Granular metal films as recording media

Sy_Hwang Liou
University of Nebraska-Lincoln, sliou@unl.edu
C.L. Chien

The Johns Hopkins University, Baltimore, Maryland

Follow this and additional works at: https://digitalcommons.unl.edu/physicsliou
Part of the Physics Commons

Liou, Sy_Hwang and Chien, C.L., "Granular metal films as recording media" (1988). Si-Hwang Liou Publications. 21.
https://digitalcommons.unl.edu/physicsliou/21

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Si-Hwang Liou Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Granular metal films as recording media

S.H. Liou and C. L. Chien
Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Marylond 21218

(Received 22 October 1987; accepted for publication 4 December 1987)

Abstract

High-density recording media require materials with a high magnetization and high coercivity as well as chemical stability, wear, and corrosion resistance. We explore the potential of granular metal films for recording media. Films of Fe granules about $150 \AA$ in size embedded in an amorphous SiO_{2} matrix exhibit coercivities as high as 3 kOe at low temperatures and 1.1 $k O e$ at room temperature, and magnetizations of about $150 \mathrm{emu} / \mathrm{g}$. The methods with which these materials are fabricated, the essential microstructure characterization, and magnetic measurements are described.

Today, vast amounts of audio, video, and digital information are stored in magnetic tapes and disks. The demand for high-density recording media with superior magnetic characteristics is ever increasing. ${ }^{1}$ Suitable media for technological applications must also be chemically stable and wear resistant. Magnetic granular solids ${ }^{2}$ (e.g., $\mathrm{Fe}-\mathrm{SiO}_{2}$), in which ultranne magnetic particles (with sizes $20-300 A$) are embedded in an insulating matrix, ofer attractive features as recording media. First of all, the superior magnetic properties of the granular solids are microstructure controlled and can be tailored through process conditions. The insulating matrix (c.g., $\mathrm{SiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}$) greatly enhances the chemical stability of the magnetic particles, and the wear and corrosion. resistance of the media. Furthermore, since vapor deposition is the most effective method of making granular metal flms, the fabrication, dispersion, and protection of the uifrafine granules, as well as coating onto desired surfaces suitable for device applications, are achieved in a single process.

In granular metal films, the microstructure is crucial to the unusual magnetic properties. The size and shape of the metal granules, their connectivity, and the associated percolation behavior are of primary importance. We have recently found in granular $\mathrm{Fe}-\mathrm{SiO}_{2}$ that when the metal volume fraction (p) is near the percolation threshoid (p_{c}), greatiy enhanced magnetic properties are realized. ${ }^{3}$ As shown in Fig. 1, the coercivity (H_{c}) at low temperatures was found to be as high as 25000 O , two order of magnitude higher than that of bulk Fe. However, these samples have been deposited onto room-temperature substrates, where the metal granules are relatively small ($\leqslant 70 \AA$). Consequentiy, H_{c} at room temperature is much reduced, primarily because of superparamagnetic relaxation. Fortunately, the magnetic properties can be further improved by altering the process conditions, particularly the substrate temperature.

In this work we demonstrate Fe granular films fabricated at different conditions with room-temperature coercivity as high as 1125 Oe. Equaliy important, a magnetization of $150 \mathrm{emu} / \mathrm{g}$ (which is about wice of those of $\gamma-\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{Co}-\mathrm{Cr}$) has also been achieved. ${ }^{4,5}$ These characteristics compare very favorably with many existing media for magnetic recording. The relationship between these superior

[^0]magnetic properties and microstructure will also be discussed.

The granular $\mathrm{Fe}-\left(\mathrm{SiO}_{2}\right)$ films have been prepared by a high-rate rf magnetron sputtering device with the use of composite targets of Fe and SiO_{2}. All samples, except those for transmission electron microscopy (TEM), are about 2-5 $\mu \mathrm{m}$ in thickness, deposited onto various substrates (glass, mica, Kapton, metals, alumina, ete.) suitable for specific measurements. Very good adhesion to Kapton, glass, and metal substrates has been noted. Sputter deposition has been made with substrates at various temperatures ($77-875 \mathrm{~K}$) in order to alter the morphology of the films. The microstructure and composition of the samples have been characterized by TEM, electron, and x-ray diffractions, atomic absorption, and ${ }^{57} \mathrm{Fe}$ Mössbauer spectroscopy. The magnetic properties have been measured by a SQUID magnetometer with a feld range of $0-50 \mathrm{kOe}$ and temperature range of $2-400 \mathrm{~K}$.

The composition of $\mathrm{Fe}_{75}\left(\mathrm{SiO}_{2}\right)_{25}$ with $p=0.42$ was chosen because a maximum in H_{c} was achieved, as shown in Fig. 1. A number of process conditions, such as sputtering gas pressure, deposition rate, and substrate temperature, were varied in order to fabricate samples with different microstructure, particularly larger granule size. This is moti-

FIG. 1. Magnetic coercivities ($T=2,77$, and 300 K) of granular $\mathrm{Fe}^{\mathrm{SiO}} \mathbf{2}_{2}$ films deposited onto room-temperature substrates as a function of $F e$ volume firaction (Ref. 3).

FIG. 2. TEM micrographs of $\mathrm{Fe}_{75}\left(\mathrm{SiO}_{2}\right)_{25}, p=0.42$, about 500 A thick, sputtered at substrate temperatures of (a) 575 K and (b) 875 K .
vated by the fact that the superparamagnetic reiaxation rate depends sensitively on the particle size through the factor $\exp \left(K V / k_{s} T\right)$, where K is the magnetic anisotropy energy per volume and V is the particle volume. ${ }^{6}$ Even a modest increase of \bar{F} (e.g., a factor of 2) should drastically alter the temperature dependence of the magnetic properties. Of the above-mentioned process conditions, substrate temperature has the most pronounced effect.

The granular nature of the $\mathrm{Fe}-\mathrm{SiO}_{2}$ samples with $p=0.42$ deposited onto substrates at substrate temperatures (T_{s}) between 77 and 375 K is revealed by TEM. For samples deposited between 77 and 400 K , the granules are about $40 \AA$ and do not vary significantly in size. As shown in Fig. $2(a)$, the sample deposited at $T_{s}=575 \mathrm{~K}$ contains larger granuies of about $60 \AA$. The size of the granules can be greatly increased with higher T_{s}. As shown in Fig. $2(b)$, in the films deposited at $T_{s}=875 \mathrm{~K}$ the granule size is about $160 \AA$. Above 400 K , the size of the granules increases by about 25 \AA per 100 K . The x-ray diffaction pattern of a film deposited at 77.6 Kis shown in Fig. 3. The pattern can be consistently indexed to the structure of bce Fe with a broad background contribution from amorphous SiO_{2}. However, we note that the (110) peak at 45° is slightly asymmetrical. The possibility of other phases of Fe is being investigated. We have also used ${ }^{57} \mathrm{Fe}$ Mossbauer spectroscopy to probe microscopically the Fe-containing portions of the samples. The spectra exhibit essentially the same hyperine field as that of $\alpha-\mathrm{Fe}^{2}$, although the linewidths are noticeably broader, as expected from the small granules. There are no observable amounts of Fe oxides, which would generally exhibit much larger hyperfine fields. These analyses indicate that the granules are primarily pure Fe.

From the value of $155 \mathrm{emu} / \mathrm{g}$ of total sample material for the saturation magnetization, measured at 6 K , one ob-

EIG. 3. X-ray diffraction pattern of $\mathrm{Fe}_{75}\left(\mathrm{SiO}_{2}\right)_{25}, p:=0.42$, deposited at T $=77.6 \mathrm{~K}$. The expected pattern for buk $\alpha-\mathrm{Fe}$ is also shown.
tains a value of $210 \mathrm{emw} / \mathrm{g}$ of Fe, which is within 5% of the value for pure Fe . The magnetic moment per Fe is therefore about $2 \mu_{B}$. There is no evidence of enhancement or diminution of the Fe moment.

By increasing the granule size, as facilitated by higher T_{s}, the coercivity is dramatically affected in both magnitude and temperature dependence. As shown in Fig. 4(a), H_{c} at 6 K increases from 1.5 kOe to about 3 kOe as T_{s} is increased from 300 to 775 K . These values at 6 K are essentially those of the ground state. The values of H_{c} at 300 K are considerably reduced as expected, but the reductions are not proportional to the values at 6 K . This is because the temperature dependence of H_{c} is largely dictated by the granule size; the more pronounced temperature dependence occurring in the smaller granules. Consequently, for the smaller granules (T_{s} $<475 \mathrm{X}$), H_{c} is essentially zero at 300 K . On the other hand, for samples with $T_{s}>800 \mathrm{~K}, H_{c}$ at both 6 and 300 K also decreases precipitously. There are two likely causes. The granule sizes for these samples are about $150 \AA$, approaching the estimated critical size of $200 \AA$ for single-domain Fe particles. Some granules may become multidomain, which drasrically degrades H_{c}. A more likely cause, however, is the alteration of the granular structure at high temperatures. The TEM micrograph shown in Fig. 2(b) indicates sintering between the granules. The partially connected granules effectively allow the formation of multidomain, thus reducing H_{c}.

A maximum of H_{c} at both 6 and 300 K is achieved with

FlG. 4. Variations of (a) coercivity and (b) squareness of $\mathrm{Fe}_{75}\left(\mathrm{SiO}_{2}\right)_{25}$, $p=0.42$, at 6 and 300 K as a function of substrate temperaiures.
$T_{s}=775 \mathrm{~K}$. The values of H_{c} of $3 \mathrm{kOe}(\mathrm{at} 6 \mathrm{~K})$ and 1.1 kOe (at 300 K) are among the highest for Fe particles. The high value at 300 K is particularly encouraging for possible recording media applications.

In Fig. 4(b) we show the squareness, defined as the ratio of remanence and saturation magnetization. The squareness at 6 K is about 0.6 , essentially independent of T_{s}. As expected, the squareness at 300 K is reduced, but the reduction is much more for the smaller particles for the same reasons mentioned earlier. The squareness at 300 K is also the highest for $T_{s}>775 \mathrm{~K}$, as in the case of H_{c}.

Finally, we should mention some possible causes for the giant coercivity. It is well known that for single-comain equiaxial Fe particles, H_{c} is of the order of $2 K / M$, where K includes all contributions (magnetocrystalline, stress, surface, etc.) to the magnetic anisotropy. Since magnetization (M) is essentially independent of particle size, a larger H_{c} would necessarily mean K scales with the particle size in the present case. If one makes the overly simplistic assumption that magnetocrystalline anisotropy is the only contribution and that its magnitude is the same as that of bulk Fe , one concludes that H_{c} should be only about 600 Oe and independent of particle size. ${ }^{6,7}$ It is clear then that some contributions, particularly those due to surface anc stress, may well acquire much enhanced values, because the Fe granules are not free standing, but bonded in the SiO_{2} matrix. Other pos-
sible causes for the enhanced H_{c} are particles with large aspect ratio or particles forming very long chains. Neither of these possibilities are revealed in TEM micrographs, although there are evidences of neighboring granules in contact.

In summary, by exploiting granular $\mathrm{Fe}-\mathrm{SiO}_{2}$ solids with large granular sizes (about $150 \AA$), we have achieved roomtemperature coercivity of 1.1 kOe and magnetization of 150 emu/g. These materials may be produced by sputering with the use of suitable process conditions, of which substrate temperature is the most important. These superior magnetic characteristics compare favorably with those of existing magnetic recording media. The deposition methods, with which granular magnetic solids are made, are particularly suitable for magnetic thin-film applications.

This work was supported by the Office of Naval Research, contract No. N0001485-K-0175.
${ }^{1}$ See, e.g., M. H. Kryder and A. B. Bortz, Phys. Today 37, 20 (1984).
${ }^{2}$ B. Abeles, P. Sheng, M. D. Couts, and Y. Arie, Adv. Phys. 24, 407 (1975). ${ }^{3}$ Gang Xiao and C. E. Chien, Appl. Phys. Lett. 51, 1280 (1987).
${ }^{4}$ W. T. Maloney, IEEE Trans. Magn. MAG-17, 3196 (1981). ${ }^{5}$ G. Bate, J. Appl. Phys. 52, 2447 (1981).
${ }^{\circ}$ See, e.g. A. H. Morrish, The Physical Brinciples of Magnetism (Wiley, New York, 1965).
${ }^{7}$ I. S. Jacobs and C. P. Bean, in Magnetism III, edited by G. T. Raco and H. Suhl (Academic, New York, 1963), p. 275.

[^0]: ${ }^{2}$ Present address: AT\&T Bell Laboratories, Murray Hill, NJ 07974.

