## ERRATUM

## Large particle segregation, transport and accumulation in granular free-surface flows – ERRATUM

## J. M. N. T. GRAY AND B. P. KOKELAAR

(Received 3 June 2010)

doi:10.1017/S02211201000011X, Published by Cambridge University Press 19 May 2010

The Publishers apologise to the authors and readers for the following errors which occurred in Gray & Kokelaar (2010).

(a) On P. 116 THE JUMP BRACKETS ARE MISSING:

... At such discontinuities  $\eta$  satisfies the jump condition (see e.g. Chadwick 1976; Gray, Shearer & Thornton 2006, for a general derivation)

$$\llbracket \eta(\bar{u} - v_n) \rrbracket = \llbracket (1 - \alpha)\bar{u}\eta \left( 1 - \frac{\eta}{h} \right) \rrbracket, \tag{3.8}$$

where  $v_n$  is the normal speed of the shock and the jump bracket  $[\![f]\!] = f_2 - f_1$  is the difference of the enclosed quantity on the forward and rearward sides of the shock (denoted by the subscripts 2 and 1, respectively).

(b) On p. 126 also the jump brackets are missing:

... These can be summarized by the relations

$$[[h(\bar{u} - v_n)]] = 0, \tag{4.25}$$

$$\llbracket h\bar{u}(\bar{u}-v_n)\rrbracket + \llbracket \frac{1}{2}h^2\varepsilon\cos\zeta\rrbracket = 0, \tag{4.26}$$

$$[\![\eta(\bar{u}-v_n)]\!] - [\![(1-\alpha)\bar{u}\eta(1-\eta/h)]\!] = 0, \tag{4.27}$$

where the velocity magnitude is assumed to scale as  $U = \sqrt{gL}$ .

## REFERENCES

Chadwick, P. 1976 Continuum Mechanics. Concise Theory and Problems, 187 pp. George Allen & Unwin (republished Dover 1999).

Gray, J. M. N. T. & Kokelaar, B. P. 2010 Large particle segregation, transport and accumulation in granular free-surface flows. *J. Fluid Mech.* **652**, 105–137.

GRAY, J. M. N. T., SHEARER, M. & THORNTON, A. R. 2006 Time-dependent solutions for particle-size segregation in shallow granular avalanches. Proc. R. Soc. A 462, 947–972.