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GRANULAR SUPPORT VECTOR MACHINES BASED ON GRANULAR 

COMPUTING, SOFT COMPUTING AND STATISTICAL LEARNING 

by 

 
YUCHUN TANG 

Under the Direction of Yan-Qing Zhang 

ABSTRACT 

 

 

With emergence of biomedical informatics, Web intelligence, and E-business, new 

challenges are coming for knowledge discovery and data mining modeling problems.  

In this dissertation work, a framework named Granular Support Vector Machines 

(GSVM) is proposed to systematically and formally combine statistical learning theory, 

granular computing theory and soft computing theory to address challenging predictive 

data modeling problems effectively and/or efficiently, with specific focus on binary 

classification problems. In general, GSVM works in 3 steps. Step 1 is granulation to build 

a sequence of information granules from the original dataset or from the original feature 

space. Step 2 is modeling Support Vector Machines (SVM) in some of these information 

granules when necessary. Finally, step 3 is aggregation to consolidate information in 

these granules at suitable abstract level. A good granulation method to find suitable 

granules is crucial for modeling a good GSVM. 

Under this framework, many different granulation algorithms including the GSVM-

CMW (cumulative margin width) algorithm, the GSVM-AR (association rule mining) 

algorithm, a family of GSVM-RFE (recursive feature elimination) algorithms, the 

GSVM-DC (data cleaning) algorithm and the GSVM-RU (repetitive undersampling) 

algorithm are designed for binary classification problems with different characteristics. 



The empirical studies in biomedical domain and many other application domains 

demonstrate that the framework is promising. 

As a preliminary step, this dissertation work will be extended in the future to build a 

Granular Computing based Predictive Data Modeling framework (GrC-PDM) with which 

we can create hybrid adaptive intelligent data mining systems for high quality prediction.  
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CHAPTER 1 

INTRODUCTION 

Knowledge discovery and data mining is known as the science of extracting useful information 

from large and complex datasets or databases. Specifically, predictive/supervised data mining is 

targeted at predicting the unknown value of a variable of interest given known values of other 

variables. There are two important distinct kinds of problems in predictive data mining: 

classification if the unknown variable is categorical; and regression if the unknown variable is 

real-valued [44]. For a classification problem, samples of different classes are accumulated, on 

which a classifier is modeled to predict future samples. 

How to build effective and efficient models for supervised classification problems has been a hot 

research topic for a long time in data mining community and machine learning community. 

Effectiveness is targeted at evaluating a model in terms of accuracy (or other metrics in different 

contexts), while efficiency means to evaluate a model in terms of running time (or other metrics 

in different contexts). Usually efficiency is in inverse ratio with effectiveness: To get a more 

accurate classifier, a longer time is required for modeling. In many real-world applications, 

effectiveness is the key to evaluate if a classifier is good or not. However, in some other 

applications, due to real time requirement or due to very large size of the available dataset, a 

classifier with high efficiency is usually more preferable, at the prerequisite of not deteriorating 

effectiveness too much. That means a more desirable classifier in this context should run faster 

but still remain high accuracy.  With the emergence of life science, including bioinformatics and 

computational biology, computational chemistry, medical informatics, the efficiency requirement 

is even necessary. 
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Besides accuracy, interpretability is another important metric to evaluate the effectiveness of a 

predictive data model. With good interpretability, a predictive data model (a classifier for 

classification problems) can be extended to build a decision support system to help humans to 

make decisions more reliably. 

 

1.1 Problem definitions 

 

In this dissertation, we focus on binary classification modeling. Although binary classification is 

the simplest classification problem, many works show that binary classification algorithms can 

be naturally extended to solve multiple classification or regression problems. (This extension 

itself is an interesting research topic and will not be covered in this dissertation.)  

1.1.1 Binary classification 

 

A general binary classification problem is defined as follows:  

• Given l i.i.d. sample: ),(,),,(),,( 2211 ll yxyxyx K  

where d

i Rx ∈ , for li ,,2,1 L=  is a feature vector of length d and }1,1{ −+=iy is the class 

label (+1 for the positive class, and -1 for the negative class) for data point ix , 

• Assume the classes are mutually exclusive and exhaustive, which means every sample 

has one and only one class label, 

• Find a classifier with the decision function ),( θxf such that ),( θxfy = , where y is the 

class label for x, θ is a vector of unknown parameters in the function. These l samples are 

called “training data”. 

The performance of the classifier is usually measured in terms of misclassification error on 

unseen “testing data” which is defined in Eq. (1.1).  

⎩
⎨
⎧ =

=
otherwise

xfyif
xfyE

1

),,(0
)),(,(

θ
θ     (1.1) 
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Based on the confusion matrix in Fig. 1.1, three metrics, named accuracy, sensitivity and 

specificity, are calculated to evaluate the performance:  

• Accuracy is the fraction of correctly classified samples. 

• Sensitivity is the fraction of the real positives that actually are correctly predicted as 

positives.  

• Specificity is the fraction of the samples predicted as positives that really are positives.  

  
TPFPFNTN

TPTN
accuracy

+++
+

= .     (1.2) 

  
FNTP

TP
ysensitivit

+
= .      (1.3) 

  
FPTP

TP
yspecificit

+
= .      (1.4) 

By the definitions, the combination of sensitivity and specificity can be used to evaluate a 

model’s balance ability so that we know if a model is biased to a special class. Notice that the 

sum of FP and FN is the number of misclassification errors on the unseen testing dataset. 

 

 

 

 real negatives real positives 

predicted 

negatives 

(TN) true 

negatives 

(FN) false 

negatives 

predicted 

positives 

(FP) false 

positives 

(TP) true 

positives 

Figure. 1.1. confusion matrix
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Recently, Area under ROC curve (AUC) has been well accepted as a better metric to evaluate a 

classifier’s generalization capability [14]. AUC can indicate a model’s balance ability between 

TP rate and FP rate (See Fig. 1.2) as a function of varying a classification threshold. As a result, 

we know if a model is biased to a special class. An area of 1 represents a perfect classification, 

while an area of 0.5 represents a worthless model.  

 

 

 

  
FNTP

TP
rateTP

+
=− .      (1.5) 

  
TNFP

FP
rateFP

+
=− .      (1.6) 

There is a traditional academic point system to roughly guide the performance evaluation on the 

AUC metric: 

19.0 ≤≤ auc  = excellent (A) 

9.08.0 <≤ auc  = good  (B) 

8.07.0 <≤ auc  = fair  (C) 

7.06.0 <≤ auc  = poor  (D) 

6.05.0 <≤ auc  = fail  (F) 

 
Figure. 1.2. the area under the ROC curve 
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1.1.2 Binary ranking 

 

Some binary classification problem is more natural to be modeled as a binary ranking modeling. 

Protein homology prediction task is a good example. The target is to predict if a protein sequence 

is homologous to another pre-specified natural protein sequence. Because of biological 

complexity, it is difficult and arbitrary to say two protein sequences are absolutely homologous 

or not (1 or -1 is output); an output with "confidence" may be more helpful. In this way, many 

protein sequences could be ranked by their confidence to be homologous to the pre-specified 

protein sequence. As a result, biologists could quickly prioritize a list of protein sequences for 

further study and thus their working efficiencies can be enhanced. 

A binary ranking problem is similar to a binary classification problem. The differences are 

• the output is a real number in the field of [-1,1], and 

• the absolute value of the output is useless. Intuitively, a good model should rank the 

unseen positive samples (in case of protein homology prediction, they are homologous 

protein sequences) close to the top and rank unseen negative samples (in case of protein 

homology prediction, they are non-homologous protein sequences) close to the bottom of 

the list. 

1.1.3 Feature selection 

 

Feature selection is closely related to binary classification. For a dataset with many input 

features, some features may be useless or even harmful for classification. A feature may be noisy 

itself, or worse, it may correlate with other features to hide real data distribution to induce 

overfitting. 

Suppose there are d input features in the original dataset, the target of feature selection is to 

select id informative features while removing nd non-informative features. 0>id , 0>=nd , 
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ddd ni =+ . The expectation is that the classifier modeled in the id  feature space has better 

performance than the classifier modeled in the original feature space. 

 

1.2 Challenges 

 

With emergence of biomedical informatics, Web-based information retrieval, Internet 

Information Security and E-business, some new challenges are coming. Among them, noise, non 

i.i.d., sparseness and imbalance are four especially interesting ones and are abstract noticeable 

increase of interest from more and more researchers recently due to their pervasiveness in 

datasets from these application domains. 

• Non i.i.d. (independent and identically distributed). The datasets accumulated under 

different contexts or even same contexts but at different time are significantly different. 

• Noise. The dataset may have many noisy samples or noisy features. 

• High dimensionality. The dataset may have a few samples but a huge number of features, 

which is known as “curse of dimensionality” in the data mining community. 

• Imbalance. The dataset may have highly skewed sample distribution or highly skewed 

feature distribution. That means the samples/features for one class is significantly more 

than the samples/features for another class. 

 

1.3 Organizations 

 

The rest of this dissertation is organized as follows: In chapter 2, we discuss related works. After 

that, the general idea and framework of GSVM is presented in Chapter 3. Chapters 4-8 report 

five GSVM modeling algorithms, named GSVM-CMW, GSVM-AR, GSVM-RFE, GSVM-DC 

and GSVM-RU, respectively, for binary classification with different characteristics. Finally, we 

conclude this dissertation and direct the future work in Chapter 9. 
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CHAPTER 2 

RELATED WORKS 

Before introducing the GSVM framework, some related works are briefly reviewed in this 

chapter.  

2.1 Linear classifiers 

 

Finding the decision function ),( θxf is equivalent to finding a decision boundary that 

maximally discriminate two classes in the feature space. The simplest form of a boundary is just 

a linear combination of the input features. This kind of classifiers is called linear classifiers. Let 

us imagine a simple example with only two input features, a decision boundary of a linear 

classifier is just a straight line. The boundary is generalized to be a hyperplane for higher 

dimensional feature space. 

The perceptron is one of the earliest examples of a linear classifier [44]. A boundary is defined 

in Eq. 2.1. 

0)(
1

=∑ +=
=

d

i
ii bxwxh .       (2.1) 

where iw , di ≤≤1 are unknown parameters called weights; b is an unknown parameters called 

bias. 

If 0)( >xh , then x is assigned class label 1+ . If 0)( <xh , then x is assigned class label 1− . That 

means the decision function  

))((),( xhsignxf =θ .       (2.2) 

whereθ  is ),,,( 21 bwww dL . 

The values of unknown parameters are estimated by examining samples in the training dataset 

one by one in a way similar to gradient descent techniques. Usually the values with (possibly 
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locally) minimized misclassification error on the training dataset are selected as the “optimal” 

values. 

Fisher presented one of the earliest forms of linear discriminant analysis for binary classification 

problems [35]. 

)(
1

1111

11

−−++
−+

+
+

= CnCn
nn

C ,     (2.3) 

Cww

ww
wS

'

''
)( 11 −+ −
=

µµ
.      (2.4) 

where in  is the number of samples which pertains to class i in the training dataset; iC  is 

dd × covariance matrix for class i estimated from the training dataset; iµ  is 1×d  mean vector 

of class i estimated in the training dataset; }1,1{ −+=i ; w is a d×1  weight vector which decides 

the direction of a linear classifier. 

The w with largest S(w) defined in Equations 2.3-2.4 is taken as the weights of the classifier. 

The b is decided by prior probabilities of two classes or by minimizing the misclassification 

error. The same decision procedure as the perceptron showed in Equations 2.1-2.2 is adopted to 

decide a sample’s class label. 

 

 

 
Figure. 2.1. The perceptron discriminates the classes with a linear boundary 
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2.2 Support Vector Machines 

 

SVM is a superior classifier in that SVM embodies the Structural Risk Minimization (SRM) 

principle to minimize an upper bound on the expected risk [102,30,19,28,42].  

l

hlh
RR emp

)4/log()1)/2(log(
)()(

ηαα −+
+≤ ,   (2.5) 

where 

∑ −=
=

l

i
iiemp xfy

l
R

1

),(
2

1
)( αα  is empirical risk,   (2.6) 

h is non-negative integer called the Vapnik Chervonenkis (VC) dimension, ]1,0[∈η and the 

bound holds with probability η−1 . α is the vector of unknown parameters. 

Because structural risk is a reasonable trade-off between the error on the training dataset (the 1st 

factor of Eq. 2.5) and the complication of modeling (the 2nd factor of Eq. 2.5), SVM has a great 

ability to avoid overfitting and thus could be confidently generalized to predict new data that are 

not included in the training dataset. 

2.2.1 Linear SVM 

 

Geometrically, SVM modeling algorithm works for a binary classification problem by 

constructing a linear separating hyperplane with maximal margin as showed in Fig. 2.2. Finding 

the optimal separating hyperplane of SVM requires the solution to a convex quadratic 

programming problem, the Wolfe dual formulation of which is showed in Equations 2.7-2.9 [19]. 

maximize 

∑∑ −=
ji

jijiji
i

iD xxKyyL
,

),(
2

1 ααα      (2.7) 

subject to 
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,0 Ci ≤≤ α         (2.8) 

0=∑
i

ii yα         (2.9) 

 

 

 

For a linear separable classification problem, jiji xxxxK •=),(  (the inner production of two 

samples). The geometry explanation is that the margin between classes could be maximized by 

maximizing DL  in Eq. 2.7. For linear SVM, the margin width can be calculated by the Equations 

2.10-2.11. 

∑=
=

sN

i
iii xyw

1

α         (2.10) 

wwidthmargin /2=        (2.11) 

where sN is the number of support vectors. 

2.2.2 Kernel methods 

 

Kernel functions are known to be a kind of elegant dimension-increasing-based methods [19] to 

transfer a linear non-separable problem into a linear separable problem. Nonlinear kernel 

Figure. 2.2.  SVM with maximal margin 
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functions are introduced to implicitly map input sample from input feature space into a higher 

dimensional feature space, where a linear classification decision could be made. The following 

are some most common nonlinear kernel functions. 

 Polynomial kernel d
yxyxK ))(*(),( θγ +•=
rrrr

      (2.12) 

 RBF  kernel                )||||exp(),( 2
yxyxK
rrrr

−−= γ      (2.13) 

 Sigmoid kernel            ))(*tanh(),( θγ +•= yxyxK
rrrr

   (2.14) 

2.3 Granular computing 

 

Granular computing represents information in the form of some aggregates (called "information 

granules") such as subsets, classes, and clusters of a universe and then solves the targeted 

problem in each information granule [8,109,108]. On one hand, for a huge and complicated task, 

it embodies Divide-and-Conquer principle to split the original problem into a sequence of more 

manageable and smaller subtasks. On the other side, for a sequence of similar little tasks, it 

comprehends the problem at hand without getting buried in all unnecessary details. As opposed 

to traditional data-oriented numeric computing, granular computing is knowledge-oriented [108]. 

For a specific data mining task, we can embed prior knowledge or prior assumptions into the 

granular computing based data modeling process to improve performance both in terms of 

accuracy, efficiency and interpretability. Some formal models of information granules are: 

• Set theory and interval analysis 

• Fuzzy sets 

• Rough sets 

• Probabilistic sets 

• Decision Trees 

• Clusters 
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• Association rules 

2.4 Soft computing 

 

The basic ideas underlying soft computing in its current incarnation have links to many earlier 

influences, among them Prof. Zadeh’s 1965 paper on fuzzy sets [114]; the 1973 paper on the 

analysis of complex systems and decision processes [115]. 

The principal constituents of soft computing (SC) are fuzzy logic (FL), neural network theory 

(NN) and probabilistic reasoning (PR), with the latter subsuming belief networks, evolutionary 

computing including DNA computing, chaos theory and parts of learning theory. For more 

detailed information and latest news on the soft computing, please refer to The Berkeley 

Initiative in Soft Computing (BISC) program (http://www-bisc.cs.berkeley.edu/).  
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CHAPTER 3 

GRANULAR SUPPORT VECTOR MACHINES 

GSVM is a hybrid model by systematically combining principles from statistical learning theory 

and granular computing theory [93-100].  

3.1 Motivation 

 

 

 

For linear non-separable classification problems, two different ideas are usually adopted to 

transfer them into linear separable ones: dimension-increasing-based or partition-based 

(granular-computing-based). Fig. 3.1 shows the well-known XOR problem, which is a linear 

non-separable because there is not a line discriminating the two classes perfectly. Fig. 3.2 shows 

that how increasing dimensionality works to address the problem: We can add the 3
rd

 dimension 

z=xy to transfer the problem to be linear separable;  

The dimension-increasing idea is the foundation of kernel methods. There are two problems: 

Firstly, up to now no one kernel method can guarantee to transfer a linear non-separable problem 

Figure. 3.1. XOR classification problem 
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into a linear separable problem, even the dimensionality is increased to be infinite. Secondly, it 

takes longer time to model a classifier because of increased dimensionality.  

 

 

 

 

 

 

Figure. 3.2.  increase one more dimension z=xy to transfer XOR problem to be linear separable

 

Figure. 3.3.  partition the whole space to two granules to transfer XOR problem to be two 

smaller  problems which are linear separable 
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Now let us see how to use the idea of granular computing to solve the XOR problem: If we can 

somehow split the whole space by x=0 into two subspaces (granules), the resulted classification 

subproblem in each granule is linear separable! And hence we can build two linear SVMs in 

these two granules. This process is showed in Fig. 3.3. 

This simple XOR example stimulates us to design a novel classification model named Granular 

Support Vector Machines (GSVM). 

3.2 GSVM Modeling  

 

There are mainly three steps for GSVM modeling.  

The first step is granulation. Many algorithms, such as Decision Trees, Association Rules, and 

Clustering algorithms, can be used to split the original feature space into a sequence of 

subspaces. Some other data mining techniques, including sampling, bagging, and boosting, can 

be used to build a sequence of subsets from the original dataset. Besides these generic 

algorithms, for a specific classification task, we even can design new granulation methods to 

embed prior knowledge or prior assumptions into the granulation process. Notice that some 

information granules may overlap so that some samples may appear in multiple information 

granules. Also notice that one granule (the original dataset or the original feature space) is 

already the optimal so that we even don’t need granulation in this special case. 

In general, multiple information granules are created at the first step. After that, some classifiers 

are modeled to solve sub classification problems in these granules. Here any classification 

algorithms can be used. However, we adopt SVM due to its strong statistical background and 

superior performance on many real world classification applications. 

After that, in each information granule, we have raw data, we have a SVM classifier, and we 

even can extract knowledge in the form of a few critical rules or cases. So the final step is to 
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aggregate these information to build a single GSVM model. The aggregation can be executed in 

different abstract levels such as data fusion, decision fusion, knowledge fusion, or hybrid 

information fusion. 

3.3 Comparison with SVM 

 

SVM is inherently a contiguous model in that it uses a single contiguous hyperplane to halve the 

whole feature space. Is it reasonable to always assume that the classification boundary is 

contiguous? Here we argue that the boundary maybe discrete for many classification problems. 

So if we can somehow correctly split the whole feature space into a set of subspaces (information 

granules) and then build a SVM for some mixed ones of the subspaces, the resulting model is 

expected to capture the inherent data distribution of the classification problem at hand more 

accurately. Even for a contiguous classification boundary, the boundaries from suitably built 

subspaces could approximate it with enough accuracy. Currently, for the discrete or other linear 

non-separable classification problems, the only method is to use some kernel function to map the 

data to a new feature space in which the data is expected to be linear separable. But up to now no 

kernel function can guarantee the "linear separability". 

SVM tries to find the optimal decision boundary by extracting important samples called Support 

Vectors (SVs). However, by extracting SVs in just one granule (the whole feature space, 

actually), it is prone to be affected by noisy samples or noisy features. Furthermore, whether a 

sample is extracted to be a SV is highly sensitive to parameters of the SVM. As a result, some 

important samples may be lost. If we can split the whole feature space into several overlapping 

granules, in each of which important samples are extracted as SVs, each sample can achieve 

more than one opportunity to be extracted. This way, information loss is decreased. 
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GSVM is a model which systematically and formally combines the principles from statistical 

learning theory, granular computing theory and soft computing theory. It works by building a 

sequence of information granules and then building SVM in some of information granules on 

demand.  

 

 

 

Some potential advantages of GSVM are  

• GSVM can get better generalization in a linear separable classification problem. 

Compared to Fig. 2.2, Fig. 3.4 shows that GSVM may improve the generalization 

capability by enlarging the margin width. 

• GSVM can increase a linear non-separable problem’s "linear separability", or even 

transfer a linear non-separable problem to totally linear separable as the XOR example 

demonstrates. That means GSVM could be a potential alternative to kernel functions by 

transferring a linear non-separable classification problem to a set of linear separable 

subproblems. In fact, these two methods are not contradictory so we can combine granule 

 
Figure. 3.4.  GSVM can get better generalization by splitting the whole feature space with 

x=2 and x=4. As a result, there are three SVMs for the three information granules 



  18 

    

 

functions and kernel functions in a GSVM to achieve better separability. One way is 

mapping the data to a new feature space with some kernel function at first, and then a 

GSVM is modeled in the new feature space; Another way is splitting the original feature 

space into a set of information granules at first, and then using different kernel functions 

to map the data in these information granules to different new feature spaces separately. 

• In many real world data mining applications, what people expect is not only to get a 

model with small prediction error, but also to explain the reason why it works so well. As 

we know, SVM is almost unable to provide this kind of information. However, a few 

critical rules or cases can be extracted from information granules so that GSVM decision 

process is similar to human understandable Rule-Based Reasoning (RBR) or Case-Based 

Reasoning (CBR). 

• Compared to SVM, GSVM is more possible to grasp inherent data distribution by trade-

off between local significance of a subset of data and global correlation among different 

subsets of data. And hence, GSVM is expected to be effective to improve classification 

performance. 

• GSVM may speed up the modeling process by eliminating redundant data locally. 

Moreover, GSVM is easy to be parallelized so that it is more efficient to be applied to 

huge data classification problems, which are common in biomedical application domain. 

• Like SVM, GSVM could also be applied to multiple classification or regression problems 

without or with small modifications. 

However, building suitable information granules is far from a trivial task. The key is to build the 

information granules somehow reasonably and effectively. Many questions need to be answered 

during modeling a GSVM: 
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• Top-down or bottom-up? Begin from the whole feature space and then gradually split it 

into smaller spaces (top-down)? Or begin from creating many tiny information granules 

and then gradually combine them into larger spaces? 

• What is the stop condition? What time should we stop splitting or combining? How do 

we know a splitting or combining will result in overfitting? From the granular computing 

viewpoint, how do we know we already get optimal information granules? Notice here 

maybe the original whole feature space is itself an optimal granule so we even don’t need 

to split it. 

• If top-down, how to find the feature(s) the splitting hyperplane should be based on? Is it 

reasonable to split a space by a hyperplane orthogonal to a single feature? Or select a 

splitting hyperplane based on a group of features? 

• After selecting the splitting feature (or features), how to decide the direction and the bias 

parameters of the splitting hyperplane bwx + ? 

Obviously, GSVM modeling is knowledge oriented and data dependent. There are no general 

answers for these questions. And hence, many different GSVM modeling algorithms are 

designed for binary classification with different characteristics. 
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CHAPTER 4  

GSVM-CMW 

This chapter proposes GSVM-CMW (cumulative margin width) algorithm for general binary 

classification problems. 

4.1 GSVM-CMW algorithm 

 

GSVM-CMW is a simple but efficient modeling method for building a linear GSVM in the top-

down way. The hyperplane used to split the feature space is selected by extending statistical 

margin maximization principle as showed at section 2.2.1. 

The margin between classes could be maximized by maximizing DL  in Eq. 2.7. For linear SVM, 

the margin width can be calculated by the Eq. 2.10-2.11. 

Here we will find granules splitting hyperplane by extending this principle. Suppose we split the 

whole feature space by the hyperplane cx
k = , where k

x is the k
th

 input feature, and Rc∈ is a 

constant value, and then we build two SVMs, named SVM1 and SVM2, for 2 subspaces, named 

subspace1 and subspace2, respectively. For comparison, we also build a SVM called SVM0 in 

the whole feature space. We define a “cumulative margin width” (CMW) as follows. 

For linear SVMs, we define CMW in Eq. 4.1. The geometrical explanation is straightforward: the 

hyperplane with the smallest cumulative weight is selected to be the splitting hyperplane. 

21

1

ww
CMW

+
=        (4.1) 

where 21,w w  are weights calculated by Eq. 2.10 for SVM1,SVM2, respectively. 

Unfortunately, for SVMs with nonlinear kernels, the margin width could not be directly 

calculated in this simple way because the separating hyperplane resides in an implicit high-
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dimension feature space. Here we will define CMW in Eq. 4.2 to get sub-maximized margins 

because the margin between classes could be maximized by maximizing DL  in Eq. 2.7. 

)()( 022
2

011
1

DDDD LL
l

l
LL

l

l
CMW −+−=     (4.2) 

where 21 lll += , 

1l is the number of training data in subspace1, 

2l  is the number of training data in subspace2, 

D1L is DL of SVM1 calculated by Eq. 2.7, 

D2L is DL of SVM2, 

D01L is DL of SVM0 by only counting SVs in subspace1, 

D02L is DL of SVM0 by only counting SVs in subspace2. 

Now the problem to find the optimal splitting hyperplane is transformed to find the hyperplane 

with largest CMW value in Eq. 4.1 for linear kernel or Eq. 4.2 for non-linear kernel. Here many 

search algorithms can be candidates, for example, genetic algorithms. But for fairness of 

comparison, we use grid search heuristic to find a suboptimal solution [46]. Notice here we only 

search the hyperplane orthogonal to a single feature to simplify the searching process. We 

equally select m constants  

),(,,, max_min_

21

kk

m xxccc ∈L  for each feature k
x     (4.3) 

where min_k
x is the minimum value of k

x in the training  dataset, while max_k
x is the maximum 

value.  

As a result, there are altogether dm hyperplane candidates. The hyperplane with largest CMW 

value will be selected as the splitting hyperplane. If there are many hyperplanes with the largest 
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CMW value, the hyperplane with the largest training accuracy is selected because we can expect 

the better accuracy could be generalized to new unseen data.  

The above process can recursively applied to subspace1 and subspace2. Here once again for 

simplicity, we apply the above process only once to halve the original whole feature space and 

build one SVM for each subspace. 

4.2 GSVM-CMW simulation 

 

4.2.1 Environment 

 

The hardware we used is a PC with P4-2.8MHz CPU and 256M memory. The software we used 

is OSU SVM Classifier Matlab Toolbox [67] which implements a Matlab interface to LIBSVM 

[23]. All simulations in this dissertation work are under this environment, so we will not repeat it 

in the following chapters. 

4.2.2 Data Sets 

 

 

 

 

Three public medical binary classification data from UCI data mining repository [68] are used 

for comparison: 

• Wisconsin Breast Cancer dataset 

• Cleveland heart-disease dataset 

TABLE 4.1 

CHARACTERISTICS OF DATASETS USED FOR EXPERIMENTS 

Dataset Size Attr Ratio 

Wisconsin Breast Cancer 683 9 239:444 

Cleveland heart-disease 297 13 160:137 

BUPA Liver Disorders 345 5 169:176 

Note 1:  Size = # of cases after removing cases with missing data, Attr = 

# of input features, Ratio = # of positive cases : # of negative cases. 

Note 2:  16 cases in Wisconsin Breast Cancer and 6 cases in Cleveland 

heart-disease with missing values are removed. 
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• BUPA Liver Disorders dataset 

The detailed characteristics of datasets are listed in Table 4.1. 

 

 

 

 

 

 

 

TABLE 4.4 

TESTING ACCURACY COMPARISON ON BUPA LIVER DISORDERS DATASET 

WITHOUT KERNEL MAPPING 

Trial 
Testing accuracy 

of linear SVM 

Splitting 

hyperplane of 

linear GSVM 

Testing accuracy 

of linear GSVM 

1 0.4897 pc5= 0.0938 0.4966 

TABLE 4.3 

TESTING ACCURACY COMPARISON ON CLEVELAND HEART-DISEASE 

DATASET WITHOUT KERNEL MAPPING 

Trial 
Testing accuracy 

of linear SVM 

Splitting 

hyperplane of 

linear GSVM 

Testing accuracy 

of linear GSVM 

1 0.8776 pc10= -0.7093 0.8776 

2 0.8100 pc1= -0.3349 0.7900 

3 0.8586 pc4= -1.4573 0.8889 

4 0.7959 pc10= -0.7602 0.7857 

5 0.8500 pc10= -0.6992 0.8600 

Mean 0.8384  0.8404 

Std 0.0342  0.0491 

TABLE 4.2 

TESTING ACCURACY COMPARISON ON WISCONSIN BREAST CANCER 

DATASET WITHOUT KERNEL MAPPING 

Trial 
Testing accuracy 

of linear SVM 

Splitting 

hyperplane of 

linear GSVM 

Testing accuracy 

of linear GSVM 

1 0.9559 pc1= 0.2083 0.9780 

2 0.9649 pc1= 0.2161 0.9649 

3 0.9649 pc1= 0.2083 0.9868 

4 0.9778 pc1= -0.2083 0.9822 

5 0.9565 pc1= -0.2083 0.9739 

Mean 0.9640  0.9772 

Std 0.0089  0.0084 
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4.2.3 Data Preprocessing 

 

Firstly, we scale and normalize the input features to [-0.9, 0.9]. Out results show that the scaling 

does not deteriorate the performance of classifiers but speed up the training and testing process 

significantly.  

Secondly, we split each dataset into training dataset and testing dataset. BUPA Liver Disorder 

dataset is already split into training data and testing data, so we make just one trial on it. For 

TABLE 4.7 

TESTING ACCURACY COMPARISON ON BUPA LIVER DISORDERS DATASET 

WITH RBF KERNEL MAPPING 

Trial 
Testing accuracy 

of RBF SVM 

Splitting 

hyperplane of 

RBF GSVM 

Testing accuracy 

of RBF GSVM 

1 0.6690 pc5= -0.0353 0.6828 

TABLE 4.6 

TESTING ACCURACY COMPARISON ON CLEVELAND HEART-DISEASE 

DATASET WITH RBF KERNEL MAPPING 

Trial 
Testing accuracy 

of RBF SVM 

Splitting 

hyperplane of 

RBF GSVM 

Testing accuracy 

of RBF GSVM 

1 0.7959 pc1= -0.5223 0.8265 

2 0.8200 pc1= -0.3349 0.8000 

3 0.7273 pc1= -0.5277 0.8687 

4 0.7551 pc1= -0.3349 0.7857 

5 0.8600 pc1= -0.3411 0.8900 

Mean 0.7917  0.8342 

Std 0.0524  0.0444 

TABLE 4.5 

TESTING ACCURACY COMPARISON ON WISCONSIN BREAST CANCER 

DATASET WITH RBF KERNEL MAPPING 

Trial 
Testing accuracy 

of RBF SVM 

Splitting 

hyperplane of 

RBF GSVM 

Testing accuracy 

of RBF GSVM 

1 0.9692 pc1= -1.1570 0.9604 

2 0.9737 pc1= -1.1396 0.9605 

3 0.9781 pc1= -1.1570 0.9693 

4 0.9733 pc1= -1.1570 0.9733 

5 0.9565 pc1= 1.1570 0.9652 

Mean 0.9702  0.9657 

Std 0.0083  0.0056 
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other two datasets, we randomly split the data into training data and testing data with the 

conditions in Eq. 4.4-4.6. We make five trials on each of the two datasets. 

1:2)(:)( =testingStrainingS ,     (4.4) 

1:2)_(:)_( =testingpositiveStrainingpositiveS ,   (4.5) 

1:2)_(:)_( =testingnegativeStrainingnegativeS ,   (4.6) 

where )(xS means the size of the dataset x. 

4.2.4 Modeling 

 

Two models are created for performance comparison. The first one is a general SVM in the 

whole space. For linear SVM, regulation parameter 1≡C ; for RBF SVM, kernel parameter 1≡γ  

and regulation parameter 1≡C .  

The second model is GSVM-CMW. Here we only split the whole space to two information 

granules. The splitting hyperplane has the format cx
k = , where k

x is the 4
th

 feature. It means we 

only search the hyperplanes orthogonal to a single feature. And then two SVMs with the same 

parameters as the general SVM above are built for both information granules.  

4.2.5 Result 

 

For Wisconsin Breast Cancer dataset, Table 4.2 shows that the performance of linear GSVM-

CMW (97.72%) is better than linear SVM (96.40%) averaged on 5 trials. And Table 4.5 shows 

that the performance of RBF GSVM-CMW (96.57%) is a little worse than RBF SVM (97.02%). 

The best model is linear GSVM-CMW (97.72%). 

For Cleveland Heart-disease dataset, Table 4.3 shows that the performance of linear GSVM-

CMW (84.04%) is a little better than linear SVM (83.84%) averaged on 5 trials. And Table 4.6 

shows that the performance of RBF GSVM-CMW (83.42%) is significantly better than RBF 

SVM (79.17%). Once again, the best model is linear GSVM-CMW (84.04%). 
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For BUPA Liver Disorders dataset, Table 4.4 shows that the performance of linear GSVM-

CMW (49.66%) is a little better than linear SVM (48.97%). And Table 4.7 shows that the 

performance of RBF GSVM-CMW (68.28%) is better than RBF SVM (66.90%). The best model 

is RBF GSVM-CMW (68.28%). 

The experiment results demonstrate, although the splitting hyperplane is limited to be orthogonal 

to a single feature and the number of information granules is fixed to be two, that our GSVM 

shows superior generalization capability. Except BUPA Liver Disorder dataset, standard 

deviations of other two datasets show that experiment results are stable and conceivable. 

However, Table 4.5 also shows that, sometimes GSVM performs a little worse than SVM. (More 

specifically, Table 4.5 shows that RBF GSVM for Wisconsin Breast Cancer dataset is a little 

worse than RBF SVM). One possible reason is that the modeling method proposed here is too 

simplified. If we can find more appropriate criteria to search splitting hyperplanes which are not 

necessary to be orthogonal to a single feature, the performance of GSVM is expected to be 

improved further. Another possible reason is that two information granules may be not the 

optimal ones, maybe recursively splitting the space and thus building more information granules 

could improve the performance of GSVM, maybe the whole feature space is itself the optimal 

one so it is even unnecessary to split it. It means the result on Table 4.5 is not contradictory to 

our general GSVM idea, because it shows that just one information granule is more suitable than 

two information granules in this special case. The open problem is how to get the optimal or 

suboptimal information granules effectively so that the utility of GSVM modeling is not 

deteriorated? The adaptive granulation may be a good direction to explore. In the future, we will 

make more study and experiments on these issues. 
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4.3 GSVM-CMW-PCA algorithm 

 

Principle Component Analysis (PCA) is a classic technique to transform the d-dimensional 

original input space to another d-dimensional “principle components space”, in which features 

(called “principle components”) are linear combinations of original input features and are 

orthogonal to each other [44]. The advantage of PCA is that the features are ranked based on the 

data’s projection variance on them. The larger the projection variance is, the more useful the 

feature is expected to be for discriminating the classes. That means PCA could serve as a feature 

selection technique to ease a high-dimensional data classification problem. 

For granular computing, what is interested is the first principle component. Because the first 

principle component captures the largest projection variance in the data, it is reasonable to expect 

that a partition along its orthogonal direction could be helpful to quickly find suitable 

information granules. 

A simple but fast modeling algorithm, named GSVM-CMW-PCA, is proposed for building a 

GSVM in the top-down way. The hyperplane used to split the feature space is decided by 

statistical principle component analysis and margin maximization principle. The algorithm is 

similar to GSVM-CMW. The only difference is that we equally select m constants 

),(,,, 21 pc1_maxpc1_minccc m ∈K  for the first principle component pc1 , where pc1_min is the 

minimum value of pc1 in the training data, while pc1_max  the maximum value. As a result, 

there are altogether m hyperplane candidates. The hyperplane with the largest CMW value will 

be selected as the splitting hyperplane. If there are more than one hyperplanes with the largest 

CMW value, the hyperplane with the largest training accuracy is selected because we can expect 

the better accuracy could be generalized to new unseen dataset. 
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4.4 GSVM-CMW-PCA simulation 

 

4.4.1 Data Preprocessing 

 

Two public medical datasets from UCI data mining repository [68] listed in Table 4.1 are used 

for comparison. One is Wisconsin Breast Cancer dataset; another is Cleveland heart-disease 

dataset. Firstly, we scale and normalize the input features to [-0.9, 0.9]. Our preliminary results 

show that the scaling does not deteriorate the performance of classifiers but speed up the training 

and testing process much more. 

Secondly, we make PCA for the two datasets, here we will remove all d input features and keep 

all d principle components. That means the data is transferred from original d-dimensional input 

feature space to d-dimensional principle component space. 

Thirdly, we randomly split the data into training data and testing data with the conditions in 

Equations 4.4-4.6. We make 21 trials for each dataset. 

4.4.2 Modeling 

 

Two models are created for performance comparison. The first one is building a general SVM 

with RBF kernel in the whole space (called RBF-SVM). The RBF kernel parameters ),( Cγ are 

optimized by grid search heuristic in the solution space defined in Equations 4.7-4.8. 

},2,2,2,2,2,2,2,2,2,22{ 420-2-4-6-8-10-12-14-16∈γ     (4.7) 

},2,2,2,2,2,2,2,22{ 1086420-2-4-6∈C      (4.8) 

The best parameter pair is selected by leave-one-out cross-validation. 

The second model is our linear GSVM-CMW-PCA. Here we only split the whole space to two 

information granules. The splitting hyperplane has the format cpc =1 , where 1pc is the first 

principle component. It means we only search the hyperplanes orthogonal to the first principle 
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component. And then one linear SVM with regulation parameter 1≡C  is built for each 

information granule.  

4.4.3 Result 

 

The first two columns in Table 4.8 and Table 4.9 show that linear GSVM-CMW-PCA is 

competitive to RBF-SVM in terms of testing accuracy. For the Wisconsin Breast Cancer dataset, 

the performance of linear GSVM is even better than RBF-SVM. More interestingly, as showed 

in Table 4.10 and Table 4.11, the modeling time (training time plus testing time) of linear GSVM 

is significantly shorter than the modeling time of RBF-SVM. The reason is that RBF-SVM need 

leave-one-out cross-validation but linear GSVM’s parameter is decided by maximal CMW 

calculated in Eq. 4.1. As Table 4.1 shows, the two datasets used for experiments are small-sized 

(only several hundreds samples with about ten features). Thus we can expect the efficiency 

difference will be more significant for a real-world classification problem with larger size.  

As we know, one disadvantage of SVM with some kernel function is that it is sensitive to the 

parameters. For example, if we use RBF kernel to model a SVM, slimly different values for 

parameters ),( Cγ  will result in significantly different testing accuracy, which is showed in the 

first column of Table 4.12 and Table 4.13.  

For comparison, we also tried to use grid search plus leave-one-out to optimize linear GSVM. 

The regulation parameter C is selected from Eq. 4.9. 

},2,2,2,2,2,2,2,2,2,2,2,2,22{ 6543210-1-2-3-4-5-6-7∈C    (4.9) 

By comparing the results in the third columns of Table 4.8 and Table 4.9 to the second columns, 

we can know that linear GSVM-CMW-PCA performs almost the same with or without grid 

search, that means linear GSVM-CMW-PCA is stable to the regulation parameter C. It implies 

that we can replace time-consuming grid search or other search algorithms which are targeted on 
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maximizing leave-one-out (or more general, k-folds cross-validation) validation accuracy with 

fast PCA-based information granulation method by extending margin maximization principle. 

 
TABLE 4.8  

TESTING ACCURACY COMPARISON ON WISCONSIN BREAST CANCER DATASET 

Trial RBF-SVM linear GSVM 
linear GSVM 

after grid search 

0 0.9649 0.9693 0.9693 

1 0.9649 0.9781 0.9781 

2 0.9430 0.9649 0.9649 

3 0.9605 0.9605 0.9605 

4 0.9561 0.9605 0.9605 

5 0.9781 0.9781 0.9781 

6 0.9868 0.9825 0.9825 

7 0.9605 0.9737 0.9737 

8 0.9474 0.9781 0.9781 

9 0.9649 0.9737 0.9737 

10 0.9737 0.9825 0.9825 

11 0.9693 0.9825 0.9825 

12 0.9737 0.9781 0.9781 

13 0.9561 0.9693 0.9693 

14 0.9561 0.9649 0.9649 

15 0.9781 0.9825 0.9825 

16 0.9605 0.9649 0.9649 

17 0.9781 0.9825 0.9825 

18 0.9825 0.9781 0.9781 

19 0.9605 0.9649 0.9649 

20 0.9559 0.9780 0.9692 

average 0.9653 0.9737 0.9733 

 

 
TABLE 4.9  

TESTING ACCURACY COMPARISON ON CLEVELAND HEART-DISEASE DATASET 

Trial RBF-SVM linear GSVM 
linear GSVM 

after grid search 

0 0.7700 0.7700 0.7800 

1 0.8900 0.8400 0.8700 

2 0.8800 0.8900 0.8900 

3 0.8000 0.8100 0.8000 

4 0.8300 0.7800 0.7900 

5 0.7800 0.8400 0.7900 

6 0.8800 0.8800 0.8700 

7 0.8700 0.8600 0.8200 

8 0.8300 0.8300 0.8300 

9 0.8500 0.8300 0.8400 

10 0.8200 0.8400 0.8500 

11 0.8200 0.8200 0.8200 

12 0.8400 0.8300 0.8400 

13 0.8400 0.8500 0.8300 

14 0.7900 0.8200 0.8100 

15 0.8500 0.8400 0.8500 

16 0.8300 0.8200 0.8200 

17 0.8800 0.9000 0.9100 

18 0.8000 0.8000 0.8000 

19 0.8700 0.8500 0.8600 

20 0.8571 0.8776 0.8673 

average 0.8370 0.8370 0.8351 
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TABLE 4.10 

MODELING TIME COMPARISON ON WISCONSIN BREAST CANCER DATASET 

Trial RBF-SVM (seconds) linear GSVM (seconds) 

0 2387 ≈1 

1 2343 ≈1 

2 2331 ≈1 

3 2399 ≈1 

4 2324 ≈1 

5 2407 ≈1 

6 2432 ≈1 

7 2410 ≈1 

8 2350 ≈1 

9 2387 ≈1 

10 2402 ≈1 

11 2431 ≈1 

12 2387 ≈1 

13 2326 ≈1 

14 2351 ≈1 

15 2418 ≈1 

16 2370 ≈1 

17 2416 ≈1 

18 2469 ≈1 

19 2381 ≈1 

20 2410 ≈1 

average 2387.2 ≈1 

 

 
TABLE 4.11 

MODELING TIME COMPARISON ON CLEVELAND HEART-DISEASE DATASET 

Trial RBF-SVM (seconds) linear GSVM (seconds) 

0 495 ≈1 

1 530 ≈1 

2 530 ≈1 

3 488 ≈1 

4 490 ≈1 

5 447 ≈1 

6 466 ≈1 

7 455 ≈1 

8 440 ≈1 

9 452 ≈1 

10 436 ≈1 

11 431 ≈1 

12 443 ≈1 

13 442 ≈1 

14 435 ≈1 

15 451 ≈1 

16 447 ≈1 

17 464 ≈1 

18 442 ≈1 

19 453 ≈1 

20 461 ≈1 

average 461.8 ≈1 
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TABLE 4.12 

STANDARD DEVIATION OF TESTING ACCURACY ON WISCONSIN BREAST CANCER DATASET WITH DIFFERENT MODEL PARAMETERS 

TRIAL 

RBF-SVM WITH DIFFERENT 

GAMMA AND C FROM EQ. 11-

12 

LINEAR GSVM WITH 

DIFFERENT C FROM EQ. 13 

0 0.1324 0.0018 

1 0.1340 0.0072 

2 0.1267 0.0110 

3 0.1314 0.0040 

4 0.1274 0.0054 

5 0.1380 0.0018 

6 0.1387 0.0000 

7 0.1337 0.0061 

8 0.1278 0.0126 

9 0.1329 0.0018 

10 0.1374 0.0018 

11 0.1341 0.0011 

12 0.1337 0.0049 

13 0.1284 0.0037 

14 0.1302 0.0000 

15 0.1374 0.0015 

16 0.1307 0.0000 

17 0.1357 0.0037 

18 0.1365 0.0049 

19 0.1325 0.0000 

20 0.1317 0.0155 

average 0.1329 0.0042 

 

 
TABLE 4.13 

STANDARD DEVIATION OF TESTING ACCURACY ON CLEVELAND HEART-DISEASE DATASET WITH DIFFERENT MODEL PARAMETERS 

Trial 
RBF-SVM with different 

Gamma and C from Eq. 11-12 

linear GSVM with 

different C from Eq. 13 

0 0.1138 0.0062 

1 0.1414 0.0183 

2 0.1576 0.0247 

3 0.1254 0.0074 

4 0.1279 0.0079 

5 0.1195 0.0302 

6 0.1586 0.0116 

7 0.1336 0.0107 

8 0.1260 0.0058 

9 0.1414 0.0156 

10 0.1294 0.0237 

11 0.1308 0.0051 

12 0.1406 0.0149 

13 0.1341 0.0141 

14 0.1268 0.0108 

15 0.1474 0.0151 

16 0.1258 0.0072 

17 0.1636 0.0243 

18 0.1200 0.0072 

19 0.1451 0.0131 

20 0.1442 0.0102 

average 0.1359 0.0135 
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TABLE 4.14 

RELATIONSHIP BETWEEN VALIDATION ACCURACY AND TESTING ACCURACY OF RBF-SVM ON WISCONSIN BREAST CANCER DATASET 

Trial 

HIGHEST 

VALIDATION 

ACCURACY 

CORRESPONDING 

TESTING 

ACCURACY 

HIGHEST TESTING 

ACCURACY 

0 0.9758 0.9649 0.9737 

1 0.9714 0.9649 0.9825 

2 0.9802 0.9430 0.9605 

3 0.9758 0.9605 0.9737 

4 0.9802 0.9561 0.9605 

5 0.9692 0.9781 0.9825 

6 0.9626 0.9868 0.9912 

7 0.9758 0.9605 0.9825 

8 0.9780 0.9474 0.9605 

9 0.9714 0.9649 0.9737 

10 0.9670 0.9737 0.9825 

11 0.9670 0.9693 0.9781 

12 0.9692 0.9737 0.9781 

13 0.9758 0.9561 0.9649 

14 0.9780 0.9561 0.9605 

15 0.9648 0.9781 0.9868 

16 0.9780 0.9605 0.9649 

17 0.9670 0.9781 0.9825 

18 0.9670 0.9825 0.9825 

19 0.9736 0.9605 0.9737 

20 0.9737 0.9559 0.9780 

average 0.9725 0.9653 0.9749 

 

 
TABLE 4.15 

RELATIONSHIP BETWEEN VALIDATION ACCURACY AND TESTING ACCURACY OF RBF-SVM ON CLEVELAND HEART-DISEASE DATASET 

Trial 

HIGHEST 

VALIDATION 

ACCURACY 

CORRESPONDING 

TESTING 

ACCURACY 

HIGHEST TESTING 

ACCURACY 

0 0.8782 0.7700 0.8200 

1 0.8376 0.8900 0.9100 

2 0.8223 0.8800 0.9000 

3 0.8579 0.8000 0.8300 

4 0.8579 0.8300 0.8600 

5 0.8376 0.7800 0.8400 

6 0.8173 0.8800 0.8900 

7 0.8376 0.8700 0.8700 

8 0.8477 0.8300 0.8400 

9 0.8325 0.8500 0.8600 

10 0.8528 0.8200 0.8600 

11 0.8528 0.8200 0.8500 

12 0.8376 0.8400 0.8600 

13 0.8426 0.8400 0.8500 

14 0.8477 0.7900 0.8200 

15 0.8426 0.8500 0.8700 

16 0.8579 0.8300 0.8300 

17 0.8173 0.8800 0.9200 

18 0.8629 0.8000 0.8200 

19 0.8173 0.8700 0.8800 

20 0.8241 0.8571 0.8878 

average 0.8420 0.8370 0.8604 

 

As showed in Table 4.14 and Table 4.15, for RBF-SVM optimized by grid search based on 

leave-one-out cross-validation, the testing accuracy is not the highest when the validation 

accuracy is the highest. The phenomenon means there are some noises in the data. As a result, 
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the assumption of cross-validation, the data comes from the same implicit statistical distribution, 

does not hold any more. However, linear GSVM-CMW-PCA modeling algorithm extends 

maximal margin principle so that it does not need cross-validation, and thus could overcome 

noise problem. That means linear GSVM-CMW-PCA is robust to the noise. 

4.5 Discussion 

 

In this chapter, we present GSVM-CMW, an implementation method for modeling a GSVM by 

building information granules in the top-down way. The hyperplane used to split the feature 

space is selected by extending statistical margin maximization principle. The simulation results 

on three medical binary classification problems show that finding the splitting hyperplane is not 

a trivial task and GSVM does show some improvement on testing accuracy compared to building 

one single SVM in the whole feature space. More importantly and more interestingly, GSVM 

provides a new mechanism to address complex classification problems, which are common in 

medical or biological information processing applications. The modeling method for a GSVM is 

just the first step into this interesting research topic. In the future, we will try to find more 

appropriate modeling methods for GSVM and compare it to kernel-based SVM such as RBF-

SVM. 

We also explore to utilize PCA technology in this chapter for fast modeling a GSVM by building 

information granules in the top-down way. The hyperplane used to split the feature space is 

decided by applying extended statistical margin maximization principle on the first principle 

component. In this way, a GSVM could be modeled much faster while still remaining high 

accuracy. The experimental results on two medical datasets show that finding the splitting 

hyperplane is not a trivial task and linear GSVM is competitive to the well-known RBF kernel 

with optimal parameters in terms of testing accuracy, but linear GSVM could be modeled in 
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much shorter time and performs more stable (non-sensitive to parameters) and more robust (anti-

noise due to extended margin maximization principle). More importantly and more interestingly, 

GSVM provides a new mechanism, which is competitive to kernel mapping method, to address 

complex classification problems with high accuracy and high speed. 
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CHAPTER 5 

GSVM-AR 

5.1 Association rules   

 

Many previous works have reported that the frequent patterns occurred in the training dataset of 

a complex and huge classification problem could lead to measured improvement on testing 

accuracy [90,111,45]. The idea was named "association classification" [111]. 

For a binary classification problem with continuous features, an association rule is usually 

formed as: 

1)-(or 1y    ],,[ ...   ],[    ],[ 212221212111 =∈∈∈ thenvvaandvvaandvvaif nnn  (5.1) 

The support and confidence of an association rule for a binary classification problem are defined 

in Equations 5.2-5.3: 

WPG SSARSUP /)( =
       (5.2) 

GPG SSARCOF /)( =
       (5.3) 

where WS is the size of training data with the same class label as the THEN-part of the 

association rule, GS is the size of training data that satisfy the IF-part, while PGS is the size of 

training data correctly classified by the association rule. Notice that WS is defined in such a way 

that the support and confidence of an association rule are calculated based on a single class. As a 

result, the association rule mining will not be biased for major class in an unbalanced binary 

classification problem.  

From Eq. 5.1, an association rule (or a set of association rules combined disjunctively) could be 

used to partition the feature space to find an information granule. So association rules mining is a 
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possible solution for granulation. The realization of a successful "association granulation" 

depends on the following two issues: 

An association rule with high enough confidence could deduce a "pure" granule, in which it is 

unnecessary to build a classifier because of its high purity. If its support is also high, it could 

significantly simplify and speed up classification because it decreases the size of the training 

dataset. 

A more general association rule with a shorter IF-part should be more possible to avoid 

overfitting training dataset. A short IF-part means a low model complication, which in turn 

means a good generalization possibility. 

5.2 Algorithm   

 

This chapter proposes to take advantage of association rules mining for modeling a GSVM in the 

top-down way. The hyperplane used to split the feature space is selected according to mined 

association rules with high confidence and significant support. Confidence of a good association 

rule should be as high as possible (should be at least higher than the validation accuracy of the 

best SVM in the whole space), while its support can not be too small, otherwise it is not useful 

(in other words, the support should be significant). Fig. 5.1 describes the GSVM-AR modeling 

algorithm. The basic idea is to extend “Positive Pure Granule” (PPG) and “Negative Pure 

Granule” (NPG) iteratively until GSVM-AR gets the best validation performance. If necessary, 

the cross-validation method could be used. Notice the support threshold is provided as an input, 

and the confidence threshold is set to be the validation accuracy of the general SVM in the whole 

feature space. For each feature, at most two association rules are mined. Therefore, if the time 

complexity for modeling a general SVM is )( 2
dlO , the time complexity for modeling a GSVM 
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is )( 22
dlO  and dominated by the while loop to find a GSVM with the best validation 

performance. Notice the time complexity of MiningOneFeatureARs is )(ldO .  

5.3 Simulation   

 

5.3.1 Data description   

 

Protein homology prediction between protein sequences is one of critical problems in 

computational biology. Protein sequences are very difficult to understand and model due to their 

complex random length nature. The sequential similarity measurement is believed to be useful to 

predict the structural or functional similarity of proteins and thus it is helpful to group proteins 

with similar function together. Due to this reason, it is a hot research topic for computational 

biologists and computer scientists in recent years. Various algorithms have been developed to 

measure the sequential similarity between two proteins [74,88]. From the viewpoint of data 

mining, protein homology prediction could be viewed as a predictive data mining task [44] 

because the goal is to predict the unknown value of a variable of interest given known values of 

other variables. More specifically, it could be modeled as a binary classification problem. If a 

protein sequence is homologous to a pre-specified protein sequence, it is classified to be a 

positive case and 1 is output, otherwise it is negative and -1 is output. 

KDDCUP04 protein homology prediction task at http://kodiak.cs.cornell.edu/kddcup/index.html 

is used for experiment. The detailed characteristics of the dataset are listed in Table 5.1. From 

the table, we can see that the task could be modeled as a binary classification or a binary ranking 

problem: Given a protein sequence, the task is to predict whether it is homologous to the 

corresponding native sequence or not. There are 153 native sequences in the training dataset and 

150 native sequences in the testing dataset. For each native sequence, there is a block of 

approximately 1000 protein sequences with class label (1 means homologous and 0 means non-
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homologous). The class labels of protein sequences in testing dataset are unknown. 74 features 

are provided to describe the match (e.g. the score of a sequence alignment) between the native 

protein sequence and the sequence that is tested for homology. We can also see that the problem 

is highly unbalanced: there are only 1296 homologous protein sequences from altogether 145751 

ones in the training dataset. 

Four metrics are used for performance measures: 

• TOP1: fraction of blocks with a homologous sequence ranked top 1 (maximize) 

• RKL: average rank of the lowest ranked homologous sequence (minimize) 

• RMS: root mean squared error averaged on blocks (minimize) 

• APR: average of the average precision in each block. For a single block, APR could be 

approximately described as the area of precision-recall curves. (maximize) 

RMS is a metric for accuracy evaluation, but is easier to show the differences between models 

than directly using error values. The other 3 metrics are rank-based, which means that the 3 

metrics’ values are decided by the order of ranking list, and the absolute values of predictions do 

not affect the performances. The four metrics are precisely defined in perf [20]. In our 

experiment, we use the corresponding code to calculate the four metrics. 

 

 

 

TABLE 5.1 

CHARACTERISTICS OF KDDCUP04 PROTEIN HOMOLOGY PREDICTION 

DATASETS 

Dataset Block Size Attr Class Ratio 

Training  153 ≈1000 74 2 1296 / 144455 

Testing 150 ≈1000 74 2 N/A 

Note 1:  Block = # of blocks, Size = # of protein sequences in each 

block, Attr = # of input features, Class = # of classes, Ratio = # of 

homologous sequences / # of non-homologous sequences. 

Note 2:  The data is without missing data. 
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MiningOneFeatureARs(TrainingData T, SupportThreshold Sth, ConfidenceThreshold Cth) 

{ 

    y = the class label vector in T; 

    WAR = empty set; 

 

    for each input feature x 

    { 

        PR = {r | r is an association rule with the format "if x0<x<x1,then y=1", support>=Sth, and confidence >=Cth in T}; 

        R = {r | r is the rule with the highest confidence in PR}; 

        WAR = WAR + {r | r is the rule with the highest support in R}; 

        NR = {r | r is an association rule with the format "if x0<x<x1,then y=-1", support>=Sth, and confidence >=Cth in T}; 

        R = {r | r is the rule with the highest confidence in NR}; 

        WAR = WAR + {r | r is the rule with the highest support in R}; 

    } 

     return WAR; 

} 

 

GSVM-AR(TrainingData T, SupportThreshold Sth) 

{ 

    MG = WFS = the whole feature space on T; 

    PPG = NPG = empty set; 

    MG_SVM = the SVM modeled on the training data in MG optimized by grid search heuristic; 

    GSVM-AR = { if a sample x in PPG, then its class label y = 1; 

  if a sample x in NPG, then its class label y = -1; 

  if a sample x in MG,  then its class label y=the class label predicted by MG_SVM; 

          } 

   VP = the cross validation performance of GSVM-AR in WFS; 

    Cth = the cross validation accuracy of GSVM-AR in WFS; 

 

    WAR = MiningOneFeatureARs(T,Sth,Cth); 

    while(WAR is not empty) 

    { 

 r = the association rule in WAR such that if r is added into PPG or NPG,  

                        the purity of PPG or NPG is the highest compared to adding any other rule in WAR; 

 WAR = WAR - {r}; 

   

 if r is a positive rule 

 { 

  newPPG = PPG + {r}; 

  newNPG = NPG; 

 } 

 else 

 { 

  newPPG = PPG; 

  newNPG = NPG + {r}; 

 } 

 newMG = WFS - newPPG - newNPG; 

 newMG_SVM = the SVM modeled on the training data in newMG optimized by grid search heuristic; 

 newGSVM-AR = { if a sample x in newPPG, then its class label y = 1; 

   if a sample x in newNPG, then its class label y = -1; 

   if a sample x in newMG,  then its class label y=the classlabel predicted by newMG_SVM; 

              } 

 newVP = the cross validation performance of newGSVM-AR in WFS; 

 if newVP is better than VP 

 { 

  PPG = newPPG; 

  NPG = newNPG; 

  MG = newMG; 

  GSVM-AR = newGSVM-AR; 

  VP = newVP; 

 } 

    } 

    return GSVM-AR; 

} 

Figure. 5.1.  GSVM-AR modeling algorithm
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Because of the absent of the class label in the testing dataset, only the training dataset is used in 

our experiment. And because our result is not on the original testing dataset, so it could not be 

compared with the current best results on the competition. That is, our goal is not to be involved 

in the competition to get the best result, but to use the data to show GSVM-AR’s superiority to 

SVM.  

5.3.2 Data preprocessing   

 

Firstly, we scale and normalize the input features to [-0.9, 0.9]. The scaling is on each different 

block separately. The reason is that the protein sequences in different blocks are in different 

protein families, which are so remote that the similar absolute feature vectors can not mean 

similar homology behaviors. However, to avoid overfitting, the association rules are mined from 

non-scaled original data. 

After scaling, we make five trials. In each trial, the data is randomly split into training dataset 

and testing dataset with the conditions in Equations 5.4-5.6. That is, 102 blocks are used for 

training and other 51 blocks used for testing. 

1:2)(:)( =testingStrainingS      (5.4) 

1:2)_(:)_( =testingpositiveStrainingpositiveS    (5.5) 

1:2)_(:)_( =testingnegativeStrainingnegativeS    (5.6) 

)(xS means the number of blocks in the dataset x. 

5.3.3 Modeling   

 

In each trial, we select just 1 block for modeling and other 101 training blocks for validation. 

That is because our preliminary tests also show that it is even worse if we mix multiple blocks 

together for training a model. (We also skip the details because it is out of the scope of this 

chapter). 
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Two models are created for performance comparison. The first one is a general SVM in the 

whole space. The parameters of the SVM are optimized by grid search heuristic [46]: 

In linear SVM, the regulation parameterC is optimized by grid search heuristic at Eq. 5.7. 

},2,2,2,2,2,2,2,22        

,,2,2,22 ,2 ,,2,22        

,,2,2,2,2,2,2,22{

21.510.500.5-1-1.5-2-

2.5-3-3.5-4-4.5-5-5.5-6-

-6.5-7-7.5-8-8.5-9-9.5-10∈C

    (5.7) 

The RBF kernel parameters ),( Cγ are optimized by grid search heuristic at Equations 5.8-5.9. 

},2,2,2,2,2,2,2,2,22{ -8-10-12-14-16-18-20-22-24-26∈γ    (5.8) 

},2,2,2,2,2,2,2,2,2,2,22{ 1615141312111098765∈C     (5.9) 

We repeat this modeling process for each of 102 training blocks. After that, 5 blocks with best 

validation performance on a special metric are selected to build GSVM for comparison.  

For GSVM-AR modeling, we mine association rules first. To avoid overfitting, the association 

rules should be as simple as possible. Due to this reason, only 1-feature association rules with the 

format x0<=x<x1 is mined. And only the rules with confidence higher than the general SVM’s 

validation accuracy and significant support are kept as candidates.  

 

 

TABLE 5.2 

1-FEATURE ASSOCIATION RULES ON ORIGINAL TRAINING DATA WITH CONFIDENCE/SUPPORT IN 5 TRIALS 

  

Rule Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

If attr5>78, then y=-1 100%/8666 100%/8976 100%/9141 100%/8992 100%/8753 

If attr45>-4, then y=-1 100%/11642 100%/11703 100%/11075 100%/11234 100%/11786 

If attr53<-2.06, then y=-1 100%/1080 100%/1041 100%/1060 100%/987 100%/1029 

If attr58<-1.53, then y=-1 100%/1714 100%/1727 100%/1758 100%/1712 100%/1711 

If attr68<-2.21, then y=-1 100%/2515 100%/2608 100%/2610 100%/2404 100%/2725 

If attr58>8.3, then y=1 99.27%/547 99.56%/457 99.35%/465 99.42%/517 99.41%/510 

 

Note: 
Trial 1 (positive: negative = 879: 96055 in the training dataset). 

Trial 2 (positive: negative = 909: 95911 in the training dataset). 

Trial 3 (positive: negative = 810: 96139 in the training dataset). 

Trial 4 (positive: negative = 886: 95580 in the training dataset). 

Trial 5 (positive: negative = 919: 96892 in the training dataset). 



  43 

    

 

 

The mined association rules with their support and confidence are listed in Table 5.2. In the 

table, the support and confidence for each rule are listed. For example, the sixth row shows a 

positive association rule. In trial 1, the training dataset has 879 homologous protein sequences, 

547 ones of which satisfy IF-part of the rule, and 543 ones satisfy both IF-part and THEN-part: 

If attr58>8.3, then y=1 with  Confidence=543/547= 99.27%,  

     Support= 543/879= 61.77%. 

The second row shows a negative association rule. In trial 1, the training dataset has 11642 

protein sequences satisfy IF-part of the rule. And all of them satisfy THEN-part too:  

If attr45>-4, then y=-1 with  Confidence=11642/11642=100%,  

     Support=11642/96055= 12.12%. 

After that, we iteratively combine association rules by disjunction to find the granules that are 

both pure and significant. When the process is completed, 3 granules are created: the granule 

induced by negative rules is named NPG because almost all protein sequences in the granule are 

non-homologous; the granule induced by positive rules is named PPG due to the similar reason; 

and the remaining space is named "Mixed Granule" (MG), in which a SVM with the same kernel 

as the general SVM is built. The 3 granules are decided by Equations 5.10-5.12: 

,rulesnassociatiopositivePPG U=     (5.10) 

,PPGrulesnassociationegativeNPG −= U    (5.11) 

,NPGPPGWFSMG −−=       (5.12) 

where WFS means the whole feature space. 

Notice that the overlapping area of PPG and NPG is accounted in PPG. That means the 

granulation is biased for homologous proteins to compensate for its minority.  
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For the protein prediction task,  

PPG is formed by 

 If attr58 > 8.3, then y = 1 

NPG is formed by 

 If attr58 <= 8.3 and  

 (attr5 > 78 or attr45 > -4 or attr53 < -2.06 or attr58 < -1.53 or attr68 < -2.21), 

 Then y = -1 

And then we compare two models on the top 5 blocks for the 4 metrics. For protein sequences in 

the PPG and NPG, the outputs are 1s or -1s, respectively. Because SVM is originally designed 

for binary classification problems, for protein sequences in MG, if a metric is rank-based, we 

adopt the distance from the predicted protein sequence to the separating hyperplane (normalized 

to be in [-1, 1]) as its output.  

5.3.4 Result   

 

The experimental results are reported in Tables 5.3-5.6 and Figures 5.2-5.5. In each cell of a 

table, the performance of SVM is reported as the first number, while the performance of GSVM-

AR as the second number. 

For TOP1 metric, Table 5.3 and Fig. 5.2 show that the performance of GSVM-AR is a little 

better than SVM with both linear kernel (from 85.33% to 85.49% for testing data) and RBF 

kernel (from 85.10% to 85.41% for testing data). For example, for testing data with linear kernel, 

averagely to say, there are 51 * 85.33% = 43.52 blocks with a homologous protein sequence as 

the TOP1 in the ranking list predicted by SVM, while 51 * 85.49% = 43.60 blocks by GSVM-

AR. The improvement is small because the protein sequences ranked as TOP1 in the lists are 

easiest to be predicted. So a general SVM is good enough to predict them. 
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For RKL metric, Table 5.4 and Fig. 5.3 show that GSVM-AR significantly outperform SVM. 

That is, the average rank of the lowest ranked homologous sequences is decreased significantly 

(from 78.02 to 71.01 for testing data with linear kernel, from 75.80 to 69.25 for testing data with 

RBF kernel,). When recall is set to be 1, GSVM-AR has higher precision than SVM. As a result, 

homologous sequences are clearer to be differentiated from non-homologous ones with GSVM-

AR than with SVM. 

For RMS metric, Table 5.5 and Fig. 5.4 show that the performance of GSVM-AR is also 

significantly better than SVM. That is, the average root mean squared error is decreased 

significantly (from 0.0554 to 0.0441 for testing data with linear kernel, from 0.0554 to 0.0440 for 

testing data with RBF kernel).  That means GSVM-AR is more accurate. For example, 

approximately, for a testing block with 1000 protein sequences, 3.07 protein sequences are 

misclassified by SVM with RBF kernel, while only 1.94 ones are misclassified by GSVM-AR 

with RBF kernel. 

 

 

TABLE 5.3 

TOP1 ON VALIDATION/TEST SET IN 5 TRIALS  

(MEAN ± STANDARD DEVIATION FROM BEST 5 BLOCKS) 

 

Trial  
Validation data with 

Linear kernel (%) 

Testing data with Linear 

kernel (%) 

Validation data with 

RBF kernel (%) 

Testing data with RBF 

kernel (%) 

1 91.09±0.00/91.09±0.00 78.82±2.56/79.61±2.23 91.09±0.70/91.09±0.70 78.82±2.56/79.61±2.23 

2 85.55±0.54/85.55±0.54 90.98±1.07/90.98±1.07 85.55±0.54/85.55±0.54 90.59±1.64/90.59±1.64 

3 86.14±0.00/86.14±0.00 89.42±1.75/89.42±1.75 86.14±0.70/86.14±0.70 89.02±1.07/89.02±1.07 

4 87.72±0.54/87.72±0.54 85.88±3.22/85.88±3.22 87.53±0.54/87.53±0.54 85.49±4.07/85.88±3.22 

5 90.50±0.54/90.69±0.54 81.57±1.07/81.57±1.07 90.30±0.44/90.50±0.54 81.57±1.07/81.96±0.88 

 

Note: 
Best 5 blocks in trial 1 are 210, 103, 73, 69, and 16. 

Best 5 blocks in trial 2 are 170, 65, 274, 255, and 236. 

Best 5 blocks in trial 3 are 210, 162, 144, 65, and 64. 

Best 5 blocks in trial 4 are 170, 65, 16, 289, and 274. 

Best 5 blocks in trial 5 are 73, 16, 261, 255, and 252. 
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TABLE 5.6 

APR ON VALIDATION/TEST SET IN 5 TRIALS  

(MEAN ± STANDARD DEVIATION FROM BEST 5 BLOCKS) 

 

Trial  
Validation data with 

Linear kernel (%) 

Testing data with Linear 

kernel (%) 

Validation data with 

RBF kernel (%) 

Testing data with RBF 

kernel (%) 

1 83.30±0.47/83.53±0.57 75.78±1.23/76.38±0.86 83.28±0.52/83.49±0.60 75.94±1.37/76.51±0.96 

2 77.61±0.24/77.77±0.21 86.19±1.22/86.47±1.20 77.52±0.26/77.77±0.15 86.06±1.12/86.34±1.13 

3 78.39±0.86/78.68±0.87 82.92±0.84/83.01±0.85 78.36±0.88/78.60±0.89 83.08±1.08/83.14±1.09 

4 81.45±0.36/81.66±0.45 79.39±1.36/79.72±1.41 81.41±0.45/81.63±0.54 79.08±1.78/79.38±1.85 

5 83.39±0.44/83.63±0.45 76.03±0.55/76.28±0.56 83.31±0.65/83.56±0.68 76.16±0.53/76.42±0.59 

 

Note: 
Best 5 blocks in trial 1 are 16, 27, 73, 255, and 103. 

Best 5 blocks in trial 2 are 55, 73, 163, 256, and 170. 

Best 5 blocks in trial 3 are 103, 64, 60, 274, and 243. 

Best 5 blocks in trial 4 are 16, 27, 73, 170, and 274. 

Best 5 blocks in trial 5 are 16, 73, 163, 103, and 170. 

TABLE 5.5 

RMS ON VALIDATION/TEST SET IN 5 TRIALS  

(MEAN ± STANDARD DEVIATION FROM BEST 5 BLOCKS) 

 

Trial  
Validation data with 

Linear kernel (%) 

Testing data with Linear 

kernel (%) 

Validation data with 

RBF kernel (%) 

Testing data with RBF 

kernel (%) 

1 5.33±0.03/3.87±0.21 5.90±0.09/5.24±0.20 5.31±0.03/3.87±0.23 5.88±0.06/5.25±0.20 

2 5.79±0.04/4.66±0.09 4.98±0.14/3.46±0.09 5.79±0.04/4.66±0.09 4.98±0.14/3.46±0.09 

3 5.32±0.06/4.05±0.09 5.95±0.07/4.63±0.08 5.31±0.05/4.05±0.09 5.95±0.07/4.63±0.07 

4 5.49±0.05/4.19±0.06 5.47±0.09/4.49±0.08 5.49±0.05/4.13±0.02 5.45±0.09/4.44±0.11 

5 5.57±0.02/4.22±0.14 5.40±0.07/4.20±0.02 5.62±0.12/4.21±0.15 5.45±0.09/4.21±0.04 

 

Note: 
Best 5 blocks in trial 1 are 256, 103, 277, 271, and 212. 

Best 5 blocks in trial 2 are 73, 48, 238, 256, and 277. 

Best 5 blocks in trial 3 are 103, 212, 60, 7, and 48. 

Best 5 blocks in trial 4 are 256, 231, 73, 277, and 103. 

Best 5 blocks in trial 5 are 60, 16, 103, 7, and 48. 

TABLE 5.4 

RKL ON VALIDATION/TEST SET IN 5 TRIALS  

(MEAN ± STANDARD DEVIATION FROM BEST 5 BLOCKS) 

 

Trial  
Validation data with 

Linear kernel 

Testing data with Linear 

kernel 

Validation data with 

RBF kernel 

Testing data with RBF 

kernel 

1 67.69±2.38/62.63±1.48 93.62±17.23/85.00±14.44 66.88±2.48/61.79±1.61 92.21±16.92/83.67±13.93 

2 91.33±6.01/83.73±4.45 41.29±8.46/35.94±7.35 87.60±5.97/81.16±5.08 35.41±7.48/31.06±5.85 

3 71.39±2.99/64.80±3.33 88.05±8.97/81.84±7.80 66.34±5.15/61.17±5.05 90.99±6.77/84.51±5.66 

4 73.53±6.81/68.05±5.82 80.02±10.45/73.42±8.59 72.42±6.15/67.27±5.33 78.11±8.61/71.91±7.40 

5 71.64±1.71/65.60±2.31 87.11±6.97/78.83±5.55 68.91±4.20/63.70±4.02 82.29±8.57/75.11±6.96 

 

Note: 
Best 5 blocks in trial 1 are 55, 164, 303, 135, and 266. 

Best 5 blocks in trial 2 are 55, 110, 13, 69, and 73. 

Best 5 blocks in trial 3 are 289, 110, 2, 164, and 69. 

Best 5 blocks in trial 4 are 55, 289, 164, 25, and 65. 

Best 5 blocks in trial 5 are 13, 110, 73, 164, and 16. 
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SVM/ 

GSVM-

AR 

Validation 

data with 

Linear 

kernel (%) 

Testing 

data with 

Linear 

kernel (%) 

Validation 

data with 

RBF kernel 

(%) 

Testing 

data with 

RBF kernel 

(%) 

Mean 88.20/88.24 85.33/85.49 88.12/88.16 85.10/85.41 

Std 2.32/2.36 5.07/4.84 2.32/2.37 5.00/4.60 

Figure . 5.2.  Performance comparison on TOP1 metric averaged on 5 trials. The larger TOP1 is, the 

better the performance is. The results are grouped by different data/kernel pairs. In each group, the left 

bar shows the result of SVM, while the right GSVM-AR. The mean and standard deviation statistics are 

given in the above table. In each cell, the 1st number is the result of SVM, while the 2nd GSVM-AR. 

 

SVM/ 

GSVM-

AR 

Validation 

data with 

Linear 

kernel 

Testing 

data with 

Linear 

kernel 

Validation 

data with 

RBF kernel 

Testing 

data with 

RBF kernel 

Mean 75.12/68.96 78.02/71.01 72.43/67.02 75.80/69.25 

Std 9.42/8.48 21.72/20.17 9.24/8.56 23.31/21.56 

Figure. 5.3.  Performance comparison on RKL metric averaged on 5 trials. The smaller RKL is, the 

better the performance is. The results are grouped by different data/kernel pairs. In each group, the left 

bar shows the result of SVM, while the right GSVM-AR. The mean and standard deviation statistics are 

given in the above table. In each cell, the 1st number is the result of SVM, while the 2nd GSVM-AR. 
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SVM/ 

GSVM-

AR 

Validation 

data with 

Linear 

kernel (%) 

Testing 

data with 

Linear 

kernel (%) 

Validation 

data with 

RBF kernel 

(%) 

Testing 

data with 

RBF kernel 

(%) 

Mean 80.83/81.06 80.06/80.37 80.78/81.01 80.07/80.36 
Std 2.52/2.53 4.22/4.12 2.54/2.54 4.20/4.09 

Figure. 5.5.  Performance comparison on APR metric averaged on 5 trials. The larger APR is, the 

better the performance is. The results are grouped by different data/kernel pairs. In each group, the 

left bar shows the result of SVM, while the right GSVM-AR. The mean and standard deviation 

statistics are given in the above table. In each cell, the 1st number is the result of SVM, while the 2nd 

GSVM-AR. 

 

SVM/ 

GSVM-

AR 

Validation 

data with 

Linear 

kernel (%) 

Testing 

data with 

Linear 

kernel (%) 

Validation 

data with 

RBF kernel 

(%) 

Testing 

data with 

RBF kernel 

(%) 

Mean 5.50/4.20 5.54/4.41 5.50/4.18 5.54/4.40 

Std 0.18/0.29 0.37/0.60 0.19/0.30 0.37/0.60 

Figure. 5.4.  Performance comparison on RMS metric averaged on 5 trials. The smaller RMS is, the 

better the performance is. The results are grouped by different data/kernel pairs. In each group, the left 

bar shows the result of SVM, while the right GSVM-AR. The mean and standard deviation statistics 

are given in the above table. In each cell, the 1st number is the result of SVM, while the 2nd GSVM-AR. 
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For APR metric, Table 5.6 and Fig. 5.5 show that the performance of GSVM-AR is also better 

than SVM with both linear kernel (from 80.06% to 80.37%) and RBF kernel (from 80.07% to 

80.36%). 

The standard deviations in these tables show that experiment results are stable and conceivable. 

5.4 Discussion   

 

In this chapter, we propose the GSVM-AR algorithm for modeling a GSVM by building 

information granules in the top-down way with the aid of association rules. GSVM_AR works 

by building three information granules, called Positive Pure Granule, Negative Pure Granule, and 

Mixed Granule, respectively. Because of being generated from association rules with high 

confidence and significant support, the PPG and NPG have high purity. Therefore we only need 

to build a Support Vector Machine in MG.  

The experimental results on KDDCUP04 protein homology prediction task show that finding the 

splitting hyperplane is not a trivial task (We should be careful to select the association rules to 

avoid overfitting) and GSVM-AR does show significant improvement compared to building one 

single SVM in the whole feature space. Although the association rules are limited to be 1-feature 

format (that means the splitting hyperplane is limited to be orthogonal to a single feature) and the 

number of information granules is fixed to be three, GSVM-AR shows superior generalization 

capability. Another advantage is that GSVM-AR is easy to be implemented. 
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CHAPTER 6 

GSVM-RFES 

6.1 Gene selection and cancer classification on Microarray expression data   

 

6.1.1 Biological background   

 

Every organism is composed of cell(s). In each cell, there is a nucleus, where the genetic 

material (DNA) is located. The coding segments of DNA, named “genes”, contain the sequence 

information for specific proteins, which are macro-molecules that play the key roles on 

biochemical and biological function, regulation and development of the organism. As a matter of 

fact, all cells in the same organism have exactly the same genome. However, due to different 

tissue types, different development stages, and different environmental conditions, genes from 

cells in the same organism can be expressed in different combinations and/or different quantities 

during the transcription process from DNA to messenger RNA (mRNA) and the translation 

process from mRNA to proteins. These different gene expression patterns, including both the 

combination and quantity, thus account for the huge variety of states and types of cells in the 

same organism [89]. Different organisms have different genomes and different gene expression 

patterns. 

Very recently, DNA microarray (including cDNA microarray and GeneChip) has been 

developed as a powerful technology for molecular genetics studies, which simultaneously 

measures the mRNA expression levels of thousands to tens of thousands genes. A typical 

microarray expression experiment monitors expression level of each gene multiple times under 

different conditions or in different tissue types (for example, healthy tissue versus cancerous 

tissue, one kind of cancerous tissue versus another cancerous tissue). By recording such huge 
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gene expression data sets, it opens the possibility to distinguish tissue types and to identify 

disease-related genes whose expression data are good diagnostic indicators [89,50,7,74,70,2,71]. 

From the viewpoint of data mining, it is a predictive data mining task [44] to distinguish 

different tissue types because the goal is to predict the unknown value of a variable (healthy or 

cancerous; if cancerous, which kind of cancer) of interest given known values of other variables 

(gene expression data). More specifically, it could be modeled as a classification problem. For 

example, one well-known problem by utilizing microarray gene expression data is to distinguish 

between two variants of leukemia, which are Acute Myeloid Leukemia (AML) and Acute 

Lymphoblastic Leukemia (ALL). The AML/ALL problem could be modeled as a binary 

classification problem: if a sample is ALL, it is classified to be a negative case and -1 is output, 

otherwise it is AML and 1 is output. 

6.1.2 Challenges for bioinformatics scientists   

 

A typical gene expression dataset is extremely sparse compared to a traditional classification 

dataset: the data usually comes with only dozens of tissues/samples but with thousands or even 

tens of thousands of genes/features. This extreme sparseness is believed to significantly 

deteriorate the performance of a classifier. As a result, the ability to extract a subset of 

informative genes while removing irrelevant or redundant genes is crucial for accurate 

classification. Furthermore, it is also helpful for biologists to find the inherent cancer-resulting 

mechanism and thus to develop better diagnostic methods or find better therapeutic treatments. 

From the data mining viewpoint, this gene selection problem is essentially a feature selection or 

dimensionality reduction problem. A good dimensionality reduction method should remove 

irrelevant or redundant gene features for classification. After removing these “non-informative” 

gene features, the inherent cancer-related data distribution pattern is expected to be more easily 
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recognized in the lower-dimensioned feature space formed by remained informative or important 

gene features. Consequently, a classifier modeled in the lower-dimension space can have better 

performance on predicting new tissues. 

For example, the AML/ALL leukemia dataset has only 72 samples (tissues) with 7129 features 

(gene expression measurements). That means, without gene selection, we have to discriminate 

and classify such a few samples in such a high dimensional space. It is unnecessary or even 

harmful for classification because it is believed that no more than 10% of these 7129 genes are 

relevant to Leukemia classification [41]. 

As a brief summary, there are two highly-correlated challenging tasks for bioinformatics 

scientists: 

• Gene Subset Extraction: given some tissues, extract cancer-related genes while remove 

irrelevant or redundant genes. Because genes should function in a complex non-

independent way, so it is desirable to extract cancer-related genes together as a group 

than to extract them one by one.  

• Cancer Classification: given a new tissue, predict if it is healthy or not; or categorize it 

into correct classes. 

6.1.3 SVM for cancer classification   

 

Based on [102], Support Vector Machine (SVM) is adopted for cancer classification in this work. 

SVM is a new generation learning system based on recent advances in statistical learning theory 

[19]. 

Due to extreme sparseness of microarray gene expression data, the dimension of input space is 

already high enough so that the cancer classification is already as simple as a linear separable 
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task [43]. It is unnecessary and even useless to transfer it to a higher implicit feature space with a 

non-linear kernel. As a result, in this work we adopt linear SVM [19] as the cancer classifier. 

SVM is believed to be a superior model for sparse classification problems compared to other 

models [74,88,43]. However, the sparseness of microarray data is so extreme that even a SVM 

classifier is unable to achieve a satisfactory performance. A preprocessing step for gene selection 

can assist a SVM in finding a better separating hyperplane and thus to get more reliable 

classification.  

6.1.4 Correlation-based feature ranking algorithms for gene selection   

 

Gene selection can be viewed as a feature selection or dimensionality reduction problem. 

Currently, there are mainly two kinds of algorithms for gene selection: 

Correlation-based feature ranking algorithms work in a forward selection way by ranking genes 

individually in terms of a correlation-based metric, and then the top ranked genes are selected to 

form the most informative gene subset [37,79,33].  

Some commonly used ranking metrics are  

Signal-to-Noise (S2N) [37] 
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In Equations 6.1-6.3, )(+iµ and )(−iµ are the mean values of the i
th

 gene’s expression data over 

positive and negative samples in the training dataset, respectively. )(+iσ and )(−iσ are the 

corresponding standard deviations. )(+n and )(−n denote the numbers of positive and negative 

training samples, respectively. A larger iw  means that the i
th

 gene is more informative for cancer 

classification. 

Correlation-based algorithms are straightforward and work efficiently (linear time to the size of 

the original gene set). However, a common drawback is that these algorithms implicitly assume 

that genes are orthogonal to each other and thus can only detect relations between class labels 

and a single gene. The mutual information such as redundancy or complementariness between 

multiple genes is missed out. For example, suppose that a simple XOR relationship between 

gene1 and gene2 is shown in Fig. 6.1:  

If gene1 is expressed high and gene2 is expressed high, then the tissue maybe healthy. 

If gene1 is expressed high and gene2 is expressed low, then the tissue maybe cancerous. 

If gene1 is expressed low and gene2 is expressed high, then the tissue maybe cancerous. 

If gene1 is expressed low and gene2 is expressed low, then the tissue maybe healthy. 

However, this complementary relation cannot be grasped by a correlation metric because 

)()( −−+ ii µµ  is zero. 

6.1.5 SVM-RFE algorithm for gene selection   

 

Backward elimination algorithms work by iteratively removing one “worst” gene at one time 

until the predefined size of the final gene subset is reached. In each loop, the remained genes are 

ranked again so that the relative rankings of genes are possible to be modified. Notice that 

correlation-based metrics cannot work in a back elimination way because the ranking is never 

modified. 
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Recently, a backward elimination algorithm called Support Vector Machine–Recursive Feature 

Elimination (SVM-RFE) algorithm was proposed and achieved notable performance 

improvement [43]. In the SVM-RFE, the removed gene should change the objective function J 

least. 

  2/
2

wJ = .        (6.4) 

in which w is calculated by Eq. 2.10, because only linear SVM is adopted. 

The Optimal Brain Damage (OBD) algorithm [57] approximates the change of J by removing the 

i
th

 gene by expanding J in Taylor series to second order 
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At the optimum of J, the first order is neglected and the second order becomes 

  2)()( iwiJ ∆=∆ .       (6.6) 

Figure. 6.1.  XOR relationship between two genes can not be 

grasped by a correlation metric
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Because removing the i
th

 gene means ii ww =∆ , we can adopt 
2

iw as ranking criteria. The gene 

with the smallest 
2

iw  has the smallest effect on classification thus is removed.  

 

 

 

In practical, more than one gene could be removed in one step. Fig. 6.2 describes the SVM-RFE 

algorithm in detail. The parameter f, here named “filter-out” factor, decides how many genes are 

removed in one step. Notice if 0<f<1, 100f% of bottom-ranked genes are removed at each step; 

if f=-1, only 1 gene is removed; if f=0, the least possible bottom-ranked genes are removed so 

that the number of remained genes is the power of 2 at the 1
st
 step and then half of genes are 

removed at following steps. In each step, a new linear SVM is trained in a smaller feature space, 

SVM-RFE(T,F,f,s) 

initialize 

 T := {training dataset}  

 F := {all input features} 

 f := filter_out_factor  

 s := the size of final informative gene subset 

begin 

 while (the size of F > s) 

  Train linear SVM on T in the feature space defined by F 

  Rank the features of F by 
2

iw in the descending order 

  if f = -1 

   F2 := F - {the bottom ranked feature in F} 

  elseif f=0 

   F2 := F - {a number of features with largest ranks are 

                  removed so that the size of F2 is the closest 

                  smaller number of power of 2 } 

  else 

   F2 := F - {100f% of features in F with largest rank} 

  end 

  if the size of F2 < s 

   adjust F2 to be composed of s top ranked features in F 

  end 

  F = F2 

 end 

 return F 

end 

Figure. 6.2.  the SVM-RFE algorithm 
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and thus each remained gene is assigned a new weight 2

iw  to be ranked again. This process is 

repeated until the pre-defined number of features is remained.  

Obviously, the SVM-RFE with f=-1 is most time-consuming. Suppose there are d genes, The 

SVM-RFE with f=-1 works approximately in O(d
2
lgd) time for the ranking and the elimination 

process (ranking dominates here), while other SVM-RFEs with larger f values work in O(dlgd) 

time. 

For example, suppose a subset of 8 genes is expected to be extracted from a set of 100 genes. If 

f=-1, the SVM-RFE works in 92 steps by decreasing the size of gene set as 

89109899100 →→→→→→ L ; If f=0.5, the SVM-RFE works in 5 steps by decreasing 

the size of gene set as 8122550100 →→→→ ; If f=0, the SVM-RFE works in 5 steps by 

decreasing the size of gene set as 8163264100 →→→→ . Finally, the genes can be ranked 

according to their elimination times: earlier elimination means lower rank. 

6.1.6 Gene Categories   

 

As what we estimated, there are four categories of genes in the original gene set: 

• Informative genes, which are really cancer-related; 

• Redundant genes, which are also cancer-related but there are some other informative 

genes functioning similarly but more significantly for cancer classification; 

• Irrelevant genes, which are not cancer-related and their existence do not affect cancer 

classification; 

• Noisy genes, which are not cancer-related but they have negative effects on cancer 

classification.  

A desirable algorithm should extract genes of the 1
st
 category while eliminate genes of the last 3 

categories. However, it is difficult to fully implement this goal. Firstly, the cancer-related factors 
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are very possibly mixed with other non-cancer-related factors for classification. Secondly, some 

non-cancer-related factors may even have more significant effects on classifying the training 

dataset. It is actually the notorious “overfitting” problem. The thing comes even worse when the 

training dataset is too small to embody the inherent real data distribution, which is common for 

microarray gene expression data analysis. We believe that the noisy genes of the 4
th

 category 

play the key role to hide the inherent cancer-related distribution and to confuse a classifier. 

Briefly to say, a noisy gene could have 3 kinds of negative effects on cancer diagnosis analysis: 

• A noisy gene is possible to individually contribute to discriminate the training samples by 

some non-cancer-related factors so that it is ranked high.  

• A noisy gene or a group of noisy genes may be complementary to some redundant genes 

so that these redundant genes are ranked higher.  

• A noisy gene or a group of noisy genes may conflict with some informative genes so that 

these informative genes are ranked lower.  

As a result, the inherent cancer-related distribution is blurred and the really informative genes are 

possible to be eliminated. 

6.1.7 New Metrics for Gene Selection Algorithms Evaluation   

 

For microarray gene expression data analysis, it is more desirable to select the most informative 

gene subset than to select a group of genes which are most informative individually. That is, a 

group of top-ranked genes may not be the best gene subset. Although the SVM-RFE is better 

than correlation-based methods because it avoids the orthogonality assumption, the preliminary 

simulation shows that it is unstable.  

This introduces the problem of designing a reasonable evaluation mechanism to compare 

different gene selection algorithms. Currently, most relevant works are targeted to find a 
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“perfect” gene subset that produces 0 validation/testing errors (in other words, 100% accuracy) 

[71,41,43,37,79,33]. Because of easiness of cancer classification, if there are more than one 

perfect gene subsets, the smallest one is claimed to be the best one. For example, if algorithm A 

extracts a perfect gene subset with 10 genes and another algorithm B can only extract a perfect 

gene subset with 15 genes, we will say “A is better than B”. This evaluation method is 

meaningful in some sense. However, due to the small size of available samples and high 

correlation among genes, the 15 genes extracted by algorithm B may be closer to uncover the 

real cancer-resulting mechanism. That is, finding a smallest perfect gene subset alone cannot 

justify a gene selection algorithm’s superiority compared to others. In our work, 3 performance 

evaluation methods are adopted for different biological contexts. 

• The special performance, which is the performance on the final gene subset with a user-

defined size. Suppose the size is 15, algorithm A is better than algorithm B if and only if 

the SVM on the gene subset of 15 genes extracted by algorithm A has better performance 

than the SVM on the gene subset of 15 genes extracted by algorithm B. 

• The best performance, which is the best performance taken on the final gene subsets 

between two user-defined sizes, one of which is the largest size and another is the 

smallest size. For example, if the largest size is 15 and the smallest size is 1, each 

algorithm will produce 15 gene subsets that are recursively embedded. From these 15 

gene subsets, the best one is taken for comparison. Algorithm A is better than algorithm 

B if and only if the SVM on the best gene subset extracted by algorithm A has better 

performance than the SVM on the best gene subset extracted by algorithm B. This is the 

usually adopted method. 
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• The average performance, which is the performance averaged on the final gene subsets 

between two user-defined sizes, one of which is the largest size and another is the 

smallest size. Algorithm A is better than algorithm B if and only if the SVMs on the gene 

subsets extracted by algorithm A has better average performance than the SVMs on the 

gene subsets extracted by algorithm B. 

These 3 performance evaluation methods evaluate a gene subset from different aspects. The 

special performance is used to evaluate a model’s ability to find a high quality gene subset with 

the pre-defined size, the average performance demonstrates effectiveness of a model on average, 

while the best performance is used to select a best gene subset. We believe that these thorough 

comparisons will be more suitable to evaluate the final gene subsets as a whole.  

6.2 Two-stage SVM-RFE algorithm   

 

The two-stage SVM-RFE algorithm is proposed to find more informative gene subsets for more 

reliable cancer classification. It is designed to effectively eliminate most of irrelevant, redundant 

and noisy genes while keeping information loss small at the first stage, and then finely select the 

final key gene subset from survived genes at the second stage. Therefore, the two-stage SVM-

RFE can overcome the instability problem of the SVM-RFE algorithm to achieve better 

algorithm utility. We have demonstrated that the two-stage SVM-RFE is an efficient algorithm 

because its time complexity is O(d * log2d) where d is the size of the original gene set. More 

importantly, the two-stage SVM-RFE is significantly more accurate and more reliable than other 

gene selection methods on two gene expression datasets. 

In the case of the AML/ALL dataset with 7129 gene features, compared to the “expected” SVM-

RFE (that has the “expected” performance averaged on multiple SVM-RFEs with different 

“filter-out” factors), the two-stage SVM-RFE improves the special performance (accuracy from 
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86.77% to 97.06% and AUC from 84.36% to 96.43%), improves the best performance (accuracy 

from 96.18% to 100% and AUC from 96.00% to 100%), and improves the average performance 

(accuracy from 88.87%±4.99% to 93.15%±5.52% and AUC from 86.94%±6.05% to 

92.27%±6.51%). The improvement on the average performance is significant (at 1%) both on 

accuracy and on AUC. Among the 50 genes identified by the two-stage algorithm, 30 of them 

have been identified previously by other algorithms as tumor-related genes. Based on biological 

experimental literatures, many of the 20 newly identified genes appear to be also tumor-related.   

The two-stage SVM-RFE seems to be able to identify more tumor-related genes.  

In the case of the colon cancer dataset with over 2000 gene features, compared to the “expected” 

SVM-RFE, the two-stage SVM-RFE improves the special performance (accuracy from 89.84% 

to 96.77% and AUC from 88.65% to 96.48%), improves the best performance (accuracy from 

90.16% to 96.77% and AUC from 89.31% to 96.48%), and improves the average performance 

(accuracy from 94.60%±6.23% to 97.13%±6.32% and AUC from 93.88%±6.96% to 

96.70%±6.99%). The improvement on the average performance is significant (at 1%) both on 

accuracy and on AUC. The two-stage SVM-RFE effectively discovers 18 genes; all of them have 

been identified previously by other algorithms as tumor-related genes.  

6.2.1 Instability of SVM-RFE   

 

The reason of the good performance of the SVM-RFE is that it does not make the orthogonality 

assumption and thus can handle multiple features simultaneously [43]. However, many previous 

related research works make another implicit assumption on the SVM-RFE: a smaller “filter-out” 

factor should result in a better gene subset. If only one gene is eliminated at each step, the final 

gene subset should be the best one. Due to the efficiency reason, a larger “filter-out” factor is 

adopted [43]. Intuitively, it looks reasonable because more steps are executed and the 
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information loss in each step is smaller. However, a preliminary simulation on the AML/ALL 

dataset shows that the assumption is not always correct.  

 

 

 

In Table 6.1, the first column is the value of “filter-out” factor f; the second column is leave-one-

out validation accuracy on the training dataset with the gene subset of 64 top-ranked genes; the 

third column is .632 bootstrapping accuracy [15] (with 100 times balanced random sampling 

with replacement [27]) on the training dataset with the same gene subset; while the fourth 

column is corresponding prediction accuracy on the testing dataset. The detailed simulation 

context will be described in Section 6.3. The result shows that the assumption is not true in this 

case. For example, the SVM-RFE with f=0.8 performs much better than the SVM-RFE with 

f=0.2. Notice that the SVM-RFE with f=-1 is most time-consuming because only one gene is 

removed at each step. However, its performance on the testing dataset is even worse than the 

average performance of the 11 SVM-RFEs. 

Furthermore, from Table 6.1, we notice that SVM-RFE is unstable because it is highly sensitive 

to f: different f values result in significantly different gene subsets which in turns result in SVM 

TABLE 6.1 

SVM-RFE PERFORMANCE ON AML/ALL DATA BY TRAINING ON 38 SAMPLES AND TESTING ON 34 

SAMPLES 

 

“filter-out” factor 

Leave-one-out 

validation accuracy 

on 64 genes 

100 times  .632 

bootstrapping 

accuracy on 64 genes 

prediction accuracy 

on 64 genes 

0.9 1.0000 1.0000 0.9706 

0.8 1.0000 1.0000 0.9412 

0.7 1.0000 1.0000 0.8529 

0.6 1.0000 1.0000 0.9706 

0.5 1.0000 1.0000 0.9412 

0.4 1.0000 1.0000 0.8529 

0.3 1.0000 1.0000 0.8529 

0.2 1.0000 1.0000 0.8235 

0.1 1.0000 1.0000 0.9412 

0 1.0000 1.0000 0.9118 

-1 1.0000 1.0000 0.8529 

Mean 1.0000 1.0000 0.9011 

Std 0 0 0.0547 
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classifiers with significantly different testing accuracies. For example, when the factor is 0.7, 0.3, 

or -1, the testing accuracy is 85.29% for 64 genes; however, when the factor is 0.8, 0.5, or 0.1, 

the testing accuracy is 94.12% for 64 genes. Cross-validation heuristic is usually adopted to 

estimate the optimal value of the unknown parameters. However, Table 6.1 also shows that the 

leave-one-out cross-validation accuracy is always 100%. Another common method for parameter 

selection is bootstrapping. Again, Table 6.1 shows that the bootstrapping accuracy is also always 

100%. In other words, neither leave-one-out cross-validation nor bootstrapping is useful to 

predict the optimal f value. As a result, we doubt the utility of the SVM-RFE algorithm for 

microarray gene expression data analysis. The instability of the SVM-RFE algorithm may induce 

notorious overfitting phenomenon.  

A careful exploration on the sensitivity of the SVM-RFE algorithm to f, the “filter-out” factor, 

should be helpful to find a more reliable algorithm for gene selection and cancer classification. 

Here “reliable” means “accurate and stable”. We believe that the negative effects of noisy genes 

list in section 6.1.6 are the main reasons of the instability problem of the SVM-RFE algorithm. 

With different f values, SVM-RFEs eliminate different numbers of “worst” genes at each step 

and thus result in different gene compositions in the remaining gene set, which in turns result in 

different ranking for remaining genes. In this gene elimination process, there are two kinds of 

information loss. The first is caused by removing multiple genes at one step, while the second is 

caused by wrongly ranking due to negative effects of noisy genes. Although a larger f value may 

result in larger information loss of the first kind at each step, it may result in less information 

loss of the second kind by eliminating more irrelevant, redundant and noisy genes so that 

inherent cancer-related distribution is more possible to dominate in the following steps. With so 

many irrelevant, redundant and noisy genes, typically the information loss induced by wrongly 
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ranking is significantly larger than the information loss induced by larger f value. Therefore, a 

larger f value may result in a better gene subset. 

6.2.2 Two-stage SVM-RFE algorithm: Different granules with different f values   

 

To solve the instability problem, one naive way is to try exhaustive search for the optimal f 

value. However, it is extremely time-consuming. Furthermore, traditional parameter selection 

heuristics such as cross validation or bootstrapping cannot select good f values from bad f values, 

as demonstrated in the preliminary study on the AML/ALL dataset. And hence the new two-

stage SVM-RFE algorithm is proposed to overcome the instability problem and still remain 

superior algorithm efficiency. To decrease the information loss induced by wrongly ranking, the 

first stage is designed to specifically eliminate irrelevant, redundant and noisy genes while 

keeping informative genes survived. In other words, the first stage can be viewed as a pre-

filtering process: multiple SVM-RFEs with different f values are executed to get multiple 

different gene subsets which in turns are disjunctively combined into a “candidate gene set”. By 

working multiple SVM-RFEs, a really informative gene is more possible to survive in at least 

one SVM-RFE’s gene subset because the corresponding f value may eliminate noisy genes 

before they function for ranking the informative gene lower. Based on the similar reason, if a 

gene does not survive in any SVM-RFE’s gene subset, it is more possible to be redundant, 

irrelevant, or noisy. If its size is properly selected, the candidate gene set by disjunctively 

combining multiple gene subsets is much smaller than the original gene set and is mainly 

composed of really informative genes.  

After that, the information loss caused by wrongly ranking by SVM-RFE is relatively trivial. On 

the other hand, the information loss caused by larger f value is relatively large. Therefore, at the 

second stage, SVM-RFE with f=-1 is adopted to finely select the final key gene subset by 
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eliminating just one gene at a time. In this way, a better final key gene subset can be extracted. 

The framework of the two-stage SVM-RFE is given in Fig. 6.3. 

 

 

 

If the f value of each “child” SVM-RFE at the first stage is between [0.1, 1), the two-stage SVM-

RFE works in O(n * d * log2d) time, where n is the number of SVM-RFEs at the first stage. 

Usually n<<d, which means that it has the same efficiency as the correlation-based ranking 

algorithms and the SVM-RFEs with f ≥ 0.1 and runs much faster than the SVM-RFE with f=-1 

(O(d
2
 * log2d)). 

 

Figure. 6.3. the two-stage SVM-RFE algorithm 
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For example, there are 5 genes named 54321 ,,,, ggggg . 2g  is redundant to 3g . 4g  is noisy and is 

complementary to 2g . The weights 2

5

2

4

2

3

2

2

2

1 wwwww >>>>  for the SVM in the original 5-

dimension space. Notice here 2

3

2

2 ww >  because 4g ’s complementary function on 2g . Suppose the 

goal is to find a gene subset of size 2, the best subset is },{ 31 gg but the result of the SVM-RFE 

with f=0.6 is },{ 21 gg . However, if f=0.4, 54 , gg are eliminated and then a new SVM is modeled 

with 2

2

2

3

2

1 www >>  in the 3-dimension space because of the elimination of 4g , and thus the 

correct subset can be found. That means the SVM-RFE cannot guarantee to get the best subset in 

Figure. 6.4. One example to show the two-stage SVM-RFE will result in more accurate and more stable 
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this case. However, the two-stage SVM-RFE as showed in Fig. 6.4 can get the best result. The 

motivation here is to coarsely eliminate most uninformative genes while keep informative genes 

as many as possible at the 1
st
 stage. And then the survived genes are finely filtered out to form 

the final gene subset at the 2
nd

 stage. 

6.3 Two-stage SVM-RFE simulation   

 

6.3.1 Data description   

 

Two datasets are used for simulations. The 1
st
 one is the AML/ALL leukemia dataset mentioned 

above [58]. The training dataset consists of 38 samples (27 ALL and 11 AML) from bone 

marrow specimens, while the testing dataset has 34 samples (20 ALL and 14 AML), which are 

prepared under different experimental conditions and include 24 bone marrow and 10 blood 

sample specimens. The 7129 features correspond to some normalized gene expression values 

extracted from the microarray image: 6817 of them come from human genes and the other 312 

come from control genes. 

The colon cancer dataset is also used for comparison [58]. For the colon cancer dataset, there are 

22 normal tissues and 40 colon cancer tissues. Gene expression information of colon cancer on 

more than 6500 genes were measured using oligonucleotide microarray and 2000 of them with 

highest minimum intensity were extracted to form a matrix of 62 tissues ×  2000 gene expression 

values. Similar to the AML/ALL dataset, some non-human genes are included for control. 

Because there is no natural training/testing partition for the colon cancer dataset, all 62 samples 

are used for training and the leave-one-out validation is used for model evaluation [43]. 

The characteristics of both datasets are listed in Table 6.2. 
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6.3.2 Data preprocessing   

 

The same as [41], the original datasets are simply normalized by decreasing the mean of 

corresponding gene vector from each gene expression data and then dividing by the 

corresponding standard deviation. As a result, each gene vector has 0 for mean and 1 for standard 

deviation. To avoid overfitting, the mean and standard deviation are calculated by using the 

training dataset. If leave-one-out validation or bootstrapping heuristic is used, the validation data 

is kept out from calculating these two values. 

For the AML/ALL dataset, natural training/testing partition is used.  

Because there is no natural training/testing partition for the colon cancer dataset or the 

lymphoma dataset, the leave-one-out validation is used [43]: in each fold, one sample is leaved 

for validation and other samples are used for training. Another evaluation heuristic adopted is 

balanced .632 bootstrapping [15]: random sampling with replacement is repeated for 100 times 

on each of the two datasets. Each tissue sample appears exactly 100 times in the computation to 

reduce variance [27].  

6.3.3 Modeling   

 

In the simulations, nine SVM-RFEs with }9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0{∈f  are used at the 

1
st
 stage and one SVM-RFE with f=-1 is used at the 2

nd
 stage. Fig. 6.5 shows the pseudocode of 

the two-stage SVM-RFE used in the simulations. Notice each gene subset (G_i and G’) has the 

TABLE 6.2 

CHARACTERISTICS OF DATASETS USED FOR SIMULATIONS 

 

Dataset #samples Ratio #genes 

AML/ALL 72 47:25 7129 

Colon cancer 62 40:22 2000 
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same size s. s=64 for the AML/ALL dataset, and s=4 for the colon cancer dataset. Gc is the 

candidate gene set. 

For fairness of comparison, the SVM-RFE with each f value is executed again to extract a gene 

set with the same size as Gc firstly, and then f=-1 is used to extract the final gene subset. 

 

 

 

Seven different algorithms are compared: 

• The two-stage SVM-RFE. 

• Signal to Noise (S2N) correlation-based ranking algorithm with weights calculated by 

Eq. 6.1. 

• Fisher Criterion (FC) correlation-based ranking algorithm with weights calculated by Eq. 

6.2. 

• T-Statistics (TS) correlation-based ranking algorithm with weights calculated by Eq. 6.3. 

•  “Default” SVM-RFE with f=0 which is suggest by [43] and is actually adopted by many 

previous related works. 

• “Expected” SVM-RFE, the performance of which is the average performance of the 10 

SVM-RFEs with different f values in the field of [0,0.9]. It is the expected performance 

of SVM-RFE because of the instability of SVM-RFE. 

Two-stage SVM-RFE(T,G,s) 

initialize 

 T := {training dataset}  

 G := {all genes} 

 s := the size of final informative gene subset 

begin 

 for i :=1 to 9 step by 1 

  G_i := SVM-RFE(T,G,0.1*i,s) 

 end 

 Gc := union of G_1, G_2, …, G_9  

 G’ := SVM-RFE(T,Gc,-1,s) 

 return G’ 

end 

Figure. 6.5. pseudocode of the two-stage SVM-RFE algorithm 
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• “Slowest” SVM-RFE with f=-1 which is the most time-consuming SVM-RFE.  

For each of the seven algorithms, the special performance, the best performance and the average 

performance defined are reported. 

• For the special performance, 64=s for the AML/ALL dataset and 4=s for the colon 

cancer dataset.  

• For the best performance, 641 ≤≤ s  for the AML/ALL dataset and 41 ≤≤ s  for the 

colon cancer dataset. (That is, for the AML/ALL dataset, there are 64 final gene subsets 

whose sizes decrease one by one from 64 to 1, and the best performance of them is 

reported. For the colon cancer dataset, there are 4 final gene subsets.) 

• For the average performance, 641 ≤≤ s for the AML/ALL dataset and 181 ≤≤ s for the 

colon cancer dataset. (For the AML/ALL dataset, there are 64 final gene subsets; for the 

colon cancer dataset, there are 18 final gene subsets. Notice here our goal to select more 

than 4 gene subsets for the colon cancer dataset is to make the average performance 

statistically significant.) 

The selection of s value is based on the practical utilities of the extracted gene subsets: The 

smallest number of genes is desirable for further biological study because it is very expensive or 

even impractical for biologists to pursue cancer study on a large number of genes; On the other 

hand, the prediction is not accurate/reliable if too few genes are selected. In previous research 

works, the s value is usually decided arbitrarily or by a biologist. However, we notice that it is 

difficult for biologists to decide such a value precisely. Instead of that, it is easier for biologists 

to decide a field instead of a value. In this work, the lower-bound of the field is always assumed 

to be 1. So the biologist only needs to decide the upper-bound. 



  71 

    

 

In the tables of the performance evaluation results, “Best” denotes the “Best Performance”, 

“Mean” denotes the “Average Performance”, and “Std” denotes the standard deviation of the 

“Average Performance”, respectively.  

Furthermore, a paired t-test for one tailed hypothesis is conducted to demonstrate the 

significance of the improvement by the two-stage SVM-RFE: “p-value” in the accuracy 

evaluation tables denotes the significance level the null hypothesis yx µµ ≤  can be rejected, 

where x is the vector of the accuracy results of the two-stage SVM-RFE, and y is the vector of 

the accuracy results of the compared algorithm. 

6.3.4 Statistical Analysis on the AML/ALL dataset   

 

 

 

 

 

TABLE 6.4 

AREA UNDER ROC CURVE COMPARISON ON THE 7 DIFFERENT ALGORITHMS ON THE AML/ALL 

DATASET BY TRAINING ON 38 SAMPLES AND TESTING ON 34 SAMPLES 

 

models 64 genes 
Best 

(<=64) 

Mean 

(<=64) 

Std 

(<=64) 

p-value 

by ttest 

(<=64) 

S2N correlation 0.9643 0.9643 0.8868 0.0504 0.0001 

FC correlation 0.8929 0.8929 0.8183 0.0436 <0.0001 

TS correlation 0.8929 0.8929 0.8309 0.0427 <0.0001 

 “default” SVM-RFE 0.8929 0.9750 0.8798 0.0824 0.0002 

 “expected” SVM-RFE 0.8436 0.9600 0.8694 0.0605 0.0043 

“slowest” SVM-RFE 0.8214 0.9286 0.8525 0.0424 <0.0001 

two-stage SVM-RFE 0.9643 1.0000 0.9227 0.0651 N/A 

TABLE 6.3 

ACCURACY COMPARISON ON THE 7 DIFFERENT ALGORITHMS ON THE AML/ALL DATASET BY 

TRAINING ON 38 SAMPLES AND TESTING ON 34 SAMPLES 

 

models 64 genes 
Best 

(<=64) 

Mean 

(<=64) 

Std 

(<=64) 

p-value 

by ttest 

(<=64) 

S2N correlation 0.9706 0.9706 0.9063 0.0425 0.0010 

FC correlation 0.9118 0.9118 0.8465 0.0380 <0.0001 

TS correlation 0.9118 0.9118 0.8585 0.0370 <0.0001 

 “default” SVM-RFE 0.9118 0.9706 0.8980 0.0671 0.0006 

 “expected” SVM-RFE 0.8677 0.9618 0.8887 0.0499 0.0019 

“slowest” SVM-RFE 0.8529 0.9412 0.8768 0.0363 <0.0001 

two-stage SVM-RFE 0.9706 1.0000 0.9315 0.0552 N/A 
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For the AML/ALL dataset, the two-stage SVM-RFE extracts 169 genes for the candidate gene 

set at the first stage, and then it continues to eliminate one gene at each step until final 64 genes 

are selected at the second stage. 

Both accuracy and AUC comparisons from Tables 6.3-6.4 show that 

• the two-stage SVM-RFE is more reliable than correlation-based methods. Compared to 

S2N, the two-stage SVM-RFE has the same special performance (accuracy=97.06% and 

AUC=96.43%), improves the best performance (accuracy from 97.06% to 100% and 

AUC from 96.43% to 100%), and improves the average performance (accuracy from 

90.63%±4.25% to 93.15%±5.52% and AUC from 88.68%±5.04% to 92.27%±6.51%). 

The improvement on the average accuracy is significant (at 1%) both on accuracy and on 

AUC. 

• the two-stage SVM-RFE is more reliable than the “default” SVM-RFE by improving the 

special performance (accuracy from 91.18% to 97.06% and AUC from 89.29% to 

96.43%), by improving the best performance (accuracy from 97.06% to 100% and AUC 

from 97.50% to 100%), and by improving the average performance (accuracy from 

89.80%±6.71% to 93.15%±5.52% and AUC from 87.98%±8.24% to 92.27%±6.51%). 

The improvement on the average performance is significant (at 1%) both on accuracy and 

on AUC. 

• the two-stage SVM-RFE is more reliable than the “expected” SVM-RFE by improving 

the special performance (accuracy from 86.77% to 97.06% and AUC from 84.36% to 

96.43%), by improving the best performance (accuracy from 96.18% to 100% and AUC 

from 96.00% to 100%), and by improving the average performance (accuracy from 

88.87%±4.99% to 93.15%±5.52% and AUC from 86.94%±6.05% to 92.27%±6.51%). 



  73 

    

 

The improvement on the average performance is significant (at 1%) both on accuracy and 

on AUC. 

• the two-stage SVM-RFE is even more reliable than the “slowest” SVM-RFE by 

improving the special performance (accuracy from 85.29% to 97.06% and AUC from 

82.14% to 96.43%), by improving the best performance (accuracy from 94.12% to 100% 

and AUC from 92.86% to 100%), and by improving the average performance (accuracy 

from 87.68%±3.63% to 93.15%±5.52% and AUC from 85.25%±4.24% to 

92.27%±6.51%). The improvement on the average performance is significant (at 1%) 

both on accuracy and on AUC. Moreover, two-stage SVM-RFE is significantly faster 

than the “slowest” SVM-RFE as analyzed above. 

The results also demonstrate that the two-stage SVM-RFE is the best algorithm in terms of 

balance ability with the highest AUC values. The superior balance ability of the two-stage SVM-

RFE validates our estimation: the two-stage SVM-RFE eliminates irrelevant, redundant and 

noisy genes more effectively because it extracts positive-related genes and negative-related 

genes in balance. That means two-stage SVM-RFE takes advantage of the mutual information 

between genes more effectively than other algorithms. 

 

 

 

TABLE 6.5 

ACCURACY OF TWO-STAGE SVM-RFES WITH DIFFERENT “FILTER-OUT” FACTORS AT 

THE SECOND STAGE ON THE AML/ALL DATASET BY TRAINING ON 38 SAMPLES AND 

TESTING ON 34 SAMPLES 

 

“filter-out” factor 
64 

genes 

Best 

(<=64) 

Mean 

(<=64) 

Std 

(<=64) 

p-value 

by ttest 

(<=64) 

-1 0.9706 1.0000 0.9315 0.0552 N/A 

-2 0.9412 0.9412 0.8493 0.0575 <0.0001 

-3 0.8235 0.9412 0.8612 0.0551 <0.0001 

-4 0.9412 1.0000 0.9283 0.0497 0.2789 

-5 0.9118 0.9706 0.8998 0.0370 0.0010 

-6 0.8824 0.9706 0.9007 0.0394 0.0014 
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To justify that the first stage effectively eliminates irrelevant, redundant and noisy genes, we also 

try different f values at the second stage. Due to small number (169) of the candidate genes, at 

the second stage, we try to remove 1-6 gene(s) at each step. Tables 6.5-6.6 show that the SVM-

RFE with f=-1 has the best performance. That means, for the AML/ALL dataset, the information 

loss induced by large f values dominates while the information loss induced by wrongly ranking 

is relatively trivial at the second stage. 

TABLE 6.6 

AREA UNDER ROC CURVE OF TWO-STAGE SVM-RFES WITH DIFFERENT “FILTER-OUT” 

FACTORS AT THE SECOND STAGE ON THE AML/ALL DATASET BY TRAINING ON 38 

SAMPLES AND TESTING ON 34 SAMPLES 

 

“filter-out” factor 
64 

genes 

Best 

(<=64) 

Mean 

(<=64) 

Std 

(<=64) 

p-value 

by ttest 

(<=64) 

-1 0.9643 1.0000 0.9227 0.0651 N/A 

-2 0.9286 0.9286 0.8178 0.0693 <0.0001 

-3 0.7964 0.9393 0.8425 0.0684 <0.0001 

-4 0.9286 1.0000 0.9220 0.0556 0.4567 

-5 0.8929 0.9643 0.8824 0.0420 0.0005 

-6 0.8571 0.9643 0.8811 0.0468 0.0003 

Figure. 6.6.  two-stage SVM-RFE extracts most reliable gene subsets 

on the AML/ALL dataset (The prediction accuracy is 100% from 47 

genes to 58 genes) 
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For the AML/ALL dataset, gene subsets with 64 genes to 1 gene are extracted. In Fig. 5.6, each 

curve denotes the testing accuracy with different numbers of genes for an algorithm. As 

demonstrated, no algorithm can find high quality gene subsets if the upper-bound is too small 

and the extracted gene subsets are not reliable. With the increase of number of genes, two-stage 

SVM-RFE can select better gene subsets for more reliable AML/ALL classification than other 

algorithms. 

6.3.5 Biological Analysis on the AML/ALL dataset   

 

 

 

 

TABLE 6.7 

PERFORMANCE OF TWO-STAGE SVM-RFE ON THE AML/ALL DATASET BY TRAINING ON 38 SAMPLES AND TESTING ON 34 

SAMPLES 

 

#genes accuracy auc #genes accuracy auc #genes accuracy auc 

64 0.9706 0.9643 42 0.9706 0.9643 20 0.9412 0.9393 

63 0.9706 0.9643 41 0.9118 0.9036 19 0.9118 0.9036 

62 1 1 40 0.9412 0.9393 18 0.9118 0.9036 

61 0.9706 0.9643 39 0.9412 0.9393 17 0.9412 0.9393 

60 0.9706 0.9643 38 0.9412 0.9393 16 0.9118 0.9036 

59 0.9706 0.9643 37 0.9412 0.9393 15 0.9412 0.9393 

58 1 1 36 0.9118 0.9036 14 0.9412 0.9393 

57 1 1 35 0.9412 0.9393 13 0.8529 0.8214 

56 1 1 34 0.9118 0.9036 12 0.7941 0.7500 

55 1 1 33 0.8529 0.8321 11 0.8235 0.7857 

54 1 1 32 0.8529 0.8321 10 0.8235 0.7857 

53 1 1 31 0.8529 0.8321 9 0.7941 0.7500 

52 1 1 30 0.8529 0.8321 8 0.8529 0.8214 

51 1 1 29 0.9118 0.9036 7 0.8824 0.8571 

50 1 1 28 0.9412 0.9393 6 0.9412 0.9286 

49 1 1 27 0.8824 0.8679 5 0.9706 0.9643 

48 1 1 26 0.9118 0.9036 4 0.9412 0.9393 

47 1 1 25 0.9118 0.9036 3 0.9412 0.9393 

46 0.9706 0.9643 24 0.9118 0.9036 2 0.8824 0.8679 

45 0.9706 0.9643 23 0.8824 0.8786 1 0.9412 0.9286 

44 0.9412 0.9393 22 0.8824 0.8786    

43 0.9706 0.9643 21 0.9118 0.9143    
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Table 6.7 shows the testing performance in terms of accuracy and AUC on the AML/ALL 

dataset for gene subsets with different sizes from 64 genes to 1 gene. Each gene subset is 

achieved by removing one “worst” gene from its closest larger gene subset. Notice that from 63 

genes to 62 genes or from 59 genes to 58 genes, the testing accuracy is improved. It shows 

TABLE 6.8 

MOST IMPORTANT GENES SELECTED BY TWO-STAGE SVM-RFE ON THE AML/ALL DATASET (GENES WITH * ARE PREVIOUSLY IDENTIFIED 

GENES) 

 

rank GAN Description  of Gene Function References 

1 M23197* Human differentiation antigen (CD33) [41][11][55][76][101] 

2 X85116* Integral membrane protein (Protein 7.2b) [41][11][55] 

3 X95735* Homo sapiens Zyxin [41][43][11][17] 

4 U22376* Human C-myb [41][11][17][65][78] 

5 D49950* Interferon-gamma inducing factor (IL-18) [11][17][40][32] 

6 Y12670* Leptin receptor gene-related protein [41] 

7 M37435 macrophage-specific colony-stimulating factor (CSF-1)  

8 M24400* Human chymotrypsinogen [105] 

9 U50136* Huaman leukotriene C4 synthase (LTC4S) [41][11][17][55] 

10 M55150* Human fumarylacetoacetate hydrolase [41][11][17] 

11 M83652* Complement omponent properdin [41][11] 

12 M29610* Glycophorin E [6] 

13 M19507* Myeloperoxidase [11][55] 

14 X06948* High affinity IgE receptor alpha-subunit (FcERI) [72][54] 

15 X70297* Nicotinic acetylcholine receptor alpha-7 subunit [11] 

16 L08246* Myeloid cell differentiation protein (MCL1) [41] 

17 U82759* Homeodomain protein HoxA9 [41][43][17][55] 

18 X16901* 

RAP30 subunit of transcription initiation factor 

RAP30/74 [4] 

19 M60298* Erythrocyte membrane protein band 4.2 (EPB42) [18] 

20 M62762* Vacuolar H+ ATPase proton channel subunit [41][11][17] 

21 U92459* Metabotropic glutamate receptor 8 [64] 

22 U63289* RNA-binding protein CUG-BP/hNab50 (NAB50) [17] 

23 U43292* MDS1B (MDS1) [34] 

24 M96326* Azurocidin [41][11] 

25 J04621 Heparan sulfate proteoglycan core protein  

26 M81933* Cdc25A [17] 

27 M86406* Skeletal muscle alpha 2 actinin (ACTN20) [52] 

28 X81479 EMR1 hormone receptor  

29 M63138* Cathepsin D (catD) [41][11][55] 

30 X13839* Vascular smooth muscle alpha-actin [118] 

31 M16038* Tyrosine kinase encoded by lyn mRNA [41][11][17] 

32 L49229* Retinoblastoma susceptibility protein (RB1) [22][66] 

33 M68891* GATA-binding protein (GATA2) [9] 

34 U25128* PTH2 parathyroid hormone receptor [69] 

35 M61853* Cytochrome P4502C18 (CYP2C18) [55] 

36 U21689* Glutathione S-transferase-P1c [87] 

37 M84526* Adipsin/complement factor D [41][11][55] 

38 M20902* Apolipoprotein C-I (VLDL) [55] 

39 X05409* Mitochondrial aldehyde dehydrogenase I [53] 

40 X04085* Catalase (EC 1.11.1.6) 5'flank and exon 1 [41] 

41 D21851* Mitochondrial leucyl-tRNA synthetase [51] 

42 M98539* Prostaglandin D2 synthase [84] 

43 M22960* Protective protein [11] [55] 

44 X55668* Proteinase 3 [11] 

45 J05500* Beta-spectrin (SPTB) [59] 

46 U37055* Hepatocyte growth factor-like protein [80][77] 

47 M26708* Prothymosin alpha (ProT-alpha), [103] 

48 Y10207* CD171 protein [55] 

49 X58431* Homeobox protein encoded by Hox2.2 gene  [11] 

50 X13294* A-Myb [31] 
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maybe a noisy gene is removed here. Similarly, the testing accuracy is deteriorated from 62 

genes to 61 genes or from 47 genes to 46 genes because maybe an informative gene is removed. 

Because the testing accuracy for the AML/ALL dataset is 100% for the gene subsets from 58 

genes to 47 genes selected by the two-stage SVM-RFE, here we select top 50 genes to analyze 

their biological functions related to leukemia classification in Table 6.8. The “*” signed genes in 

the case of AML/ALL are also identified by the other  approaches in previous works, while the 

other ones are newly found by the two-stage SVM-RFE. 

Besides these common genes in the case of AML/ALL, many of the novel genes discovered by 

the two-stage SVM-RFE have already been demonstrated in literatures that they are directly or 

indirectly related with cancer. For instance, human chymotrypsinogen (Rank No. 8 in Table 6.8) 

is one of protease proenzymes, which show remarkable selective effects that result in growth 

inhibition of tumor cells with metastatic potential [75], glycophorin E (Rank No. 12 in Table 6.8) 

is in glycophorin family, which is related to erythroid differentiation in the murine 

erythroleukemia cell line [92], inactivation of the retinoblastoma gene (Rank No. 32 in Table 

6.8) is a common event in parathyroid tumorigenesis [22,66], the hepatocyte growth factor-like 

protein (Rank No. 46 in Table 6.8) interacts with RON [80], which is strongly expressed in renal 

oncocytomas and renal cell carcinoma [77].   
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6.3.6 Statistical Analysis on the colon cancer dataset   

 

For the colon cancer dataset, the two-stage SVM-RFE extracts 18 genes for the candidate gene 

set at the first stage, and then it continues to eliminate one gene at each step until final 4 genes 

are selected at the second stage. 

With leave-one-out validation, Tables 6.9-6.10 show that 

• the two-stage SVM-RFE is more reliable than correlation-based methods. Compared to 

S2N, the two-stage SVM-RFE improves the special performance (accuracy from 85.48% 

to 96.77% and AUC from 83.64% to 96.48%), improves the best performance (accuracy 

from 85.48% to 96.77% and AUC from 83.64% to 96.48%), and improves the average 

performance (accuracy from 86.11%±2.54% to 97.13%±6.32% and AUC from 

84.06%±3.47% to 96.70%±6.99%). The improvement on the average performance is 

significant (at 1%) both on accuracy and on AUC. 

• the two-stage SVM-RFE is more reliable than the “default” SVM-RFE by improving the 

special performance (accuracy from 88.71% to 96.77% and AUC from 86.14% to 

96.48%), by improving the best performance (accuracy from 91.94% to 96.77% and 

AUC from 91.70% to 96.48%), and by improving the average performance (accuracy 

from 95.07%±5.89% to 97.13%±6.32% and AUC from 94.19%±6.06% to 

96.70%±6.99%). The improvement on the average performance is significant (at 1%) 

both on accuracy and on AUC. 

• the two-stage SVM-RFE is more reliable than the “expected” SVM-RFE by improving 

the special performance (accuracy from 89.84% to 96.77% and AUC from 88.65% to 

96.48%), by improving the best performance (accuracy from 90.16% to 96.77% and 

AUC from 89.31% to 96.48%), and by improving the average performance (accuracy 
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from 94.60%±6.23% to 97.13%±6.32% and AUC from 93.88%±6.96% to 

96.70%±6.99%). The improvement on the average performance is significant (at 1%) 

both on accuracy and on AUC. 

• the two-stage SVM-RFE is even more reliable than the “slowest” SVM-RFE by 

improving the special performance (accuracy from 95.16% to 96.77% and AUC from 

95.23% to 96.48%), by improving the best performance (accuracy from 95.16% to 

96.77% and AUC from 95.23% to 96.48%), and by improving the average performance 

(accuracy from 96.06%±5.70% to 97.13%±6.32% and AUC from 95.86%±5.82% to 

96.70%±6.99%). Although the improvement on the average performance is not 

significant (p-value=0.0518 on accuracy and p-value=0.1494 on AUC), as we claimed 

before, two-stage SVM-RFE is much faster than the “slowest” SVM-RFE.  

 

 

With balanced .632 bootstrapping (100 times random sampling with replacement), similar 

improvement is observed in Tables 6.11-6.12. 

TABLE 6.10 

AREA UNDER ROC CURVE COMPARISON ON THE 7 DIFFERENT ALGORITHMS ON THE COLON 

CANCER DATASET BY LEAVE-ONE-OUT VALIDATION 

 

models 4 genes 
Best 

(<=4) 

Mean 

(<=18) 

Std 

(<=18) 

p-value 

by ttest 

(<=18) 

S2N correlation 0.8364 0.8364 0.8406 0.0347 0.0000 

FC correlation 0.7807 0.8261 0.8390 0.0345 <0.0001 

TS correlation 0.7841 0.7966 0.8130 0.0253 <0.0001 

 “default” SVM-RFE 0.8614 0.9170 0.9419 0.0606 0.0035 

 “expected” SVM-RFE 0.8865 0.8931 0.9388 0.0696 0.0087 

“slowest” SVM-RFE 0.9523 0.9523 0.9586 0.0582 0.1494 

two-stage SVM-RFE 0.9648 0.9648 0.9670 0.0699 N/A 

TABLE 6.9 

ACCURACY COMPARISON ON THE 7 DIFFERENT ALGORITHMS ON THE COLON CANCER 

DATASET BY LEAVE-ONE-OUT VALIDATION 

 

models 4 genes 
Best 

(<=4) 

Mean 

(<=18) 

Std 

(<=18) 

p-value 

by ttest 

(<=18) 

S2N correlation 0.8548 0.8548 0.8611 0.0254 <0.0001 

FC correlation 0.8226 0.8548 0.8611 0.0266 <0.0001 

TS correlation 0.7742 0.7903 0.8181 0.0302 <0.0001 

 “default” SVM-RFE 0.8871 0.9194 0.9507 0.0589 0.0012 

 “expected” SVM-RFE 0.8984 0.9016 0.9460 0.0623 0.0076 

“slowest” SVM-RFE 0.9516 0.9516 0.9606 0.0570 0.0518 

two-stage SVM-RFE 0.9677 0.9677 0.9713 0.0632 N/A 
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The same as the AML/ALL dataset, the results also demonstrate two-stage SVM-RFE is the best 

model in terms of balance ability, while the gene subsets extracted by the original SVM-RFEs 

are biased. We also try different f values at the second stage on the colon cancer dataset. Similar 

result to the AML/ALL dataset is observed. Due to space limit, we skip to report the result here. 

 

 

6.3.7 Biological Analysis on the colon cancer dataset   

 

Similarly, with leave-one-out cross validation (Table 6.13) or .632 bootstrapping (Table 6.14), 

top 18 genes selected by the two-stage SVM-RFE can induce highly accurate classification. 

Therefore, we report them in Table 6.15 for biological analysis. All of the 18 genes have been 

previously reported in bioinformatics literature as colon cancer-related genes. Gene No. 11 

(myosin light chain gene) in Table 6.15 is an interesting example. Recent research has indicated 

that tumor necrosis factor-induced cytoskeletal rearrangement driven by activity of myosin light 

chain kinase (MLCK), which may affect expression of myosin light chain (MLC), is necessary 

for tumor necrosis factor-dependent nuclear factor kappa-B activation and amplification of pro-

TABLE 6.12 

AREA UNDER ROC CURVE COMPARISON ON THE 7 DIFFERENT ALGORITHMS ON THE COLON 

CANCER DATASET BY 100 TIMES BOOTSTRAPPING 

 

models 4 genes 
Best 

(<=4) 

Mean 

(<=18) 

Std 

(<=18) 

p-value 

by ttest 

(<=18) 

S2N correlation 0.8313 0.8411 0.8325 0.0193 <0.0001 

FC correlation 0.7944 0.8187 0.8292 0.0156 <0.0001 

TS correlation 0.7879 0.7942 0.8218 0.0319 <0.0001 

 “default” SVM-RFE 0.8997 0.8997 0.9279 0.0592 <0.0001 

 “expected” SVM-RFE 0.8901 0.8911 0.9326 0.0683 0.0083 

“slowest” SVM-RFE 0.9461 0.9461 0.9526 0.0634 0.1626 

two-stage SVM-RFE 0.9710 0.9710 0.9589 0.0719 N/A 

TABLE 6.11 

ACCURACY COMPARISON ON THE 7 DIFFERENT ALGORITHMS ON THE COLON CANCER 

DATASET BY 100 TIMES BOOTSTRAPPING 

 

models 4 genes 
Best 

(<=4) 

Mean 

(<=18) 

Std 

(<=18) 

p-value 

by ttest 

(<=18) 

S2N correlation 0.8447 0.8513 0.8314 0.0098 <0.0001 

FC correlation 0.8302 0.8504 0.8312 0.0101 <0.0001 

TS correlation 0.7609 0.7714 0.8011 0.0319 <0.0001 

 “default” SVM-RFE 0.8995 0.8995 0.9236 0.0574 <0.0001 

 “expected” SVM-RFE 0.8849 0.8869 0.9263 0.0622 0.0106 

“slowest” SVM-RFE 0.9394 0.9394 0.9487 0.0633 0.0706 

two-stage SVM-RFE 0.9588 0.9588 0.9572 0.0681 N/A 
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survival signals [104], which may influence tumor growth. Therefore, the MLC gene seems to be 

an informative gene on tumor development. Unlike the original SVM-RFE algorithm that 

eliminates this gene from its top ranking [43], our algorithm ranks it top 11; this gene is also 

ranked high by other approaches [11,86,38]. 

 

 

 

 

 

 

 

TABLE 6.15 

MOST IMPORTANT GENES SELECTED BY TWO-STAGE SVM-RFE ON THE COLON DATASET 

 

Rank GAN Description of Source or Gene Function  Possible functions to colon cancer 

1 H08393 Soares infant brain 1NIB [43][11][38] 

2 H64807 Alu repetitive element [43][55][38] 

3 T57882 Stratagene fetal spleen [38] 

4 M92287 Cyclin D3 (CCND3) [38] 

5 H55916 Peptidyl-prolyl cis-trans isomerase    [11][38] 

6 T62947 Stratagene lung [43][11][55][117][38] 

7 R88740 ATP Synthase coupling Factor 6     [43][55][86][38] 

8 H01418 Soares placenta Nb2HP [38] 

9 H49870 Soares adult brain N2b5HB55Y [86][38] 

10 T79831 Protein-tyrosine phosphatase  [38] 

11 J02854 20-kDa myosin light chain (MLC-2) [43][11][86][38] 

12 H16096 Soares infant brain 1NIB [55][38] 

13 Z50753 GCAP-II/uroguanylin precursor [11][55][86][38] 

14 J04102 Erythroblastosis virus oncogene homolog 2 (ets-2) [38] 

15 H81558 TAR1 repetitive element [43][38] 

16 R87126 Alu repetitive element [11][86][117][38] 

17 M76378 Cysteine-rich protein (CRP) [11][55][86][38] 

18 U00968 Srebp-1  [55][38] 

TABLE 6.13 

PERFORMANCE OF TWO-STAGE SVM-RFE ON THE COLON CANCER DATASET BY LEAVE-ONE-OUT VALIDATION 

 

#genes accuracy auc #genes accuracy auc #genes accuracy auc 

18 1 1 12 1 1 6 1 1 

17 1 1 11 1 1 5 1 1 

16 1 1 10 0.9839 0.9773 4 0.9677 0.9648 

15 1 1 9 1 1 3 0.9032 0.8739 

14 1 1 8 1 1 2 0.8548 0.8159 

13 1 1 7 1 1 1 0.7742 0.7739 

TABLE 6.14 

PERFORMANCE OF TWO-STAGE SVM-RFE ON THE COLON CANCER DATASET BY 100 TIMES BOOTSTRAPPING 

 

#genes accuracy auc #genes accuracy auc #genes accuracy auc 

18 0.9675 0.9735 12 0.9952 0.9971 6 0.9789 0.9874 

17 0.9741 0.9794 11 0.9952 0.9971 5 0.9820 0.9889 

16 0.9807 0.9845 10 0.9864 0.9889 4 0.9588 0.9710 

15 0.9811 0.9858 9 0.9908 0.9925 3 0.8806 0.8706 

14 0.9882 0.9907 8 0.9930 0.9946 2 0.8574 0.8325 

13 0.9903 0.9928 7 0.9974 0.9978 1 0.7323 0.7346 
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6.3.8 Summary on two-stage SVM-RFE simulation 

 

• the two-stage SVM-RFE is the best algorithm for gene selection compared to other 6 

methods for three datasets in terms of accuracy. That means two-stage SVM-RFE is an 

effective algorithm for cancer classification. 

• the two-stage SVM-RFE is the best algorithm for gene selection compared to other 6 

methods for three datasets in term of AUC. That means the two-stage SVM-RFE 

effectively takes advantage of the correlation among genes to select the informative gene 

subset. 

• S2N algorithm performs well on the AML/ALL dataset but performs badly on the colon 

cancer dataset. It means the correlations among gene expression data are more important 

for the colon cancer diagnosis than for the AML/ALL diagnosis. 

• the “slowest” SVM-RFE performs well on the colon cancer dataset but performs badly on 

the AML/ALL dataset. It once again shows that the SVM-RFE is an unstable algorithm. 

If the f value of each “child” SVM-RFE in the 1
st
 stage is between [0.1, 1), the two-stage SVM-

RFE works in O(d) time. That means it has the same efficiency as the S2N algorithm or the 

SVM-RFEs with f>0.1 and runs much faster than the SVM-RFE with f=-1 (O(d
2
)).   

The two-stage SVM-RFE algorithm has identified a subset of genes, which are consistent with 

the genes (100% identical in the case of colon cancer and 60% identical in the case of 

AML/ALL) discovered by other conventional algorithms. Many of the common genes are 

directly or indirectly related to tumor activities. For instance in the case of AML/ALL, high-level 

CD33 (differentiation antigen) activity is observed in AML[76,101], C-myb (a transcription 

factor) is associated with cell apoptosis (programmed cell death; disruption of C-myb expression 

can disrupt tumor growth [65,78]), and  IL-18 (Interferon-gamma inducing factor, a cytokine 

mainly produced by macrophages) affect T-cell activation [40,32], which can influence tumor 

development.  
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Previous works on the SVM-RFE assume that the smaller “filter-out” factor should result in the 

better performance. If at each step only one gene is eliminated, the final gene subset should be 

the best one. Only due to the efficiency reason, larger “filter-out” factor is adopted [43]. Our 

work shows that the assumption is not always correct because the SVM-RFE with f=-1 (that is, 

at each step only one “worst” gene is eliminated) cannot always achieve better performance than 

SVM-RFE with a larger “filter-out” factor. Actually, it is even worse on the AML/ALL dataset. 

As a result, selecting larger “filter-out” factor is not only due to efficiency reason, but even 

necessary for effectiveness reason. Currently, the “filter-out” factor is decided arbitrarily [43,33]. 

Unfortunately, our work also shows that the SVM-RFE is unstable: SVM-RFEs with different 

“filter-out” factors have significantly different performances. And there is no simple monotonic 

relation between the “filter-out” factor and the performance because of the complex correlations 

among genes. As a result, it is difficult for the original SVM-RFE to find the optimal “filter-out” 

factor. 

Therefore, to find a more informative gene subset for more reliable prediction, the two-stage 

SVM-RFE algorithm is presented in this work. Firstly, the two-stage SVM-RFE algorithm 

avoids the problem to select the optimal “filter-out” factor and thus overcome the instability 

problem of the original SVM-RFE algorithm. Secondly, the two-stage SVM-RFE has the same 

time complexity (linear to the size of the original gene set) as the correlation-based S2N ranking 

algorithm and the original SVM-RFE algorithm (except the “slowest” SVM-RFE, which runs in 

quadratic time). More importantly, the two-stage SVM-RFE performs much better in terms of 

generalization capability (more accurate to predict new samples) on two publicly available gene 

expression datasets. Because of the inherent advantage to discriminate informative features from 

noisy or redundant features, we expect that this superior performance could also be true in 
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processing other similar datasets with extreme sparseness such as Web text mining, image 

pattern recognition, and other bioinformatics problems. 

To the best of our knowledge, this is the 1st work to point out the instability problem of the 

SVM-RFE algorithm resulted by choosing different “filter-out” factors. Similarly, we expect that 

the same instability problem also exists in other RFE algorithms. This is another interesting 

future work to explore, which may generalize the similar two-stage SVM-RFE algorithms in 

other areas. By increasing stability and accuracy, this two-stage algorithm can predict and 

classify tumor types or subtypes more precisely and it also has potential to identify more tumor-

related genes. In the case of AML/ALL, 50 genes are identified by the two-stage algorithm, 

where 30 of them have been identified previously by other algorithms as tumor-related genes, 

and many of the 20 newly identified genes appear also to be tumor-related. In the case of colon 

cancer, this two-stage SVM-RFE effectively discovers 18 genes; all of them have been identified 

previously by other algorithms as tumor-related genes. 

In summary, the two-stage SVM-RFE has advantages over other conventional algorithms. Of 

course, the newly identified genes by this algorithm need to be further confirmed experimentally, 

which may generate more insights for cancer mechanism, treatment and study. Nevertheless, this 

predication of these cancer-informative genes will help to stimulate and guide detailed studies on 

the gene functions. 
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6.4 GSVM-RFE algorithm   

 

6.4.1 Inflexibility of current algorithms 

 

Both correlation-based algorithms (S2N as an example) and backward elimination algorithms 

(SVM-RFE as an example) are inflexible in that the same gene subset is always extracted in 

multiple different runs. However, biologically, there may be multiple different gene subsets 

which regulate cancer in different ways. As a result, the biological analysis on the single gene 

subset extracted by these algorithms may loss other cancer-related information, especially when 

some selection bias [3] is introduced in the gene selection process. 

To extract multiple informative gene subsets for reliable cancer classification, the GSVM-RFE 

algorithm is proposed. 

6.4.2 Relevance Index   

 

“Relevance Index” (RI) was used to measure the relevance of a feature to a cluster in [112] to 

ease an unsupervised clustering process. Here the idea is extended as the first step of GSVM-

RFE. The point here is to pre-filtering some non-relevant genes to ease the following gene 

selection and supervised classification. Because a gene is possible to be negatively expressed or 

positively expressed, Equations 6.7-6.8 define the negative relevance index and the positive 

relevance index to measure the negative correlation and the positive correlation of a gene with 

the cancer being studied, respectively. 

 22 /1 iiiR σσ −− −= ,        (6.7) 

 22 /1 iiiR σσ ++ −= ,        (6.8) 

where 2

iσ , 2

−iσ , and 2

+iσ  are the variances of the projected values on the i
th

 gene of the whole 

training samples, the negative training samples, and the positive training samples, respectively. A 

large negative relevance index value means the local variance among negative samples is small 
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compared to the global variance among the whole samples. Fig. 6.7 shows an example how the 

two relevance Index metric work. 

 

 

 

To apply RI metric for gene selection, a negative filtering threshold )1,0[∈−α  and a positive 

filtering threshold )1,0[∈+α  need to be decided. The i
th

 gene is “negative-related” if −− ≥ αiR  

because the projections of the negative samples are closer than the projections of the whole 

samples on the i
th

 gene. Similarly, it is “positive-related” if ++ ≥αiR . If −− < αiR  and ++ <αiR , 

it is “non-related”. A gene may be both negative-related and positive-related. These two filtering 

thresholds should be selected carefully: firstly, they can not be too large, otherwise the 

information loss may happen because some cancer-related genes are wrongly eliminated; 

secondly, they should be selected “in balance”, which means negative-related genes and positive-

related genes should be selected in balance, otherwise the minor genes are possible to be totally 

eliminated to result in performance degradation, especially when negative-related genes are 

significantly larger than positive-related genes in the original dataset or visa versa. 

Figure. 6.7. gene X1 is positive-related; gene X2 is negative-related; gene X3 is both positive-related 

and negative-related; gene X4 is irrelevant 
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6.4.3 Fuzzy C-Means clustering   

 

RI metric alone can not extract good gene subsets. The shortcoming of RI is that it assumes the 

independence between different genes. As we know, the assumption is not true for microarray 

gene expression data. If the filtering thresholds are too large, many informative genes will be 

wrongly eliminated. 

Some genes may be similarly regulated and similarly expressed. And hence these genes may 

play a similar role in cancer classification. As a result, if genes with similar expression patterns 

are grouped together into clusters, a few typical genes in a cluster may be selected and other 

genes in the cluster may be safely eliminated without significant loss of information. On the 

other hand, an informative gene may contribute to cancer classification with complex 

correlations with multiple different clusters. Therefore, after the pre-filtering by RI metric, Fuzzy 

C-Means [12] is adopted to group genes into different function clusters.  

The Fuzzy C-Means clustering algorithm groups genes into K clusters with centers 

Kk ccc LL ,,1 in the training samples space. (That is, each training sample is a dimension of the 

space). Fuzzy C-Means assigns a real-valued vector },,,{ 1 KikiiiU µµµ LL=  to each gene. 

]1,0[∈kiµ is the membership value of the i
th

 gene in the k
th

 cluster. The larger membership value 

indicates the stronger association of the gene to the cluster. Membership vector values kiµ  and 

cluster centers kc can be obtained by minimizing 

  ∑∑=
= =

K

k

N

i
ki

m

ki cxdmKJ
1 1

2 ),()(),( µ ,     (6.9) 

  )()(),(2

kik

T

kiki cxAcxcxd −−= ,     (6.10) 
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ki <∑<

=1

0 µ ,      (6.11) 

where Ni ≤≤1 and Kk ≤≤1 [12].  

In Eq. 6.9, K and N are the number of clusters and the number of genes in the dataset, 

respectively. 1>m is a real-valued number which controls the ‘fuzziness’ of the resulting 

clusters, kiµ is the degree of membership of the i
th

 gene in the k
th

 cluster, and ),(2

ki cxd  is the 

square of distance from i
th

 gene to the center of the k
th

 cluster. In Eq. 6.10, kA is a symmetric and 

positive definite matrix. If kA  is the identity matrix, ),(2

ki cxd  corresponds to the square of the 

Euclidian distance. Eq. 6.11 indicates that empty clusters are not allowed.  

6.4.4 GSVM-RFE algorithm   

 

The new GSVM-RFE algorithm is proposed in this work for more reliable gene selection. It 

works in three stages. Fig. 6.8 shows a sketch of the GSVM-RFE algorithm. 

At the first stage, RI metric is used to coarsely group genes into two granules: “relevant granule” 

and “irrelevant granule”. The relevant granule consists of negative-related genes and positive-

related genes, while the irrelevant granule is comprised of irrelevant genes (genes with small RI+ 

values and small RI- values). Only genes in the relevant granule are survived for the following 

stages. The assumption is that irrelevant genes are not so useful for cancer classification or even 

possible to correlate other genes in some unknown complex ways to confuse Fuzzy C-Means to 

get good clustering results or confuse SVMs to get good classification results. This pre-filtering 

process can dramatically decrease the number of candidate genes on which Fuzzy C-Means 

works. Therefore, it can improve both the efficiency and the effectiveness of the following stages 

of GSVM-RFE. 
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At the second stage, in each step survived genes are clustered by Fuzzy C-Means into several 

“function granules”. In each function granule, a linear SVM is modeled and genes in the function 

granule are ranked by their wi
2
 value in Eq. 6.6 in the descending order. 

 

 

 
Figure. 6.8.  GSVM-RFE algorithm 
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The higher-ranked genes are selected as new survived genes, and then all survived genes in these 

function granules are combined disjunctively into the next step. This process is repeated until the 

number of survived genes is less than or equal to a pre-specified threshold Nmp. By using the 

Fuzzy C-Means clustering algorithm, GSVM-RFE explicitly groups genes with similar 

expression patterns into clusters and then the lower-ranked genes in each cluster could be safely 

removed because the more significant genes with similar functions will survive. Furthermore, 

due to complex correlation between genes, the similarity is by no means a “crisp” concept. Fuzzy 

C-Means deals with complex correlation between genes by assigning a gene into several clusters 

with different membership values. Therefore, a really informative gene achieves more than one 

opportunities to survive. 

At the third stage, SVM-RFE with f=0 is used to finely select the final “most informative” gene 

subsets. 

The filter-out factor f>0 in the second stage. As a result, GSVM-RFE is a O(d
2
) algorithm 

because the clustering process dominates. In practice, because the pre-filtering stage by RI 

metric eliminates most of genes, the expected time is much faster. 

Because different runs of Fuzzy C-means generate different clusters, different runs of GSVM-

RFE should extract different gene subsets in general. This flexibility makes GSVM-RFE more 

suitable for gene selection than traditional methods. In a gene regulation network, many different 

gene subsets may regulate cancer in different ways. These multiple different gene subsets may be 

more helpful for cancer study by minimizing information loss. Moreover, the genes that survive 

in multiple subsets deserve higher priority for biological study. 
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6.5 GSVM-RFE simulation   

 

6.5.1 Modeling   

 

The same as [41], the original dataset is simply normalized so that each gene vector has 0 for 

mean and 1 for standard deviation. To avoid overfitting, for testing accuracy evaluation, the 

mean and standard deviation are calculated on the training dataset; while for leave-one-out 

validation accuracy evaluation on the training dataset, the validation sample is kept out from 

calculating these two values. 

The regulation parameter 1≡C  for the linear SVMs. For the SVM-RFE algorithm, the filter-out 

factor 5.0=f  is used at the first stage to coarsely select a set of Nmp genes. At the second 

stage, 0=f  is used to finely select the final “most informative” gene subsets. The performances 

of the linear SVMs on the gene subsets between Nfu genes and Nfl genes are reported for 

comparison.  

For the Fuzzy C-Means algorithm, the “fuzziness degree” 15.1=m , the maximal iteration 

number is 100, and the minimal improvement 510−=ε . For the GSVM-RFE algorithm, at the 

second stage, in each step survived genes are grouped into 5 clusters, in each of which one linear 

SVM is modeled to select genes with the filter-out factor 5.0=f , and then all of the 5 subsets of 

survived genes are combined disjunctively into the next step.  

Notice in each step, the fuzzy membership values are defuzzified in such a way that a gene is 

always grouped into the cluster with the largest membership value and the cluster with the 

second largest membership value. The assumption is that different gene function groups are 

clustered based on their expression strengths. Some genes whose expression strengths are 

between two groups may be better to be clustered into the two groups at the same time. This 

way, each gene achieves two opportunities to survive at the following selection process. 
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This recursive process is repeated until the number of survived genes is less than or equal to Nmp. 

The third stage of GSVM-RFE is the same as the second stage of the above SVM-RFE 

algorithm.  

In the following, a gene subset is referred to be a “perfect” gene subset if the SVM modeled in 

the gene subset space achieves 100% leave-one-out cross-validation accuracy on the training 

dataset and also 100% prediction accuracy on the testing dataset. 

6.5.2 Data description on the prostate cancer dataset   

 

The first set of experiments is on the prostate cancer dataset for tumor versus normal 

classification [58]. The training dataset consists of 102 prostate samples (52 with tumors and 50 

without tumors); while the testing dataset has 34 samples (25 with tumors and 9 without tumors). 

The two datasets are prepared under different biological experimental contexts. There is a nearly 

10-fold difference in overall microarray intensity between them [58]. The 12600 features 

correspond to some normalized gene expression values extracted from the microarray image. 

Here negatives are defined to be the normal prostate samples without tumor, while positives are 

the tumor samples. The genes distribution in the prostate cancer dataset is highly imbalanced 

between negative-related genes and positive-related genes. If 5.0== −+ αα , 4761 positive-

related genes and only 110 negative-related genes are survived. To alleviate the imbalance, 

75.0=+α and 5.0=−α  are used to select 721 positive-related genes and 110 negative-related 

genes. There is no overlapping between positive-related genes and negative-related genes. At the 

following stages, Nmp=64, Nfu=10, Nfl=1. 

We run GSVM-RFE 20 times. For each run, 10 stratified gene subsets are extracted with 10, 9, 

…, 1 gene(s). The testing accuracies of the linear SVMs on the 10 gene subsets are recorded. The 

highest one is called “best accuracy” and the mean of them is called “average accuracy”. 
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6.5.3 Statistical Analysis on the prostate cancer dataset   

 

Table 6.16 shows that GSVM-RFE significantly improves accuracy compared with S2N and 

SVM-RFE. The best accuracy (the first column) of the “expected” GSVM-RFE averaged on the 

20 runs is 99.71% and the average accuracy (the second column) is 90.18%.  

 

 

Table 6.17 demonstrates that GSVM-RFE has good average performance (83.94%) while S2N 

and SVM-RFE have poor average performances (61.11% and 68.04%) in terms of the AUC 

metric. In other words, GSVM-RFE is much better than S2N and SVM-RFE with higher AUC 

values.  

 

 

TABLE 6.17 

TESTING AUC ON THE PROSTATE CANCER DATASET  

model 
Best 

(<=10) 

Mean 

(<=10) 

Std 

(<=10) 

S2N 0.8333 0.6111 0.1571 

SVM-RFE 0.9244 0.6804 0.1811 

expected  GSVM-RFE 0.9962 0.8394 0.1478 

TABLE 6.16 

TESTING ACCURACY ON THE PROSTATE CANCER DATASET 

model 
Best 

(<=10) 

Mean 

(<=10) 

Std 

(<=10) 

S2N 0.9118 0.7941 0.0832 

SVM-RFE 0.9412 0.8177 0.0818 

expected  GSVM-RFE 0.9971 0.9018 0.0803 

TABLE 6.19 

TESTING SPECIFICITY ON THE PROSTATE CANCER DATASET  

model 
Best 

(<=10) 

Mean 

(<=10) 

Std 

(<=10) 

S2N 0.8929 0.7872 0.0743 

SVM-RFE 0.9600 0.8282 0.0988 

expected  GSVM-RFE 0.9980 0.9125 0.0833 

TABLE 6.18 

TESTING SENSITIVITY ON THE PROSTATE CANCER DATASET  

model 
Best 

(<=10) 

Mean 

(<=10) 

Std 

(<=10) 

S2N 1.0000 1 0 

SVM-RFE 1.0000 0.9720 0.0329 

expected  GSVM-RFE 1.0000 0.9720 0.0562 
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Furthermore, Table 6.18 and Table 6.19 compare sensitivity and specificity among the three 

algorithms. As shown in the results, only GSVM-RFE demonstrates superior balance ability 

between the negative class and the positive class (tumor prostate) with both high average 

sensitivity (97.20%) and also high average specificity (91.25%).  Firstly, Relevance Index-based 

pre-filtering selects positive-related genes and negative-related genes in balance. Secondly, FCM 

explicitly groups genes into different clusters based on their expression patterns so that 

informative genes from different function granules (clusters) are selected in balance. 

Fig. 6.9 visualizes the average performance comparison among S2N, SVM-RFE and expected 

GSVM-RFE. The goal of such an average performance comparison is to verify that the 

performance gain of GSVM-RFE is statistically significant. However, in practice, biologists do 

not care about the average performance but the best gene subset(s). As a result, we will only 

submit the gene subsets extracted by the runs with good performance while discarding the gene 

subsets from the runs with bad performance. 

 

 

 

 
Figure 6.9. average performance comparison on the prostate cancer dataset 
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More importantly, a perfect gene subset is extracted in 18 runs of GSVM-RFE. To the best of the 

authors’ knowledge, it is the first time that such a perfect gene subset is reported for the prostate 

cancer dataset. Interestingly, 18 runs of GSVM-RFE extract the exactly the same perfect gene 

subset with 8 genes. Although these 18 runs produce different clusters, the same 8 genes can 

always be extracted. It strongly convinces us the 8 genes are critical for prostate cancer. The 

other two perfect gene subsets with 15 and 17 genes, respectively, are also extracted by other 

runs of GSVM-RFE. Due to the length limit, we have to skip them here. 

6.5.4 Biological Analysis on the prostate cancer dataset   

 

 

 

Table 6.20 lists the perfect subset of 8 genes. The “*” signed genes have been already identified 

by other approaches in previous works, while the other ones are newly found by GSVM-RFE. 

6.5.5 Statistical Analysis on the AML/ALL dataset   

 

The AML/ALL leukemia dataset [58] mentioned above is also used in the experiments. Here 

negatives are defined to be the ALL samples, while positives are AML samples. At the first 

stage, 5.0=+α  and 5.0=−α  are adopted to extract 1685 positive-related genes and 432 

negative-related genes. Only the 2020
th

 gene (GAN: M55150) is both negative-related and 

positive-related. Nmp=169, Nfu=64, Nfl=1. We run GSVM-RFE 20 times. 

TABLE 6.20 

A PERFECT GENE SUBSET ON THE PROSTATE CANCER DATASET  

rank/ 

index 
GAN 

Description  of Gene Function References 

1/6185 X07732* hepatoma mRNA for serine protease hepsin [110]  

2/4649 M16942   

3/5821 AF044311   

4/5045 AL080150   

5/10537 AF045229*  [110] 

6/6368 AB017363   

7/11818 M21535 erg protein (ets-related gene)  

8/5402 W27944 39g8 retina  
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Table 6.21 shows that GSVM-RFE is most accurate compared to S2N and SVM-RFE. The best 

accuracy of the “expected” GSVM-RFE averaged on the 20 runs is 96.91% and the average 

accuracy is 91.75%. 

Table 6.22 demonstrates that GSVM-RFE has excellent average performance (90.64%), S2N 

has good average performance (86.54%), while SVM-RFE has fair average performances 

(76.29%) in terms of the AUC metric. In other words, GSVM-RFE is better than S2N and SVM-

RFE with higher AUC values.  

 

 

 

 

TABLE 6.23 

TESTING SENSITIVITY ON THE AML/ALL DATASET  

model 
Best 

(<=20) 

Mean 

(<=20) 

Std 

(<=20) 

S2N 1.0000 0.9950 0.0154 

SVM-RFE 1.0000 0.9900 0.0205 

expected  GSVM-RFE 0.9975 0.9695 0.0330 

TABLE 6.24 

TESTING SPECIFICITY ON THE AML/ALL DATASET  

model 
Best 

(<=20) 

Mean 

(<=20) 

Std 

(<=20) 

S2N 0.9091 0.8466 0.0554 

SVM-RFE 0.9091 0.7575 0.0611 

expected  GSVM-RFE 0.9681 0.9017 0.0455 

TABLE 6.22 

TESTING AUC ON THE AML/ALL DATASET  

model 
Best 

(<=20) 

Mean 

(<=20) 

Std 

(<=20) 

S2N 0.9286 0.8654 0.0632 

SVM-RFE 0.9286 0.7629 0.0666 

expected  GSVM-RFE 0.9668 0.9064 0.0423 

TABLE 6.21 

TESTING ACCURACY ON THE AML/ALL DATASET  

model 
Best 

(<=20) 

Mean 

(<=20) 

Std 

(<=20) 

S2N 0.9412 0.8883 0.0537 

SVM-RFE 0.9412 0.8029 0.0541 

expected  GSVM-RFE 0.9691 0.9175 0.0370 
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Furthermore, Table 6.23 and Table 6.24 compare sensitivity and specificity among the three 

algorithms. Only GSVM-RFE demonstrates excellent balance ability between the negative class 

and the positive class (AML) with both high average sensitivity (96.95%) and also high average 

specificity (90.17%).  Once again, it proves that GSVM-RFE can extract positive-related genes 

and negative-related genes in balance. 

Fig. 6.10 visualizes the average performance comparison among S2N, SVM-RFE and expected 

GSVM-RFE. 

6.5.6 Biological Analysis on the AML/ALL dataset   

 

 

 

 

TABLE 6.25 

A PERFECT GENE SUBSET ON THE AML/ALL DATASET  

rank/ 

index 
GAN 

Description  of Gene Function References 

1/1834 M23197* Human differentiation antigen (CD33) [41][11][55][76][101] 

2/6539 X85116* Integral membrane protein (Protein 7.2b) [41][11][55] 

3/2020 M55150* Human fumarylacetoacetate hydrolase [41][11][17] 

4/4535 X74262* RETINOBLASTOMA BINDING PROTEIN P48 [41][11][17] 

5/461 D49950* Interferon-gamma inducing factor (IL-18) [11][17][40][32] 

6/4847 X95735* Homo sapiens Zyxin [41][37][11][17] 

7/3221 U43885 Grb2-associated binder-1 mRNA  

8/5950 M29610* Glycophorin E [6] 

9/6169 M13690* C1NH Complement component 1 inhibitor  [55] 

 
Figure 6.10. average performance comparison on the AML/ALL dataset 
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Table 6.25 lists a perfect subset with 9 genes to analyze their biological functions related to 

leukemia classification. Notice in Table 6.25, M55150, the only gene both negative-related and 

positive-related, is extracted and ranked at the third place. The “*” signed genes have been 

already identified to be cancer-related in previous works, while the other ones are newly 

identified by GSVM-RFE. The other two perfect gene subsets with 8 and 16 genes (not reported 

here), respectively, are also extracted by other runs of GSVM-RFE. 

Many genes in these perfect gene subsets have already been reported to be directly or indirectly 

related to tumor activities. For instance, high-level CD33 (differentiation antigen) activity is 

observed in AML [76,101], IL-18 (Interferon-gamma inducing factor, a cytokine mainly 

produced by macrophages) affect T-cell activation [40,32], which can influence tumor 

development.  

Besides, the novel genes discovered by this new GSVM-RFE algorithm may also be directly 

or indirectly related with cancer. Furthermore, GSVM-RFE extracts genes together as a group. 

For example, 8 from 9 genes in Table 6.25 have been reported to be cancer-related in different 

biological or bioinformatics literature. However, it is novel for GSVM-RFE to extract them 

together. In this way, the inherent regulation mechanism and correlations among these genes 

may be explored more effectively and more efficiently. 

6.6 Discussion   

 

6.6.1 Natural training/testing partition 

 

One challenge of cancer classification on microarray gene expression data is that the data is 

generally not independent and identically distributed (i.i.d.) as traditional data mining models 

assume. Experiments under different experimental conditions (or even the same experimental 

conditions but at different time) produce different expression data. As a result, an ideal algorithm 
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should be able to model a classifier from the dataset under one experimental condition and 

generalize it well onto other datasets under different experimental conditions. To this end, a 

classifier should discriminate the samples not by the experimental condition related factors but 

by the cancer-related factors.  

For the AML/ALL dataset, some previous works [43,37,33] combined the training dataset and 

the testing dataset together into one whole dataset on which leave-one-out validation heuristic 

was used for model evaluation. However, in each fold of leave-one-out validation, many training 

samples come from the same biological condition as the validation sample. As a result, it is 

easier to model a classifier to correctly classify the validation sample under the help of some 

factors that are experimental condition-related but possibly not cancer-related. That is, the leave-

one-out validation is prone to model a classifier overfitting the biological experiment condition-

related factors. And hence really informative gene subsets may not be extracted. As a result, this 

work still adopts the original training/testing partition. With this “natural” partition, a classifier is 

expected to be dominated by really cancer-related factors if both high validation accuracy on the 

training dataset and high prediction accuracy on the testing dataset are observed.  

To justify this idea, we also try leave-one-out validation on the whole AML/ALL dataset to run 

GSVM-RFE for gene selection. The results (not reported here due to length limit) show that 

almost all runs of GSVM-RFE can extract a small subset with only 5 or 7 genes with 100% 

leave-one-out accuracy. However, based on these gene subsets, a SVM built on the training 

dataset performs not well on the testing dataset.  

The similar overfitting happens in the experiments on the prostate cancer dataset. Some previous 

research work [110] adopted leave-one-out validation on the 102 training samples. However, our 

experiments show that a lot of gene subsets have 100% leave-one-out validation accuracy but 
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very low prediction accuracy on the 34 testing samples. Therefore, leave-one-out validation 

accuracy is not a convincible criterion for gene selection because of the strong negative effects of 

biological experiment condition-related factors. 

6.6.2 Size of the final gene subsets 

 

The size is decided according to practical utilities of the extracted gene subsets: A small number 

of genes are desirable for further biological study because it is very expensive or even 

impractical to conduct biological experiments on a large number of genes; On the other hand, the 

prediction is not accurate if too few genes are selected. In previous research works, the size is 

usually decided arbitrarily by a biologist. However, we notice that it is difficult for a biologist to 

decide such a value precisely. It is more reasonable for him or her to decide a field instead of a 

value. In this work, the lower-bound of the field is always assumed to be 1. So the biologist only 

needs to decide the upper-bound. For the prostate cancer dataset, performance on the 10 stratified 

subsets with 10 genes to 1 gene is reported. For the AML/ALL dataset, performance on the 20 

stratified subsets with 20 genes to 1 gene is reported. 

6.6.3 RI pre-filtering 

 

Another group of experiments show that performance of GSVM-RFE is deteriorated without RI 

pre-filtering (not shown here). This result verifies our assumption that RI pre-filtering not only 

can speed up the running of GSVM-RFE, but also can decrease noise between irrelevant genes 

and noisy genes. As a result, the following stages of GSVM-RFE work more effectively and 

more efficiently to extract informative cancer-related gene subsets. 

6.6.4 Number of clusters and membership of clusters 

 

For complex gene selection problems, selection from multiple granules is better than selection 

from one single granule without clustering. By explicitly clustering genes into different function 
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granules based on their expression strength patterns, redundant genes can be identified and 

removed. Furthermore, genes that regulate cancers in different ways can be extracted in balance. 

It should be even better if a gene can be grouped into more than one granule. By being clustered 

into multiple function granules, an important cancer-related gene may be ranked low in some 

granules but ranked high in other granules, and hence gains more opportunities to be extracted. 

FCM has the inherent advantage to be applied for gene selection compared to other crisp 

clustering algorithms such as self-organizing map, k-means, or hierarchical clustering. 

On the other hand, too many clusters make clustering trivial. In the second stage of GSVM-RFE, 

5 clusters are generated at each step. That is, genes are approximately grouped into “strong 

negative-related cluster”, “weak negative-related cluster”, “neutral cluster”, “weak positive-

related cluster”, and “strong positive-related cluster”. Notice that at the second stage, the 

clustering is recursively executed on the smaller and smaller survived gene subset at each step. 

The number 5 may be not the best. However, the contribution here is to prove multiple granules 

can improve the performance by decreasing noise and selecting genes in balance. 

6.6.5 Extract gene subsets in balance 

 

 

 

TABLE 6.26  

UNBIASED PERFORMANCE COMPARISON ON THE PROSTATE CANCER DATASET 

models accuracy auc sensitivity specificity 

No selection 0.3235 0.5400 1.0000 0.0800 

S2N 0.7941 0.6111 1.0000 0.7872 

SVM-RFE 0.8177 0.6804 0.9720 0.8282 

GSVM-RFE 0.9018 0.8394 0.9720 0.9125 

TABLE 6.27 

UNBIASED PERFORMANCE COMPARISON ON THE AML/ALL DATASET 

models accuracy auc sensitivity specificity 

No selection 0.9118 0.8929 1.0000 0.8696 

S2N 0.8883 0.8654 0.9950 0.8466 

SVM-RFE 0.8029 0.7629 0.9900 0.7575 

GSVM-RFE 0.9175 0.9064 0.9695 0.9017 
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Without gene selection, classification performance of linear SVMs is not reliable, as shown in 

the first row of Table 6.26 for the prostate cancer dataset and the first row of Table 6.27 for the 

AML/ALL dataset. Obviously, the classifiers are prone to the negative class with low AUC 

values (or high sensitivity and low specificity). 

S2N and SVM-RFE do not alleviate the imbalance too much. Linear SVMs modeled on the gene 

subsets extracted by both of them are still prone to the negative class (the second rows and the 

third rows in the Tables, the average performance is reported). 

Due to the explicit granulation with clustering, the minor genes may form a “pure granule” (a 

cluster) so that at least some of them can be extracted. The balance ability is demonstrated to be 

critical for the superior performance of GSVM-RFE (the fourth rows in the Tables, the average 

performance is reported). 

The results also show that the prostate cancer dataset is much more noisy and imbalanced than 

the AML/ALL dataset. The fact that the performance improvement gained by GSVM-RFE is 

more significant in the first dataset demonstrates that GSVM-RFE improves the cancer 

classification mainly due to noise elimination and balanced gene selection. 

6.6.6 Selection bias 

 

Ambroise et al demonstrated that selection bias is introduced because the testing dataset or the 

validation dataset is involved in gene selection [3]. As a result, the testing or validation accuracy 

can not be confidently generalized to new samples. In our experiments, the best accuracy is in 

this case. However, in practice we can expect that the size of a gene subset is randomly selected 

in the field [Nfl, Nfu] and one special run of the Fuzzy C-Mean clustering for GSVM-RFE is 

randomly picked up. In this way, the testing dataset is leaved out from gene selection and 

classifier modeling. As a result, the average accuracy is an unbiased estimation of generalized 
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prediction accuracy. Actually, the average accuracy is even a pessimistic estimation because a 

biologist does not expect to select too few genes with too much information loss. Consequently, 

the improvement of GSVM-RFE is reliable. The unbiased average testing accuracy on the two 

datasets are reported in the first columns of Table XII and Table XIII. Notice that in Table XIII, 

the unbiased accuracy of S2N or SVM-RFE is even lower than the accuracy without gene 

selection so that the extracted gene subsets are not reliable. 

Furthermore, due to existence of selection bias, it is helpful or even necessary to provide 

multiple gene subsets other than just one single “most informative” gene subset to avoid 

information loss. Therefore, the flexibility of clustering makes GSVM-RFE more suitable for 

gene selection than traditional algorithms. 

6.6.7 Time Complexity 

 

Correlation-based algorithms are straightforward to understand and work efficiently. If there are 

d genes originally, the ranking process takes O(dlgd) time.  

Because the ranking process dominates the SVM-RFE algorithm, the SVM-RFE (which remove 

50% lower-ranked genes in each step) works in O(dlgd) time. 

GSVM-RFE is a O(d
2
) algorithm because the clustering process dominates. In practice, because 

the pre-filtering stage by RI metrics eliminates most of genes, the expected time is much shorter. 

6.7 Summary on GSVM-RFE simulation   

 

To find most informative gene subsets for reliable cancer classification, the GSVM-RFE 

algorithm is proposed in this chapter. Firstly, GSVM-RFE utilizes Relevance Index metric for 

gene pre-filtering to improve the algorithm efficiency and effectiveness at the same time. 

Secondly, GSVM-RFE explicitly groups genes with similar expression patterns into clusters. 

Therefore, the lower-ranked genes in each cluster can be safely removed because the more 
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significant genes with similar functions will survive. Finally, GSVM-RFE deals with complex 

correlation between genes by assigning a gene into several clusters with different membership 

values so that a really informative gene is more possible to survive.  

GSVM-RFE is more reliable to predict unseen testing samples, as demonstrated in the 

experiments on the two microarray gene expression datasets. More importantly, GSVM-RFE can 

find multiple compact cancer-related gene subsets on each of which a SVM with 100% 

prediction accuracy can be modeled. Due to the selection bias in each single gene subset, the 

multiple “perfect gene subsets” are believed to be more helpful for biologists to uncover the 

inherent cancer-resulting mechanism. 

In summary, GSVM-RFE has advantages over traditional algorithms. Of course, the newly 

identified genes by this algorithm need to be further confirmed biologically, which may generate 

more insights for cancer mechanism, treatment and study. Nevertheless, the extraction of these 

cancer-related gene subsets may help to stimulate and guide detailed cancer studies on the gene 

functions. 

As a general feature selection algorithm, because of the inherent advantage to eliminate 

irrelevant or redundant features while select really informative features, we expect that this 

superior performance can also be true in processing other similar datasets with extreme 

sparseness such as biomedical text mining, biomedical image pattern recognition, and other 

bioinformatics problems. This is an interesting future work. 
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CHAPTER 7 

GSVM-DC 

7.1 Algorithm   

 

Usually, grid search heuristic [46] is adopted for SVM modeling. The basic idea is to try 

different parameter grids to find which one is the best. It is time-consuming due to large 

parameter space, especially for very large datasets. 

To improve efficiency, it is natural to try to decrease the size of the training dataset. The 

elimination of some samples from the training dataset may have two results: 1 information loss 

by eliminating informative or useful samples to deteriorate the performance of a classifier; and 2 

data cleaning by eliminating the irrelevant or redundant or noisy samples to improve the 

performance of a classifier. Our goal is to minimize the first negative effect (information loss) 

while to maximize the second positive effect (data cleaning). If the original training dataset is 

viewed as a single granule, the problem is, how to adjust the size of the granule to achieve the 

optimal classification performance. 

For a biomedical problem, usually much more than need data is accumulated. There are many 

redundant or even noisy data. In this case, too many training data is unnecessary or even 

harmful. The SVM algorithm tells us that only SVs are needed and other samples can be safely 

removed without affecting classification (Fig. 7.1). The advantage motivates us to explore the 

potentiality to utilize SVM as a data cleaning tool.  

However, different kernels and/or different parameter values may extract different SVs. Which 

one should be extracted? 

SVM tries to find the optimal decision boundary by trade-off between the margin width and the 

training accuracy. There is a regulation parameter C for misclassification errors penalty. For 
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complex datasets, if C is increased, the SVM algorithm is forced to decrease misclassification 

errors by decreasing the margin width. As a result, less SVs are extracted. It motivates us to build 

a linear SVM with a very small C value and the extracted SVs can be used as the new 

compressed training dataset, which is expected to include most, if not all, important and useful 

samples. 

 

 

 

However, information loss may still happen because a linear SVM is still possible to loss some 

important samples. As a result, it is not a good idea to extract SVs directly from the whole 

training dataset. The other disadvantage by extracting the “global” SVs is overfitting: when we 

use grid search and cross validation heuristics to optimize the parameters, overfitting may 

happen because the validation samples were already used to extract the “global” SVs. 

A natural way is to split the training samples into different granules. The samples in one granule 

could be leaved for validation and other samples could be used to extract SVs. In [36], authors 

won the ACM KDDCUP04 protein homology task mainly by taking advantage of the natural 

Figure. 7.1.  A SVM with maximal margin. Except Support 

Vectors, the other samples can be safely removed 
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granules splitting (blocks decided by native protein sequences) to undersample the training 

dataset with SVMs in each block. However, it is still unexplored how to do undersampling (SVs 

extraction) for a general dataset without any prior knowledge for granulation. 

Our solution is to build multiple granules in a bagging-similar way. Fig. 7.2 sketches the 

algorithm, named Granular Support Vector Machines with Data Cleaning (GSVM-DC). Each 

granule is composed of the training samples in each fold of the k-fold cross validation. There are 

altogether k granules, where k is the number of the folds of cross validation. 

The granulation is highly overlapping (each training sample appears in k-1 granules) so that each 

training sample gets k-1 opportunities to be extracted as a SV. In each granule, a SVM with a 

very small C value is modeled and the corresponding SVs are extracted to form the “Local 

Support Vector set” (LSVs) to “clean” the granule. With the very small C value and highly 

overlapping granulation, it is expected to minimize information loss caused by missing some 

important samples. 

After LSVs are extracted, k-fold cross validation is executed to optimize SVM parameters. In the 

i
th

 fold, the training dataset is LSVi, the validation dataset is the (k-i+1)
th

 subset of the original 

training dataset. 

Finally, LSVs are disjunctively combined to form a compressed training dataset, on which a 

SVM with the optimal parameters is modeled for classification. 

Suppose there are Ng∈ groups of parameters for grid search with k-fold cross validation. In 

each fold, there are n training samples, and m LSVs, averaged on all k folds. If SVM modeling 

takes )**( 2
nkgO  time, GSVM-DC needs )***( 22

mkgnkO + . Because usually the size of 

LSVs is much less than the size of the original training dataset )( nm <<  and g>>1, the tuning 

by grid search can be greatly speed up. 
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7.2 Simulation   

 

GSVM-DC proposed in this chapter is compared with the original SVM algorithm. We try linear 

kernel and RBF kernel for SVM. Correspondingly, the final SVM in GSVM-DC also adopts 

linear kernel and RBF kernel, respectively, for comparison. Notice that the SVMs used to select 

LSVs in GSVM-DC are always linear SVMs. 

7.2.1 Datasets   

 

Six life science binary classification data from UCI data mining repository [68] are used for 

comparison. The detailed characteristics of datasets are listed in Table 7.1. 

 

 
Figure. 7.2.  GSVM-DC algorithm 
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7.2.2 Metrics   

 

Two sets of experiments, on balanced datasets and imbalanced datasets, separately, are designed 

and performed.  

For balanced datasets, misclassification error, defined in Eq. 1.1, is used to evaluate performance 

of the two algorithms. The top 4 datasets in Table 7.1 are used in the first set of experiments. 

FNTP

TP

FPTN

TN
meansg

+
×

+
=−

.     (7.1) 

For imbalanced datasets, misclassification error is virtually useless to evaluate a classifier’s 

performance. [56] proposed g-means as defined in Eq. 7.1. This metric has been broadly used by 

many researchers to evaluate performance of classifiers on imbalanced datasets. We also adopt 

g-means here. The last 2 datasets in Table 7.1 are used in the second set of experiments. 

7.2.3 Modeling   

 

Each dataset is split into 5 equal size subsets. Each subset is leaved for testing in turn and other 4 

subsets are combined and used for training. The split is executed in a stratified way so that 

1:4)(:)( =testingStrainingS ,  

1:4)_(:)_( =testingpositiveStrainingpositiveS ,   

TABLE 7.1 

CHARACTERISTICS OF DATASETS USED FOR EXPERIMENTS 

Dataset Size Attr Ratio 

1 Pima Indians Diabetes 768 8 500:268 

1 Wisconsin Breast Cancer 683 9 444: 239 

1 Cleveland heart-disease 297 13 160:137 

1 Postoperative Patient 90 8 66:24 

2 Abalone 4177 8 4145:32 

2 Protein Localization Sites 1484 8 1433:51 

Note 1:  Size = # of cases after removing cases with missing data, Attr = 

# of input features, Ratio = # of negative cases : # of positive cases. 

Note 2:  16 cases in Wisconsin Breast Cancer dataset and 6 cases in 

Cleveland heart-disease dataset with missing values were removed. 

Note 3: Class “S” in Postoperative Patient dataset was defined as positive. 

Class “19” in Abalone dataset was defined as positive. Class “ME2” in 

Protein Localization Sites dataset was defined as positive. 
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1:4)_(:)_( =testingnegativeStrainingnegativeS ,   

where )(xS means the size of the dataset x. 

For each training/testing process, firstly the data is normalized so that each input feature has 0 

mean and 1 standard deviation on the training dataset; then two models are built: the first model 

is a general SVM, whose parameters ),( Cγ  are optimized by grid search and 4-fold inner cross 

validation. (For linear kernel, only C is optimized.) The second model is a GSVM-DC: Local 

Support Vectors are extracted by a linear SVM with 102−=C  in each granule that consists of the 

training samples in each fold. Because there are 4 granules, 4 sets of LSVs are extracted. And 

then the parameters are optimized in the similar way to SVM but on the smaller training dataset 

that is only composed of the LSVs. Finally performance on the 5 training/testing processes is 

aggregated (for misclassification errors) or averaged (for g-means values) for comparison. 

The above mentioned 5-fold outer cross validation is executed 5 times for 5 different random 

splitting on each dataset. 

For linear kernel, the grid search scope is limited in 

}.,2,2,2,2,2,2,2,2,2,2,2,2,2,2,22{ 543210-1-2-3-4-5-6-7-8-9-10∈C  

For RBF kernel, the grid search scope is limited in 

 

},2,2,2,2,2,2,2,2,2,22{ 420-2-4-6-8-10-12-14-16∈γ ,    

},2,2,2,2,2,2,2,22{ 1086420-2-4-6∈C . 

7.2.4 Results analysis on balanced datasets   

 

Tables 7.2-7.4 show the results on the first set of experiments. For linear kernel, performance of 

the two algorithms is almost the same. However, as we analyzed above, GSVM-DC is much 
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faster than SVM. That means GSVM-DC works both efficiently and effectively. Due to the small 

size of these datasets, the time differences are not significant so we don’t report them here. 

For RBF kernel, GSVM-DC is even a little more accurate than SVM with fewer errors. The 

results demonstrate that GSVM-DC can effectively clean the training dataset and avoid 

information loss at the same time, at least on the 4 datasets. For example, Table 7.2 shows that 

GSVM-DC (average test errors=175.2 with RBF kernel) is more accurate than SVM (average 

test errors=178.6 with RBF kernel) on Pima Indians Diabetes dataset. 

 

 

 

 

 

TABLE 7.4 

VALIDATION/TEST ERRORS ON CLEVELAND HEART-DISEASE DATASET 

Trial linear SVM 
linear 

GSVM 
RBF SVM 

RBF 

GSVM 

1 48/50 48/50 45/49 45/49 

2 46/45 46/45 46/45 46/45 

3 45/47 45/47 45/46 45/46 

4 47/47 47/47 46/49 46/48 

5 46/45 46/45 44/45 44/45 

Mean 46.4/46.8 46.4/46.8 45.2/46.8 45.2/46.6 

Std 1.14/2.05 1.14/2.05 0.84/2.05 0.84/1.82 

TABLE 7.3 

VALIDATION/TEST ERRORS ON WISCONSIN BREAST CANCER DATASET 

Trial linear SVM 
linear 

GSVM 
RBF SVM 

RBF 

GSVM 

1 22/23 22/23 21/26 21/24 

2 20/20 20/20 18/21 18/22 

3 21/21 21/21 20/24 20/21 

4 21/22 21/22 18/28 18/28 

5 20/22 20/22 20/23 20/21 

Mean 20.8/21.6 20.8/21.6 19.4/24.4 19.4/23.2 

Std 0.84/1.14 0.84/1.14 1.34/2.70 1.34/2.95 

TABLE 7.2 

VALIDATION/TEST ERRORS ON PIMA INDIANS DIABETES DATASET 

Trial linear SVM 
linear 

GSVM 
RBF SVM 

RBF 

GSVM 

1 173/176 173/172 170/178 170/175 

2 175/178 174/176 172/177 170/172 

3 176/177 176/176 172/182 174/180 

4 173/176 172/176 169/175 170/170 

5 176/178 176/177 173/181 173/179 

Mean 174.6/177 174.2/175.4 171.2/178.6 171.4/175.2 

Std 1.52/1 1.79/1.95 1.64/2.88 1.95/4.32 
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It seems that GSVM-DC is more possible to improve performance on RBF kernel than on linear 

kernel. One possible reason is that RBF kernel is more complex than linear kernel. Therefore, 

SVM with RBF kernel is more sensitive to redundant or noisy samples. Modeling only on LSVs 

eliminates the negative effect and hence improves performance of GSVM-DC. 

7.2.5 Results analysis on imbalanced datasets   

 

Tables 7.6 and 7.8 compare performance of two algorithms on the second group of datasets. 

Linear SVM and linear GSVM-DC are totally ineffective because both of them have 0 g-means 

values. The reason is that they classify every sample as negative so that TP is 0. 

For RBF kernel, GSVM-DC greatly improves performance on the imbalanced datasets. For 

Abalone dataset, the g-means value of GSVM-DC is 0.6030, averaged on 5 trials, which is much 

higher than SVM whose average g-means value is 0.0804. For Protein Localization Sites dataset, 

GSVM-DC (with g-means value=0.6138, average on 5 trials) is also significantly better than 

SVM (with average g-means=0.5393). Interestingly, SVM has higher validation g-means value 

but lower test g-means value than GSVM-DC. Once again, it shows that modeling only on LSVs 

eliminates the negative effect of redundant or noisy samples and hence improves classification 

performance.  

 

TABLE 7.5 

VALIDATION/TEST ERRORS ON POSTOPERATIVE PATIENT DATASET 

Trial linear SVM 
linear 

GSVM 
RBF SVM 

RBF 

GSVM 

1 25/24 25/24 24/27 25/26 

2 25/24 25/24 24/25 25/24 

3 25/24 25/24 25/24 25/24 

4 25/24 25/24 25/26 24/24 

5 25/24 25/24 25/25 25/24 

Mean 25/24 25/24 24.6/25.4 24.8/24.4 

Std 0/0 0/0 0.55/1.14 0.45/0.89 
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TABLE 7.7 

TIME(S)/AVGTRAINSIZE G-MEANS ON ABALONE DATASET 

Trial RBF SVM RBF GSVM 

1 1909/3342 51/69 

2 1902/3342 50/70 

3 2005/3342 55/68 

4 2012/3342 53/70 

5 1985/3342 54/65 

Mean 1963/3342 52.6/68.4 

Std 53.12/0 2.07/2.07 

TABLE 7.9 

TIME(S)/AVGTRAINSIZE G-MEANS ON PROTEIN LOCALIZATION SITES 

DATASET 

Trial RBF SVM RBF GSVM 

1 430/1187 27/91 

2 478/1187 30/91 

3 472/1187 29/92 

4 458/1187 27/90 

5 457/1187 29/91 

Mean 459/1187 28.4/91 

Std 18.55/0 1.34/0.71 

TABLE 7.8 

VALIDATION/TEST G-MEANS ON PROTEIN LOCALIZATION SITES DATASET 

Trial 
linear SVM 

(%) 

linear 

GSVM (%) 

RBF SVM 

(%) 

RBF 

GSVM (%) 

1 0/0 35.30/0 58.77/53.29 62.19/59.04 

2 1.58/0 25.38/0 61.33/56.56 59.24/59.23 

3 0/0 23.63/0 59.37/54.65 58.04/60.11 

4 0/0 22.72/0 65.22/49.03 61.26/62.72 

5 2.13/0 17.73/0 61.77/56.10 59.33/65.82 

Mean 0.74/0 24.95/0 61.29/53.93 60.01/61.38 

Std 1.03/0 6.45/0 2.54/3.02 1.68/2.88 

TABLE 7.6 

VALIDATION/TEST G-MEANS ON ABALONE DATASET 

Trial 
linear SVM 

(%) 

linear 

GSVM (%) 

RBF SVM 

(%) 

RBF 

GSVM (%) 

1 0/0 21.59/0 20.87/16.43 61.54/64.06 

2 0/0 19.63/0 9.86/8.14 62.53/59.94 

3 0/0 23.87/0 15.64/8.13 62.78/58.01 

4 0/0 31.87/0 16.29/7.50 61.13/59.48 

5 0/0 21.63/0 10.02/0 62.84/60.02 

Mean 0/0 23.72/0 14.54/8.04 62.16/60.30 

Std 0/0 4.80/0 4.65/5.82 0.78/2.25 
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Moreover, Tables 7.7 and 7.9 show that GSVM-DC with RBF kernel is also much faster than 

SVM with RBF kernel. For Abalone dataset, GSVM-DC averagely runs 52.6 seconds, while 

SVM needs 1963 seconds. The reason is that GSVM-DC greatly decreases the size of the 

training dataset from 3342 to 68.4, averagely. For Protein Localization Sites dataset, GSVM-DC 

averagely takes 28.4 seconds with the average training size 91, while SVM takes 459 seconds 

with the training size 1187. 

7.3 Discussion   

 

In this chapter, a new GSVM modeling algorithm, named GSVM-DC, is presented. It works by 

building a sequence of information granules and then extracting informative samples as Local 

Support Vectors while eliminating redundant samples in each granule. Finally, the LSVs are 

disjunctively combined to model a final SVM. In this way, the local significance of each granule 

and global correlation among different granules are elegantly trade-off. As a result, an accurate 

and fast classifier can be modeled. 

GSVM-DC is inherently an undersampling technology. The improvement on effectiveness for 

imbalanced datasets is expected to be more significant if we combine GSVM-DC with some 

oversampling technologies, such as SMOTE [24]. Algorithm design and simulations on larger 

and more complex datasets are currently in processing. 
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CHAPTER 8  

GSVM-RU 

Highly imbalanced classification is important and increasingly common with emergence of new 

machine intelligence application domains including biomedical informatics. In order to solve this 

challenging class imbalance problem, a novel Granular Support Vector Machines - Repetitive 

Undersampling algorithm (GSVM-RU) is designed in this work. GSVM-RU creatively utilizes 

Support Vector Machines (SVM) themselves for undersampling to minimize the negative effect 

of information loss while maximizing the positive effect of data cleaning in the undersampling 

process. Consequently, an accurate and fast classifier can be modeled. The empirical study on 

four benchmark imbalanced datasets demonstrates that GSVM-RU is both effective and efficient. 

Specifically, for the extremely imbalanced abalone dataset, GSVM-RU achieves 73.4±1.6% g-

means value, which is much higher than the best known result 57.8±5.4%. Another encouraging 

result is that GSVM-RU leads the extremely imbalanced KDDCUP 2004 protein homology 

prediction competition as of July/19/2005.  

8.1 Introduction   

 

8.1.1 Class Imbalance Problem   

 

Highly skewed data distribution induces the class imbalance problem that happens, in its 

simplest form, when there are significantly more negative samples than positive samples for a 

binary classification problem. (In this chapter, the majority class is always assumed to be 

negative and the minority class is positive.) The class imbalance problem is ubiquitous in 

machine intelligence applications, such as protein homology prediction, diagnosing medical 

diseases, credit card fraud detection, intrusion detection for national security, etc. Usually, for an 

imbalanced classification problem, it is of primary interest to find rare samples. 
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8.1.2 Traditional Algorithms 

 

Many methods have been proposed for imbalanced classification and some good results have 

been reported [25]. These methods can be categorized into three different classes: weight-

adjusting, boundary alignment, and sampling. Sampling can be further categorized into two 

subclasses: oversampling the minority class, or undersampling the majority class. Interested 

readers may refer to [106] for a good survey. However, the class imbalance problem is still not 

thoroughly investigated yet:  

• Most of current methods use Decision Trees (DT) as the basic classifier [48]. Although 

there are already some works on SVM for imbalanced classification [1,85,107], the 

application of SVM for undersampling is still unexplored. Because SVM decides the 

class label of a sample only based on Support Vectors (SVs), which are the training 

samples close to the decision boundary, the modeling effectiveness and efficiency may be 

improved for imbalanced classification in a SVs-based undersampling way.  

• From the viewpoint of granular computing, most of current methods, including cost-

sensitive boosting, bagging, undersampling the majority class, or oversampling the 

minority class, actually can be viewed as granular-computing-based because all of them 

try to form multiple information granules with suitable numbers and suitable sizes (See 

Section 2 for a brief introduction of granular computing). It is interesting to try to solve 

the class imbalance problem systematically in the framework of granular computing. 

8.1.3 SVM for Imbalanced Classification 

 

SVM embodies the Structural Risk Minimization (SRM) principle to minimize an upper bound 

on the expected risk [102,19]. Because structural risk is a reasonable trade-off between the 

training error and the modeling complication, SVM has a great generalization capability. 
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Geometrically, the SVM modeling algorithm works by constructing a separating hyperplane with 

the maximal margin.  

Compared with other standard classifiers, SVM performs better on moderately imbalanced 

datasets. The reason is that only SVs are used for classification and many negative samples 

which are far from the decision boundary can be removed without affecting classification [1]. 

However, performance of SVM is significantly deteriorated on the highly imbalanced datasets. 

For this kind of datasets, the SRM principle becomes unsuitable because it is prone to find the 

simplest model that best fits the training dataset. Unfortunately, the simplest model is exactly the 

naive classifier that classifies all samples as negative. 

Another disadvantage of SVM is that it is an expensive )( 2
nO  algorithm. Usually, the grid search 

heuristic [46] is used to find optimal SVM parameters. For large datasets, it is very time-

consuming, especially when some non-linear kernel (for example, Radial Basis Function kernel) 

is applied. 

There are already some works that are targeted at improving effectiveness of SVM for highly 

imbalanced classification: 

Akbani et al proposed the SMOTE with Different Costs algorithm (SDC) [1]. SDC oversamples 

the minority class by applying Synthetic Minority Over-sampling TEchnique (SMOTE) [24], a 

popular oversampling algorithm, with different error costs. As a result, the boundary of the 

learned SVM can be better defined and far away from the minority class.  

Raskutti et al explored effects of different imbalanced compensation techniques on SVM [85]. 

They demonstrated that a one-class SVM learned only from the minority class sometimes can 

perform better than a SVM modeled from two classes. 
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Wu et al proposed the Kernel Boundary Alignment algorithm (KBA) which adjusts the boundary 

toward the majority class by directly modifying the kernel matrix [107]. In this way, the 

boundary is expected to be closer to the “ideal” boundary. 

8.1.4 GSVM-RU for Imbalanced Classification 

 

In this chapter, we creatively utilize the advantage of SVs-based classification to design a novel 

Granular Support Vector Machines–Repetitive Undersampling algorithm (GSVM-RU) under the 

principle of granular computing.  

As above-mentioned, only SVs of a SVM classifier are related to classification. So the intuitive 

idea is to extract SVs as the new training dataset while eliminating the non-SVs samples for 

undersampling. However, information loss may happen by extracting SVs only once. Firstly, 

whether a sample is extracted to be a SV is sensitive to SVM parameters. Secondly, the highly 

skewed data distribution pushes the boundary toward the minority class [107]. As a result, some 

informative samples may be lost.  

GSVM-RU extracts SVs multiple times to build multiple information granules, and then the 

information in these granules is fused in a data-dependant way for classification. Our theoretical 

and empirical studies below show that GSVM-RU can achieve better data distribution with much 

fewer training samples than the original dataset. Consequently classification performance can be 

improved in terms of both effectiveness and efficiency. 

The rest of the chapter is organized as follows. In Section 8.2, GSVM-RU is presented in detail. 

Section 8.3 evaluates performance of GSVM-RU on three highly imbalanced life science 

datasets. Section 8.4 reports performance of GSVM-RU on the KDDCUP04 protein homology 

prediction task. Finally, Section 8.5 concludes the chapter. 
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8.2 GSVM-RU algorithm   

 

Under the framework of GSVM, GSVM-RU is designed to attack highly imbalanced 

classification problems.  

8.2.1 GSVM-RU 

 

Usually, the grid search heuristic [46] is adopted for SVM modeling: different parameter grids 

are tried to find which one has the best training (or validation) performance. It is time-consuming 

due to usually large datasets and the large parameter space. 

To improve efficiency, it is natural to decrease the size of the training dataset. In this sense, 

undersampling is by nature more suitable to model a SVM for imbalanced classification than 

other approaches. 

However, elimination of some samples from the training dataset may have two effects:  

• information loss: due to elimination of informative or useful samples, classification 

performance is deteriorated;  

• data cleaning: because of elimination of irrelevant or redundant or noisy samples, 

classification performance is improved.  

Our goal is to minimize the negative effect of information loss and to maximize the positive 

effect of data cleaning. 

For a highly imbalanced dataset, it is expected that there are many redundant or even noisy 

negative samples. Random undersampling is the most common undersampling approach for 

rebalancing the dataset to achieve better data distribution. However, random undersampling 

suffers from information loss. As Fig. 8.1(a) shows, although random undersampling makes the 

distance of the learned boundary close to the distance of the ideal boundary, the cues about the 

orientation of the ideal boundary may be lost [1]. 
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In this work, we creatively utilize SVM itself for undersampling. The idea is based on the well-

known fact about SVM: only SVs are necessary and other samples can be safely removed 

without affecting classification. This fact motivates us to explore the potentiality to utilize SVM 

for data cleaning/undersampling.  

Unfortunately, due to the highly skewed data distribution, the SVM modeled on the original 

training dataset is prone to classify every sample to be negative. As a result, a single SVM 

cannot guarantee to extract all informative samples as SVs, no matter which kernel and which 

parameters are used.  

We believe that GSVM is a promising way to reduce information loss. The assumption is that 

although a single SVM is not enough to extract all informative samples, it does be able to extract 

a part of them. Under this assumption, multiple information granules with different informative 

samples can be formed by the following granulation operations: Firstly, we assume that all 

positive samples are informative to form a positive information granule. Secondly, negative 

samples extracted by a SVM as SVs are also possibly informative so that they form a negative 

information granule. Here we call these negative samples as Negative Local Support Vectors 

(NLSVs). And then the NLSVs are removed from the original training dataset to produce a 

smaller training dataset, on which a new SVM is modeled to extract another group of NLSVs. 

This process is repeated several times to form multiple negative information granules. 

 After that, an aggregation operation is executed to selectively aggregate the samples in these 

negative information granules with all positive samples to complete the undersampling process. 

Finally, a SVM is modeled on the aggregated dataset for classification. Fig. 8.2 sketches the 

GSVM-RU algorithm. 
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Figure. 8.2. GSVM-RU algorithm 

IdealIdeal

(a) randomly undersampling (b) GSVM-RU undersampling

Learned Learned

Original
Original

the dot line - the ideal boundary
the dash line - the boundary learned from the original dataset

the solid line - the boundary learned from the undersampling dataset 

Figure. 8.1. GSVM-RU can still give good cues on the orientation of the ideal boundary while 

make the distance close to the ideal one. 
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As demonstrated in Fig. 8.1(b), because only the circled negative samples are removed from the 

original dataset, GSVM-RU undersampling can still give good cues about the orientation of the 

ideal boundary, and hence can overcome the shortcoming of random undersampling as 

mentioned earlier. 

To make GSVM-RU an utilizable algorithm, there are still three problems: (1) how to select 

kernels and parameters to extract NLSVs? (2) how many negative information granules should 

be formed? and (3) how to aggregate the samples in these information granules? 

In this work, linear SVMs are adopted for undersampling. The obvious advantage by using linear 

SVMs is the efficiency reason: for a linear SVM, only the regulation parameter C needs to be 

tuned so that the parameter space for grid search is much smaller. (As a comparison, two 

parameters ),( Cγ  need to be tuned for a SVM with the RBF kernel). As a result, a linear SVM is 

easier and faster to be modeled than a non-linear kernel SVM. Furthermore, although a single 

linear SVM may lose information, running it multiple times based on the above-mentioned 

granulation idea can extract most, if not all, informative samples. (Actually, the RBF SVM is 

also used for undersampling in our simulations. However, no obvious performance gain is 

observed.) 

As we know, SVM tries to find the optimal decision boundary by trade-off between the margin 

width and the training accuracy. The regulation parameter C is used for misclassification errors 

penalty. Different C values result in different SVs. So we can adjust C to control the information 

extracted for one granule. The optimal C value is data-dependant and can be searched by cross 

validation.  

For the similar reason to reduce information loss, more negative information granules are 

preferred than less negative information granules. However, some non-informative samples may 
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also be extracted as NLSVs. As a result, some granules which are not really informative should 

be eliminated from the final aggregated dataset. In GSVM-RU, the granulation operation and the 

aggregation operation are executed iteratively. The undersampling process is stopped if 

classification performance cannot be further improved when a new negative granule is extracted 

and the corresponding NLSVs are aggregated into the final dataset. 

In general, if Ng ∈  granules are extracted, there are 2g possible aggregation ways. For simplicity 

and efficiency, two special aggregation operations are adopted in this work: 

• The first aggregation operation is called “discard”: when a new negative granule is 

extracted, only negative samples in this granule are aggregated into the new aggregation 

dataset and all samples in old negative granules are discarded. This operation is based on 

an assumption mentioned in [1,107]: for a highly imbalanced classification problem, the 

majority class pushes the “ideal” decision boundary toward the minority class. So if old 

NLSVs are discarded, the decision boundary is expected to be closer to the ideal one. The 

repetitive undersampling process is stopped when the new extracted granule alone cannot 

further improve classification performance. 

• The second aggregation operation is called “combine”: when a new granule is extracted, 

it is combined with all old granules to form a new aggregation dataset. The assumption is 

that not all informative samples can be extracted as NLSVs in one granule. As a result, it 

is expected to reduce information loss by extracting NLSVs multiple times. The 

repetitive undersampling process is stopped when the new extracted granule cannot 

further improve classification performance if joint with old granules. 
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8.2.2 Time Complexity Analysis 

 

In grid search, suppose there are Nd ∈1 groups of parameters on the SVM for undersampling and 

Nd ∈2 groups of parameters on the SVM for classification; Suppose also there are Nn∈  training 

samples in the original training dataset and Nm∈  informative samples in the aggregated dataset 

after g times undersampling. If SVM modeling needs )*( 2
2 ndO  time, GSVM-RU approximately 

takes )***( 2
2

2
1 mdngdO + . If the number of informative samples is much less than the size of the 

original training dataset )( nm <<  and the parameter space for GSVM-RU is smaller than the 

parameter space for the classification SVM )*( 21 dgd <  (which is true here because the linear 

SVM is used for undersampling and the RBF SVM is used for classification), the modeling time 

can be reduced compared with directly modeling a SVM on the original training dataset for 

classification. 

8.3 Simulations on the First Group of Datasets 

 

The hardware used in the simulations is a laptop with centrino-1.6MHz CPU and 1024M 

memory. The software is based on OSU SVM Classifier Matlab Toolbox [67], which 

implements a Matlab interface to LIBSVM [23]. 

8.3.1 Evaluation Metric and Datasets 

 

For highly imbalanced datasets, accuracy is virtually useless to evaluate a classifier’s 

performance. Kubat et al [56] proposed g-means as defined in Eq. 1 and Fig. 3, which is the 

geometric mean of classification accuracy on negative samples and classification accuracy on 

positive samples. This metric has been broadly used by many researchers to evaluate 

classification performance on imbalanced datasets. We also adopt g-means here. The three 

datasets in Table I are used in our simulations. 
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8.3.2 Data Modeling 

 

We run GSVM-RU on each dataset for 7 times.  

For the yeast dataset and the abalone dataset, in each run, the original dataset is randomly split 

into 7 equal-sized subsets in a stratified way so that the majority/minority ratio is the same for 

each subset. 

After that, each subset is left for testing in turn and other 6 subsets are combined for training. For 

each training/testing process, firstly the data is normalized so that each input feature has 0 mean 

and 1 standard deviation on the training dataset; then GSVM-RU is executed on the normalized 

training dataset: the model parameters are optimized by grid search with 6-fold inner cross 

validation. (Notice that SVMs used for undersampling are with the linear kernel, and SVMs used 

for classification are with the RBF kernel.) Finally each sample is used for testing one and only 

one time, and thus the testing performance is calculated and reported. The validation 

performance averaged on the 7 training/testing processes is also reported. 

For the mammography dataset, the original dataset is randomly split into 10 equal-sized subsets 

in the stratified way and 9-fold inner cross validation is used to optimize the model parameters in 

each training/testing process.  

The GSVM-RU undersampling process is repeated until classification performance cannot be 

improved by aggregating the latest NLSVs.  

As mention in Section 2, to some extent, the regulation parameter C of a linear SVM can be 

adjusted to control how many informative samples are extracted to form an information granule. 

In our preliminary simulations, we validate this idea: for the yeast dataset and the abalone 
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dataset, more SVs can be extracted with the increase of the C value (Fig. 8.4 and Fig. 8.5); while 

for the mammography dataset, less SVs are extracted with the increase of the C value (Fig. 8.6).  

8.3.3 Result Analysis 

 

For the yeast dataset, the best validation performance is observed when the “discard” aggregation 

operation is adopted and the 7th granule is used as the final aggregation dataset. The result 

indicates that the first assumption (the decision boundary is pushed toward the minority class) is 

reasonable on the yeast dataset. When the NLSVs in the old granules are discarded, the decision 

boundary gradually goes back to the “ideal” one and thus classification performance is improved 

(Fig. 8.7). After the 8th granule is extracted, too many informative samples are discarded so that 

classification performance is deteriorated. And hence the repetitive undersampling process is 

stopped. 

For the abalone dataset, the best validation performance is observed when the “combine” 

aggregation operation is adopted and the first 5 granules are combined to form the final 

aggregation dataset. The result indicates that the second assumption (a part but not all of 

informative samples can be extracted in one granule) is reasonable on the abalone dataset. When 

more and more informative samples are combined into the aggregated dataset, information loss is 

less and less so that better performance can be achieved (Fig. 8.8). However, when the 6th 

granule is extracted and combined into the aggregation dataset, the validation performance can 

not be improved. The reason is that the new extracted samples are too far from the “ideal” 

boundary so that they are prone to be redundant or irrelevant other than informative. And hence 

the repetitive undersampling process is stopped.  

For the mammography dataset, the best validation performance is observed when the first 

granule is used as the final aggregation dataset. Both the “discard” operation and the “combine” 
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operation are not effective to improve classification performance further (the results are not 

shown here). One possible reason is that enough informative samples have been extracted in the 

first granule. Another possible reason is that the aggregation operations used here are not general 

enough. It is an interesting future work to try more general aggregation operations. For example, 

maybe classification performance can be improved by discarding the 2nd granule and combining 

the 1st one and the 3rd one. 
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TABLE 8.1 

CHARACTERISTICS OF DATASETS USED FOR SIMULATIONS 

 

Dataset Attr Size 
#positive 

(positive%) 

Yeast 0 8 1484 51 (3.44%) 

Abalone 0 8 4177 32 (0.77%) 

Mammography 

Error! Reference 

source not found. 

6 11183 260 (2.32%) 

Note 1:  Attr = # of input features, Size = # of cases. 

Note 2: Class “ME2” in the yeast dataset is defined as

 
real 

negatives 

real 

positives 

predicted 

negatives 
TN FN 

predicted 

positives 
FP TP 

Figure. 8.3. the confusion matrix 
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Figure. 8.4. a larger C value results in more Support Vectors  

on the yeast dataset 

 

 
Figure. 8.5. a larger C value results in more Support Vectors  

on the abalone dataset 

 

 
Figure. 8.6. a larger C value results in less Support Vectors  

on the mammography dataset 
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Figure. 8.8. results of different granules for the abalone dataset with the 

“combine” operation averaged on the 7 runs 

Figure. 8.7. results of different granules for the yeast dataset with the 

“discard” operation averaged on the 7 runs 
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TABLE 8.3 

VALIDATION/TEST G-MEANS ON ABALONE DATASET (THE FIRST 5 

GRANULES, 7-6-FOLDS DOUBLE CV) 

 

Trial Validation Test 

1 76.04 75.01 

2 75.76 73.55 

3 74.97 70.15 

4 75.45 74.81 

5 74.40 73.23 

6 74.74 73.57 

7 76.57 73.50 

GSVM-RU 75.4±0.8 73.4±1.6 

KBA 0 N/A 57.8±5.4 

 

TABLE 8.4 

VALIDATION/TEST G-MEANS ON MAMMOGRAPHY DATASET (THE 

FIRST GRANULE, 10-9-FOLDS DOUBLE CV) 

 

Trial Validation (%) Test  (%) 

1 83.16 83.83 

2 83.93 83.63 

3 83.20 83.63 

4 82.27 83.33 

5 84.05 84.75 

6 83.91 84.50 

7 83.98 83.42 

GSVM-RU 83.5±0.7 83.9±0.6 

 

TABLE 8.2 

VALIDATION/TEST G-MEANS ON YEAST DATASET (THE 7TH 

GRANULE, 7-6-FOLDS DOUBLE CV) 

 

Trial Validation Test 

1 84.37 83.94 

2 84.28 83.11 

3 84.77 84.93 

4 84.20 84.04 

5 85.18 84.01 

6 84.43 84.04 

7 85.48 85.06 

GSVM-RU 84.7±0.5 84.2±0.7 

KBA 0 N/A 82.2±7.1 
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Table 8.2 and Table 8.3 compare GSVM-RU with KBA [107] in terms of the g-means 

metric on the yeast dataset and the abalone dataset, respectively. The g-means value is 

increased from   82.2±7.1% to 84.2±0.7% for the highly imbalanced yeast dataset, and 

significantly increased from   57.8±5.4% to 73.4±1.6% for the extremely highly 

imbalanced abalone dataset. Notice that in Wu’s work [107], for each random splitting, 

only one subset is used for testing and other six subsets are combined for training; in our 

work, every subset is used for testing in turn. So the performance improvement is 

statistically more reliable. 

To our best knowledge, no results on the g-means metric have been reported for the 

mammography dataset in the literature. Table 8.4 reports performance of GSVM-RU and 

the result (83.9±0.6%) is quite promising. 

Moreover, Table 8.5 compares the modeling time between GSVM-RU and a RBF SVM 

optimized by grid search. For the yeast dataset, GSVM-RU averagely takes 37 seconds, 

while SVM takes 643 seconds. For the abalone dataset, GSVM-RU averagely runs 447 

seconds, while SVM needs 2748 seconds. The higher speed of GSVM-RU is due to the 

significantly smaller training size by undersampling the majority class. As a comparison, 

KBA even needs more time than SVM [107].  

8.4 Simulations on the KDDCUP 2004 Protein Homology Prediction Dataset 

 

The same hardware and software as the first group of simulations are adopted. 

8.4.1 Granular Computing and GSVM Dataset and Evaluation Metrics 

 

The KDDCUP 2004 protein homology prediction task at 

http://kodiak.cs.cornell.edu/kddcup/index.html is used in the second group of 

simulations. The detailed characteristics of the dataset are listed in Table 8.6. The task 
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can be modeled as a binary classification problem: Given a protein sequence, the task is 

to predict whether it is homologous to the corresponding native sequence or not. There 

are 153 native sequences in the training dataset and 150 native sequences in the testing 

dataset. For each native sequence, there is a block of approximately 1000 protein 

sequences with class label (1 means homologous and 0 means non-homologous). The 

class labels of protein sequences in the testing dataset are kept secret. 74 features are 

provided to describe the match (e.g. the score of a sequence alignment) between the 

native protein sequence and the sequence that is tested for homology. The problem is 

extremely highly imbalanced: there are only 1296 homologous protein sequences from 

altogether 145751 ones in the training dataset. 

Four metrics are used for performance measures: 

• TOP1: fraction of blocks with a homologous sequence ranked top 1 (maximize) 

• RMSE: root mean squared error averaged on blocks (minimize) 

• RKL: average rank of the lowest ranked homologous sequence (minimize) 

• APR: average of the average precision in each block. For a single block, APR 

could be approximately described as the area of precision-recall curves. 

(maximize) 

RMSE is a metric for accuracy evaluation and is easier to show the differences between 

models than directly using accuracy. The other 3 metrics are rank-based, which means 

that the 3 metrics’ values are decided by the order of ranking list, and the absolute values 

of predictions do not affect the performances. The four metrics are precisely defined in 

perf [20]. In the simulation, we use the corresponding code to calculate the four metrics. 
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8.4.2 Data Modeling 

 

Firstly the data is normalized so that each input feature has 0 mean and 1 standard 

deviation in each block. The reason for normalizing in each different block separately is 

that protein sequences in different blocks are in different protein families, which may be 

remote so that similar absolute feature vectors are not necessary to mean similar 

homology behaviors.  

Similar to [36], GSVM-RU is tuned by grid search with 153-folds cross validation:  each 

block is left for validation in turn and other 152 blocks are used for training. In each 

training/validation process, linear SVMs are modeled on each training block for 

undersampling and then all extracted informative samples are aggregated to model a RBF 

SVM for prediction.  

GSVM-RU is tuned for each of the four metrics separately. Finally, the model parameters 

with the best validation performance are used to retrain a GSVM on all of the 153 blocks. 

The GSVM is used to make prediction on the testing dataset. 

The GSVM-RU undersampling process is repeated until the validation performance 

cannot be improved by aggregating the latest NLSVs. Due to the efficiency issue, the 

regulation parameter C of linear SVMs for undersampling is fixed to be 1, and only the 

“discard” operation is adopted for aggregation. 

 

 

 

TABLE 8.5 

MODELING TIME COMPARISON AVERAGED ON 7 RUNS 

BETWEEN SVM AND GSVM-RU 

 

 
RBF-SVM 

(seconds) 

GSVM-RU  

(seconds) 

Yeast 643±26 37±3 

Abalone 2748±74 447±18 
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8.4.3 Result Analysis 

 

Our solution has the best average rank over the four metrics in the ongoing KDDCUP 

2004 protein homology prediction contest as of 07/19/2005 at 

http://kodiak.cs.cornell.edu/cgi-bin/newtable.pl?prob=bio. Table 8.7 summarizes the 

result. 

For the TOP1 metric, the best validation performance 0.9020 is achieved when the 1st 

granule is used as the final aggregation dataset. The testing performance is 0.9000, which 

ranks 6.5th. 

For the RMSE metric, the best validation performance 0.03553 is achieved when the 1st 

granule is used as the final aggregation dataset. The testing performance is 0.03529, 

which ranks 2nd. 

For the RKL metric, the best validation performance 40.54 is achieved when the 7th 

granule is used as the final aggregation dataset. The testing performance is 45.88, which 

ranks 2nd. 

TABLE 8.7 

VALIDATION/TEST PERFORMANCE ON KDDCUP04 PROTEIN HOMOLOGY PREDICTION TASK (153-FOLDS CV) AS OF 07/19/2005 

 

 
TOP1 

(maximize) 

RMSE 

(minimize) 

RKL 

(minimize) 

APR 

(maximize) 
average 

validation 0.9020 0.03553 40.54 0.84723 N/A 

test 0.9000 0.03529 45.88 0.84184 N/A 

rank 6.5 2 2 2 3.125 (the best) 

 

 

TABLE 8.6 

CHARACTERISTICS OF KDDCUP04 PROTEIN HOMOLOGY PREDICTION DATASETS 

 

Dataset Block Size Attr #positive (positive%) 

Training 153 145751 74 1296 (0.89%) 

Testing 150 139658 74 N/A 

Note:  Block = # of blocks, Size = # of protein sequences, Attr = # of input features. 
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For the APR metric, the best validation performance 0.84723 is achieved when the 10th 

granule is used as the final aggregation dataset. The testing performance is 0.84184, 

which ranks 2nd. 

The results demonstrate that the first assumption (the decision boundary is pushed toward 

the minority class) is reasonable for RKL and APR metrics. When the NLSVs in the old 

granules are discarded, the decision boundary gradually goes back to the “ideal” one and 

thus prediction performance is improved. 

For TOP1 and RMSE metrics, the “discard” operation is not effective to improve 

prediction performance further. One possible reason is that enough informative samples 

have been extracted from the first granule. Another possible reason is that the “discard” 

operation is not the most suitable aggregation operation. We have not tried other more 

expensive operations due to the huge size of the KDDCUP 2004 protein homology 

prediction dataset. 

8.5 Summary 

 

A new learning model called Granular Support Vector Machines is proposed in this work. 

GSVM systematically and formally combines the methodologies from statistical learning 

theory and granular computing theory. In this work, a new GSVM modeling algorithm, 

named GSVM-RU, is designed specifically for highly imbalanced classification 

problems. GSVM-RU builds a sequence of information granules by repetitively 

extracting informative samples as SVs. Finally, the samples in these granules are 

selectively aggregated to model a SVM for final classification. In this way, the local 

significance of each granule and global correlation among different granules are elegantly 

trade-off. GSVM-RU is efficient because of usually much smaller size of the after-
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undersampling aggregation dataset compared to the original training dataset. It is also 

effective due to  

• reservation of informative samples which are essential for classification and  

• elimination of large quantities of redundant or even noisy samples which may 

confuse a classifier to find the optimal decision boundary. 

GSVM-RU is inherently an undersampling algorithm. The improvement on effectiveness 

seems more significant if the imbalance degree is higher. As two benchmarks, GSVM-

RU greatly improves the g-means value on extremely imbalanced abalone dataset (the 

positive ratio is 0.77%) and leads the ongoing KDDCUP 2004 protein homology 

prediction contest (the positive ratio is 0.89%). 

The performance is expected to be improved further if we combine GSVM-RU with 

some oversampling approaches, such as SMOTE [24], or boosting meta-learning 

techniques, such as SMOTEBoost [26]. Algorithm design and simulations on larger and 

more complex datasets are currently in processing. In the future, parallel GSVM-RU will 

also be investigated to speed up learning significantly. 



  138  

 

CHAPTER 9  

CONCLUSIONS AND FUTURE WORKS 

9.1 Conclusion 

 

A classification problem is a predictive data mining problem where the unknown variable 

is categorical. Samples of different classes are accumulated, on which a classifier is 

trained to predict future samples. With emergence of E-business, Web intelligence and 

biomedical informatics, new challenges are coming. Among them, noise, non i.i.d., high 

dimensionality and imbalance are four especially interesting ones due to their 

pervasiveness in datasets from these application domains.  

In this work, a framework named Granular Support Vector Machines (GSVM) is 

proposed to systematically and formally combine statistical learning theory, granular 

computing theory and soft computing theory to enhance effectiveness, efficiency and/or 

interpretability of classification on complex datasets [93-100]. In general, GSVM works 

by building a sequence of information granules and then modeling Support Vector 

Machines (SVM) in some of these information granules when necessary. A good 

granulation method to find suitable granules is crucial for modeling a GSVM with good 

performance. 

Under this framework, many algorithms have been proposed to build a GSVM model for 

classification problems with different characteristics. Specifically, GSVM-RFE 

(recursive feature elimination) algorithm was proposed for high-dimensional cancer 

classification. The empirical study demonstrates that GSVM-RFE can make much more 

reliable prediction on microarray expression data compared to previous approaches. 

Another GSVM-RU (repetitive undersampling) algorithm was proposed for highly 
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imbalanced classification. GSVM-RU ranks as one of the best solutions in ACM 

KDDCUP04 competition for protein homology prediction and ranks #1 in the US in 

DMC05 competition for customers’ online shopping behavior prediction. 

9.2 Long vision 

 

A lot of data mining algorithms have been proposed by scientists from different research 

communities such as database, machine learning, statistics, soft computing, etc. Each 

algorithm has its own advantages and also its own disadvantages. For a specific data 

mining task, which algorithm is the best is highly data dependant. That means, before we 

touch the data, we can not know which algorithm is the most suitable for the problem at 

hand. As a result, it is desirable to design a hybrid and adaptive data mining system.  

 

 

 

Our long term research goal is to build a hybrid intelligent predictive data modeling 

framework with the ideas of granular computing (named GrC-PDM). With GrC-PDM 
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Figure. 9.1.  GrC-PDM 
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framework, we can build adaptive knowledge discovery and data mining systems to 

provide effective and efficient decision support for drug design, disease diagnosis, credit 

card fraudulent detection, spam filtering, and many other applications. This dissertation 

work can be viewed as one preliminary step toward the goal.  
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