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Abstract A complete continuum mechanical theory for
granular media, including explicit expressions for the energy
current and the entropy production, is derived and explained.
Its underlying notion is: granular media are elastic when at
rest, but turn transiently elastic when the grains are agitated—
such as by tapping or shearing. The theory includes the true
temperature as a variable, and employs in addition a gran-
ular temperature to quantify the extent of agitation. A free
energy expression is provided that contains the full jamming
phase diagram, in the space spanned by pressure, shear stress,
density and granular temperature. We refer to the theory as
GSH, for granular solid hydrodynamics. In the static limit,
it reduces to granular elasticity, shown previously to yield
realistic static stress distributions. For steady-state defor-
mations, it is equivalent to hypoplasticity, a state-of-the-art
engineering model.
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1 Introduction

Widespread interests in granular media were aroused among
physicists a decade ago, stimulated in large part by review
articles revealing the intriguing fact that something as
familiar as sand is still rather poorly understood [1–4]. The
resultant collective efforts since have greatly enhanced our
understanding, though the majority of theoretic consider-
ations are focused either on the limit of highly excited
gaseous state [5–10], or that of the fluid-like flow [11–13].
Except in some noteworthy and insightful simulations
[14–16], the quasi-static, elasto-plastic motion of dense gran-
ular media—of technical relevance and hence a reign of
engineers—received less attention among physicists. This
choice is due (at least in part) to the confusing state of engi-
neering theories, where innumerable continuum mechanical
models compete, employing strikingly different expressions.
Although the better ones achieve considerable realism when
confined to the effects they were constructed for, these differ-
ential equations are more a rendition of complex empirical
data, less a reflection of the underlying physics. In a forth-
coming book on soil mechanics by Gudehus, phrases such
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as morass of equations and jungle of data were used as met-
aphors.

Most engineering theories are elasto-plastic [17–19],
though there are also hypoplastic ones, which manage to
retain the realism while being simpler and more explicit
[20,21]. Both are continuum mechanical models that, starting
from momentum conservation, focus on the total stress σi j .
Because an explicit expression appears impossible, incre-
mental relations are constructed, expressing ∂tσi j in terms of
σi j , velocity gradient ∇ jvi and mass density ρ. (Any such
expression, either for σi j or ∂tσi j , is referred to as a constitu-
tive relation). Typically, neither elasto-plastic nor hypoplastic
theory considers energy conservation.

The continuum mechanical formalism laid down by
Truesdell and others [22–24] spells out a number of con-
straints, such as material objectivity, material symmetry, and
Clausius–Duhem (or entropy) inequality, which any phys-
ically sound constitutive relation must satisfy. The remain-
ing, still considerable discretion is deemed necessary to
account for the variation between different materials, say
simple fluids and elastic solids. This is in contrast to the
hydrodynamic theory, a powerful approach to macroscopic
field theories pioneered by Landau and Lifshitz [25,26] and
Khalatnikov [27], in the context of superfluid helium. By
considering energy and momentum conservation simulta-
neously, and combining both with thermodynamic consider-
ations, this approach cogently deduces the proper constitutive
relation—for a given energy expression. In other words, if the
energy expression is known, the inclusion of energy conser-
vation adds so much constraints for the constitutive relation
that it becomes unique. The modeling discretion is hence re-
duced to a scalar energy expression, which, however, is quite
sufficient to account for material-specific differences, such
as between simple fluids and elastic solids. Energy conserva-
tion is also considered in continuum mechanics, see, e.g. [24],
but the discussion does not go far enough to achieve a similar
degree of cogency.

The total energy w depends, in addition to the relevant
macroscopic variables such as the density ρ and the strain εi j ,
always on the entropy density s: There are different though
equivalent ways to understand s. The appropriate one here is
to take it as the summary variable for all implicit, microscopic
degrees of freedom. So the energy change associated with s,
written as (∂w/∂s)ds ≡ T ds, is the increase of energy con-
tained in these degrees of freedom—what we usually refer
to as heat increase. When the macroscopic energy (such as
the elastic contribution) dissipates, it is being transferred into
the microscopic degrees of freedom. The associated change
in entropy is such that the increase in heat is equal to the
loss of macroscopic energy, with the total energy w being
conserved.

Two steps are involved in specifying the energy w: first,
the identification of all its variables; next and more explic-

itly, its full functional dependence. Hydrodynamic theories
may well be derived without the second step, and the result
is referred to as the structure of the theory. The form of all
fluxes, including especially the stress σi j , are in this case
given in terms of the energy’s variables and conjugate vari-
ables. (The conjugate variables are the energy derivatives. If
w is a function of entropy s, density ρ and strain εi j , they are
Temperature T ≡ ∂w/∂s, chemical potential µ ≡ ∂w/∂ρ,
and elastic stress πi j ≡ −∂w/∂εi j ).

The hydrodynamic approach [28,29] has been success-
fully employed to account for many condensed systems,
including liquid crystals [30–36], superfluid 3He [37–42],
superconductors [43–45], macroscopic electro-magnetism
[46–49] and ferrofluids [50–58]. Transiently elastic media
such as polymers are under active consideration at pres-
ent [59–62]. Constructing a granular hydrodynamic theory,
we believe, is both useful and possible: useful, because it
should help to illuminate and order the complex macroscopic
behavior of granular solid; possible, because total energy is
conserved in granular media, as it is in any other system.
When comparing agitated sand to molecular gas, it is fre-
quently emphasized that the kinetic energy, although con-
served in the latter system, is not in the former, because the
grains collide inelastically. This is undoubtedly true, but it
does not rule out the conservation of total energy, which
includes the entropy that accounts for the heat in the grains,
and in the air (or liquid) between them. To construct granu-
lar hydrodynamics, we need to start from some assumptions
about the essence of granular physics, in order to specify
the energy w, its variables and the functional dependence.
Our choice is given below, and argued for throughout this
manuscript. Aiming to be both general and specific, we first
specify a simple yet fairly realistic energy density, then derive
the structure of granular hydrodynamics that remains valid
for more complex energies. The full theory is presented here,
to prod the community to respond, and to serve as a reference
for our future works, in which we shall zoom into varying
aspects and details of the theory, comparing them with exper-
iments. Only then will we be sure whether our assumptions
are appropriate, whether the presented set of partial differen-
tial equations is indeed the proper granular hydrodynamics.

Next a rough sketch of what we believe is the basic physics
of granular behavior: granular motion may be divided into
two parts, the macroscopic one arising from the large-scaled,
smooth velocity of the medium, and the mesoscopic one from
the small-scaled, stochastic movements of the grains. The
first is as usual accounted for by the hydrodynamic variable
of velocity, the second we shall account for by a scalar, the
granular temperature Tg—although the analogy to molecu-
lar motion is quite imperfect, the grains do not typically have
velocities with a Gaussian distribution, and equipartition is
usually violated. All this, as we shall see, is irrelevant in the
present context. Tg may be created by external perturbations
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such as tapping, or internally, by nonuniform macroscopic
motion such as shear—as a result of both the grains will jig-
gle and slide. Then the grains will loose contact with one
another briefly, during which their individual deformation
will partially relax. When the deformation is being dimin-
ished, so will the associated stress be. This is the reason
granular media can sustain a shear stress only when at rest,
but looses it gradually when being tapped or sheared. And
our assumption is, this happens similarly no matter how the
grains jiggle and slide, and we may therefore parameterize
this stochastic motion as a scalar Tg . Our conclusion is: gran-
ular media are transiently elastic; the elastic stress relaxes
toward zero, with a rate τ−1 that grows with Tg , most simply
as τ−1 ∼ Tg .

In granular statics, the grains are at rest, Tg ≡ 0. With
τ ∼ T −1

g diverging, granular stress persists forever, display-
ing in essence elastic behavior, see [63–67]. When granular
media are being sheared, because Tg �= 0, the stress relaxes
irreversibly. This is a qualitative change from the elastic,
reversible behavior of ideal solids. We maintain that it is
this irreversible relaxation that is perceived as plastic gran-
ular flows. If true, this insight would greatly simplify our
understanding of granular media: stress relaxation is an ele-
mentary process, while plastic flows are infamous for their
complexity. In a recent Letter [68], some simplified equations
were derived based on the above physics. For steady-state
shear maintaining a stationary Tg , these equations reproduce
the basic structure of hypoplasticity [20], a rate-independent
soil-mechanical model, and yields an account of granular
plastic flow that is strikingly realistic. As this agreement is
a result of fitting merely four numbers, we may with some
confidence take it as an indication that transient elasticity is
indeed a sound starting point. More work and exploration is
needed for further validation, and especially cyclic loading,
critical state, shear banding and tapping need to be consid-
ered. We reserve the study of these phenomena for the future.
In this paper, we confine ourselves to deriving a consistent,
hydrodynamic framework starting from transient elasticity,
and call it GSH, for granular solid hydrodynamics.

The paper is organized as follows. In Sect. 2, we discuss
to what extent granular media are elastic—or more precisely,
permanently elastic. It is well known that, although the pro-
cess leading to a given granular state is typically predom-
inantly plastic, the excess stress field induced by a small
external force in a pre-stressed, static state can be described
by the equations of elasticity. We explain why, for Tg = 0,
elasticity extends well beyond this limit, and how to employ
granular elasticity to calculate all static stresses, not only
incremental ones. The basic reason is, without a finite Tg ,
there is no stress relaxation and plastic flow. Similarly, if an
incremental strain is small enough, producing insufficient Tg ,
there is too little plastic flow to mar the elasticity of a stress
increment.

Then we proceed, in Sect. 3, to discuss jamming, a word
coined to describe a system confined to a single state, and
prevented from exploring the phase space. Although this idea
has proven rather useful [69], one must not forget that it
is a partial view, based on a truncated mesoscopic model,
and inappropriate for the present purpose. In this section,
jamming is generalized and embedded in the concept of
constrained equilibria. The point is, individual grains are
unlike atoms already macroscopic. They contain innumera-
ble internal degrees of freedom that are neglected in mes-
oscopic models [5–9]. For instance, phonons contained in
individual grains do explore the phase space and arrive at a
distribution appropriate for the ambient temperature. Since
jamming fixes only a tiny portion of the existing degrees of
freedom, the fact that grains are jammed is comparable to
the following textbook example: Two chambers of different
pressure, separated by a jammed piston and prevented from
going to the lowest-energy state of equal pressure. Such a
system is in equilibrium and amenable to thermodynam-
ics, albeit under the constraint of two constant subvolumes.
Similarly, a jammed granular system at Tg = 0 is also in
equilibrium, not in a single state, and amenable to thermo-
dynamics, although under the local constraint of a given
packaging—or approximately a given density field ρ(r)—
that cannot change even when nonuniform. Exploring this
analogy, Sect. 3 arrives at a number of equilibrium condi-
tions, useful both for describing granular statics and setting
up granular dynamics.

In Sect. 4, the physics of the granular temperature Tg is
specified and developed. As mentioned, the energy change
dw from all microscopic, implicit variables is usually sub-
sumed as T ds, with s the entropy and T ≡ ∂w/∂s its
conjugate variable. From this, we divide out the mesoscop-
ic, intergranular degrees of freedom (such as the kinetic and
elastic energy of random, small-scaled granular motion),
denoting them summarily as the granular entropy sg , with
Tg ≡ ∂w/∂sg . This is necessary, because these are fre-
quently more strongly agitated than the truly microscopic
ones, Tg � T . (Note, however, that we are also interested in
the regime Tg ≈ T .) In Sect. 4, the equilibrium condition for
sg and its equation of motion are derived, without any pre-
conception about how “thermal” the associated mesoscopic
degrees of freedom are. We only assume a two-step irrevers-
ibility, w → sg → s, that the energy only goes from the mac-
roscopic degrees of freedom to the mesoscopic, intergranular
ones summarized in sg , and from there to the microscopic, in-
nergranular ones of s, never backwards. The final subsection
of 4 refutes the misconception that Onsager relation is not
valid in granular media, because the fluctuation–dissipation
theorem (FDT)—in terms of Tg—is frequently violated. The
point is, the validity of FDT in terms of the true temperature
is never in question, and this is what the Onsager relation
depends on.
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In Sect. 5, the equation of motion for the elastic strain
is elucidated, and shown to fully determine the evolution
of the plastic strain as well. In Sect. 6, an explicit expres-
sion for the free energy f is presented. This is necessary,
because the energy w, or equivalently the free energy f ,
are (as discussed above) material-dependent quantities. As
such, the free energy must be found either by careful obser-
vation of experimental data, an exercise in trial and error,
or more systematically, through simulation and microscopic
consideration. We proceed along the first line, making use
mainly of the jamming transition that occurs as a function
of ρ, Tg, ui j , to find this expression. Section 7 presents the
formal derivation of the hydrodynamic structure. The result-
ing equations are then applied to reproduce the hypoplastic
model in Sect. 8. Finally, Sect. 9 gives a brief summary.

2 Sand: a transiently elastic medium

Granular media possess different phases that, depending on
the grain’s ratio of elastic to kinetic energy, may loosely be
referred to as gaseous, liquid and solid. Moving fast and being
free most of the time, the grains in the gaseous phase have
much kinetic, but next to none elastic, energy [5–9]. In the
denser liquid phase, say in chute flows, there is less kinetic
energy, more durable deformation, and a rich rheology that
has been scrutinized recently [11–13]. In granular statics,
with the grains deformed but stationary, the energy is all
elastic. This state is legitimately referred to as solid because
static shear stresses are sustained. If a granular solid is slowly
sheared, the predominant part of the energy remains elastic.
For simplicity, we shall continue to refer to it (though tran-
siently elastic) as solid.

When a granular solid is being compressed and sheared,
the deformation of individual grains leads to reversible en-
ergy storage that sustains a static, elastic stress. But they also
jiggle and slide, heating up the system irreversibly. There-
fore, the macroscopic granular strain field εi j = ui j + pi j

has two contributions, an elastic one ui j for deforming the
grains, and a plastic one pi j for the rest. The elastic energy
w1(ui j ) is a function of ui j , not εi j , and the elastic contribu-
tion to the stress σi j is given as πi j (ui j ) ≡ −∂w1/∂ui j . With
the total and elastic stress being equal in statics, σi j = πi j ,
stress balance ∇ jσi j = 0 may be closed with πi j = πi j (ui j ),
and uniquely determined employing appropriate boundary
conditions. Our choice [63–65] for the elastic energy w1 =
w1(ui j ) is

w1 = √
�
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classical cases: silos, sand piles and granular sheets under a
point load were solved employing these equations, produc-
ing rather satisfactory agreement with experiments [66,67].
The elastic coefficient B, a measure of overall rigidity, is a
function of the density ρ. Assuming a uniform ρ (hence a
spatially constant B), the stress at the bottom of a sand pile
is (as one would expect) maximal at the center. But a stress
dip appears if an appropriate nonuniform density is assumed.
Because the difference in the two density fields are plausibly
caused by how sand is poured to form the piles, this presents
a natural resolution for the dip’s history dependence, long
considered mystifying.

Moreover, the energy w1 is convex only for

us/� ≤ √
2ξ, or πs/P ≤ √

2/ξ, (3)

(where P ≡ 1
3π

, π2

s ≡ π0
i jπ

0
i j , π

0
i j ≡ πi j − 1

3π

 δi j ) imply-
ing no elastic solution is stable outside this region. Identifying
its boundary with the friction angle of 28◦ gives [66,67]

ξ ≈ 5/3 (4)

for sand. Because the plastic strain pi j is clearly irrelevant for
the static stress, one may justifiably consider granular media
at rest, say a sand pile, as elastic.

If this sand pile is perturbed by periodic tapping at its
base, circumstances change qualitatively: shear stresses are
no longer maintained, and the conic form degrades until the
surface becomes flat. This is because part of the grains in the
pile lose contact with one another temporarily, during which
their individual deformation decreases, implying a dimin-
ishing elastic strain ui j , and correspondingly, smaller elastic
energy w1(ui j ) and stress πi j (ui j ). The system is now elastic
only for a transient period of time. The typical example for
transient elasticity is of course polymer, and the reason for
its elasticity being transient is the appreciable time it takes
to disentangle polymer strands. Although the microscopic
mechanisms are different, tapped granular media display
similar macroscopic behavior, and share the same hydrody-
namic structure.

When being slowly sheared, or otherwise deformed, gran-
ular media behaves similarly to being tapped, and turn tran-
siently elastic. This is because in addition to moving with
the large-scale shear velocity vi , the grains also slip and jig-
gle, in deviation of it. Again, this allows temporary, partial
unjamming, and leads to a relaxing ui j .

One does not have to assume that this deviatory motion is
completely random, satisfying equipartition and resembling
molecular motion in a gas. It suffices that the elasticity turns
transient the same way, no matter what kind of deviatory
motion is present. In either cases, it is sensible to quantify this
motion with a scalar. Referring to it as the granular entropy or
temperature is suggestive and helpful. The granular entropy
sg thus introduced is an independent variable of GSH, with
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an equation of motion that accounts for the generation of Tg

by shear flows, and how the energy contained in Tg leaks into
heat. Only when Tg is large enough, of course, is granular
elasticity noticeably transient.

3 Granular equilibria and jamming

Solid and liquid equilibria are first described, then shown
to correspond, respectively, to the jammed and unjammed
equilibria of granular media.

3.1 Liquid equilibrium

In liquid, the conserved energy density w(s, ρ, gi ) depends
on the densities of entropy s, mass ρ, and momentum gi =
ρvi . The dependence on gi is universal, given simply by

w(s, ρ, gi ) = w0(s, ρ) + g2
i /(2ρ), (5)

leaving the rest-frame energy w0 to contain the material
dependent part. Its infinitesimal change, dw0 =(∂w0/∂s)ds+
(∂w0/∂ρ)dρ, is conventionally written as

dw0 = T ds + µdρ, (6)

by defining

T ≡ ∂w0/∂s|ρ, µ ≡ ∂w0/∂ρ|s . (7)

It is useful to note that given Eq. (5), the relation ∂w/∂ρ|s,gi ≡
µ − v2/2 holds, hence

dw = T ds + (µ − v2/2)dρ + vi dgi . (8)

Consider a closed system, of given volume V = ∫
d3r ,

energy
∫

wd3r , and mass
∫

ρ d3r . Whatever the initial
conditions, it will eventually arrive at equilibrium, in which
the entropy

∫
sd3r is maximal, or equivalently, at minimal

energy for given entropy, mass and volume. To obtain the
mathematical expression for this final state, one varies

∫
wd3r

for given
∫

sd3r and
∫

ρ d3r , arriving at the following equi-
librium conditions,

∇i T = 0, ∇iµ = 0. (9)

Being expressions for optimal distribution of entropy and
mass, these two conditions may, respectively, be referred to
as the thermal and chemical one.

In mathematics, Eqs. (9) are referred to as the Euler–
Lagrange equations of the calculus of variation. The calcu-
lation is given in Appendix 9. More details may be found
in [70], in which three additional conserved quantities:
momentum

∫
gi d3r , angular momentum

∫
(r × g)i d3r , and

booster
∫
(ρri − gi t)d3r were also considered, adding a

motional condition,

vi j ≡ (∇iv j + ∇ jvi )/2 = 0, (10)

and altering the chemical one to ∂tvi + ∇i (µ − v2/2) = 0.
We focus on Eqs. (9) here.

Including gravitation, the energy is w̄0 = w0 + φ, with
Gk = −∇iφ the gravitational constant pointing downwards.
The generalized chemical potential is

µ̄(ρ) ≡ ∂w̄0/∂ρ = µ + φ, (11)

while chemical equilibrium, ∇i µ̄ = 0, now reads

∇iµ = Gi . (12)

This implies that a nonuniform density now represents the
optimal mass distribution minimizing the energy (or maxi-
mizing the entropy). With the pressure given as PT = −w0+
T S+µρ, see Appendix 9, the condition for mechanical equi-
librium,

∇i PT = s∇i T + ρ∇iµ = ρGi (13)

is a combination of the thermal and chemical ones.

3.2 Solid equilibrium

In solids, if the subtle effect of mass defects is neglected,
density is not an independent variable and varies with the
strain (for small strains) as

dρ/ρ = −du

. (14)

Defining πi j ≡ −∂w0/∂ui j |s , we write the change of the
energy as

dw0(s, ui j ) = T ds − πi j dui j . (15)

Maximal entropy, with the displacement vanishing at the sys-
tem’s surface, implies the following thermal and mechanical
equilibrium conditions (see Appendix 9),

∇i T = 0, ∇ jπi j = 0. (16)

So force balance is simply an expression of maximal
entropy—quite analogous to uniformity of temperature. It
implies the dominance of phonon distribution that satisfies
force balance, and the rarity of phonon fluctuations that vio-
late it. Including gravitation, the energy is dw̄0(s, ui j ) =
T ds − π̄i j dui j , with π̄i j = πi j + ρφ, and mechanical equi-
librium becomes

∇ jπi j = ρGi (17)

3.3 Granular equilibria

In granular media, the density is an independent variable,
because the grains may be differently packaged, leading to a
density variation of between 10 and 20% at vanishing defor-
mation. So the energy depends on all three variables,

dw0(s, ρ, ui j ) = T ds + µdρ − πi j dui j . (18)
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This is a combination of Eqs. (6) and (15), and depending
on whether Tg is zero or finite, sand flip-flops between the
liquid and solid behavior. If Tg is finite, the elastic stress
πi j relaxes until it vanishes. The equilibrium conditions are
therefore, including gravitation,

∇i T = 0, ∇i PT = ρ Gi , πi j = 0, (19)

similar to that of a liquid, with ∇i PT = ρ Gi (or ∇iµ = Gi )
enforcing an appropriate density field, and πi j = 0 forbid-
ding any free surface other than horizontal.

For vanishing Tg , sand is jammed, implying two points:
first, πi j no longer relaxes; second, without slipping and jig-
gling, the packaging density cannot change, and the density
is again a dependent variable, dρ/ρ = −du

. The suitable
equilibrium conditions, as derived in Appendix 9, are

∇i T = 0, ∇ j (PT δi j + πi j ) = ρGi , (20)

which allow static shear stresses and tilted free surfaces. So,
although jammed states are prevented from arriving at the
liquid-like conditions of Eqs. (19), they do possess reach-
able thermal and mechanical equilibria.

If the energy (as given in Sect. 4) depends in addition on
the granular entropy, dw = T ds + Tgdsg +· · · , the pressure
contribution PT (see Sect. 7.1) is

PT = −w0 + T s + Tgsg + µρ = − f̃ + µρ, (21)

with ∇i PT = s∇i T + sg∇i Tg + ρ∇iµ. (22)

4 Granular temperature Tg

Granular temperature is not a new concept. Haff, along with
Jenkins and Savage [5–9], introduced it in the context of
granular gas, taking (in an analogy to ideal gas) Tg ∼ wkin,
where wkin is the kinetic energy density of the grains in a
quiescent granular gas. With Tg ≡ ∂wkin/∂sg ∼ ∂Tg/∂sg ,
the granular entropy is sg ∼ ln Tg . As discussed above, gran-
ular temperature is also a crucial variable in granular solids.
But one must not expect this gas-like behavior to extend to
the vicinity of Tg = T : as the system, if left alone, always
returns to Tg = T , the energy has a minimum there. And
something like w ∼ s2

g ∼ (Tg − T )2 would be needed.

4.1 The equilibrium condition for Tg

The energy change dw from all microscopic, implicit vari-
ables is generally subsumed as T ds, with s the entropy and
T ≡ ∂w0/∂s its conjugate variable. From this, we divide out
the energy of granular random motion, denoting it as Tgdsg ,

dw0 = T d(s − sg) + Tgdsg = T ds + (Tg − T )dsg. (23)

The first expression distinguishes between two heat pools:
s − sg and sg , with the latter sometimes more strongly

excited, Tg � T . The second expression, algebraically
identical, takes w as a function of s and sg , with T ds be-
ing the total heat if all degrees were at T , and (Tg − T )dsg

the increase in energy when some of the degrees are at Tg .
If unperturbed, a stable system will always return to equi-
librium, at which the second pool is empty, sg = 0. This
implies the free energy f ≡ w0 − T s has a minimum at
sg = 0. Assuming analyticity, we expand the free energy
f (T, sg) around sg = 0, arriving at

f = f0(T ) + s2
g/(2bρ), (24)

where b is a positive material parameter, a function of ρ and
ui j . (The factor ρ will turn out later to be convenient.) With
d f = −sdT + (Tg − T )dsg we have

T̄g ≡ Tg − T ≡ ∂ f/∂sg|T = sg/(bρ), (25)

a quantity that vanishes in equilibrium

T̄g ≡ Tg − T = 0. (26)

We shall employ the Legendre transformed potential,
f̃ (T, T̄g) ≡ f (T, sg) − T̄gsg , below (that has a maximum
rather than a minimum at Tg = T ),

f̃ (T, T̄g) = f0(T ) − bρT̄ 2
g /2. (27)

Because a rather high Tg is implied by any random motion
of the grains, neglecting T in comparison to Tg or taking
T̄g ≈ Tg is frequently a good approximation, though not
close to T̄g = 0. So it is prudent not to implement it while
deriving the equations.

4.2 The equation of motion for sg

First of all, sg must obey a relaxation equation, −∂t sg =
γ ∂ f/∂sg = γ T̄g . Since it is macroscopically slow, sg also
displays characteristics of a quasi-conserved quantity, and
removal of local accumulations is accounted for by a con-
vective and a diffusive term,

− ∂t sg = ∇i [sgvi − κg∇i T̄g] + γ T̄g

= ∇i (sgvi ) + (1 − χ2∇2)sg/τg, (28)

where τg ≡ bρ/γ is the relaxation time, while χ ≡ √
κg/γ

is the characteristic length associated with the diffusion. (The
second line of Eq. (28) assumes κg, γ = constant.) If T̄g is
held at T0 at the boundary x = 0, and allowed to relax for
x > 0, the field sg ∼ T̄g(x) obeys (1 − χ2∇2)sg = 0 in the
stationary limit ∂t sg, vi = 0, and decays as

Tg(x) = T + T0 exp(−x/χ). (29)

Equation (28) is not complete. To see this, compare it with
the true entropy s. In liquid, s is governed by a balance equa-
tion with a positive source term R that is fed by shear and
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compressional flows, and by temperature gradients [25,26],

∂t s + ∇i (svi − κ∇i T ) = R/T, (30)

R = ηv0
i jv

0
i j + ζv2



 + κ(∇i T )2, (31)

where v0
i j is the traceless part of vi j ≡ 1

2 (∇iv j + ∇ jvi ) and
v

 its trace; η, ζ > 0 are, respectively, the shear and com-
pressional viscosity, and κ > 0 the heat diffusion coefficient.
Entropy production R must vanish in equilibrium and be
positive definite off it. The thermodynamic forces ∇i T and
vi j do vanish in equilibrium [see Eqs. (9, 10)]; off it, they
may be taken to quantify the “distance from equilibrium.”
The entropy production R increases with this distance and
may be expanded in ∇i T and vi j . The given terms are the
lowest order, positive ones that are compatible with isotropy.

In granular media, equilibrium conditions are more numer-
ous than in liquid. As discussed in Sect. 3.3, these are, in
addition, the vanishing of πi j , ∇ jπi j , and T̄g , hence we have

R = ηv0
i jv

0
i j + ζv2



 + κ(∇i T )2 + γ T̄ 2
g

+ β(π0
i j )

2 + β1π
2


 + β P (∇ jπi j )

2. (32)

Three additional points: (1) Being an expansion in the ther-
modynamic forces, the transport coefficients η, ζ, κ, κg, γ,

β, β1, β
P may still depend on the variables of the energy,

T, T̄g, ρ, π

 and π2
s ≡ π0

i jπ
0
i j , but not on the forces them-

selves, such as ∇i T or vi j . (2) More terms are conceivable in
Eq. (32), say α1∇i T ∇ jπi j or κ1πi j∇i T ∇ j T . These may be
included when necessary. (3) The above reasoning leaves the
question open why ∇iµ does not contribute to R, not even
in liquid—or more precisely, why the coefficient preceding
(∇iµ)2 always vanishes. The answer is given in [70], see
also [71] and references therein.

The granular entropy sg should obey a balance equation
with the same structure,

∂t sg + ∇i (sgvi − κg∇i T̄g) = Rg/T̄g, (33)

though the source term Rg has positive as well as negative
contributions: two positive ones from shear and compres-
sional flows, and the negative relaxation term discussed in
Eq. (28),

Rg = ηgv
0
i jv

0
i j + ζgv

2


 + κg(∇i T̄g)

2 − γ T̄ 2
g . (34)

The fact that the coefficient preceding T̄ 2
g is γ both in

Eqs. (32) and (34) derives from energy conservation: taking
the system to be uniform, we have ∂tw = T ∂t s + T̄g∂t sg =
R + T̄g(−γ T̄g). So ∂tw = 0 implies R = γ T̄ 2

g . It
expresses the fact that the same amount of heat leaving sg

must arrive at s. (Note it is possible to have ∂t sg +∇i [sgvi −
(κ1

g + κ2
g )∇i T̄g) = Rg/T̄g , with Rg = · · · + κ1

g (∇i T̄g)
2 and

R = · · · + κ2
g (∇i T̄g)

2, a complication that we shall not con-
sider here, but must keep in mind should experimental finding
require it).

A direct consequence for the stationary uniform case,
Rg = 0 and ∇i T̄g = 0, is

γ T̄ 2
g = ηgv

0
i jv

0
i j + ζgv

2


, (35)

which quantifies how much T̄g is excited by shear or com-
pressional flows.

In dry sand, the viscosities ηg, ζg probably dominate, as
η, ζ are possibly insignificant—though these should be quite
a bit larger in sand saturated with water: a macroscopic shear
flow of water implies much stronger microscopic ones in the
fluid layers between the grains, and the energy dissipated
there contributes to R, instead of to Rg first.

4.3 Two fluctuation–dissipation theorems

There are many in the granular community who dispute the
validity of the Onsager reciprocity relation in granular media,
enlisting any of the following reasons: (1) The FDT does not
hold. (2) The microscopic dynamics is not reversible. (3)
Sand is too far off equilibrium.

Careful scrutiny shows that none of these arguments holds
water. First, with F denoting the free energy, fluctuations say
of the volume are always given as

〈�V 2〉 = T (∂2 F/∂V 2)−1 = T (−∂ P/∂V )−1, (36)

which holds for unjammed sand, jammed sand, as well as
a copper block. The only difference between jammed and
unjammed sand is that there is a contribution to F from Tg ,
see Sect. 6. Exploring the analogy between T and Tg , an
natural question is, whether

〈�V 2〉 = Tg(−∂ P/∂V )−1 (37)

holds for unjammed sand. Although the answer is frequently
“no”, the crucial point is, the validity of the Onsager relation
depends on Eq. (36), not Eq. (37).

Second, the dynamics typically employed in granular sim-
ulations is indeed irreversible, but only as a result of a model-
dependent approximation that treats grains as elementary
constituent entities. The true microscopic dynamics that
resolves the atomic building blocks of the grains remains
reversible. And this is the basis for the Onsager relation.

Third, “too far off equilibrium” is not a convincing argu-
ment, as turbulent fluids, truly far off equilibrium, are known
to obey the Onsager relation. Some argue further that sand,
whether jammed or in motion, are always far from equilib-
rium. Yet as the careful discussion in Sect. 3 shows, granular
media are certainly not always far from equilibrium, they
just have different ones to go to—solid-like if jammed and
liquid-like if unjammed.
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5 Elastic and plastic strain

As discussed in Sect. 2, the elastic strain ui j accounts for
the deformation of individual grains, while their rolling and
sliding is, on average, described by the plastic strain pi j .
Together, they form the total strain εi j = ui j + pi j . The elas-
tic energy w(ui j ) is by definition a function of ui j , not of
εi j , and the elastic stress is given as πi j (ui j ) ≡ −∂w/∂ui j .
When Tg is finite, the elastic strain relaxes,

∂t ui j − vi j = −ui j/τ. (38)

implying a diminishing elastic strain ui j , and correspond-
ingly, smaller elastic energy w(ui j ) and stress πi j (ui j ).
Because the total strain is a purely kinematic quantity, ∂t εi j =
vi j , the evolution of the plastic strain pi j is given as ∂t pi j =
vi j − ∂t ui j .

It is the relaxation term −ui j/τ that gives rise to plasticity.
To see how it works, take a constant τ and consider the fol-
lowing scenario. If a transiently elastic medium is deformed
quickly enough by an external force, leaving little time for
relaxation,

∫
(ui j/τ) dt ≈ 0, we have ui j ≈ εi j = ∫

vi j dt ,
pi j = 0 right after the deformation. The built-up in elastic
energy and stress πi j is maximal. If released at this point,
the system would snap back toward its initial state, as pre-
scribed by momentum conservation, ∂t (ρvi ) + ∇ jπi j = 0,
displaying a reversible and elastic behavior. But if we hold the
system still for long enough, vi j = 0, hence ∂t εi j = 0, the
elastic part ui j will relax, ∂t ui j = −ui j/τ , while the plastic
part grows accordingly, ∂t pi j = −∂t ui j . When ui j vanishes,
elastic energy w(ui j ) and the stress πi j are also gone, imply-
ing ∂t (ρvi ) = 0. The system now stays where it is when
released, and no longer returns to its original position. This
is what we mean by a plastic deformation.

Next take τ ∼ T −1
g . As discussed in the introduction,

this should be appropriate for granular media. Assuming
(for simplicity) a stationary granular temperature, or T 2

g =
(ηg/γ )vi jvi j ≡ (ηg/γ )||vs ||2, see Eq. (35), we obtain from
Eq. (38) the equation,

∂t ui j − vi j ∼ ||vs ||(−ui j )
√

ηg/γ , (39)

the rate-independent structure of which closely resembles
the hypoplastic one [20]. As a result, both the elastic strain
ui j and the stress σi j will display incremental nonlinear-
ity, i.e., behave differently depending whether the load is
being increased (vi j > 0, ||vs || > 0) or decreased (vi j <

0, ||vs || > 0). Not surprisingly, this equation leads to plastic
flows very similar to the hypoplastic results. However, under
cyclic loading of small amplitudes, because Tg never has
time to grow to its stationary value, the plastic term ui j/τ ∼
Tgui j remains small, and the system’s behavior is rather more
elastic.

The equation of motion for the elastic strain ui j is in fact
more complicated [cf. the derivation leading to Eq. (76)], and
given as

dt ui j − (1 − α)vi j + ui j/τ

= −[(uik∇ jvk + ∇i y j/2) + (i ↔ j)], (40)

where dt ≡ ∂t +vk∇k , and (i ↔ j) signifies the same expres-
sions as in the preceding bracket, only with the indices i and
j exchanged. In this equation, the term (uik∇ jvk)+(i ↔ j),
important for large strain field and frequently negligible for
hard grains, is of geometric origin, see [59–62] for expla-
nations. The dissipative flux yi ∼ ∇ jπi j will be derived in
Sect. 7.1. It is quite similar to the diffusive heat current κ∇i T ,
which aims to reduce temperature gradients and establish
∇i T = 0. We can take yi to be a current that aims to reduce
∇ jπi j and establish the equilibrium condition, ∇ jπi j = 0, of
Eq. (20). The term αvi j is a simplification of α0v

0
i j +α1v

δi j ,

assuming 1
3α0 = α1.

6 The granular free energy

As explained in Sect. 1, the structure of the hydrodynamic
theory is determined by general principles, especially energy
and momentum conservation, but the explicit form of the
energy w is not. Although there are general requirements
that w must always satisfy, most of its functional dependence
reflects the specific behavior of the material. To arrive at an
expression for the energy of granular media, there are two
obvious methods, either a microscopic derivation, possibly
via simulation, or more pragmatically, examining constraints
from key experiments, opting for simplicity whenever pos-
sible, as we do here.

Because we are interested in the limit of small Tg and ui j ,
see Eqs. (1) and (24), and because the dependence on the true
temperature is usually less directly relevant, the difficult part
is the density dependence of the energy. Fortunately, quite
a number of known features may be used as input. First,
there are two characteristic granular densities, the minimal
and maximal ones, ρ
p and ρcp, respectively, referred to as
random loosest and closest packing. In the first case, the
grains necessarily loose contact with one another when the
density is further decreased; in the second, the density can no
longer be increased without compression, at which point the
system is orders of magnitude stiffer [17–19,72]. Then there
is the jamming transition of sand, especially the so-called vir-
gin consolidation line, which we believe is the limit beyond
which no stable elastic solutions are possible, see Fig. 1a.
These in conjunction with the density dependence of sound
velocity and the pressure exerted by agitated grains contain
sufficient information to fix the expression for the energy.
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(a) (b)

(c)

Fig. 1 Granular yield surface, or jamming phase diagram, for Tg = 0,
as a function of the pressure P , shear stress σs , and void ratio e ≡
ρG/ρ − 1. All thick solid lines are calculated using Eqs. (42, 50, 53).
a Maximal void ratio e versus pressure P , or the virgin consolida-
tion line. The dotted line is an empirical formula, e = 0.679 −
0.097 ln(P/0.5), with P in MPa. The thin line (designated as simple
model) renders Eq. (52). The circle at the top is the random loosest
packing value for e. b The straight Coulomb yield line bends over
depending on e, a behavior usually accounted for by the cap model
in elasto-plastic theories. c The 3D combination of a and b. Values for
the calculation are: B0 = 7, 000 MPa, ρ∗


p = 0.445ρG , ρcp = 0.645ρG ,

�1 = 10−4, and k1 = 10−5 m3/kg, k2 = 1,000, k3 = 0.01

Instead of the energy, we consider the potential f̃ (T, T̄g,

ρ, ui j ) ≡ w0 − T s − T̄gsg , see Eq. (27). Referring to it (for
simplicity) still as the free energy density, we write

f̃ = f0(T, ρ) + f1(ρ, ui j ) + f2(ρ, T̄g), (41)

f1 ≡ w1 = B
√

� (2�2/5 + u2
s /ξ), (42)

f2 = ρ b0(1 − ρ/ρcp)
a(−T̄ 2

g /2), 0 < a � 1, (43)

where f0(T, ρ) is the free energy at vanishing granular tem-
perature and elastic deformation, T̄g, ui j = 0, while w1(ui j )

and f2(T̄g) are the respective lowest order term. (It is a sim-
plifying assumption that the temperature T enters the free
energy only via f0, and not w1, f2. This neglects effects such
as thermal expansion that, however, are easily added when
necessary).

Being cohesionless, the grains possess no interaction en-
ergy, f0(T, ρ) is therefore the sum of the free energy in each
of the grains,

f0(T, ρ) = 〈F1(T )/m〉ρ, (44)

where F1 is the free energy of a single grain, m its mass, and
〈F1(T )/m〉 the free energy per unit mass, averaged over a
number of grains.

It is important to realize that the equilibrium stress is given,
once one knows what the free energy density f̃ = F/V is
(see Appendix 9),

σi j = PT δi j + πi j = −
[

∂( f̃ /ρ)

∂(1/ρ)

]
δi j − ∂ f̃

∂ui j
. (45)

The first term is the local expression for the more familiar
one,

PT ≡ −∂ F

∂V
= − ∂( f̃ V/M)

∂(V/M)

∣∣∣∣∣
M

= −∂( f̃ /ρ)

∂(1/ρ)

= ρ∂ f̃ /∂ρ − f̃ = ρµ + T s + T̄gsg − w. (46)

In liquids, only this term exists, since f̃ does not depend on
ui j ; in ideal crystals, only the second term exists, because the
density is not an independent variable, see the discussion in
Sect. 3. In granular media, both terms coexist. Given the free
energy f̃ = ∑

fi of Eq. (41), each term yields the pressure
contribution,

Pi ≡ ρ(∂ fi/∂ρ) − fi , (47)

with PT ≡ ∑
Pi and P0 ≡ ρ∂ f0/∂ρ − f0 = 0.

6.1 The elastic energy

The elastic part of the free energy, Eq. (42), has previously
been successfully tested under varying circumstances, cf. the
discussion in Sect. 2, below Eq. (2). It is not analytic in the
elastic strain, but does contain the lowest order terms. As it
takes some deliberation to arrive at its density dependence
and the terms of higher order in ui j , we consider them in two
separate sections below.

First, a conceptual point. We take any yield surface as
the divide between two regions: one in which stable elastic
solutions are possible, the other in which they are not—so a
system under stress must flow and cannot come to rest here.
Accepting this, the natural approach is to have a convex elas-
tic energy turn concave at the yield surface. The idea behind
it is, the energy is an extremum if the equilibrium conditions
of Sect. 3, including especially Eq. (20), are met. Convexity
implies the energy is at a minimum there, and concavity that
it is at a maximum. Where w1 is concave, any elastic solution
satisfying Eq. (20) has maximal energy, and is eager to get
rid of it. It is not stable because infinitesimal perturbations
suffice to destroy it.

As discussed in Sect. 2, for B, ξ = constant, w1 is convex
for πs/P ≤ √

2/ξ and concave otherwise, and already pos-
sesses the right form to account for the Coulomb yield line,
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see Fig. 1b. Our task now is to appropriately generalize it
such that the density ρ is included as a third variable. Instead
of ρ, the void ratio, e ≡ ρG/ρ − 1, is frequently employed.
It remains constant at elastic compressions and accounts for
granular packaging only. (ρG is the bulk density of granular
material at the same pressure, typically around 2700 kg/m3

for sand).

6.2 Density dependence of B

We shall take B as density dependent, but not ξ : since the
Coulomb yield line is approximately independent of the den-
sity, so must the coefficient ξ be, see Eq. (4). Granular sound
velocity was measured by Hardin and Richart [73], who
found it linear in the void ratio, c ∼ 2.17−e. Given Eq. (42),
the velocity of sound is c ∼ √B/ρ, implying

B = B0(3.17 − ρG/ρ)2(ρ/ρG). (48)

Since this expression properly accounts for the measured
[74] density dependence of the compliance tensor Mi jk
, the
dependence of B on ρ seems settled [75]. It is not, because the
resultant w1 is concave in the variables ρ and �, and could
not possibly sustain any static solution. Inserting Eq. (48) into
(42), we find the energy violating the stability condition,

∂2B−2/3/∂ρ2 ≤ 0, (49)

obtained from inserting Eq. (42) with us ≡0 into (∂2w1/∂ρ
2)

(∂2w1/∂�2) ≥ (∂2w1/∂ρ∂�)2. Clearly, the widely em-
ployed Hardin–Richart relation, c ∼ 2.17−e, is not accurate
enough for a direct input into the energy. It works fine as long
as the sand is jammed, Tg = 0, and ρ is only a given param-
eter, not a free variable—such as in the experiments of [74],
or when determining static stress distributions. But if a finite
Tg frees the density to become a variable, this instability will
wreck havoc with the hydrodynamic theory. So our task is
to reconstruct the density dependence of B, such that the
energy w1

1. vanishes for densities smaller than the random loosest
packing value (around the void ratio of e
p ≈ 0.8 for
sand of uniform grain size), or ρ ≤ ρ
p;

2. (as a simplification) diverges at ρ = ρcp, the random
closest packing value (around ecp ≈ 0.55);

3. is convex and reproduces the Hardin–Richart relation
between ρ
p and ρcp.

Alas, these points are more easily stated than combined
in an energy expression, and no continuous B seems feasi-
ble: if analytic, B would be proportional to ρ − ρ
p close
to ρ
p. More generally, we may take B ∼ (ρ − ρ
p)

α , with
α positive. But the resulting energy, w ∼ (ρ − ρ
p)

α�2.5,
remains concave. Only when including the divergence at ρcp

by taking B ∼ (ρ − ρ
p)
α/(ρcp − ρ)β does the energy turn

Fig. 2 Equation (48), obtained by employing the Hardin–Richart
relation directly, violates the stability condition Eq. (49), because
∂2B−2/3/∂ρ2 > 0 for all density values. Although numerically sim-
ilar, see insert, the expression from Eq. (50) suitably becomes concave
at ρ
c, and satisfies the stability condition between ρ
c and ρcp . The
plots are calculated with ρ∗


c = 0.445ρG , ρpc = 0.645ρG (implying
ρ
p = 0.555ρG ), and B0 = 7, 000 MPa, appropriate for Ham River
sand [74]

convex, between ρcp and a density larger than ρ
p. We there-
fore propose

B = B0

(
ρ − ρ∗


p

ρcp − ρ

)0.15

× C, for ρ > ρ
p; (50)

B = 0, for ρ ≤ ρ
p. (51)

With an appropriate ρ∗

p < ρ
p, this expression renders the

energy divergent at ρcp, stable and convex up to ρ
p, and
approximates the Hardin–Richart relation between them, see
Fig. 2. (Take C = 1 for now, until it is specified otherwise in
the next section).

6.3 Higher-order strain terms

Next, we consider compaction by pressure, the fact that
denser sand can sustain more compression before getting
unjammed, before elastic solutions become unstable: see the
dotted line of Fig. 1a, depicting a well-known empirical for-
mula from soil mechanics, e = e0 − � ln P , see [17–19].
Referred to as the virgin (or primary) consolidation line, it
represents the boundary that sand (at rest) will not cross when
compressed. Instead, it will collapse, becoming more com-
pact, with a smaller e, close to or at the curve, but not beyond.
(Note the dotted line does not appear to cut the e-axis, as it
should at ρ
p—this is where sand becomes instable for any
pressure. The discrepancy may derive from difficulties of
making reliable measurements close to ρ
p.) This behavior
is a natural consequence of higher-order strain terms such as

− (ζ1�
3 + ζ2�u2

s ), (52)

which are to be added to w1, Eq. (42). Take ζ1, ζ2 > 0 and
consider pure compression, u2

s = 0. For small �, the term
−ζ1�

3 is negligible, and w1 remains convex. But if � is large
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enough, its negative second derivative will turn w1 concave,
making any elastic solution impossible. The value of � at
which this happens, grows with B—a larger third-order term
is needed for a larger B. Now, B is smallest at ρ = ρ
p, grows
monotonically with ρ, and diverges at ρcp. As a result, the
instability line cuts the e-axis at ρ
p, veers toward larger �

(or larger P) at higher density , and heads for infinity at ρcp,
see the thin line depicted as “simple model” in Fig. 1a, drawn
with a constant ζ1 = 24500 MPa. (It is of course possible,
employing a density-dependent ζ1, to improve the agreement
to the dotted line.) In Fig. 1b, the point of maximal pressure
for a given void ratio e is located at where the P-axis is being
cut by the associated curve. If the term ∼�u2

s did not exist,
these curves would be vertical lines. The presence of ∼�u2

s
reduces the value of � (or P) for growing us (or σs), bending
the lines to the left.

Although qualitative figures of these curves—frequently
referred to as “caps”—abound in textbooks [17–19], we did
not find enough quantitative data, especially not a generally
accepted empirical expression, that we could have compared
our results to. Presumably, it is not easy to observe caps in
dry sand. Given this lack of reliable data, we decided against
the expansion of Eq. (52), and opted for a flexible “cap func-
tion,” C of Eq. (50), capable of accounting for any possible
cap-like unjamming transition,

2C = 1 + tanh[(�0 − �)/�1], where (53)

�0 = k1ρ − k2u2
s − k3 = k′

1/(e + 1) − k2u2
s − k3.

With C ≈ 1 for � � �0, and C ≈ 0 for � � �0, the
cap function is constructed to be relevant only in a narrow
neighborhood around �0, for |� − �0| � �1 ≈ 10−4, such
that the energy’s convexity is destroyed around �0. Taking
k1, k2, k3 as constant, �0 grows with the density and falls
with u2

s , giving rise to the typical appearance reproduced in
Fig. 1.

Together, Eqs. (42, 50, 53) give the energy density w1,
appropriate for cohesionless granular materials at Tg = 0.
There are two contributions to the pressure, P = P1 + P�,
where P1 ≡ ρ(∂w1/∂ρ) − w1 from Eq. (47), and πi j =
−∂w1/∂ui j ≡ P�δi j − σsu0

i j/us . Because we still take � to

be a small quantity, P1 ∼ �2.5 may be neglected. (Similarly,
terms such as πiku jk ∼ �2.5 from Eq. (65) below are also
negligible). So the stress is simply πik , with pressure and
shear stress given as

P� = B
√

�(� + 3
10 u2

s /�) − w1C∗/�1, (54)

πs = 6
5B

√
�us − 2k2usw1C∗/�1, (55)

where C∗ ≡ 1 − tanh[(�0 − �)/�1], hence C∗ → 0 away
from the cap. (The terms of higher order in � are kept in
C∗, because �1 is small. This is how we make C a function
relevant for � ≈ �0, not � → 0).

Stability is given only if the energy w1 is convex with
respect to its seven variables, ρ,�, u0

i j . As linear transforma-
tions do not alter the convexity property of any function, we
may take the energy as w7(ρ,�, x1−5) where x1 ≡ √

2uxy ,
x2 ≡ √

2uxz , x3 ≡ √
2uyz , x4 ≡ (uxx − uzz)/

√
2, x5 ≡

(uxx − 2uyy + uzz)/
√

6. The characteristic polynomial N7

of the Hessian matrix of w7 is N7 = (λ−u−1
s ∂w1/∂us)

4 N3,
with N3 the characteristic polynomial of w1(�, us, ρ). Since
u−1

s ∂w1/∂us is always positive, it is sufficient to consider
w1(�, us, ρ). Requiring N3 to have only positive eigen-
values defines the stable region in the strain space, spanned
by �, us, e. Using Eqs. (54, 55), we may convert this into one
in the stress space, spanned by P, σs, e. The result, obtained
numerically, is the yield surface plotted in Fig. 1.

6.4 Pressure contribution from agitated grains

Agitated grains are known to exert a pressure in granular
liquid. Using the model of ideal gas (better: non-interacting
atoms with excluded volumes), with w2 ∼ ρTg denoting
the energy density of agitated grains, the pressure expres-
sion,

PT (ρ, Tg) ∼ w2/(1 − ρ/ρcp), (56)

was employed and found to account realistically for the
behavior of granular liquid sandwiched between two cylin-
ders rotating at different velocities [76–79].

In ideal gas, both the energy density w and pressure P are
proportional to the temperature T . As a consequence, the en-
tropy is s∼ ln T , and diverges for T → 0. (The free energy
has a contribution ∼T ln T that vanishes for T → 0.) As
quantum effects become important long before T vanishes,
the unphysical feature of a diverging entropy is inconse-
quential for ideal gases. Yet this would be a highly rele-
vant defect for granular solids, for which important phys-
ics occurs at or around T̄g = 0. This is the reason ideal
gas is not an appropriate model for granular solids. The
considerations of Sect. 4 show that w2, f2 ∼ T̄ 2

g close to

T̄g =0— implying a pressure contribution, P2 =ρ(∂ f2/∂ρ)−
f2 ∼ T̄ 2

g , see Eq. (47). Note first that P2 ∼ w2 is re-
tained, and second that because P0 = 0, P1 ≈ 0, we have
PT ≡ ∑

Pi ≈ P2.
Unfortunately, the density dependence of Eq. (56) also

poses a problem, as it implies a free energy f2 = b0ρ ln(1 −
ρ/ρcp)(−T 2

g /2) and a granular entropy, sg = −∂ f2/∂Tg =
b0ρ ln(1−ρ/ρcp) Tg , both diverging for ρ → ρcp. We there-
fore take f2 to be given as in Eq. (43), with a positive but
small a. The resulting entropy is physically acceptable, and
the pressure is easily rendered numerically indistinguishable
from Eq. (56),
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Fig. 3 Jamming transition as a function of e, σs and PT ∼ T 2
g , for

P� = 0.4 MPa. Values of model parameters are the same as those in
Fig. 1

PT = P2 = ρ

2ρcp

a ρ b0T̄ 2
g

(1 − ρ/ρcp)1−a
, (57)

sg = − ∂ f2

∂ T̄g
= ρ b0T̄g

(
1 − ρ

ρcp

)a

. (58)

As the total pressure is now P = PT +P�, cf. Eq. (54), the
jamming transition discussed above is modified. For instance,
the yield condition of Eq. (3), with ξ = 5/3, now reads

πs

P�

= πs

P − PT
≤

√
6

5
, (59)

implying a smaller maximal πs for given P . On the other
hand, the maximal value for the void ratio e is larger when
PT is present: any given e has a maximal elastic compres-
sion � that will not sustain a larger e. But if P is fixed and
Tg is finite, the elastic compression � will be appropriately
smaller to sustain a larger e. This behavior is depicted in
Fig. 3.

The jamming transition, from elastic solid to liquid, is of
course no longer completely sharp at a finite Tg , because Tg

turns the elastic body into a transiently elastic one for all
values of stress and density. Nevertheless, there is a huge
quantitative difference between catastrophic unjamming and
the gradual process of stress relaxation. A sand pile may
slowly degrade, relaxing toward the flat surface. But when
turning on Tg violates Eq. (59), sudden events such as lique-
faction happen. (PT may be substituted by the pore pressure
to account for a similar collapse, if the soil is filled with
water.) The frequently reported phenomenon of a primary
earthquake emitting elastic waves that trigger earthquakes
elsewhere [80], may well be connected to Eq. (59): Tg as
given by Eq. (35) accompanies elastic waves. It may be suf-
ficiently large to violate Eq. (59) if stability was precarious.

6.5 The Edwards entropy

It is useful, with the free energy obtained in this chapter
in mind, to revisit the starting points of granular statistical
mechanics (GSM), especially the Edwards entropy [81,82].

Taking the entropy S(W, V ) as a function of the energy W
and volume V , or dS = (1/T )dW + (P/T )dV , the authors
of [81,82] argue that a mechanically stable agglomerate of
infinitely rigid grains at rest has, irrespective of its volume,
vanishing energy, W ≡ 0, dW = 0. The physics is clear:
however, we package these rigid grains that neither attract
nor repel each other, the energy remains zero. Therefore,
the basic expression of GSM, dS = (P/T )dV , or dV =
(T/P)dS ≡ XdS hold, with X a relevant quantity charac-
terizing granular media at rest. The entropy S is obtained
by counting the number of possibilities to package grains
for a given volume, and taking it to be eS . Because a stable
agglomerate is stuck in one single configuration, some tap-
ping (or a similar disturbance) is taken to be needed to enable
the system to explore the phase space.

In GSH, the present theory, grains are neither infinitely
rigid, nor always at rest. An elastic and a Tg-dependent energy
contribution, denoted, respectively, as f1 and f2, see Eq. (41),
account for these effects. GSH also possesses a Tg-switch
that determines whether the system’s behavior is solid- or
liquid-like, with phase space exploration enabled in the sec-
ond case. That grains neither attract nor repel each other
is accounted for by the stress vanishing if Tg and ui j do.
Then f1, f2 = 0, with only f0 ∼ ρ finite, implying πi j =
∂( f0/ρ)/∂(1/ρ)δi j = 0.

Given this comparison, it is natural to ask whether GSM
is a legitimate limit of GSH. The answer is probably no,
as both appear conceptually at odds—in two points, the first
more direct, the second quite fundamental: (1) Because of the
Hertz-like contact between grains, very little material is being
deformed at first contact, and the compressibility diverges at
vanishing compression. This is a geometric fact independent
of how rigid the bulk material is. Infinite rigidity is therefore
not a realistic limit for sand. (2) In considering the entropy,
one must not forget that the number of possibilities to pack-
age grains for a given volume is vastly overwhelmed by the
much more numerous configurations of the inner granular
degrees of freedom. Maximal entropy S for given energy
therefore realistically implies minimal macroscopic energy,
such that a maximally possible amount of energy is in S
(or heat), equally distributed among the numerous inner gran-
ular degrees of freedom. Maximal number of possibilities
to package grains for a given volume is a very different
criterion.

7 Granular hydrodynamic theory

7.1 Derivation

We take the conserved energy w(s, sg, ρ, gi , ui j ) of granular
media to depend on entropy s, granular entropy sg , density
ρ, momentum density gi , and the elastic strain ui j . Defining
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the conjugate variables as T ≡ ∂w/∂s, T̄g ≡ Tg − T ≡
∂w/∂sg [see Eq. (23)], µ − v2/2 ≡ ∂w/∂ρ [see Eq. (8)],
vi ≡ ∂w/∂gi = gi/ρ [see Eq. (5)], πi j ≡ −∂w/∂ui j , we
write

dw = T ds + T̄gdsg + (µ − v2/2)dρ + vi dgi − πi j dui j .

(60)

The equations of motion for the energy and its variables are

∂tw + ∇i Qi = 0, ∂tρ + ∇i (ρvi ) = 0, (61)

∂t gi + ∇ j (σi j + giv j ) = 0, (62)

∂t s + ∇i fi = R/T, ∂t sg + ∇i Fi = Rg/TG , (63)

dt ui j − vi j − Xi j

= −[(uik∇ jvk + ∇i y j/2) + (i ↔ j)]. (64)

The first three equations are conservation laws, with the
fluxes Qi and σi j as yet unknown, to be determined in this
section. The next two are the balance equation for the two
entropies, the form of which are already given, in Eqs. (30,
32, 33, 34). Nevertheless, to see that they indeed fit the con-
straints required by energy and momentum conservation, we
designate the currents as fi = svi − f D

i , Fi = sgvi − F D
i ,

leaving f D
i , F D

i , R, Rg unspecified. The last is the equation
of motion for the elastic strain field, as discussed in Sect. 5,
with yi , Xi j the unknown fluxes to be determined here. Next,
we introduce σ D

i j + �D
i j , as

σi j ≡ (− f̃ + µρ)δi j −
(
σ D

i j + �D
i j

)
+ πi j − πiku jk − π jkuik, (65)

where f̃ ≡ w0 − T s − T̄gsg , as in Eqs. (27, 47). This is sim-
ply a definition of σ D

i j + �D
i j , which transfer our task from

determining σi j to finding the new quantity. This simplifies
our task, notationally, of finding the form of σi j , it does not
in anyway prejudice it.

Differentiating the energy, ∂tw = T ∂t s + T̄g∂t sg + (µ −
v2/2)∂tρ + vi∂t gi − πi j∂t ui j , see Eq. (60), then inserting
Eqs. (61–64) into it, employing relations such as T̄g∂t sg =
T̄g Rg/TG + vksg∇k T̄g − ∇k(T̄gsgvk), we obtain

∇i Qi = ∇i (T fi + T̄g Fi + µρvi + v jσi j − y jπi j )

− R + f D
i ∇i T + σ D

i j vi j + yi∇ jπi j + Xi jπi j

+γ T̄ 2
g − Rg + �D

i j vi j + F D
i ∇i T̄g − γ T̄ 2

g (66)

This is a useful result, which shows one can rewrite ∂tw as the
divergence of something (first line), plus something (second
and third line) that vanishes in equilibrium—see Sect. 3.3
why ∇i T, vi j , πi j ,∇ jπi j and TG vanish. We take the first
line to yield the energy flux, Qi , and the next two lines to

vanish independently,

Qi = T fi + T̄g Fi + µρvi + v jσi j − y jπi j , (67)

R = f D
i ∇i T + σ D

i j vi j + yi∇ jπi j + Xi jπi j + γ T̄ 2
g , (68)

Rg = �D
i j vi j + F D

i ∇i T̄g − γ T̄ 2
g . (69)

Comparing R, Rg with Eqs. (32, 34), the currents are found
as

f D
i = κ∇i T, σ D

i j = ζv

δi j + ηv0
i j + απi j,

F D
i = κg∇i T̄g, �D

i j = ζgv

δi j + ηgv
0
i j, (70)

yi = β P∇ jπi j , Xi j = βπ0
i j + β1δi jπ

 − αvi j.

(It is an assumption to take F D
i ∇i T̄g as part of Rg rather than

R.) The two terms preceded by α contribute ±απi jvi j to
R, respectively, hence cancel each other and are compatible
with Eq. (32). (More such pairs of terms, mutually canceling
or contributing in equal parts, are possible. They have been
excluded as a simplification. In the language of the Onsag-
er force–flux relation, the above fluxes possess only diago-
nal elements, with the exception of the reactive, off-diagonal
terms ∼ α). Defining two relaxation times,

1

τ
≡ 2βA

√
�,

1

τ1
≡ 3β1

√
�

(
B + Au2

s

2�2

)
. (71)

the last of Eqs. (70) may be written as

Xi j = �δi j/τ1 − u0
i j/τ − αvi j . (72)

To ensure permanent elasticity in granular statics, we must
in addition require

Xi j → 0 for Tg → 0. (73)

This completes the derivation of GSH. Given f D
i , F D

i , σ D
i j ,

�D
i j , yi , Xi j , the structure of all currents in the set of equa-

tion, Eqs. (61–64), are known. The question that remains is
whether these expressions are unique. For simpler hydrody-
namic theories, such as for isotropic liquid, nematic liquid
crystal, or elastic solid, this procedure (frequently referred
to as the standard procedure) is easily shown to be unique,
because one can convince oneself that as long as the energy
w remains unspecified, there is only one way to write the
time derivative of the energy ∂tw as the sum of a divergence
and a series of expressions that vanish in equilibrium. In the
present case, with two levels of entropy productions, one of
which controls the switch between permanent and transient
elasticity, the hydrodynamic theory is singularly intricate,
and peripheral ambiguities remain. Nevertheless, displaying
energy and momentum conservation explicitly, and reduc-
ing to liquid and solid hydrodynamics in the proper limits,
the given set of equations is certainly a viable and consistent
theory.

A more formal way of obtaining the fluxes of Eqs. (70) is
to define the flux and force vectors as �Z = ( f D

i , yi , σ
D

i j , Xi j ),
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�Zg = (F D
i , �D

i j ), �Y = (∇i T,∇ jπi j , vi j , πi j ), �Yg =
(∇i T̄g, vi j ). And because R = �Z · �Y , Rg = �Zg · �Yg , the
Onsager force–flux relations are given as

�Z = ĉ · �Y , �Zg = ĉg · �Yg. (74)

The transport matrices, ĉ and ĉg , have positive diagonal
elements and off-diagonal ones that satisfy the Onsager
reciprocity relation. Our example above has only diagonal
elements, with the single exception of the reactive, off-diag-
onal terms ∼α.

7.2 Results

Collecting the terms derived above, in Sect. 7.1, the equations
of GSH, with σi j valid to lowest order in strain, are

∂tρ + ∇i (ρvi ) = 0, (75)

dt ui j = (1 − α)vi j − u0
i j/τ − u

 δi j/τ1

−
(

uik∇ jvk + ∇i [β P∇kπ jk/2]
)

− (i ↔ j), (76)

σi j = (1 − α)πi j − πiku jk − π jkuik

+(µρ − f̃ )δi j − (ζ + ζg)v

δi j − (η + ηg)v
0
i j , (77)

Tg[∂t sg + ∇i (sgvi − κg∇i T̄g)] = Rg

= ζgv
2


 + ηgv

0
i jv

0
i j + κg(∇i T̄g)

2 − γ T̄ 2
g , (78)

T [∂t s + ∇i (svi − κ∇i T )] = ζv2


 + ηv0

i jv
0
i j + γ T̄ 2

g

+κ(∇i T )2 + β P (∇ jπi j )
2 + βπ0

i jπ
0
i j + β1π

2


. (79)

Given in terms of the variables: (s, sg , ρ, gi , ui j ), conju-
gate variables (T , T̄g , µ, vi , πi j ), and 11 transport coeffi-
cients, (α, τ , τ1, ζ , ζg , η, ηg , γ , β P , κ , κg), these equations
are valid irrespective of the functional form of the energy
w and the transport coefficients. Therefore, they only pro-
vide the hydrodynamic structure, a framework into which
different concrete theories fit. This circumstance, though also
true for Newtonian fluids, is not as relevant there, because
static susceptibilities (such as the compressibility or specific
heat) and transport coefficients may frequently be approxi-
mated as constant. So the structure alone already possesses
considerable predicting power. This is not true for granu-
lar media, which typically possess more involved functional
dependence—especially concerning the T̄g → 0 limit, which
does not have a counter part in other systems. This is one of
the less recognized reasons, we believe, underlying the com-
plexity of granular systems.

In Sect. 6, a free energy was presented that we are con-
fident is fairly realistic. The situation with respect to the 11
transport coefficients is less settled, and in need of much
future work, though a few limits are clear from the onset:
first, a simple, analytic way to assure the elastic limit for
T̄g = 0 and satisfy the requirement of Eq. (73) is given by

1/τ = λT̄g, 1/τ1 = λ1T̄g, (80)

which, as we shall see next, gives rise to the same dynamic
structure as hypoplasticity. The density dependence is more
subtle, hence harder and less urgent to determine. However,
it seems plausible that λ, λ1 should decrease for growing
density, and the compressional relaxation should stop being
operative at the random close packing density ρcp . To account
for this, the simplest dependence would be

λ1 ∼ (ρ − ρcp). (81)

The coefficient α needs to vanish in the elastic limit, for
T̄g → 0, and be constant in the hypoplastic one, when T̄g is
moderately large: We have σi j = πi j in the elastic regime,
and σi j = (1 − α)πi j + · · · with 1 − α ≈ 0.2 in the hypo-
plastic one, implying sand is much softer here—same strain,
yet stress is smaller by a factor of about five. The behavior of
α is probably the result of granular agitation disrupting force
chains. They are all intact in the elastic limit, making the
system comparatively stiff. A finite T̄g breaks up the chains,
and when most of chains are destroyed, the remaining ones
become essential in the sense that their disruption leads to
local collapse, which in turn immediately repair the chains
by some rearrangement. This is why α saturates and becomes
constant.

Finally, as long as Eq. (39) holds, the rate independence
it entails would prevent the propagation of sound and elas-
tic waves: because both the elastic and the plastic part are
linear in the velocity, and of the same order in the wave vec-
tor q, sound damping is comparable to sound velocity, and
wave propagation could at most persist for a few periods. We
therefore expand γ, ηg in T̄g , as

γ = γ0 + γ1T̄g, ηg = η1T̄g, (82)

assuming ηg lacks a constant term, because viscous dissipa-
tion occurs directly via η for T̄g → 0, see Eq. (70). Insert-
ing these expression into Eq. (35) for a quick, qualitative
estimate, we find T̄g ∼ vi jvi j ≡ v2

s for γ0 � γ1T̄g , and
T̄g ∼ vs for γ0 � γ1T̄g . The first regime is essentially elas-
tic, because the relaxation term, ui j/τ ∼ ui j T̄g ∼ ui jv

2
s , is

of second order and small. This ensures the propagation of
sound modes. In the second regime, the same term, ui j/τ ∼
ui j T̄g ∼ ui jvs , is of first order and rather more prominent,
giving rise to the hypoplastic behavior discussed in the next
section.

8 The hypoplastic regime

Hypoplasticity [20], a modern, well-verified, yet compara-
tively simple theory of soil mechanics, models solid dynam-
ics as realistically as the best of the elasto-plastic theories. Its
starting point is the rate-independent constitutive relation,

∂tσi j = Hi jk
 vk
 + �i j

√
v0

i jv
0
i j + ε v2



, (83)
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where the coefficients Hi jk
,�i j , ε are functions of σi j , ρ,
specified using experimental data mainly from triaxial appa-
ratus. (Rate-independence means ∂tσi j is linearly propor-
tional to the magnitude of the velocity, such that the change
in stress remains the same for given displacement irrespec-
tive how fast the change is applied, a well verified observation
in both the elastic and hypoplastic regime.) Great efforts are
invested in finding accurate expressions for the coefficients,
of which a recent set [20] is ε = 1/3,

Hi jk
 = f
(

F2δikδ j
 + a2σi jσk
/σ
2
nn

)
, (84)

�i j = a f fd F
(
σi j + σ 0

i j

)
/σnn, (85)

where a = 2.76, hs = 1,600 MPa, ed = 0.44ei , ec = 0.85ei ,
e−1

i = exp (σ

/hs)
0.19, and

fd =
(

e − ed

ec − ed

)0.25

, f =− 8.7hs (1 + ei )

3 (σs/σ

 + 1) e

(
σ



hs

)0.81

,

F =
√

3σ 2
s

8σ 2




+ 2σ 2
s σ

 − 3σ 4

s /σ



2σ 2
s σ

 − 6σ 0

i jσ
0
j
σ

0

i

−
√

3

8

σs

σ



.

GSH, as derived above, reduces to Eq. (83) for a sta-
tionary Tg , with Hi jlk,�i j , ε given in terms of Mi jk
 ≡
−∂2w/∂ui j∂uk
 and four scalars that are combinations of
transport coefficients. We assume uniformity and stationa-
rity, with especially ∇i T̄g,∇ jπi j , ∂tvi = 0, and only include
the lowest order terms in the strain ui j . We also take α, ηg, ζg

as constants, and neglect PT from Eq. (57), the pressure rel-
evant in granular liquid, assuming Tg is too small for the
given velocity. It is then quite easy to evaluate ∂tσi j employ-
ing Eqs. (76, 77),

∂tσi j = (1 − α)∂tπi j = (1 − α)Mi jk
∂t uk


= (1 − α)Mi jk
[(1 − α)vk
 − u0
k
/τ − δk
umm/τ1].

(86)

Clearly, given Eqs. (35, 80), this expression already has the
structure of Eq. (83) that Hypoplasticity postulates. And the
coefficients are

Hi jk
 = (1 − α)2 Mi jk
, ε = ζg/ηg, (87)

�i j = (1 − α)Mi jk
[(τ/τ1)�δk
 − u0
k
]λ

√
ηg/γ . (88)

HPM has 43 free parameters (36 + 6 + 1 for Hi jk
,�i j , ε),
all functions of the stress and density. Expressed as here,
the stress and density dependence are essentially determined
by Mi jk
 that is a known quantity [66,67]. For the four free
constants, we take

1 − α = 0.22, τ/τ1 = 0.09,
(89)

ζg

ηg
= 0.33,

√
ηg

γ
=

√
η1

γ1
= 114

λ
,

to be realistic choices, as these numbers yield satis-
factory agreement with Hypoplasticity. Their significance

are: ζg/ηg = 0.33 implies shear flows are three times as
effective in creating Tg as compressional flows. τ/τ1 = 0.09
means, plausibly, that the relaxation rate of shear stress is
ten times higher than that of pressure. The factor (1 − α)2

accounts for an overall softening of the static compliance
tensor Mi j
k . Finally, λ controls the stress relaxation rate
for given Tg , and

√
η1/γ1 how well shear flow excites Tg .

Together, λ
√

ηg/γ = 114 determines the relative weight of
plastic versus reactive response: the term in Eq. (83) preceded
by Hi jk
 is the reversible, elastic response, the second term
preceded by �i j comes from stress relaxation, is dissipative,
irreversible and plastic. For small strain, �, us → 0, the elas-
tic part is dominant, |Hi jk
| � |�i j |. But |�i j |/|Hi jk
| ∼
|u0

k
| · 114/(1 − α) is of order unity for |ui j | around 10−3.
Although the functions of Eqs. (87, 88) appear rather dif-

ferent from that of Eqs. (84, 85), the stress–strain increments
are quite similar, as the comparison in [68] shows. Moreover,
the residual discrepancies may be eliminated by discarding
the simplifying assumption of constant transport coefficients,
independent of the stress. This agreement provides valuable
insights into the physics of Hypoplasticity, showing why it
works, what its range of validity is, and how it may be gen-
eralized. And it conversely also verifies GSH.

9 Conclusion

The success of granular elasticity, the theory we employ
to account for static stress distribution in granular media,
is mainly due to the fact that the information on the plas-
tic strain is quite irrelevant there. This is no longer true in
granular dynamics, when the system is being deformed—
sheared, compressed or tapped. Starting from the working
hypothesis that granular media are transiently elastic while
being deformed, we aim to understand the notoriously com-
plex plastic motion by combining two simple and transparent
elements, elasticity and stress relaxation. In a recently pub-
lished Letter [68], we proposed a model for granular solids
based on this hypothesis. In the present manuscript, we give
this model a consistent, hydrodynamic framework, compat-
ible with conservation laws and thermodynamics.

The framework is valid for any healthy energy, but is
essentially devoid of predictive power if the energy is left
unspecified. Therefore, an explicit expression for the total,
conserved energy is given. Encapsulating the key features of
static granular media: stress distribution, incremental stress–
strain relation, minimal and maximal density, the virgin con-
solidation line, the Coulomb yield line and the cap model,
this expression should prove realistic enough for rendering
the specific hydrodynamic theory useful. Much future work is
needed to see whether further agreement between theory and
experiments may be achieved, especially concerning cyclic
loading, tapping and shear band.
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Appendix A: Equilibrium conditions

First, noting πi j dui j = πi j d∇ jUi because πi j is symmetric,
we write the energy density per unit volume (dropping the
subscript of w0 in this section) as

dw = T ds + µdρ − πi j d∇ jUi . (A1)

Next, we vary the energy
∫

wdV for given entropy
∫

sdV ,
mass

∫
ρdV , and for fixed displacement at the medium’s sur-

face, δUi = 0. Taking 
1, 
2 as constant Lagrange parame-
ters and denoting the surface element as dAi , we require the
variation of the energy to be extremal,

δ

∫
(w − 
1s − 
2ρ) dV = 0. (A2)

Inserting Eq. (A1) into (A2), we find∫ [
T δs + µδρ + πi jδ∇ jUi − 
1δs − 
2δρ

]
dV

=
∫ [

(T − 
1) δs + (µ − 
2) δρ − (∇ jπi j
)
δUi

]
dV

+
∮

πi jδUi dAi = 0,

where the last term vanishes because δUi ≡ 0 at the surface.
If δs, δρ and δU j vary independently, all three brackets must
vanish. And because 
1, 
2 are constant, T, µ also need to be.
So the conditions for the energy (or entropy) being extremal
are

∇i T = 0, ∇iµ = 0, ∇ jπi j = 0. (A3)

In granular media for T̄g = 0, density and compression
are coupled as

du

 = −dρ/ρ = ρdv, (A4)

and do not vary independently. Simply inserting this rela-
tion into the above calculation, we find ∇i (µ + π

/3ρ) =
0 to replace the last two conditions of Eq. (A3). This is
not the correct result, because we have been varying the
energy and its variables above, keeping the volume unchanged
throughout, with δUi ≡ 0 at the surface. But then u

 is
fixed and cannot change with the density ρ: Consider a one-
dimensional medium between x = 0 and x = x0, with
Ux (0), Ux (x0) given. Since ∇ jπi j ∼ ∂2

x [Ux (x0)−Ux (0)] =
0, the one-dimensional strain is u

 = ∂xUx = (Ux (x0) −
Ux (0))/x0 and cannot change.

To find the proper expression, we may take mass M rather
than volume V as the constant quantity, and vary the density

by changing the volume, or the length in the one-dimen-
sional case. Holding δUi ≡ 0 at the moving surface will then
allow Eq. (A4) to hold. Denoting the energy, entropy and
volume per unit mass, respectively, as e ≡ w/ρ, σ ≡ s/ρ,
v ≡ V/M = 1/ρ, and f ≡ w − T s, the equivalent expres-
sion,

de = T dσ − PT dv − (πi j/ρ)d∇ jUi , (A5)

PT ≡ −w + T s + µρ = − f + µρ, (A6)

holds. Now we have E = ∫
edM , S = ∫

σdM , V = ∫
vdM ,

where dM = ρdV is the integrating mass element. Varying
the energy for given entropy, volume and requiring it to van-
ish, δE − 
1S − 
2V = 0, we find∫

[(T − 
1) δσ + (PT − 
2) δv] dM =
∫ (∇ jπi j

)
δUi dV .

implying ∇i T = 0, ∇i PT = 0, and ∇ jπi j = 0. These are the
same conditions as Eq. (A3), because ∇i PT = s∇i T +ρ∇iµ.
But if Eq. (A4) is implemented, turning Eq. (A5) to

de = T dσ − (PT + π

/3)dv − (π0
i j/ρ)d∇ j Ui , (A7)

= T dσ − ρ−1(PT δi j + πi j ) d∇ jUi , (A8)

the equilibrium conditions are altered to become

∇i T = 0, ∇i (PT + π

/3) = 0, ∇ jπ
0
i j = 0. (A9)

Clearly, the Cauchy, or total, stress in equilibrium is given as

σi j = PT δi j + πi j , with ∇ jσi j = 0. (A10)

Including the gravitational energy ρφ in w, with −∇iφ =
Gi , the gravitational constant pointing downward, we have

dw = T ds + (µ + φ)dρ − πi j d∇ jUi + ρ dφ, (A11)

and find (via the same calculation as above) that µ+φ is now
a constant, implying an alteration of the second of Eqs. (A3)
to

∇iµ = Gi , (A12)

or equivalently, ∇i PT = s∇i T + ρ∇iµ = ρGi . If Eq. (A4)
holds, ∇ jσi j = 0 is analogously changed to

∇ jσi j = ∇ j (PT δi j + πi j ) = ρGi . (A13)
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