., 

1972) is confirmed here when Figure 6.5 is compared with Figure 6.3. In Figure 6.5 also 

results for higher gas velocities are included from which it can be observed that the solids 

mixing is better at increased gas velocities.  
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4.2 Statistical analysis of segregation 

Although segregation could be observed in the base case simulation presented in the 

previous paragraph the system remained very dynamic. Therefore an analysis based on a 

single frame, as was presented for the base case simulation, does not provide a complete 

understanding of the segregation phenomenon. A similar problem is encountered in 

segregation experiments where segregation profiles are determined after the gas supply is 

abruptly shut off and the bed is subsequently divided in sections that are separately 

analysed (Hoffmann et al. (1993), Wu and Baeyens (1998)). By repeating the experiments 

the reliability of the results can be improved which is however rather time consuming. In 

granular dynamics simulations the positions of all the particles in the system are known at 

each instant. This enables the determination of segregation profiles by averaging over a 

large number of particle configurations, also referred to as frames. For the results 

presented in Figure 6.6 an average segregation profile was obtained using the particle 

configurations at each 0.01 seconds for a total duration of 50 seconds. Hence a reliable 

average and a corresponding variance could be obtained from 5000 frames. A line 

indicating the average mass fraction jetsam is included to guide the eye. 

 

Figure 6.6. Segregation profiles obtained from both single- and multiple frame 

analysis 
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In this figure a segregation profile obtained from a single frame analysis (t = 20.0 s) is 

included as well. Since this profile differs significantly from the average profile it clearly 

shows that one has to be careful with the application of single frame analysis. It only gives 

an impression of an instantaneous situation and therefore does not provide a complete 

understanding of the segregated state of the system. 

 

In Figure 6.7 the probability distribution of the mass fraction jetsam at a bed height of 

0.075 m obtained over the full duration of the simulation is presented.  

 

Figure 6.7. Probability distribution of the jetsam mass fraction at 0.075 m above the 

distributor plate obtained over 50 seconds 

 

The wide spread in this distribution again emphasises that a single frame analysis may 

lead to an incomplete understanding of the segregated state of the system. It is important 

to note that the segregation profiles obtained from the simulation are based on the actual 

positions of the particles during fluidisation while in experiments the gas supply is always 

shut off before the collapsed bed is sectioned and analysed. The segregation profiles 

obtained in such experiments are therefore based on the particle positions in a collapsed 

bed rather than a bed in a fluidised state.  
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4.3 Effects of collision parameters 

Since the collision parameters turned out to have a significant influence on the bed 

hydrodynamics in all the simulations presented in the previous chapters an additional 

simulation was performed assuming fully elastic (e = 1) and perfectly smooth (µ = 0) 

collisions. All other parameters were set to the same values as presented in table 6.2. 

Snapshots of this simulation are presented in Figure 6.8.  

 

 

Figure 6.8. Snapshots of particle configurations for the simulation with ideal collision 

parameters (e = 1.0, µ = 0.0)  

 

The result is striking, a segregated state is reached after a few seconds and this situation 

does not change significantly anymore. Due to the absence of bubbles there is no 

mechanism present to transport the bigger particles to the upper regions of the bed, which 

stresses the crucial role of bubbles for solids mixing in fluidised beds. The simulation was 
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continued for 20 seconds and an average segregation profile over 2000 frames was 

obtained. This average segregation profile is presented in Figure 6.9. 

 

 

 

Figure 6.9. Segregation profiles obtained from both single- and multiple frame 

analysis for the simulation with ideal collision parameters (e = 1.0, µ = 

0.0) 

 

In this figure it can be observed that the segregation is far more pronounced than in the 

base case simulation (Figure 6.6) with non- ideal collision parameters (e = 0.96, µ = 0.15) 

and that the variance is a lot less as well.  

 

 

5. Experimental validation 

5.1 Experimental 

For the purpose of experimental validation of the segregation simulations a set-up was 

designed and constructed that is schematically represented in Figure 6.10. 
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width 150 mm

height 400 mmdepth 15 mm

porous plate
pore size ~10 micron
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Figure 6.10. Schematic representation of the experimental set-up 

 

In this quasi two-dimensional set-up the particles can be observed with a video camera 

during the fluidisation process since glass was used as the material for the construction of 

the bed. Coloured glass particles obtained from Worf Glaskugeln GmbH in Mainz, 

Germany were used that can easily be distinguished by visual observation. The biggest 

particles were coloured red and had a diameter of 2.5 mm, the smallest were coloured 

yellow and had a diameter of 1.5 mm. Since homogeneous gas inflow conditions were 

used during the segregation experiments the option to invoke a jet was not used. Instead, 

the gas velocity in the jet was set equal to the uniform inflow velocity. A 50/50 wt. 

particle mixture was used for the validation with an initial bed height of 0.15 m. The 

fluidising gas (air at ambient conditions) was humidified in order to minimise the 

influence of electrostatic forces. In preliminary measurements the minimum fluidisation 

velocities were determined separately for both types of particles. For the 1.5 mm diameter 

particles a minimum fluidisation velocity (umf) of 0.92 m/s was found whereas for the 2.5 

mm diameter particles a umf of 1.28 m/s was found. For a 50/50 wt.% mixture the 
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segregation turned out to be most pronounced when the gas inflow velocity was chosen 

equal to 1.3 m/s.  

 

5.2 Results 

The parameter settings used for the simulations that were to be compared with the 

experiment are presented in table 6.3. 

 

Table 6.3.  Parameter settings for the simulation duplicating the experiment 

 

Particles:  Bed:  
    
Shape Spherical Width 0.15 m. 

density, ρp 2525 kg/m3 Height 0.40 m 
Dp,small = 1.5 mm Np = 6481 number x-cells, NX   15 
Dp,big  = 2.5 mm Np = 1400 number y-cells, NY   40 
  cell width, DX   10 mm 
kn 1000 N/m cell height, DY   10 mm 
    
Np,total 7881 time step, DT   10–4 s 
 

 

The collision parameters for the particles used in the experiment were measured at the 

Open University at Milton Keynes using the facility of the Impact Research group that is 

described in Chapter 2. In the simulations presented in the previous paragraphs the 

collision parameters for particle-particle collisions were identical: no distinction was 

made between collisions of particles of different types. For the simulation presented here 

the code was extended to take the various collision parameters into account. The values of 

the collision parameters that were obtained from the measurements at the Open University 

are presented in table 6.4 (Gorham and Kharaz, 1999). 
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Table 6.4.  Collision parameters obtained by Gorham and Kharaz (1999) 

 

 big-big big-small small-small big-wall small-wall 

      
e 0.97 0.97 0.97 0.97 0.97 

µ 0.11 0.10 0.15 0.09 0.10 

β0 0.33 0.33 0.33 0.33 0.33 

      

 

At first a simulation was run with a homogeneous gas inflow velocity of 1.3 m/s using the 

hard-sphere code. However, after 60 seconds still no segregation could be observed which 

is not in agreement with the results of the experiment. At lower gas velocities segregation 

was observed but for these simulations the hard-sphere code could not be used due to 

stability problems. The hard-sphere approach is not able to handle static zones in the bed 

and at gas velocities below umf such static zones cannot be avoided. Therefore the soft-

sphere code was used to perform a simulation with a homogeneous gas inflow velocity of 

0.9 m/s. For this simulation the soft-sphere code was extended to take the various 

collision parameters into account. The normal spring stiffness was set equal to 1000 N/m 

for all sorts of contacts and a time step of 10-5 s was used for the integration of the contact 

forces. 

 

Video images of the experiment and snapshots of the simulation are presented together in 

Figure 6.11. It can clearly be observed that the segregation is more pronounced and faster 

in the experiment than in the simulation. In the video images of the experiment bubbling 

appears to be far more pronounced than in the simulation. In the simulation with a gas 

inflow velocity of 1.3 m/s the bubbling was also much more pronounced but in that 

particular simulation segregation did not occur.  
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t = 0 s t = 20 st = 40 s 

 

Figure 6.11.  Snapshots of the simulation compared with video images of the experiment 
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t = 60 st = 80 st = 100 s 

Figure 6.11.  (continued) Snapshots of the simulation compared with video images of the 

experiment 
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At t = 100 s the segregation was almost complete in the experiment whereas this was by 

far not the case in the simulation. Therefore the simulation was continued in order to 

check whether the segregation would become more complete. In Figure 6.12 snapshots of 

the simulation at t = 150 s and t = 200 s are presented. 

Figure 6.12.  Snapshots of the simulation at t = 150 s and t = 200 s 

 

Indeed the segregation is more pronounced than it was at t = 100 s but still not as 

complete as it was in the experiment. Also the bigger particles tend to accumulate in the 

centre of the bed whereas in the experiment there is a sharper horizontal division between 

the two particle layers. Since the simulation was very time consuming (280 minutes of 

CPU time per simulated second on a Silicon Graphics Origin200 server with a R10000 

processor, 225 MHz, 2 Mb cache) the simulation was not repeated at different gas 

velocities. 
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Although the soft-sphere model is capable of predicting segregation for this system it is 

clear that the agreement with the experiment is rather poor. This is most likely due to the 

fact that the motion of the particles is restricted to two dimensions in the simulation. Also 

the particle sizes used in the experiment do not differ so much (1.5 vs. 2.5 mm). 

Segregation is expected to be more pronounced in the case of a larger size difference as 

was used in the simulation in the previous paragraph (1.5 vs. 4.0 mm). However the use of 

4.0 mm diameter particles in a bed of 15 mm depth is questionable. On the other hand 

particles of 1.0 mm diameter could be used instead of 1.5 mm diameter but this would 

increase the number of particles in the simulation and hence the computational cost. 

 

It is important to realise that in the present code the hydrodynamics of the gas phase is 

still resolved on a length scale that is larger than the particle size. This affects the two-way 

coupling between the particle dynamics and the gas phase hydrodynamics. In Figure 6.13 

two computational cells are schematically represented with each a different particle 

configuration but identical void fraction. 

 

 

 

 

 

 

 

Figure 6.13. Schematic representation of two computational cells with identical void 

fraction but different solids distribution 

 

In the present code these two configurations are treated in exactly the same manner as far 

as the two-way coupling is concerned, assuming that the particle velocities are identical in 

both cases. It is however to be expected that when the gas flow is solved on a length scale 
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smaller than the particle size these two configurations will show different results in terms 

of two-way coupling. In Chapter 3 some techniques are discussed that are capable of 

solving the gas phase hydrodynamics on this sub-particle scale. Using for instance the 

Lattice Boltzmann technique the effects of the sub-grid particle configuration on the flow 

behaviour can be studied on a length scale smaller than the particle size. Such microscopic 

simulations can subsequently be used to improve the two-way coupling in the Eulerian-

Lagrangian simulations by for instance an improved correlation for the drag force acting 

on a particle. This can eventually lead to improved agreement between simulation and 

experiment for the case presented in this section.  

 

6. Conclusions 

 

Gas-fluidised beds consisting of particles of different size and density were simulated 

using a hard-sphere discrete particle model. Segregation was observed in the case of a 

binary system of particles of different size as well as in the case of a ternary system 

consisting of particles of different density. In the latter case the segregation effect was 

more pronounced which is in agreement with experimental findings reported in the 

literature. Using realistic values for the collision parameters (e = 0.96, µ = 0.15) 

segregation was observed on a time scale of several seconds although the system never 

reached a clear steady state. The bigger (jetsam) particles were continuously transported 

to the upper regions of the bed by the bubbles and then moved down aga in in the denser 

regions. An average segregation profile was determined using 5000 frames (every 0.01 

second for a total duration of 50 seconds). The results showed a rather large variance. An 

analysis based on a single frame was found to lead to an incomplete understanding of the 

segregated state. When the collisions were assumed to be perfectly elastic and perfectly 

smooth (e = 1.0, µ = 0.0) a completely different behaviour was observed. Due to the 

absence of bubbles segregation became almost complete after only a few seconds and this 

situation did not change significantly anymore during the remainder of the simulation. 

This stresses the important role of bubbles in the mixing of solids in fluidised beds. 
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Finally an experimental set-up was designed and constructed for the purpose of 

experimental validation. At a gas inflow velocity of 1.3 m/s segregation was observed in 

the experiments over a time scale of less than a minute but in the simulations no 

segregation could be observed over the same time scale. At a lower gas inflow velocity 

(0.9 m/s) segregation was observed in the simulations. For these simulations the soft-

sphere code had to be used due to the presence of static zones. However the time scale 

over which the segregation occurred and the final segregation pattern were in poor 

agreement with the experimental results. This is most likely due to the fact that the motion 

of the particles in the simulation is restricted to two dimensions in contrast with the 

experiment. Furthermore the difference in the particle sizes used for the validation is 

rather small (1.5 mm vs. 2.5 mm diameter) which renders a tough test for the model. 

 

 

Notation 
 

Cd drag coefficient, [-]  

Dnblist width of neighbour list square, m  

Dp particle diameter, m  

DT time step, s 

DX horizontal computational cell dimension, m 

DY vertical computational cell dimension, m 

e coefficient of restitution, [-]  

F force, N 

g gravitational acceleration, m/s2 

I moment of inertia, kgm2 

k spring stiffness, N/m 

m particle mass, kg   

Np Number of particles, [-] 

NX number of computational cells in x-direction, [-] 

NY number of computational cells in y-direction, [-] 
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n normal unit vector, [-] 

p pressure, Pa   

Rp particle radius, m 

r position vector, m 

Sp momentum source term, N/m3   

T torque, Nm 

T temperature, K  

t tangential unit vector, [-] 

t time, s  

u gas velocity vector, m/s  

v particle velocity vector, m/s  

Vp particle volume, m3 

 

Greek symbols 

β defined in Eqs () and (), kg/m3s 

β0 coefficient of tangential restitution, [-] 

ε void fraction, [-] 

µ coefficient of friction, [-] 

µg gas viscosity, kg/ms 

η damping coefficient, Ns/m 

τ gas-phase stress tensor, kg/ms2 

ρ density, kg/m3 

ω angular velocity, s-1 

ξ displacement, m 

 

 

Subscripts 

g gas phase 

mf minimum fluidisation 

n normal 
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nblist  neighbour list 

p particle 

t tangential 

w wall 
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Chapter 7.  

 

 

THE INFLUENCE OF COLLISION PROPERTIES ON THE 

FLOW STRUCTURE IN A RISER 

 

 

Abstract:  

 

A two-dimensional hard-sphere discrete particle model was used in order to simulate the 

gas-solid flow in the riser section of a circulating fluidised bed (CFB). The Newtonian 

equations of motion are solved for each individual particle in the system while taking into 

account the particle-particle and particle-wall collisions. The gas phase hydrodynamics 

is described by the spatially averaged Navier-Stokes equations for two-phase flow. The 

results proved to be very sensitive with respect to the collision parameters (i.e. coefficient 

of restitution (e) and coefficient of friction (µ)).  In the case of fully elastic and perfectly 

smooth collisions (e = 1.0, µ = 0.0) hardly any clustering of particles could be observed 

as opposed to the case where these collision parameters were assigned realistic values (e 

= 0.94, µ = 0.28). Particle-wall collisions turned out to have very little influence on the 

flow structure. A strong effect of the collision properties on the axial solids profile was 

found where a pronounced build-up of solids was observed in the simulation with 

realistic values for the collision parameters. In the simulation assuming fully elastic and 

perfectly smooth collisions no build-up of solids was observed. This result is supported by 

the experimental findings of Chang and Louge (1992) where a smaller pressure drop 

over the riser was found when glass particles were used to which a coating was applied 

in order to decrease the coefficient of friction. Lift forces acting on the suspended 

particles turned out to have a slightly redispersive effect on the flow structure which 

made the radial segregation of the solids a little less pronounced. 
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formation in dense riser flow, Circulating Fluidized Bed Technology VI, J. Werther (Ed.), p. 266. 
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1. Introduction 

 

Cluster formation is a characteristic feature of dense gas solid flow in the riser section of 

a Circulating Fluidized Bed (CFB). Although a clear definition is lacking (Chen, 1995) 

clusters can be typified as regions of locally higher solid fraction. Since the existence of 

such clusters has a profound influence on the performance of a CFB unit as a chemical 

reactor they have been the subject of a number of studies. Kuipers et al. (1998) 

demonstrated that the radial solids segregation in a riser (i.e. core-annulus flow) has a 

negative effect on the performance of the riser as a chemical reactor. Radial solids 

segregation in a riser is largely due to the existence of clusters that tend to accumulate 

near the wall.  Horio and Kuroki (1994) experimentally observed clusters in dilute riser 

flow using a laser sheet technique. They found that the clusters had a characteristic 

parabolic shape.  

 

Tsuo and Gidaspow (1990) used a Two-Fluid approach with constant solids viscosity in 

order to simulate the riser section of a CFB. They reported the formation of cluster- like 

structures even though the spatial resolution in their simulation was rather low 

(computational cells of 7.62 mm width and 76.2 mm height) compared to typical cluster 

sizes. After time averaging the typical core-annulus flow struc ture where the average 

solids concentration is considerably higher near the wall was obtained. Other Two-Fluid 

approaches incorporating the kinetic theory of granular flow (Sinclair and Jackson 

(1989), Nieuwland et al. (1996)) did not focus particularly on cluster formation but more 

on the radial segregation of solids. This type of model possesses a peculiar dependency 

on the magnitude of the coefficient of restitution where a small deviation from unity 

causes the flow structure to change completely while the agreement with experimental 

findings deteriorates. This was (among others) pointed out by Hrenya and Sinclair (1997) 

who also reported that when particle phase turbulence was included in the model the 

aforementioned dependency became far less pronounced.  
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Tanaka et al. (1996) performed simulations of gas-solid flow in a vertical duct using the 

Lagrangian approach for the solid particles. They employed the Direct Simulation Monte 

Carlo (DSMC) method to describe the particle dynamics. In a later paper Tsuji et al. 

(1998) made a comparison between the work of Tsuo and Gidaspow (1990) and Tanaka 

et al. (1996). In the DSMC method the simulated particles actually represent a certain 

number of ‘real‘ particles. A random number generator is invoked to determine the 

collision partners and the geometry of the collision. Hence this method does not account 

for actual particle-particle and particle-wall interaction in a direct way. Moreover the 

modified Nanbu method used in their work does not guarantee exact conservation of 

energy (Frezzotti, 1997). This can be an important drawback especially since the collision 

parameters, that determine how much energy is dissipated in collisions, turned out to be 

of key importance in their simulations. Recently Helland et al. (1999) and Ouyang and Li 

(1999) presented discrete particle approaches similar to the one used in this work but in 

their simulations collisions are detected at constant time intervals allowing the particles to 

slightly overlap. In this chapter a Eulerian-Lagrangian simulation technique for dense 

gas-solid two-phase flow in a riser is presented which features direct incorporation of the 

particle-particle and particle-wall interaction. 

 

2. Model 

 

Since a detailed description of the model is presented in Chapter 2 and Chapter 3, the key 

features will be summarised briefly here. 

 

2.1 Granular dynamics 

The collision model as originally developed by Wang and Mason (1992) is used to 

describe a binary, instantaneous, inelastic collision with friction. The key parameters of 

the model are the coefficient of restitution (0 ≤ e ≤ 1) and the coefficient of friction (µ ≥ 

0). Foerster et al. (1994) have shown that also the coefficient of tangential restitution (0 ≤ 

β0 ≤ 1) should be used in order to describe the collision dynamics more accurately. These 
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three collision parameters are all included in the model. In all simulations presented in this 

chapter, the coefficient of tangential restitution is assumed to be equal to zero. 

 

In the hard-sphere approach a sequence of binary collisions is processed. This implies that 

a collision list is compiled in which for each particle a collision partner and a 

corresponding collision time is stored. A constant time step is used to take the external 

forces into account and within this time step the prevailing collisions are processed 

sequentially. In order to reduce the required CPU time neighbour lists are used. For each 

particle a list of neighbouring particles is stored and only for the particles in this list a 

check for possible collisions is performed. Since in riser flow the velocity differences 

between the particles is larger than in bubbling fluidised beds the neighbour list is chosen 

rather large (Dnblist = 8 Dp) to ensure that all collisions are properly detected. 

 

2.2 External forces 

The equation of motion used for the simulations of riser flow is: 

 

 LMLGdragp

p

p m
dt

d
m FFFg

v
+++=  (7.1) 

 

where mp represents the mass of a particle and vp its velocity. In equation 7.1 the first 

term on the right hand side is due to gravity and the second term is due to drag: 

 

 ( ) 7.22

8

1 −−−= ερπ
ppgdpdrag

CD vuvuF  (7.2) 

 

In equation 7.2 ρg represents the density of the gas phase and u represents its velocity. It 

should be noted that the drag correction due to the presence of other particles has been 

accounted for via the well-known Richardson and Zaki (1954) correction factor. The 

drag coefficient for an isolated particle depends on the particle Reynolds number as 

given by Rowe and Henwood (1961): 



Chapter 7 

______________________________________________________________________________________ 

 194

 

 
( )( )









≥

<+
=

1000Re                                        44.0

1000Re          Re15.01
Re

24

p

p

687.0

p

pd
C  (7.3) 

 

where the particle Reynolds number is defined as: 

 

 
g
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p

D

µ

ερ vu −
=Re  . (7.4) 

 

Gravity and drag force are implemented by default in all simulations shown in this work. 

The lift forces are not used by default but since an additional simulation was performed in 

order to test their influence the lift forces will be discussed in more detail here. 

 

The second term on the right hand side of equation 7.1 is the lift force due to a velocity 

gradient. Following the lines of Tanaka et al. (1996) only the gradient in the x-direction is 

considered:  

 

 ( )χρπ signCDF pgLGpxLG

22

,
8

1
vu −=  (7.5)  

 

where χ denotes the velocity gradient ∂(uy-vp,y)/∂x.  

 

The empirical relations used for the lift coefficient CLG are summarised in table 7.1. 

 

The third term on the right hand side in equation 7.1 is the lift force due to particle 

rotation, also known as the Magnus lift force:  
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where ωr is defined as follows: 

 

 u×∇−=
2

1ωω
r  (7.7) 

 

The empirical relations used for the lift coefficient CLM can be found in table 7.1. 

 

 

Table 7.1. Empirical relations for the lift coefficients 
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α = 5.32; β  = 37.2                    10< Reω ≤ 20 

α = 6.44; β  = 32.2                    20< Reω ≤ 50        (Dennis et al. 1980) 

α = 6.45; β  = 32.1                           Reω ≥ 50 

 

 

The rotational velocity of particles is not only affected by collisions with the system walls 

or with other particles, but also by the torque exerted on them by the fluid: 
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The empirical relations used for the rotational drag coefficient Cm are summarised in 

table 7.1. 

 

For the integration of equation 7.1 as well as equation 7.8 a simple explicit first order 

scheme was used to update the velocities and positions of the particles. 

 

2.3 Inlet and outlet conditions 

In the riser section of a CFB there is a continuous transport of particles throughout the 

system that has to be taken into account in the simulation. Instead of simulating the entire 

riser section, including inlet and exit configurations, only the middle section was 

simulated. At the inlet of the simulated system particles were placed at random in the 

bottom row of cells ensuring that there is no overlap with other particles or walls. An 

initial axial velocity of 0.4 m/s was assigned to each particle fed to the system. At each 

time step a specific number of particles was fed to the riser duct in accordance with a 

specified solids mass flux (Gs). The cross sectional area in this (two-dimensional) case 

was assumed to be equal to the width of the system times the particle diameter. At the 

outlet particles which had crossed the upper boundary were simply removed from the 

system at each time step. The particles were only allowed to leave the system at the upper 

boundary. 

 

2.4 Gas phase hydrodynamics 

The calculation of the gas phase hydrodynamics mainly follows the lines presented by 

Kuipers et al. (1992). It is based on the numerical solution of the following set of partial 

differential equations that can be seen as a generalised form of the Navier-Stokes 

equations for a gas interacting with a solid phase as originally derived by Anderson and 

Jackson (1967). 
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Continuity equation gas phase: 
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Momentum equation gas phase: 
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In this work transient, two-dimensional, isothermal (T = 293 K) flow of air at slightly 

elevated pressure (p = 1.2 Bar) is considered. The constitutive equations and the boundary 

conditions used can be found in Chapter 3. Note that no turbulence modelling is included 

in the present description. The reasons for this can be summarised as follows. Firstly the 

main goal of this work is to study the influence of particle properties on the flow structure. 

Secondly the particles used in the simulations in this chapter are rather coarse (500 µm) 

and are therefore not much influenced by turbulent eddies as for instance is the case for 

FCC particles (70 µm). And last but not least there is no generally accepted and 

experimentally validated turbulence model for the type of two-phase flow that is the 

subject of study here. Helland et al. (1999) did include an additional term in the 

momentum equation of the gas phase in order to account for sub-grid scale effects of 

turbulent eddies. However this term was taken directly from a single-phase flow model 

without any modification for the presence of the particles. It cannot be denied that the 

assumption of laminar flow is questionable for the type of flow encountered in the 

simulations in this chapter but there is no doubt that the application of a single-phase flow 

turbulence model in this situation is questionable as well. The void fraction (ε) is 

calculated from the particle positions in the bed. There is one important modification with 

respect to the model of Hoomans et al. (1996) and that deals with the way in which the 
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two-way coupling between the gas-phase and the particle motion is established. In the 

present model the reaction forces to the forces exerted on a particle by the gas-phase per 

unit of volume is fed back through the source term Sp which has the dimension Nm-3. 

 

3. Results 

 

As a first test case for the model the same system was chosen as was used by Tsuo and 

Gidaspow (1990) and Tanaka et al. (1996) in their simulations. The general parameter 

settings are summarised in Table 7.2. In all simulations a time step of 10-4 s was used 

together with a computational grid of 20 (NX) by 100 (NY) cells. 

 

Table 7.2.  General parameter settings 

 

 particles system  gas  
      

      

diameter, Dp 500 µm width 0.08 m temperature, T 293 K 

density, ρ 2620 kg/m3 height 2.00 m pressure, p 1.2 Bar 

solids mass flux, Gs 25 kg/m2s   velocity, ug 5.0 m/s 

 

3.1 Effect of collision parameters 

 

At first the influence of the collision parameters was examined. Tanaka et al. (1996) 

reported a strong dependency of the flow structure with respect to the coefficients of 

restitution (e) and friction (µ). In the work of Hoomans et al. (1996) on bubbling and 

slugging fluidised beds these parameters also turned out to have a decisive influence on 

the flow behaviour. Therefore three different simulations were performed where the 

collision parameters were set according to the values presented in Table 7.3. 
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Table 7.3. Settings for the collision parameters 

 

 e µ ew µw 

Ideal 1.0 0.0 1.0 0.0 

non- ideal 0.94 0.28 0.94 0.28 

Ideal particles/ non-ideal walls 1.0 0.0 0.94 0.28 

 

 

At first it was checked if each simulation had reached a steady state where the outlet 

solids mass flux was equal to the specified solids mass flux of 25 kg/m2s. For the 

simulation with ideal collision parameters this steady state was reached within 10 s but 

for the simulation with non- ideal collision parameters it took more than 30 s before the 

outlet solids mass flux was equal to inlet solids mass flux. Once the steady state was 

reached the simulations were run for 10 s in order to obtain statistically reliable time 

averages. In Figure 7.1 the outlet solids mass flux is presented as a function of time for 

the simulation with the non- ideal collision parameters.  

 

 

Figure 7.1. Outlet solids flux as a function of time for the simulation with non-ideal 

collision parameters (e = 0.94, µ = 0.28). 



Chapter 7 

______________________________________________________________________________________ 

 200

 

Note that t = 0 s in this figure corresponds to the initial condition for the actual simulation 

of the system at steady state conditions. The solids flux during the time required to reach 

this steady state is not shown here. In Figure 7.1 it can be observed that the outlet solids 

mass flux has a very peaky nature but the time average value is equal to the specified 

mass flux (Gs = 25 kg/m2s). It should be noted that in the simulations presented by Tsuo 

and Gidaspow (1990) and Tsuji et al. (1998) the time averaged outlet solids mass flux 

was by far not equal to 25 kg/m2s and therefore their results do not apply to fully 

developed riser flow.Two snapshots of simulations with ideal (e = 1.0, µ = 0.0) and non-

ideal (e = 0.94 and µ = 0.28) collision parameters are shown in Figure 7.2. These are 

snapshots of the middle section of the riser (1.0 to 1.2 m height).  

 

In Figure 7.2 a typical cluster can clearly be observed in the case of non-ideal collision 

parameters. The snapshot of the simulation with the ideal collision parameters shows a 

much more homogeneous distribution of the particles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2. Snapshots of a small section of the simulated riser (width = 0.08 m). Left: 

ideal collision parameters, e = 1.0, µ = 0.0, Right: non-ideal collision 

parameters: e = 0.94, µ = 0.28. 
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From animations of the simulations it could be observed that in the simulation with the 

non- ideal collision parameters the clusters moved downward preferably along the walls 

and had a streaky, semi-parabolic shape. These clusters are rather dynamic in nature: they 

continuously form, grow and break up. Typical downward velocities for these clusters are 

in the order of magnitude of 1.0 m/s which is in agreement with the experimental findings 

of Tsuo and Gidaspow (1990).  In the case of ideal collision parameters the flow was 

much more homogeneous and although locally slightly denser regions can be 

distinguished, these can hardly be identified as clusters. Similar results were obtained in a 

simulation with ideal collision parameters for particle-particle collisions but non- ideal 

parameters for particle-wall collisions.In Figure 7.3 the time averaged (10 s) radial solids 

profile at 1.0 m height is presented. For the case with non- ideal collision parameters the 

typical core-annulus flow structure can be observed where the solids fraction is relatively 

high near the wall and relatively low in the centre of the riser duct. In the other two cases 

the radial profile is flat. This result is a strong indication that the presence of clusters, 

which is clearly observed in the non- ideal case, causes the typical core-annulus structure 

since no cluster formation, and hence no core-annulus structure, could be observed in the 

other two cases where no energy was dissipated in particle-particle collisions. 

 

Figure 7.3. Radial profile of the time averaged solids volume fraction at 1.0 m above 

the inlet of the simulated riser. 
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It is also remarkable that the average solids hold-up is higher in the simulation with the 

non- ideal collision parameters than in the simulations with ideal particle-particle 

collisions. This suggests that there is an effect of the collision parameters on the axial 

solids profile in the riser. 

 

3.2 Axial effects 

The reason why it took the simulation with the non- ideal collision parameters much 

longer to reach a steady state turned out to be the build up of a solids profile in the riser. 

By the time the steady state was reached a total number of about 60,000 particles was 

found inside the system whereas in the simulations with ideal particle-particle collisions 

this number was about 25,000. This had also a pronounced effect on the CPU time. The 

simulation with non- ideal collision parameters required over 27 hours of CPU time per 

simulated second on a Silicon Graphics Origin200 server with a R10000 processor (180 

MHz, 1 Mb cache).   

 

 

Figure 7.4. Snapshots of the bottom section of the simulated riser (width = 0.08 m) 

from 0.0 to 0.2 m. Left: ideal collision parameters, e =1.0, µ = 0.0, Right: 

non-ideal collision parameters: e = 0.94, µ = 0.28. 
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The simulations with ideal particle-particle collisions required 2.5 hrs of CPU time per 

simulated second on the same machine. The reason for this huge difference is the total 

number of collisions that had to be processed in the simulations: 1 million collisions per 

second for the simulation with ideal collision parameters, 65 million collisions per second 

for the simulation with non- ideal collision parameters.Since clusters of particles move 

downward in the riser and the particles cannot leave the system at the bottom it can be 

understood that an axial solids profile will eventually be established. In Figure 7.4 a 

snapshot of the bottom section of the riser is presented for the simulations with ideal and 

non- ideal collision parameters. In this figure the same difference between ideal and non-

ideal collision parameters can be observed as in Figure 7.2 but in the bottom section the 

difference is even more pronounced. Large strands of particles move down alongside the 

walls and then break up again after impinging on the bottom wall. In Figure 7.5 the time 

averaged (10 s) radial solids profile at 0.2 m above the bottom is presented for the three 

different cases. 

 

Figure 7.5. Radial profile of the time averaged solids volume fraction at 0.2 m above 

the inlet of the simulated riser. 
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Similar to the radial solids profiles presented in Figure 7.3 the core-annulus flow 

structure can be observed in the simulation with non- ideal collision parameters but not in 

the simulations with ideal particle-particle collisions. Again, hardly any difference could 

be observed between the simulation with both ideal particle-particle and particle-wall 

collisions and the simulation with ideal particle-particle but non- ideal particle-wall 

collisions indicating that particle-particle collisions dominate the flow behaviour. It is 

also clear that the average solids hold-up for the simulation with the non- ideal collisions 

at 0.2 m in the riser is higher than at 1.0 m (Figure 7.3). This suggests the existence of a 

non-uniform axial solids profile. 

 

In Figure 7.6 the time averaged (10 s) axial distribution of the solids volume fraction in 

the riser are presented for the two cases mentioned above. For the non- ideal case clearly a 

build up of solids in the riser can be observed which is in agreement with the different 

total number of particles in the simulations reported earlier (app. 60,000 vs. 25,000). In 

this figure the results of the simulation with ideal particle-particle but non- ideal particle-

wall collisions are not included for clarity reasons. However, these results are very 

similar to the results of the simulation with ideal collision parameters. 

 

 

Figure 7.6. Axial profile of the time-averaged solids volume fraction (non-deal: e = 

0.94, µ = 0.28, ideal: e = 1.0, µ = 0.0) 
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In Figure 7.6 it can clearly be observed that a build up of solids exists in the case of the 

simulation with non- ideal particle collisions whereas in the case of ideal collisions the 

axial solids distribution is nearly uniform. Chang and Louge (1992) reported results from 

experiments using a somewhat different system but operated at a rather similar mass 

loading and Froude number.  They found a significant change in axial pressure profile in 

the riser when they applied a coating to glass particles in order to make them smoother. 

For the coated glass particles (i.e. lower coefficient of friction) the pressure drop over the 

riser was much less than for the non-coated glass particles indicating a lower solids hold 

up in the system. The results of the simulations presented above support the idea that the 

difference in the axial pressure profile found in these experiments is caused by the 

difference in particle-particle interaction in both cases. In the case where less energy is 

dissipated in collisions (i.e. the more ideal system: lower values for the coefficient of 

friction, higher values for the coefficient of restitution) less clusters are being formed and 

hence there is less internal solids circulation within the riser. This results in a lower solids 

hold up in the riser and hence a lower pressure drop.  

 

Chang and Louge (1992) pointed out that these effects become less pronounced at higher 

solids fluxes. A simulation was performed with ideal collision parameters at a solids flux 

of 50 kg/m2s in order to investigate this. Although the system appeared less homogeneous 

than at a solids flux of 25 kg/m2s still the formation of clusters was far less pronounced 

than in the non-ideal case with a solids flux of 25 kg/m2s. Obviously there is still a large 

difference between the simulated system with ideal collision parameters and the coated 

glass particles used in the experiments. Nevertheless the simulation results clearly show 

the important effect of the collision parameters on the flow structure in a riser and this 

result is supported by the experiments of Chang and Louge (1992). It is therefore of great 

importance that the collision parameters (i.e. coefficient of restitution and friction) are 

taken into account in the scale up as well as the design of riser reactors. 

 



Chapter 7 

______________________________________________________________________________________ 

 206

3.3 Influence of lift forces 

By default the two lift forces in equation 7.1 and the effect of the gas flow on the rotation 

of the particles (equation 7.8) were not included in the simulations. However, an 

additional simulation was performed including all these effects in order to investigate 

their influence on the flow structure. The case with the non- ideal collision parameters and 

a superficial gas velocity of 5.0 m/s was chosen as a test case. The time averaged (10 s) 

radial distributions of the solids volume fraction at 0.2 m above the riser inlet are 

presented in Figure 7.7 for the two simulations. 

 

Figure 7.7. Influence of the lift forces on the time-averaged radial distribution of the 

solids volume fraction at 0.2 m above the inlet of the simulated riser. 
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4. Conclusions 

 

Granular Dynamics simulations of riser flow have been performed using a two-

dimensional hard-sphere discrete particle model. Particles of 500 µm diameter and a 

density of 2620 kg/m3 were introduced in a riser of 0.08 m width and 2.00 m height at a 

solids mass flux of 25 kg/m2s. By default the superficial gas velocity was set equal to 5.0 

m/s. The simulations turned out to be rather sensitive to the collision parameters, i.e. the 

coefficients of restitution (e) and friction (µ). When these parameters were assigned non-

ideal values (e = 0.94, µ = 0.28) cluster formation was observed. When the collision 

parameters were set to ideal values (e = 1, µ = 0) no cluster formation was observed. This 

was also the case in a simulation where only particle-wall collisions were considered non-

ideal whereas particle-particle collisions were still taken to be ideal. The time averaged 

radial distribution of the solids volume fraction clearly revealed the typical core-annulus 

structure for the simulation with the non- ideal collision parameters. For the simulations 

with ideal particle-particle collisions the time averaged radial distribution of the solids 

volume fraction was rather flat. Particle-wall collisions turned out to have very little 

influence on the flow structure. 

 

In the non- ideal case the solids hold-up in the riser was much higher than in the ideal case 

as could be observed from axial solids volume fraction profiles. These results are 

supported by the experimental findings of Chang and Louge (1992) where a large 

difference in axial pressure profile was found when a coating was applied to glass 

particles in order to change the surface roughness (i.e. decrease the coefficient of 

friction). In those experiments a smaller pressure drop (i.e. smaller solids hold-up) was 

found for the coated (smoother) particles which is in agreement with the trend observed 

in the simulations. 

 

Finally the influence of the lift forces was investigated. These forces turned out to have a 

slightly redispersive effect on the flow structure which made the radial segregation of the 
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solids a little less pronounced. Since this was only a minor effect it could be regarded as a 

justification for the fact that the lift forces were neglected in the default simulations.  

 

 

Notation 

 

Cd drag coefficient, [-]  

Cm rotational drag coefficient, [-]  

e coefficient of restitution, [-] 

Dnblist width of neighbour list square, m 

Dp particle diameter, m 

I moment of inertia, kgm2 

F force, N 

Gs solids mass flux, kg/m2s 

g gravitational acceleration, m/s2 

mp particle mass, kg 

NX number of computational cells in x-direction, [-] 

NY number of computational cells in y-direction, [-] 

p pressure, Pa   

Sp momentum source term N/m3   

T temperature, K 

t time, s 

u gas velocity vector, m/s 

vp particle velocity vector, m/s  

Vp particle volume, m3 

x x coordinate, m 

y y coordinate, m 

 

Greek symbols 

α coefficient in expression Magnus lift force (table 7.1),  [-] 

β coefficient in expression Magnus lift force (table 7.1),  [-] 
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β0 coefficient of tangential restitution, [-] 

χ velocity gradient, 1/s 

ε void fraction, [-] 

µ coefficient of friction, [-] 

µg gas viscosity, kg/ms 

τ gas phase stress tensor, kg/ms2 

ρ density, kg/m3 

ξ dimensionless velocity gradient, [-] 

ωp particle rotation velocity, 1/s 

ωr relative rotation velocity gas/particle, 1/s 

 

Subscripts 

g gas phase 

LG lift force due to velocity gradient 

LM Magnus lift force 

p particle 

w wall 

 

 

References 

 

Anderson, T.B.  and Jackson, R., (1967). A fluid mechanical description of fluidized beds 

(equations of motion), Ind. Eng. Chem., Fundam., 6, 527. 

 

Chang, H. and Louge, M.Y., (1992). Fluid dynamic similarity of circulating fluidized 

beds, Powder Technol., 70, 259. 

 

Chen, J.C., (1996). Clusters (The Thomas Baron Plenary Lecture 1995), AIChE Symp. 

Ser. 92 (No. 313), 1. 

 



Chapter 7 

______________________________________________________________________________________ 

 210

Dennis, S.C.R., Singh, S.N., Ingham, D.B., (1980). The steady flow due to a rotating 

particle at low and moderate Reynolds numbers, J. Fluid Mech., 101 (2), 257. 

 

Foerster S.F., Louge, M.Y., Chang,H. and Allia, K., (1994). Measurements of the 

collision properties of small spheres, Phys. Fluids, 6, 1108. 

 

Frezzotti, A., (1997). A particle scheme for the numerical solution of the Enskog 

equation, Phys. Fluids, 9, 1329. 

 

Helland, E., van den Moortel, T., Occelli, R., Tadrist, L., Hjertager, B.H., Solberg, T. and 

Mathiesen, V., (1999). Numerical/experimental study of gas-particle flow behaviour in a 

circulating fluidized bed, in Circulating Fluidized Bed Technology VI, J. Werther (Ed.), 

p. 261. 

 

Hoomans, B.P.B., Kuipers, J.A.M., Briels, W.J. and van Swaaij, W.P.M. (1996). Discrete 

particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: 

A hard-sphere approach, Chem. Engng Sci., 51, 99. 

 

Horio, M., Kuroki, H., (1994). Three-dimensional flow visualization of dilutely dispersed 

solids in bubbling and circulating fluidized beds, Chem. Engng Sci., 49, 2413. 

 

Hrenya, C.M. and Sinclair, J., (1997). Effects of particle phase turbulence in gas-solid 

flows, AIChE J., 43, 853. 

 

Kuipers, J.A.M., van Duin, K.J., van Beckum, F.P.H. and van Swaaij, W.P.M., (1992). A 

numerical model of gas-fluidized beds, Chem. Engng Sci., 47, 1913. 

 

Kuipers, J.A.M., Hoomans, B.P.B. and van Swaaij, W.P.M., (1998). Hydrodynamic 

models of gas-fluidized beds and their role for design and operation of fluidized bed 

chemical reactors, in Fluidization IX, L.-S. Fan and T.M. Knowlton eds., p. 15  

 



Riser Flow 

______________________________________________________________________________________ 

 211

Nieuwland, J.J., van Sint Annaland, M., Kuipers, J.A.M. and van Swaaij, W.P.M., 

(1996). Hydrodynamic modelling of gas-particle flows in riser reactors, AIChE J., 37, 

1009. 

 

Mei, R., (1992). An approximate expression for the shear lift force on a spherical particle 

at finite Reynolds number, Int. J. Multiphase flow, 18, 145. 

 

Oesterlé, B., (1994). Une étude de l’influence des forces transversales agissant sur les 

particules dans les écoulements gaz-solide, Powder Technol., 79, 81. 

 

Ouyang, J. and Li, J., (1999). Discrete simulations of heterogeneous structure and 

dynamic behavior in gas-solid fluidization, Chem. Engng Sci., 54, 5427. 

 

Richardson, J.F. and Zaki, W.N., (1954). Sedimentation and Fluidisation: Part I, Trans. 

Inst. Chem. Engng, 32, 35. 

 

Rowe, P.N. and Henwood, G.A., (1961). Drag forces in a hydraulic model of a fluidised 

bed-part I, Trans. Instn Chem. Engrs, 39, 43. 

 

Saffman, P.G., (1965). The lift on a small sphere in a slow shear flow, J. Fluid Mech., 

22(2), 385.  

 

Sinclair, J. and Jackson, R., (1989). Gas-particle flow in a vertical pipe with particle-

particle interactions, AIChE J., 35, 1473.  

 

Tanaka, T., Yonemura, S., Kiribayashi, K., Tsuji, Y., (1996). Cluster formation and 

particle- induced instability in gas-solid flows predicted by the DSMC method, JSME Int. 

J. Series B, 39, 239. 

 

Tsuji. Y., Morikawa, Y. and Mizuno, O., (1985). Experimental measurement of the 

Magnus lift force on a rotating sphere at low Reynolds numbers, J. Fluids Eng., 107, 484. 



Chapter 7 

______________________________________________________________________________________ 

 212

 

Tsuji, Y., Tanaka, T. and Yonemura, S., (1998). Cluster patterns in circulating fluidized 

beds predicted by numerical simulation (discrete particle model versus two-fluid model), 

Powder Technol., 95, 254. 

 

Tsuo, Y.P. and Gidaspow, D., (1990). Computation of flow patterns in circulating 

fluidized beds, AIChE J., 36, 885. 

 

Wang, Y. and Mason, M.T., (1992). Two-dimensional rigid-body collisions with friction. 

J. Appl. Mech., 59, 635. 

 



Experimental Validation using PEPT 

___________________________________________________________________________________ 

 213

Chapter 8.  

 

EXPERIMENTAL VALIDATION OF GRANULAR 

DYNAMICS SIMULATIONS OF GAS-FLUIDISED BEDS 

WITH HOMOGENOUS INFLOW CONDITIONS USING 

POSITRON EMISSION PARTICLE TRACKING 

 

 

Abstract: 
  

A hard-sphere Granular Dynamics model of a two-dimensional gas-fluidised bed was 

experimentally validated using Positron Emission Particle Tracking (PEPT). In the 

model the Newtonian equations of motion are solved for each solid particle while 

taking into account the particle -particle and particle-wall collisions. The gas phase 

hydrodynamics is described by the spatially averaged Navier-Stokes equations for 

two-phase flow. A quasi two-dimensional bed of 0.185 m width and 0.4 m height with 

homogenous inflow conditions at 1.5 umf was chosen as a test case. Glass particles (ρp 

= 2435 kg/m3) with diameters ranging from 1.25 mm to 1.5 mm were used as the bed 

material. The collision parameters required in the simulation were obtained from 

separate, independent measurements. In the PEPT experiment the motion of a single 

tracer particle in the bed was tracked during the period of one hour. In the simulation 

the motion of 15,000 particles was tracked during a period of 45 s. The simulation 

data was time averaged over 45 s for each particle and subsequently ensemble 

averaged over all the particles in the simulation. The comparison was made on the 

basis of averaged velocity maps, occupancy plots and speed histograms. The results 

showed good agreement between experiment and simulation when the measured 

values for the collision parameters were used. When collisions were assumed to be 

fully elastic and perfectly smooth the agreement was much worse. 
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1. Introduction 

 
Experimental validation of flow models for dense gas-fluidised beds, that form the 

basis for (amongst others) reactor models, is of cr ucial importance to arrive at models 

that can predict the performance of fluidised beds with confidence. The trend in both 

experiments and models is that systems can be studied in more and more detail with 

continuously increasing accuracy. It is not the objective to present a complete review 

of available experimental techniques in gas-fluidised beds here. A comprehensive 

review on measuring techniques in fluidised beds was presented by Werther (1999) 

whereas an extensive overview of existing techniques for the measurement of solids 

concentration and velocity was presented by Nieuwland et al. (1996).  

 

With increasing computer power Granular Dynamics simulations have become a very 

useful and versatile research tool to study the dynamics of dense gas-particle flows. In 

these models the Newtonian equations of motion are solved for each individual 

granular particle in the system. The mutual interactions between particles and the 

interaction between particles and walls are taken into account directly. The discrete 

particle approach was pioneered by Tsuji et al. (1993) who used a soft -sphere model 

to describe the interaction between the particles. A three dimensional version of this 

model was later presented by Kawaguchi et al. (1998) whereas Mikami et al. (1998) 

extended the (2D) model in order to include cohesive forces between the particles.  

Hoomans et al. (1996) presented a hard-sphere approach where collisions are assumed 

to be binary and instantaneous. Xu and Yu (1997) developed a hybrid technique 

combining elements of both soft-sphere and hard-sphere techniques. In the studies on 

discrete particle simulation of gas- fluidised beds previously reported in the literature 

experimental validation has received little attention. This was partly due to the fact 

that proper experimental techniques were not widely available.   

 

In Chapter 5 and Chapter 6 of this thesis experimental validation was performed by 

direct observation of transient phenomena that occurred in a transparent system by 

using a video camera. This is a very basic technique that nonetheless can provide 

useful information on for instance the formation of a single bubble at an orifice or the 

dynamics of segregation. In the latter case it is required that the segregating species 
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can be visually identified.  However, the direct observation technique is limited to 

systems that allow for direct observation (i.e. transparent quasi two-dimensional set-

ups) in contrast to for example X-ray techniques (Yates et al., 1994). Furthermore the 

information that is obtained using direct observation covers macroscopic behaviour: 

Important quantities such as local solids volume fraction, local solids velocities etc. 

cannot be obtained using this technique. 

 

Particle tracking techniques are non-invasive measurement techniques where the 

motion of a single tracer particle is tracked for a period of time. Such techniques are 

ideally suited to validate a discrete particle model since the motion of a single particle 

in the bed can be tracked and therefore it allows for relatively direct comparison 

between measured data and simulation results. Lin et al. (1985) presented a technique 

where a radioactive tracer particle was used that was made of scandium-46 (Sc-46). A 

total of 12 scintillation detectors were positioned around the fluid ised bed to enable 

determination of the location of the particle. More recently Larachi et al. (1996) 

applied the tracking technique using Sc-46 tracers to gas- liquid-solid flows and 

Mostoufi and Chaouki (1999) applied the technique to liquid -fluidised beds. 

 

In this work a cooperation between the University of Twente and the University of 

Birmingham was initiated in order to use the Positron Emission Particle Tracking 

(PEPT) technique developed at Birmingham to validate the granular dynamics model 

of a gas fluidised bed developed at Twente. PEPT has been developed at Birmingham 

since 1987 and was successfully applied to a large number of systems for solids 

processing including mixers and gas fluidised beds (Seville et al. 1995). A 

comprehensive introduction to PEPT can be found in Stein et al. (1997). Recently a 

PEPT system was also developed by Stellema et al. (1998). PEPT differs from other 

tracking techniques in the sense that it uses positron emitting radioisotopes which 

have the unique feature that their decay leads to simultaneous emission of a pair of 

back-to-back γ-rays. In a following section a more elaborate discussion of the PEPT 

technique will be presented.  
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2. Model 

 
Since a detailed description of the model is presented in Chapter 2 and Chapter 3, the 

key features will be summarised briefly here. 

 

2.1 Granular dynamics 

The collision model as originally developed by Wang and Mason (1992) is used to 

describe a binary, instantaneous, inelastic collision with friction. The key parameters 

of the model are the coefficient of restitution (0 ≤ e ≤ 1) and the coefficient of friction 

(µ ≥ 0). Foerster et al. (1994) have shown that also the coefficient of tangential 

restitution (0 ≤ β0 ≤ 1) should be used in order to describe the collision dynamics more 

accurately. These three collision parameters are all included in the model. 

 

In the hard-sphere approach a sequence of binary collisions is processed. This implies 

that a collision list is compiled in which for each particle a collision partner and a 

corresponding collision time is stored. A constant time step is used to take the external 

forces into account and within this time step the prevailing collisions are processed 

sequentially. In order to reduce the required CPU time neighbour lists are used. For 

each particle a list of neighbouring particles is stored and only for the particles in this 

list a check for possible collisions is performed. 

 

2.2 External forces 

The incorporation of external forces differs somewhat from the approach followed by 

Hoomans et al. (1996). In this work the external forces are used in accordance with 

those implemented in the two- fluid model presented by Kuipers et al. (1992) where, of 

course, the forces now act on a single particle: 
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where mp represents the mass of a particle, vp its velocity, u the local gas velocity and 

Vp the volume of a particle. In equation (8.1) the first term is due to gravity and the 

third term is the force due to the pressure gradient. The second term is due to the drag 

force where β represents an inter-phase momentum exchange coefficient as it usually 

appears in two-fluid models. For low void fractions (ε  < 0.80) β  is obtained from the 

well-known Ergun equation: 
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where Dp represents the particle diameter, µg the viscosity of the gas and ρg  the 

density of the gas. For high void fractions (ε  ≥ 0.80) the following expression for the 

inter-phase momentum transfer coefficient has been used which is basically the 

correlation presented by Wen and Yu (1966) who extended the work of Richardson 

and Zaki (1954): 
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The drag coefficient Cd is a function of the particle Reynolds number and given by: 
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where the particle Reynolds number (Rep)  in this case is defined as follows: 
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For the integration of equation (8.1) a simple explicit first order scheme was used to 

update the velocities and positions of the particles. 
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2.3 Gas phase hydrodynamics 

The calculation of the gas phase hydrodynamics mainly follows the lines presented by 

Kuipers et al. (1992). It is based on the numerical solution of the following set of 

partial differential equations that can be seen as a generalised form of the Navier-

Stokes equations for a gas inte racting with a solid phase as originally derived by 

Anderson and Jackson (1967). 

 

Continuity equation gas phase: 

 

 
( ) ( )∂ ερ
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ερ

g

g
t
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Momentum equation gas phase: 
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In this work transient, two-dimensional, isothermal (T = 293 K) flow of air at 

atmospheric conditions is considered. The constitutive equations can be found in 

Chapter 3. There is one important modification with respect to the model presented by 

Hoomans et al. (1996) and that deals with the way in which the two-way coupling 

between the gas-phase and the dispersed particles is established. In the present model 

the reaction force to the drag force exerted on a particle per unit of volume is fed back 

to the gas phase through the source term Sp which has the dimension of force per unit 

of volume N/m3.  

 

3. Positron Emission Particle Tracking 
 

Positron Emission Particle Tracking (PEPT) is a technique that allows non-invasive 

observation of the motion of a single radioactive tracer particle. The PEPT technique 

is schematically represented in Figure 8.1.  
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a) detection 

 

 

 

 

 

 

 

 

b) reconstruction 

 

 

 

 

 

 

 

 

c) particle location 

 

 

Figure 8.1. The principle of the PEPT technique 

 

In the experiment reported here a glass particle taken from the sample of particles used 

in the fluidisation experiment was activated by direct irradiation in a cyclotron beam. 

detector detector 
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The glass particle was irradiated with the 3He beam from a cyclotron to produce the 

positron emitter 18F from reactions involving the oxygen on the glass. The decay of the 

18F isotope features the conversion of a proton to a neutron with the emission of a 

positron, the anti-particle of the electron. The positron then annihilates with an 

electron to produce a pair of back to back γ-rays. The γ-rays are detected by the 

positron cameras which consists of two position-sensitive γ-ray detectors that have an 

active area of 0.3 by 0.6 m. By using a reconstruction algorithm the position of the 

particle can be obtained as the intersection point of successive annihilation vectors. 

The algorithm employs an iterative scheme to discard corrupt annihilation vectors that 

can be caused by γ-ray scattering or random coincidences. When the tracer particle 

does not move the more annihilation vectors are used the more accurate the particle 

position can be determined. However, when the particle is moving the set of 

annihilation vectors should be large enough to locate the particle accurately but not so 

large that it has moved significantly during the time period over which the set was 

measured.  

 

The technique was not optimised for the use of a quasi two-dimensional system and 

for the post processing the standard software was used. The instantaneous particle 

velocity is inferred from the difference between successive locations. 

 

4. Comparison between PEPT data and simulation 

 

The PEPT experiment as performed in this work renders the trajectory of a single 

particle during one hour. This time scale cannot be reached by means of simulation on 

modern day computers. Instead the motion of 15,000 particles is tracked during a 

shorter period of time (45 s). In fact considerably more data is generated in the 

simulation since 15,000 times 45 seconds is a far larger number than 1 times 3600 

seconds. And since the 15,000 simulated particles cover the whole of the fluidised 

system, the simulation data does not suffer from poorly sampled regions in contrast 

with the experimental data.  
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It is assumed that it is justified to compare the simulation results with the time 

averaged experimental data by first time averaging the simulation data for each of the 

15,000 particles and subsequently taking an ensemble average over all the 15,000 

particles. By doing this there is a risk that rare events, which occur over a time scale 

clo se to or greater than the duration of a simulation, are poorly sampled. On the 

contrary, the chance that such a rare event is experienced by the tracer particle in the 

experiment is rather low as well.  

 

The actual comparison is made on the basis of occupancy plots, velocity maps and 

speed histograms which are standard outputs of the PEPT software (Tin et al., 1997)  

that was supplied by the University of Birmingham. To obtain an occupancy plot from 

the PEPT data the system is first divided into cells (10 mm width/height). In the 

occupancy plot the fraction of the total time that the tracer particle has spend in that 

particular cell is displayed using a colour code that is explained in the legend 

accompanying the plot. For the simulations a similar procedure was followed after all 

the individual particle trajectories were added together. In order to obtain the velocity 

maps the system was again divided into cells. The velocity vectors in the figure are 

averaged velocity for that particular cell. How the averages were obtained is explained 

above. Finally the PEPT data was compared with the results of the simulation using 

speed histograms. For the PEPT experiment the speed of the tracer particle was 

calculated on the basis of the 3 velocity components (x,y,z) at each instant. The 

histogram shows the speed distribution based on the data set covering the entire 

duration of the experiment of one hour. The speed histograms obtained from the 

simulation results are based on the two velocity components (x,y) taken into account 

in the simulations.  

 

5. Results 

 

As a test system for the experimental validation a gas-fluidised bed (0.185 m width, 20 

mm depth) with homogeneous inflow conditions (ug = 1.5 umf, umf = 0.9 m/s) was 

chosen. The parameter settings for the simulation are summarised in table 8.1. The bed 

was filled with the glass particles in such a way the static bed height was about 0.17 m. 
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In the simulation a total number of 15,000 particles was used to match the bed height 

encountered in the experiment. The bed used in the experiment was assembled using 

glass as the construction material. It was fitted with a porous plate distributor with a 

sufficiently high pressure drop to ensure homogeneous inflow conditions. In 

preliminary experiments a malfunctioning distributor plate was used which caused a 

strongly non-symmetrical solids flow pattern in the bed indicating a non-uniform gas 

distribution. The actual PEPT experiment used for the experimental validation was run 

for one hour in order to collect sufficient data to calculate statistically reliable 

averages. 

 

Table 8.1.  Parameter settings for the PEPT simulation 

 

Particles:  Bed:  
    
Shape spherical Width 0.185 m.  

density, ρp 2418 kg/m3 Height 0.40 m 
particle diameter, Dp  1.25-1.50 mm Number x-cells, NX   37 
  Number y-cells, NY   80 
e = ew 0.97 cell width, DX    5 mm 

µ = µw 0.10 cell height, DY    5 mm 

β0 = β0,w 0.33   

Np 15,000 time step, DT   10–4 s 
 

The particle-particle collision parameters presented in table 8.1 were independently 

measured by Gorham and Kharaz (1999) using the facility at the Open University at 

Milton Keynes described in Chapter 2. The particle-wall collision parameters were 

assumed to be equal to the particle-particle collision parameters. This is justified since 

earlier simulations (Chapter 4) showed that the influence of the particle -wall collision 

parameters were negligible compared to the influence of the particle-particle collision 

parameters. A log-normal particle size distribution about an average diameter of 1.375 

mm was taken into account in the simulation. Particle diameters lower than 1.25 mm 

and greater than 1.50 mm were rejected in order to mimic the effects of sieving and 

hence match the particle size distribution encountered in the experiment. 

 

 

 



Chapter 8  

___________________________________________________________________________________ 

 224

 

 

Figure 8.2. Snapshots of particle configurations of the simulation. 

 

An initial simulation was performed first to ensure that the actual simulation would not 

suffer from any start-up effects. During this initial simulation the system was operated 

at a homogeneous gas inflow of 1.5 um f (um f  = 0.9 m/s) with the parameter settings 
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presented in table 8.1. After this initial simulation the actual simulation (duration 45 s) 

was started and the required data (positions and velocities) was stored at time intervals 

correspond ing to those used in the experiment. Snapshots of the simulation are 

presented in Figure 8.2. In this figure it can be observed that the bed is bubbling quite 

vigorously and this behaviour could also be visually observed during the PEPT 

experiment. In Figure 8.3 an example of the trajectory of one single (randomly chosen) 

particle in the simulation is presented. This trajectory covers the whole duration of the 

simulation of 45 s. 

 

 

Figure 8.3. Example of a trajectory of a single particle during the simulation. 

 

Although the figure above gives some insight into the motion of a particle in a 

fluidised bed it does not provide a solid basis for a comparison. Therefore averaging 

techniques were applied as discussed in the previous section which yield data that 

permit a comparison between the PEPT data and the simulation results. 

 

In Figure 8.4 the velocity map obtained from the PEPT data is presented together with 

the velocity maps obtained from two simulations. In the centre the velocity map of the 

simulation using the measured values for the collision parameters (table 8.1) is 

presented and on the right the velocity map of a simulation assuming fully elastic, 

perfectly smooth collisions (e = 1, µ = 0, also referred to as ideal collisions) is 

presented. A reference vector indicating the magnitude of the velocity is included in 

all of the three velocity maps. In velocity map of the PEPT data a circulation pattern 
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can be observed where particles rise in the centre of the bed and descend near the 

walls. Two circulation cells can be distinguished which together form a rather 

symmetric picture indicating that the gas inflow was indeed homogeneous. 

 

 

 

 

Figure 8.4. Velocity map obtained from the PEPT data (left) compared with the 

velocity maps of the simulation using the measured collision 

parameters (centre) and the simulation assuming fully elastic, perfectly 

smooth collision (right) 

 

From the simulation with the measured collision parameters a very similar velocity 

map was obtained. Although not perfectly symmetric two circulation cells can be 

distinguished which is in good agreement with the PEPT data. The velocity map of the 

simulation assuming fully elastic, perfectly smooth collisions shows a somewhat 

different behaviour. The velocity vectors are smaller indicating lower speeds and also 

two additional circulation cells on top of the two main cells can be observed. These 

additional circulation cells rotate in the opposite direction and were not present in the 

PEPT experiment. 

 

In Figure 8.5 the occupancy plots obtained from the PEPT data and the two 

simulations are presented together. In this figure it can be observed that in the PEPT 

data the occupancy was higher near the walls which was also the case in the simulation 

with the measured collision parameters. This indicates that the particles spend 

relatively more time near the walls. In the simulation assuming fully elastic, perfectly 
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smooth collisions the occupancy is almost the same at each position in the system. In 

other words the residence time of the particles is evenly distributed throughout the 

whole system. This is due to the absence of bubbles in the latter case which causes a 

very homogeneous type of fluidisation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5. Occupancy plots obtained from the PEPT data (above), the simulation 

using the measured collision parameters (left) and the simulation 

assuming fully elastic, perfectly smooth collisions (right) 

 

It should be noted that the occupancy plot obtained from the PEPT data is not as 

smooth as the ones obtained from the simulations. This is obviously due to the fact 

that in the experiment one single particle was tracked for one hour. This does not 

guarantee that the whole system is covered and therefore it can be understood that 
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some regions of the bed suffer from poor statistics. For the simulation results all the 

particles in the system were taken into account which renders a far smoother picture 

since the whole of the bed was automatically sampled. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6. Speed histogram obtained from the PEPT experiment (top) compared 

with the speed histograms obtained from the simulation using the 

measured collision parameters (left) and the simulation assuming 

perfectly smooth, fully elastic collisions (right) 
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In Figure 8.6 the speed histogram obtained from the PEPT experiment is presented 

together with the speed histograms obtained from the two simulations. Where the 

velocity map and the occupancy plot provide a basis for a more qualitative comparison 

between simulation and experiment, the speed histogram offers the possibility for a 

quantitative comparison.  

 

In Figure 8.6 it can be observed that the results of the simulation using the measured 

collision parameters compare rather well with results of the PEPT experiment. 

Although the simulation results show a somewhat higher average speed than the PEPT 

data (about 0.25 m/s in the simulation and 0.15 m/s in the experiment) the shape of the 

distribution is rather similar. The higher average speed is most likely due to the two-

dimensional nature of the simulation. The absence of the front and back walls in the 

simulation implies that the particles in the simulation do experience a lower amount of 

wall friction that effectively results in a higher average speed. It is important to note 

that in both the experiment and the simulation particle speeds above 0.4 m/s are 

observed. Since these higher speeds are closely related to the bubbling behaviour in 

the bed it is important that good agreement between simulation and experiment is 

achieved on this matter. Although the speeds observed in the simulation are somewhat 

higher than the ones observed in the experiment for reasons discussed above, the 

agreement is encouraging.  

 

The agreement between the results of the PEPT experiment and the simulation 

assuming fully elastic, perfectly smooth collisions is much worse in this respect. In the 

latter simulation the average speed (about 0.1 m/s) is actually closer to the average 

speed observed in the experiment but more importantly however, the distribution of 

speeds in the histogram is far more narrow: no speeds above 0.4 m/s were observed. 

The reason for this is the absence of bubbles in the simulation with ideal collision 

parameters since the particles attain their maximum speeds when they are accelerated 

into the wake of a bubble. This once again emphasises the profound influence that 

these collision parameters have on the dynamics of a gas- fluidised bed. 
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6. Conclusions 

 

Granular dynamics simulations of gas-fluidised beds with homogeneous inflow 

conditions were experimentally validated using the Positron Emission Particle 

Tracking facility at the University of Birmingham. A quasi two-dimensional bed of 

0.185 m width and 0.4 m height with homogenous inflow conditions at 1.5 umf was 

chosen as a test case. Glass particles (ρp = 2435 kg/m3) with diameters ranging from 

1.25 mm to 1.5 mm were used as the bed material. In the PEPT experiment the motion 

of a single tracer particle in the bed was tracked during the period of one hour. In the 

simulation the motion of 15,000 particles was tracked during a period of 45 s. The 

simulation data was time averaged over 45 s for each particle and subsequently 

ensemble averaged over all the particles in the simulation. The results showed good 

agreement between experiment and simulation when measured values for the collision 

parameters were used. The particle speeds observed in the simulation were somewhat 

higher than those observed in the experiment which is most likely due to the absence 

of the front and back wall in the simulation. When collisions were assumed to be fully 

elastic and perfectly smooth the agreement was worse. No speeds higher than 0.4 m/s 

were observed whereas in the experiment as well as in the simulation with the 

measured collision parameters speeds up to 0.8 m/s were found. This demonstrates the 

profound influence of the collision parameters on the bed hydrodynamics since these 

higher speeds are closely related to the presence of bubbles in the bed. From a direct 

comparison with an experiment it was therefore shown that the assumption of fully 

elastic, perfectly smooth collisions is not valid for fluidised bed simulations.  

 

From this first comparison between granular dynamics simulations and a PEPT 

experiment it can be concluded that PEPT is a powerful tool for the experimental 

validation of these simulations. In future work it should not only be attempted to 

perform the validation on a more detailed level but also the simulation data can be 

used to verify the PEPT software. Since the simulation yields particle positions and 

corresponding velocities that are exact, the PEPT software should be able reproduce 

these results. 
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Notation 

 

Cd drag coefficient, [-]  

e coefficient of restitution, [-] 

Dp particle diameter, m  

DT time step, s 

DX horizontal computational cell dimension, m 

DY vertical computational cell dimension, m 

g gravitational acceleration, m/s2 

mp particle mass, kg  

Np number of particles, [-] 

NX number of computational cells in x-direction, [-] 

NY number of computational cells in y-direction, [-] 

p pressure, Pa   

r position vector, m 

Sp momentum source term N/m3  

T temperature, K 

t time, s 

u gas velocity vector, m/s 

vp particle velocity vector, m/s  

Vp particle volume, m3 

 

Greek symbols 

β volumetric interphase momentum transfer coefficient, kg/(m3s) 

β0 coefficient of tangential restitution, [-] 

ε void fraction, [-] 

µ coefficient of friction, [-] 

µg gas viscosity, kg/ms 

τ gas phase stress tensor, kg/ms2 

ρ density, kg/m3 

 

Subscripts 

g gas phase 
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mf minimum fluidisation 

p particle 

w wall 
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Dankwoord (Ackowledgements) 

 

En zo komt er een einde aan een promotie met ballen*. Een promotie die zeker niet het 

werk is van slechts één persoon. De mensen die een bijdrage hebben geleverd aan de 

totstandkoming van dit proefschrift wil ik op deze plek dan ook graag bedanken.  

 

Allereerst gaat mijn dank uit naar mijn drie promotoren. Modellering van de 

hydrodynamica van meerfasenstromingen is een onderzoekslijn waarmee Hans Kuipers 

inmiddels wereldwijd een grote naam heeft opgebouwd. Hans, het was me een waar 

genoegen om deel uit te maken van jouw team. Ik ben je dankbaar voor het grote 

vertrouwen dat je in me had. Ook zonder Wim Briels was dit promotieproject niet van de 
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met veel plezier terug aan de tijd die ik in jouw groep heb doorgebracht. Wim van Swaaij 

volgde het onderzoek weliswaar van wat grotere afstand maar wist op beslissende 

momenten een zet in de goede richting te geven. Wim, ik zal altijd onthouden dat je me 

een sleepkabel aanreikte toen ik met pech langs de weg stond. 

 

Een vijftal afstudeerders heeft een zeer gewaardeerde bijdrage geleverd aan de diverse 

onderwerpen die in dit proefschrift aan bod komen. Robert Heijnen (segregatie, het idee 

voor het plaatje op de kaft van dit proefschrift is aan zijn brein ontsproten), Marco Stam 

(zachte ballen), Peter Schinkelshoek (riserstroming), Reneke van Soest-Seij (3-D harde 

ballen) en Jan Gerard Schellekens (segregatie): allemaal ontzettend bedankt ! 

 

Veel steun heb ik gehad aan mijn collega’s Erik Delnoij, Mathijs Goldschmidt, Michiel 

Gunsing en Jie Li van de multi-phase flow crew van Hans Kuipers waar we dankbaar van 

elkaars kennis en vaardigheden gebruik konden maken.  

 

De experimenten beschreven in hoofdstuk 5 waren niet mogelijk geweest zonder de hulp 
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