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In the portfolio risk-factor frameworks that underpin both industry models of credit value-at-

risk (VaR) and the Internal Ratings-Based (IRB) risk weights of Basel II, credit risk in a portfolio

arises from two sources, systematic and idiosyncratic. Systematic factors represent the effect of

unexpected changes in macroeconomic and financial market conditions on the performance of bor-

rowers. Borrowers may differ in their degree of sensitivity to systematic risk, but few firms are

completely insulated from the wider economic conditions in which they operate. Therefore, the

systematic component of portfolio risk is unavoidable and only partly diversifiable. Idiosyncratic

factors represent the risks that are particular to individual borrowers. As a portfolio becomes more

fine-grained, in the sense that the largest individual exposures account for a vanishing share of total

portfolio exposure, idiosyncratic risk is diversified away at the portfolio level.

In some settings, including the IRB approach of Basel II, the computation of VaR is dra-

matically simplified if it is assumed that bank portfolios are perfectly fine-grained, that is, that

idiosyncratic risk has been fully diversified away, so that portfolio loss depends only on systematic

risk. Real-world portfolios are not, of course, perfectly fine-grained. When there are material name

concentrations of exposure, there will be a residual of undiversified idiosyncratic risk in the portfo-

lio. The impact of undiversified idiosyncratic risk on VaR can be approximated analytically via a

methodology known as granularity adjustment. In principle, the granularity adjustment (GA) can

be applied to any risk-factor model of portfolio credit risk. Thus far, however, analytical results

have been derived only for simple models of actuarial loss, i.e., credit loss due to default. The

implicit view appears to be that the GA would be tedious to derive, or perhaps even intractable,

for the more complicated models of mark-to-market credit loss. Large banks typically model credit

loss in market value terms, and even the model underpinning the IRB approach of Basel II is in

this advanced class.1 In this paper, we demonstrate that the GA is in fact entirely tractable for a

large class of models that includes single-factor versions of all the commonly used mark-to-market

approaches. If notation is chosen judiciously, the resulting derivations and calculations are concise

and straightforward.

In Section 1, we review the established results in the literature on granularity adjustment and

introduce the basic notation. Our general solution for mark-to-market models is given in Section

2. This solution covers both finite ratings-based models and models with a continuum of obligor

states. In Section 3, we apply our methodology to CreditMetrics and KMV Portfolio Manager as

these are the benchmark models for the finite and continuous classes, respectively. Comparative

statics with respect to model parameters are explored in Section 4. Some of the comparative statics

appear counterintuitive at first glance, so in Section 5 we explain these results with a stylized model

of portfolio risk.

1The IRB risk-weight formulae for corporate loans (Basel Committee on Bank Supervision, 2006, ¶272) are
organized in a way that visually suggests actuarial concepts, but the maturity adjustment maps to capital charges
derived in a mark-to-market setting (see Gordy and Lütkebohmert, 2010, §1).
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1 Granularity adjustment

For simplicity in exposition, we first consider risk-measurement for a portfolio of n homogeneous

positions. We wish to model the portfolio loss rate, L̃, at a fixed horizon t = H with current time

normalized to t = 0. Let Li denote the loss at the horizon on position i (expressed as a percentage

of current value), so that the portfolio loss rate is simply

L̃ =
1

n

n∑
i=1

Li. (1)

For a given target solvency probability q ∈ (0, 1), value-at-risk is defined as the qth percentile of

the distribution of loss. Let αq(Y ) denote the qth percentile of the distribution of random variable

Y , i.e.,

αq(Y ) ≡ inf{y : Pr(Y ≤ y) ≥ q}. (2)

In terms of this more general notation, VaR is αq(L̃).

Let X denote the set of systematic risk factors that are realized at the horizon. A critical

assumption of all risk-factor portfolio models is that all dependence in loss across positions is due

to common dependence on X, so that Li is independent of Lj when conditioned on X. As n grows

to infinity, all idiosyncratic sources of risk vanish, so |L̃−E[L̃|X]| → 0, almost surely. This implies

that αq(L̃) → αq(E[L̃|X]) as n → ∞. This result is especially useful when X is univariate and

conditional expected loss is increasing in X, and we henceforth impose these assumptions. Subject

to mild restrictions, αq(E[L̃|X]) is equal to E[L̃|αq(X)], which is easily calculated in analytical

form.

The difference αq(L̃)−αq(E[L̃|X]) represents the effect of undiversified idiosyncratic risk in the

portfolio. This difference cannot be obtained in analytical form, but we can construct an asymptotic

approximation in orders of 1/n.

αq(L̃)− αq(E[L̃|X]) = − 1

n

1

2h(αq(X))

d

dx

(
V[L1|X = x]h(x)

dE[L1|X=x]
dx

)∣∣∣∣∣
x=αq(X)

+ o(1/n), (3)

where h(·) is the density of X. The dominant term on the right hand side is the granularity

adjustment.

The GA extends naturally to heterogeneous portfolios. Let Ai be the current size of exposure

i. This is the face value of the instrument in an actuarial setting, and is the current market value

in a mark-to-market setting. Let ai = Ai/
∑n

j=1Aj be the portfolio weights. Imposing minor

restrictions on the sequence A1, A2, . . . so that the
∑n

i=1 a
2
i → 0 as n→∞ (see Assumption (A−2)

2



in Gordy, 2003), we have

GA =
−1

2h(αq(X))

d

dx

(
V[L̃|X = x]h(x)

dE[L̃|X=x]
dx

)∣∣∣
x=αq(X)

(4)

This form of the GA was first suggested by Wilde (2001). Martin and Wilde (2002) gave a more rig-

orous derivation of Wilde’s formula based on theoretical work by Gouriéroux, Laurent, and Scaillet

(2000). Gordy (2004) presents a survey of these developments and a primer on the mathematical

derivation.2

The GA of equation (4) applies under either accounting paradigm for loss.3 Under an actuarial

definition, loss Li on position i is the product of a default indicator for i and the loss given default

(LGD) suffered on that position. LGD is expressed as a percentage of exposure and may itself be

stochastic. Heretofore, all applications of the GA to portfolio credit risk have been in an actuarial

setting. Wilde (2001) provides analytical solutions to equation (4) for the CreditRisk+ model and

for an actuarial version of the CreditMetrics model. Analysis of CreditMetrics is developed further

by Emmer and Tasche (2005). Even for the special case of a homogeneous portfolio and zero

recovery on defaulted loans, the Emmer and Tasche solution suggests some complexity. Expressed

in the notation to be introduced below, we have

GA = − 1

n

1

2
√
ρ√

1−ρφ
(
C0−αq(X)

√
ρ√

1−ρ

)[ √
ρ

√
1− ρ

φ

(
C0 − αq(X)

√
ρ

√
1− ρ

)(
1− 2Φ

(
C0 − αq(X)

√
ρ

√
1− ρ

))

+ αq(X) +

√
ρ

√
1− ρ

C0 − αq(X)
√

(ρ)√
1− ρ

Φ

(
C0 − αq(X)

√
ρ

√
1− ρ

)
Φ

(
αq(X)

√
ρ− C0√

1− ρ

)]
(5)

The original result, in Emmer and Tasche (2005, Remark 2.3), incorrectly has a minus sign in place

of the second plus sign on the second line of equation (5). The same sign error is found in the more

general result in Proposition 2.2 of that paper. The obscurity of this error, which we believe has

not been noticed until now, perhaps reflects the opacity of the formulae.

In a mark-to-market setting, “loss” is an ambiguous concept. One needs to choose a reference

point (i.e., the value of the instrument that counts as zero loss) and a convention for discounting

to the present. A typical definition is the difference between expected return and realized return,

discounted back to today at the riskfree rate. Return is defined as the ratio of market value at

the horizon (inclusive of cashflows received during the period (0, H], accrued to the horizon at the

2Gordy and Lütkebohmert (2010) address practical considerations for application to Basel II. Granularity ad-
justment has also been applied to option pricing (Gagliardini and Gouriéroux, 2009), pricing and risk-measurement
of CDOs (Antonov et al., 2005), econometrics (Gouriéroux and Monfort, 2009/10; Gouriéroux and Jasiak, 2008),
simulation methods (Gordy and Juneja, forthcoming), and modeling systemic risk contributions in banking systems
(Tarashev et al., 2010).

3When applied in a mark-to-market setting, mild additional restrictions are required to bound the conditional
second moment of portfolio loss (Gordy, 2003, §3, Assumption (A− 1)).

3



riskfree rate) to the current market value. We adopt this convention, but note that it is generally

trivial to modify our results to accommodate other definitions.

To formalize, let Bt(T ) be the money market fund, i.e., Bt(T ) is the value at T of a unit of

currency invested at date t in a riskless continuously compounded money market fund. We can

write this as

Bt(T ) = exp

(∫ T

t
rsds

)
where rt is the instantaneous short rate. Portfolio credit risk models generally exclude interest

rate risk, so we assume that the path of rt is deterministic (though not necessarily constant).

We multiply intra-horizon cashflows by Bt(H) to accrue to the horizon, and divide by B0(H) to

discount horizon values back to today. Let Wi be the return on position i at the horizon, and define

loss as Li = (E[Wi] −Wi)/B0(H). Aggregate portfolio return is W̃ =
∑n

i=1 aiWi, and aggregate

portfolio loss is

L̃ =
1

B0(H)
(E[W̃ ]− W̃ ). (6)

Let µi(x) denote the conditional expected return E[Wi|X = x] as a function of x, and similarly

define

µ̃(x) = E[W̃ |X = x] =

n∑
i=1

aiµi(x).

With this notation, we can write the asymptotic VaR as

VaR∞ = E[L̃|X = αq(X)] =
1

B0(H)
(E[µ̃(X)]− µ̃(αq(X))).

Let σ2i (x) be the conditional variance V[Wi|X = x]. Due to the conditional independence of the

position losses, we can write the conditional variance for portfolio return as

σ̃2(x) = V[W̃ |X = x] =
n∑
i=1

a2iσ
2
i (x).

From equation (6), we have
d

dx
E[L̃|X = x] = −µ̃′(x)/B0(H)

and

V[L̃|X = x] = σ̃2(x)/B0(H)2

so equation (4) can be re-written as

GA =
1

2

1

B0(H)

1

h(αq(X))

d

dx

(
σ̃2(x)h(x)

µ̃′(x)

) ∣∣∣
x=αq(X)

(7a)

This is the form in which we will calculate the GA.
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In many commonly-used models, the distribution of X is such that h′(x)/h(x) takes a simple

form. This is most notably the case when X is normally distributed (as in the models considered

in Section 3), for which we have h′(x)/h(x) = −x. Here it can be convenient to apply the product

rule to the derivative in the GA formula, and arrive at

GA =
1

2

1

B0(H)

(
σ̃2(αq(X))

µ̃′(αq(X))

h′(αq(X))

h(αq(X))
+

d

dx

(
σ̃2(x)

µ̃′(x)

) ∣∣∣
x=αq(X)

)
(7b)

We have thus far assumed that value-at-risk is the risk-measure of interest. A popular alternative

to VaR is expected shortfall (ES). When portfolio loss has continuous distribution, this is defined

as

ESq[L̃] = E[L̃|L̃ ≥ αq(L̃)] (8)

Martin and Tasche (2007) and Gordy (2004) show that the granularity adjustment for ES is

GAES =
1

2

1

(1− q)
V[L̃|X = αq(X)]h(αq(X))

dE[L̃|X=x]
dx

∣∣
αq(X)

which we can re-write as

GAES =
−1

2

1

B0(H)

h(αq(X))

(1− q)
σ̃2(αq(X))

µ̃′(αq(X))
(9)

The computations needed for this expression are a subset of the computations needed for equation

(7a), so it is clear that the ES GA can readily be calculated whenever the VaR GA can be calculated.

Finally, in some models conditional expected loss is monotonically decreasing in X. The above

results continue to hold, but with αq(X) everywhere replaced by α1−q(X) and the sign on GAES

reversed.

2 Conditional expected return and variance functions

To implement the GA, we require tractable expressions for the conditional expected return and

conditional variance of return as functions of the realization of X. We consider first the class of

credit risk models in which the condition of obligors at the horizon is represented by a finite state

space. This includes the important class of ratings-based models, for which the “state” is the

obligor’s rating at the horizon.

Let S be the set of possible obligor states at the horizon. These states are enumerated as

S = {0, 1, 2, . . . , G}. Let Si ∈ S be the state for obligor i at the horizon. When the states are S&P

rating grades, for example, the obligor has defaulted if Si = 0, migrated to CCC if Si = 1, and so

on up to Si = G for migration to AAA.
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In all ratings-based models, the return Wi depends on the horizon rating Si. More generally,

we might expect Wi to be influenced by the systematic factor X, as prevailing spreads for a given

rating grade typically increase during a credit market downturn. There may also be idiosyncratic

influences on the value at the horizon. Many current models allow for idiosyncratic recovery risk

(i.e., random LGD) in the default state, and the models could (in principle) easily be extended to

allow for idiosyncratic spread risk in non-default states. In our framework, we allow for all three

sources of risk.

We decompose the conditional expected value by further conditioning on horizon state:

µi(x) =
G∑
s=0

E[Wi|X = x, Si = s] · Pr(Si = s|X = x).

Let πis(x) ≡ Pr(Si = s|X = x) and λis(x) ≡ E[Wi|X = x, Si = s], so we can write

µi(x) =

G∑
s=0

πis(x)λis(x) = 〈Πi(x),Λi(x)〉 (10)

where Πi(x) is the vector of {πis(x)}, Λi(x) is the vector of {λis(x)}, and where 〈·, ·〉 denotes the

inner product.

We proceed similarly for the conditional variance:

σ2i (x) = E[W 2
i |X = x]− E[Wi|X = x]2 =

G∑
s=0

E[W 2
i |X = x, Si = s] · Pr(Si = s|X = x)− µi(x)2

=

G∑
s=0

(
V[Wi|X = x, Si = s] + E[Wi|X = x, Si = s]2

)
· Pr(Si = s|X = x)− µi(x)2.

Letting ξ2is(x) ≡ V[Wi|X = x, Si = s], we write

σ2i (x) =
G∑
s=0

(
ξ2is(x) + λis(x)2

)
πis(x)− µi(x)2

= 〈Ξi(x),Πi(x)〉+ 〈Λi(x)2,Πi(x)〉 − 〈Λi(x),Πi(x)〉2 (11)

where Ξi(x) is the vector of {ξ2is(x)} and Λi(x)2 is the vector of {λis(x)2}.
We now turn to the class of credit risk models in which the obligor state at the horizon can take

on a continuum of values. This includes structural approaches based on the Merton (1974) model in

which obligor credit risk can be measured by the standardized distance between the obligor’s asset

value and default threshold. In industry practice, KMV Portfolio Manager is the most widely-used

implementation of this approach.
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As before, S is the set of possible obligor states at the horizon. Typically we would have S ⊆ <,

but that is not strictly necessary for our purposes. Adapting our earlier notation, let πi(s;x) be

the conditional probability density function for Si, and let

λi(s;x) ≡ E[Wi|X = x, Si = s]

ξ2i (s;x) ≡ V[Wi|X = x, Si = s].

When working with this class of models, let 〈·, ·〉 denote the Hermitian inner product, so that

〈Λi(x),Πi(x)〉 =

∫
S
λi(s;x)πi(s;x) ds.

With this notation, the inner product representations of µi(x) and σ2i (x) in equations (10) and (11)

continue to hold.

In both the discrete and continuous state space cases, the derivative of the inner product is

given by the usual product rule, e.g.,

d

dx
〈Λi(x),Πi(x)〉 = 〈Λ′i(x),Πi(x)〉+ 〈Λi(x),Π′i(x)〉.

The derivatives of the µi(x) and σ2i (x) functions are therefore easily obtained from the derivatives

of the constituent Πi(x), Λi(x) and Ξi(x) functions.

3 Application

To apply the results of the previous section to a given model, we need to have tractable and

differentiable expressions for the Πi(x), Λi(x) and Ξi(x) functions. For the models most widely-

used in practice, these functions are indeed easily obtained and even more easily differentiated.

We demonstrate with application to CreditMetrics and KMV Portfolio Manager, as these are the

benchmark models for the finite and continuous classes, respectively.

3.1 CreditMetrics

CreditMetrics is perhaps the most widely-known industry model of portfolio credit risk.4 The model

is loosely styled on the classic structural model of Merton (1974), but is calibrated to credit ratings

rather than equity price and balance sheet information. Obligor rating is taken as a sufficient

statistic of the term-structure of firm default risk on a single-name basis, and rating transitions

are assumed to follow a time-homogeneous Markov chain. This implies that the unconditional

4CreditMetrics was first described by Gupton, Finger, and Bhatia (1997), and subsequently has been developed
and refined as a vendor model by RiskMetrics Group.
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distribution over horizon rating depends only on current rating. We write πgs for the probability

of transition from current grade g to grade s at the horizon.

Associated with obligor i is a latent “asset return” variable Yi, which is assumed to be distributed

N (0, 1). The real line is partitioned into “bins” corresponding to the possible state outcomes in

S. Given current rating gi, the obligor defaults if Yi ≤ Cg(i),0, transitions to CCC if Cg(i),0 < Yi ≤
Cg(i),1, and so on, for fixed bin threshold values

−∞ ≡ Cg,−1 ≤ Cg,0 ≤ · · · ≤ Cg,G ≡ ∞.

For transition probabilities to be consistent with the given πgs, we have

Cg,s = Φ−1

 s∑
j=0

πgj


for s = 0, . . . , G− 1.

To induce dependence across obligors, we decompose the asset returns as

Yi =
√
ρiX +

√
1− ρiεi. (12)

The systematic factor X is distributedN (0, 1), which implies that h(x) = φ(x) and h′(x) = −xφ(x).

The idiosyncratic factors εi are iid N (0, 1) and independent of X. It is straightforward to show

(see, e.g., Gordy, 2001) that the conditional probability distribution for Si is given by

πis(x) = Φ

(
Cg(i),s − x

√
ρi√

1− ρi

)
− Φ

(
Cg(i),s−1 −X

√
ρi√

1− ρi

)
. (13)

Exploiting the relationship φ′(x) = −xφ(x), the derivatives of πis(x) are easily obtained.

Relative to the general framework of Section 2, CreditMetrics imposes simplifying assumptions

on the distribution of return in each state. Market credit spreads at the horizon are taken as

deterministic functions of rating grade. In the case of default, there is only idiosyncratic risk in

recovery. Therefore, for all horizon states,

λis(x) = E[Wi|X = x, Si = s] = E[Wi|Si = s],

so we can take λis(x) as a constant λis. For the conditional variance, we have ξ2is(x) = 0 for all

s ≥ 1. In the default state, ξ2i0(x) is replaced by the constant ξ2i0 = V[Wi|Si = 0].

The return in the default state is affine in the recovery rate (1 − LGD). For example, say we

have a loan with biannual coupons of ci/2, face value of 1, and current value Pi0. If we assume

that default occurs just before the horizon of H = 1 year, then the first coupon is received and the

second is accrued into the claim. The return in the default state is therefore ((1−LGDi)(1+ci/2)+
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B1/2(1)ci/2)/Pi0. In the CreditMetrics model, it is assumed that LGDi is drawn as an independent

beta-distributed random variable with specified mean ELGDi and variance VLGD2
i , which implies

that λi0 is affine in ELGDi and ξ2i0 is affine in VLGD2
i . For parsimony in data requirements, it is

usually assumed that

VLGD2
i = ν · ELGDi · (1− ELGDi) (14)

for fixed volatility parameter ν. In this case, ξ2i0 is affine in ν.

At this point in the analysis, only the state returns λis remain to be calculated. In the original

version of CreditMetrics, as documented by Gupton et al. (1997), pricing at the horizon followed

a discounted contractual cashflow approach. For greater internal consistency, later versions of

CreditMetrics adopted a modified version of the Hull and White (2000) methodology. In this

approach, the term-structures of risk-neutral default probabilities for each grade are backed out

from the observed term-structures of ratings-based credit spreads. It is then trivial to obtain prices

for each obligor rating at the horizon by summing the discounted expected cashflows. For our

purposes in this paper, either methodology (or, indeed, any number of other pricing methodologies)

can be used. One must be able to calculate the return in each obligor state in order to implement

CreditMetrics, so the calculation of the λis imposes no burden that is peculiar to granularity

adjustment.

Finally, we note that the GA for the actuarial version of CreditMetrics can be obtained as a

special case with our general framework. To calculate the actuarial GA, fix λis = 1 for all non-

default s ≥ 1, λi0 = 1 − ELGDi and ξ2i0 = VLGD2
i , and fix both the coupon rate and the riskfree

rate to zero. The GA formula of Emmer and Tasche (2005) is a special case of our formula in which

ELGD is fixed to 1 and VLGD to zero.

3.2 KMV Portfolio Manager

Like CreditMetrics, Moody’s KMV model is based on the classic structural model of Merton (1974).

Whereas CreditMetrics takes a stylized approach to the model, KMV is firmly grounded in the

substance of the structural relationship between firm asset value and debt performance. The model

can be divided into two components. Default prediction (i.e., estimation of the term-structure

of firm default probabilities, or “EDFs”) is provided by KMV Credit Monitor (Crosbie and Bohn,

2003; Kealhofer, 2003a). Portfolio risk is assessed by KMV Portfolio Manager (Kealhofer and Bohn,

2001). We develop the GA for version 1.4 of KMV Portfolio Manager, and note that the current

version of the model may differ in important respects.

The portfolio model takes as input the term-structure of EDFs for each obligor in the portfolio,

and we do the same here. Specifically, for each firm i, we take as input parameters the probability of

default at or before the horizon (EDFi0,H) and the probability of default at or before loan maturity

(EDFi0,Ti).

In the structural approach, default occurs when asset value falls short of the fixed liabilities of
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the firm at t = H. We take as the obligor state variable the log return on firm assets. The asset

value is assumed to follow a geometric Brownian motion with drift under the physical measure, so

that

Si = (ζi − η2i /2)H + ηi
√
HZi, (15)

where ζi is the drift, η is the volatility, and Zi is a shock distributed N (0, 1). As in CreditMetrics,

the shock is decomposed into systematic and idiosyncratic components:

Zi =
√
ρiX +

√
1− ρ2i εi (16)

where the systematic factor X and idiosyncratic factors εi are independent and distributed N (0, 1).

The domain of possible states at the horizon is the real line. Because the shocks are normally

distributed, it is easily seen that the cdf of Si is

Pr(Si ≤ s) = Φ

(
s− (ζi − η2i /2)H

ηi
√
H

)
(17)

The default threshold Ci,H must therefore satisfy the relationship

Φ

(
Ci,H − (ζi − η2i /2)H

ηi
√
H

)
= EDFi0,H .

Loosely speaking, the default threshold represents the log of the firm’s fixed liabilities. However,

because KMV employs a proprietary mapping from the firm’s normalized distance-to-default to

EDF, the threshold cannot be determined directly from balance sheet information.

The conditional distribution of Si is also Gaussian. It is easily seen that the conditional density

is

πi(s;x) = φ

(
s− (ζi − η2i /2)H − xηi

√
H
√
ρi

ηi
√
H
√

1− ρi

)
. (18)

The KMV pricing algorithm differs from that of CreditMetrics, but shares the important as-

sumptions that market value at the horizon is a deterministic function of obligor state for surviving

obligors, and that, in the case of default, there is only idiosyncratic risk in recovery. Therefore, for

all horizon states,

λi(s;x) = E[Wi|X = x, Si = s] = E[Wi|Si = s],

so we can write λi(s;x) as λi(s). For the conditional variance, we have ξ2i (s;x) = 0 for all s > Ci,H .

In the default states, ξ2i (s;x) is replaced by a constant ξ2i0. This implies that the inner product

〈Ξi(x),Πi(x)〉 in equation (11) takes the simple form

〈Ξi(x),Πi(x)〉 = ξ2i0 · Φ

(
Ci,H − (ζi − η2i /2)H − xηi

√
H
√
ρi

ηi
√
H
√

1− ρi

)
.
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The KMV pricing methodology separates future contractual cashflows into riskless and risky

components. If recovery were deterministic, we would write for the price Pt of a loan at time t

Pt = (1− LGD) · RFVt + LGD · RYVt(s) (19)

where RFVt is the time-t price on a riskless bond of the same contractual terms and RYVt(s) is

the time-t price of a zero-recovery risky bond of the same contractual terms for an obligor in state

s. When recovery is stochastic but idiosyncratic, then recovery risk is not priced in equilibrium, so

equation (19) should continue to hold, but with stochastic LGD replaced by its expectation ELGD.

In the event of default at or before the horizon, the value at the horizon is (1−LGDi) ·RFViH .

While this recovery value is stochastic, it is invariant with respect to Si, so we can write

λi(s;x) =
1

Pi0
(1− ELGDi)RFViH ≡ λi0

ξ2i (s;x) =

(
RFViH

Pi0

)2

VLGD2
i ≡ ξ2i0

for all s ≤ Ci,H and all x. The recovery variance VLGD2
i is specified as in equation (14).

In the event of survival, the return is PiH(s)/Pi0. We write PiH(s) as a function of horizon state

because of the dependence of RYViH on Si. The calculation of RYViH(s) is detailed in Gordy,

Heitfield, and Jones (in progress). As we have noted in the context of the CreditMetrics model,

one must be able to calculate the return in each obligor state in order to implement the portfolio

model, so the calculation of the λi(s) imposes no burden that is peculiar to granularity adjustment.

4 Comparative Statics

In this section, we explore the comparative statics of the granularity adjustment with special

emphasis on the parameters that do not appear under the actuarial paradigm. For the sake of

clarity, we adopt the CreditMetrics model in a stylized setting with two non-default rating grades

(G = 2). We consider a portfolio that is homogeneous in all respects other than initial credit rating,

i.e., all loans are of equal size and have the same ELGD and VLGD2, and all obligors have the

same asset correlation ρ. If all obligors were of the same initial rating as well, then we know from

equation (3) that the GA can be written as β/n for β that depends on model parameters but not

on n. When obligors are not of the same initial rating, the GA can still be written as β/n if we fix

the share of each rating grade in the portfolio. We present the comparative statics in terms of β

to avoid dependence on the choice of n.

We parameterize the matrix of unconditional transition probabilities (under the physical mea-

sure) as in Table 1. Default probabilities are πA0 and πB0. In our baseline parameterization, we

set πA0 to 15 basis points (bp) and πB0 to 300bp, so that grades A and B represent the investment
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and speculative grades, respectively. Conditional on survival, the probability of remaining in the

initial grade is θg. Agency ratings are known to be “sticky” (Altman and Rijken, 2004; Löffler,

2004), so we set θA = θB = 0.9.

Table 1: Transition probabilities

A B D

A (1− πA0)θA (1− πA0)(1− θA) πA0
B (1− πB0)(1− θB) (1− πB0)θB πB0

Our baseline portfolio is composed of equal numbers of grade A and grade B loans. Each loan

has face value 1, ELGD of 50%, and maturity of 3 years. Coupons are paid biannually. In the

event of default, it is assumed that the first coupon is received in full, and the second coupon is

accrued into the legal claim in bankruptcy. Asset correlation is fixed at ρ = 0.2. The riskfree rate

is a constant r = 5% and the variance parameter for LGD is ν = 0.25. The horizon is H = 1 year

and the target solvency probability is q = 99.9%.

For consistency with the current generation of CreditMetrics, we use the pricing approach of

Hull and White (2000). This requires that we have for each obligor the term-structure of risk-neutral

cumulative default probabilities, which in practical application is extracted from the observed term-

structure of credit spreads. For our purposes, a parametric approach is preferable, so we obtain

the risk-neutral term structure of default probabilities by adding a parameterized risk-premium to

the term structure of default probabilities under the physical measure. Since the CreditMetrics

model assumes that ratings follow a time-homogeneous Markov process, we can take powers of the

transition matrix in Table 1 to obtain the physical cumulative default probability at any horizon.

Let πg(t, T ) denote the physical probability of default between time t and time T for an obligor in

grade g at time t. The Markovian structure of the model implies that πg(t, T ) = πg(0, T − t). We

convert to risk-neutral probabilities π∗g(t, T ) as in the KMV model:

π∗g(t, T ) = Φ
(

Φ−1(πg(t, T )) + ψ
√
T − t√ρ

)
,

where ψ is the “market Sharpe ratio” that determines risk premia. The economic rationale for

this specification is put forth by Kealhofer (2003b) and Agrawal et al. (2004). We follow KMV in

setting a baseline value of ψ = 0.4.

Our comparative statics are total derivatives. As parameter values change, the par coupon

for the loans will change as well. To take the total derivative of β with respect to, say, πA0, we

maintain the initial par value of each loan by changing the coupon to its par value for each value

of πA0. This approach is most consistent with economic intuition.

We first explore sensitivity of asymptotic VaR and the GA to parameters that appear in both
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the MtM and actuarial models, starting with default probabilities (πA0, πB0). In the upper panel

of Figure 1a, we vary πA0 from zero to 300bp while holding πB0 fixed to its baseline value of 300bp.

In the lower panel, we vary πB0 from 15bp to 1500bp while holding πA0 fixed to its baseline value

of 15bp. As we should expect, asymptotic VaR, denoted VaR∞ and defined as E[L̃|X = αq(X)], is

increasing monotonically with both default probabilities under both actuarial and MtM paradigms.5

VaR is larger in the MtM setting because it captures migration risk and loss of coupon income in

the event of default. When πA0 = πB0, migration risk is eliminated, so the two views of risk are

nearly equivalent.

Comparative statics for the GA are displayed in Figure 1b. Except at low values of πA0, the

GA increases in the default probabilities. The intuition, which we will develop in greater detail

in Section 5, is that extreme losses in the finite portfolio case are most likely to be generated by

a combination of unfavorable systematic and idiosyncratic draws, rather than by systematic risk

alone. Default events induce larger loss than downgrades, so the idiosyncratic effect will manifest

as a higher than conditionally expected default rate. This implies that VaR is more sensitive to

default risk than asymptotic VaR∞, and therefore that the gap between them should increase with

π.

This intuition breaks down when the grade A default probability is very low. For small πA0, it

takes a large (and therefore unlikely) idiosyncratic shock to cause a grade A firm to default even

when X = α1−q(X). Consequently, for any given realization of the set of idiosyncratic shocks (i.e.,

the {εi} of equation (12)), portfolio loss is largest for permutations that disproportionately assign

negative shocks to grade B firms. As the scenarios associated with VaR in the finite portfolio

case will be disproportionately driven by grade B defaults, VaR must be less sensitive to πA0 than

asymptotic VaR∞. For this counterintuitive effect to be observed, we must have positive portfolio

shares in at least two non-default grades. If we have only a single non-default grade, then β is

strictly increasing with the unconditional default probability.

The relative impact of the GA is plotted in Figure 1c. For a portfolio of n = 1000, define the

relative impact as the ratio of the GA to VaR, where the portfolio VaR is approximated as the sum

of asymptotic VaR∞ and the GA, i.e.,

relative impact = 100 · GAn

VaR∞ + GAn
(20)

The lower the default probabilities, the greater the relative importance of sampling variation on

portfolio risk, so the larger is the GA as a share of VaR.

The effect of portfolio quality on asymptotic VaR∞ and the GA is consistent with the com-

parative statics for default probabilities. We find that VaR∞ and the GA both fall with the share

5For the actuarial paradigm, we plot asymptotic “unexpected loss,” defined as E[L̃]−αq(L̃), rather than a quantile
of the actuarial loss distribution. This is more consistent with the MtM notion of VaR as a quantile of the de-meaned
return.
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of grade A in the portfolio. The MtM VaR∞ exceeds the actuarial VaR∞ at all values of the

investment-grade share, but the actuarial GA exceeds the MtM GA. On a relative impact basis,

we find that the size of the GA is increasing with the share of grade A.

Comparative statics for recovery rates, shown in Figure 2, are also similar to those for default

probabilities. Both asymptotic VaR∞ and the GA increase with ELGD. The relationships are

exactly linear in the actuarial setting, and nearly non-linear in the MtM case (i.e., there is a slight

non-linearity due to the effect of ELGD on par spread). The GA increases with ELGD because

ELGD controls the magnitude of loss in the default state and, as we have just observed, the finite-

portfolio VaR is more sensitive than the asymptotic VaR∞ to default risk.

Comparative statics for asset correlation are relatively straightforward. As shown in the upper

panel of Figure 3, asymptotic VaR is strictly increasing in ρ. At ρ = 0, all risk is diversifiable, so

VaR∞ is zero. At ρ = 1, asset returns are comonotonic. So long as πA0 > 1 − q, all borrowers

default in the state X = αq(X), and VaR∞ is determined primarily by ELGD. Between these two

extremes, VaR∞ increases monotonically.

The effect of asset correlation on the GA runs in the opposite direction, as seen in the bottom

panel of Figure 3. The greater is ρ, the smaller the impact of idiosyncratic risk on asset returns,

so the smaller the contribution of idiosyncratic risk to VaR. As ρ falls to zero, one can show

analytically that β tends to infinity. As ρ increases to one, β can tend to negative infinity (when

πB0 ≥ πA0 > 1− q and VLGD2 > 0) or to zero (when 1− q > πB0 ≥ πA0 or when VLGD2 = 0), or

even to positive infinity (in a subset of the remaining cases). At these endpoints, the asymptotic

series underpinning equation (3) diverges, so the first-order GA becomes an unreliable measure

of the gap between VaR and asymptotic VaR∞.6 Nonetheless, negative values for β are not just

an artifact. When ρ is near one, the density of the loss distribution becomes multimodal, and

in this circumstance asymptotic VaR∞ can exceed VaR. Martin and Tasche (2007) explain this

phenomenon as a concomitant of the failure of sub-additivity in VaR and prove that the granularity

adjustment for expected shortfall is always positive.

We can assess the impact of recovery risk through the comparative static with respect to ν.

Asymptotic VaR is invariant with respect to idiosyncratic recovery risk, so is invariant with respect

to ν. The GA is linear and increasing in VLGD2, so also is linear and increasing in ν. The effect

is generally large. In our baseline example, the slope dβ/dν is 1.004 for the MtM model and 1.092

for the actuarial model.

We now turn to the parameters that influence risk under the mark-to-market paradigm, but

not the actuarial model. The parameter θ controls the degree of stickiness in ratings, conditional

on survival to the horizon. In an actuarial setting, asymptotic VaR∞ and the GA are invariant

with respect to non-default transition likelihood. The comparative statics in the MtM setting are

somewhat complicated and perhaps surprising. Consider first the effect of varying θB on asymptotic

6Gordy (2004) explores this convergence issue with a stylized example.
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VaR∞. As θB increases, the conditional and unconditional probabilities of transition from B to A

both fall towards zero. Because the conditional probability is already low (i.e., one expects few

upgrades when conditioning on a bad systematic draw), the unconditional probability falls by more

than the conditional probability, as seen in Figure 4. This closes the gap between E[W̃ ] and αq(W̃ ),

so reduces VaR∞ (lower panel of Figure 5a).

For θA, the story is somewhat more complicated. As seen in Figure 4, the gap between the

conditional and unconditional probability of transition from A to B is fairly constant over 0.5 <

θA < 0.8 and then converges rapidly to zero as θA increases towards one. In the lower range, the

effect on VaR∞ is dominated by the indirect effect on par coupon rates: as θA increases, the par

coupon for grade A falls, so the return λAB associated with downgrade to B is reduced.7 The

probability weight on λAB is greater under the conditional distribution than the unconditional, so

the gap between E[W̃ ] and αq(W̃ ) widens. However, in the upper range of θA values, the rapid

convergence of πBA(αq(X)) towards πBA dominates, and this causes VaR∞ to decrease with θA.

This non-monotonic behavior is observed in the upper panel of Figure 5a.

The comparative statics for the GA as a function of θ, displayed in Figure 5b, are the mirror

image of the comparative statics for VaR. The intuition is similar to the explanation for the com-

parative statics with respect to the π. Relative to asymptotic VaR∞, finite portfolio VaR is more

sensitive to default risk and less sensitive to migration risk. This implies that the GA will increase

(decrease) with θ whenever VaR∞ decreases (increases) with θ.

Loan maturity increases the sensitivity of returns to rating migration, so asymptotic VaR∞

increases with maturity. At long maturities, the return distribution reflects the long-run steady-

state of the rating process, so the relationship becomes flat. This is seen in Figure 6, where we

plot VaR against maturity (log-scale) in the upper panel. Similar to the phenomenom observed

in the comparative statics for θ, and indeed for the very same reason, the comparative statics for

GA (lower panel) with respect to maturity are the mirror image of the comparative statics for

asymptotic VaR∞.

Comparative statics with respect to the market Sharpe ratio parameter follow the same logic.

The higher the risk premium ψ, the larger the loss associated with downward migration, so the

higher the asymptotic VaR∞ (upper panel of Figure 7). Parallel to the pattern observed for θ

and maturity, the comparative statics for the GA with respect to ψ are the mirror image of the

comparative statics for VaR∞ (lower panel).

Finally, comparative statics for the riskfree rate are quite straightforward. Both VaR and the

GA decline in near linear fashion with the money market return B0(H), because the riskfree rate

has a minimal effect on valuation at the horizon.

7The par coupon for grade B also falls, but by a smaller amount. Of all the transition returns, λAB is most
sensitive to θA.
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5 A beta-trinomial model of portfolio risk

For parameters governing migration risk in CreditMetrics, we have observed a curious “mirror

image” pattern, whereby the comparative static for the GA is of opposite sign to the comparative

static for asymptotic VaR∞. For parameters governing default risk, by contrast, both VaR∞ and

the GA are increasing (except in one corner of the parameter space). In this section, we shed

light on these phenomena using a stylized model of portfolio risk. The comparative statics of this

simple model lack the complexity and nuance of the patterns in CreditMetrics, but the most salient

characteristics are preserved.

We assume a homogeneous portfolio of n positions and specify the return on position i as

Wi = c+ Yi + Zi

where c is a constant, Yi is a return associated with a discrete state variable, and Zi is distributed

N (0, ξ2). The three discrete states represent default (Si = 0), downgrade (Si = 1), and unchanged

rating (Si = 2). The value of Yi in the three states is

Yi =


−λ0 if Si = 0,

−λ1 if Si = 1,

0 if Si = 2,

so that the vector of state-contingent expected returns is Λ = {c − λ0, c − λ1, c}. We include the

Zi shock merely to ensure a continuous loss distribution. The interest rate is fixed to zero, so that

B0(H) = 1. We fix the target solvency probability to q = 99.9%.

Let the risk factor X be distributed Beta(p1, p2) on the unit interval. Conditional on X = x,

the state probabilities for Yi are Π(x) = {(1−x)2, x(1−x), x}. The Zi are assumed to be mutually

independent and independent of X and all other risks. Conditional on (X,Si), Zi is the only source

of uncertainty, so Ξ = {ξ2, ξ2, ξ2}.
If we assume for parsimony that investors are risk-neutral, then in equilibrium the constant c

is chosen so that E[Wi] = 0. This is solved analytically as

c = −E[Yi] = λ0E[π0(X)] + λ1E[π1(X)] =
λ0p2(p2 + 1) + λ1p1p2
(p1 + p2)(p1 + p2 + 1)

(21)

where the last equality follows from the moments of the beta distribution. When we impose this

choice of c, portfolio loss is simply L̃ = −W̃ .

Besides the portfolio size n, the model has only five parameters: λ0, λ1, p1, p2, ξ. The parameter

of greatest interest is λ1, because it determines the magnitude of loss in the downgrade state (Si =

1). Parameter λ0 determines the magnitude of loss in the default state (Si = 0), and corresponds
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most directly to ELGD in CreditMetrics. We restrict 0 ≤ λ1 ≤ λ0, so that default induces larger

loss than downgrade. Parameters (p1, p2) jointly control the distribution of systematic risk. The

higher is p1 relative to p2, the higher the probability of the “good state,” Si = 2. Increasing both

parameters in proportion leaves the expected value of X unchanged but shrinks its variance. In

our examples below, we fix p2 = 1 and take p1 = 5 as our baseline value. The final parameter

has the narrow purpose of smoothing the return distribution. We aim to choose the smallest value

that will be sufficient to eliminate humps in the density function. In our examples below, we fix

ξ = 0.03.

The model yields analytical solutions for the GA and for the moments, density and cdf of the

return distribution. It is already clear that we have simple expressions for the conditional mean

µ̃(x) and variance σ̃2(x) and for the derivatives of these functions. For the beta density for X, we

have
h′(x)

h(x)
=
p1 − 1

x
− p2 − 1

1− x
,

so it is convenient to use equation (7b) for the GA. To obtain the loss distribution, observe that

W̃ = c+ Ỹ + Z̃

where nỸ is a weighted sum of a conditionally trinomial vector with n trials and conditional

probabilities given by Π(x), and where Z̃ ∼ N (0, ξ2/n). Let Ns be the number of positions in

state s at the horizon, so that N0 +N1 +N2 = n, and let χ(n0, n1) denote the unconditional joint

probability of N0 = n0, N1 = n1, N2 = n − n0 − n1. For n0 ≥ 0, n1 ≥ 0 and n0 + n1 ≤ n, this is

given by

χ(n0, n1) = Pr(N0 = n0, N1 = n1)

=

(
n

n0, n1, n− n0 − n1

)
E[
(
(1−X)2

)n0 (X(1−X))n1 Xn−n0−n1 ]

=
n!

n0!n1!(n− n0 − n1)!
B(n− n0 + p1, 2n0 + n1 + p2)

B(p1, p2)

where B(·, ·) is the beta function. Because Ỹ and Z̃ are independent, the return distribution is the

convolution

F (w) =
∑

n0+n1≤n
χ(n0, n1)Φ

(
n(w − c) + λ0n0 + λ1n1

ξ
√
n

)
(22)

The density of W̃ and the moment generating function follow trivially.

In Figure 8, we plot the density of the return distribution under our baseline parameter assump-

tions. The coefficients of skewness and kurtosis are -2.3 and 10.1, respectively, which is qualitatively

suitable for the distribution of log-return in a credit portfolio.8 If we decrease p1 or increase p2,

8In this model, W̃ is comparable to a log-return, rather than an absolute return as assumed up to now. From a
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the distribution would flatten out and become less asymmetric.

Asymptotic VaR for this model is easily obtained:

VaR∞ = E[L̃|X = α1−q(X)] = λ0π0(α1−q(X)) + λ1π1(α1−q(X))− c

= λ0

(
(1− α1−q(X))2 − p2(p2 + 1)

(p1 + p2)(p1 + p2 + 1)

)
+ λ1

(
α1−q(X)(1− α1−q(X))− p1p2

(p1 + p2)(p1 + p2 + 1)

)
(23)

where in the last equality we substitute the equilibrium value for c. VaR∞ increases with λj (j =

0, 1) if and only if πj(α1−q(X)) > E[πj(X)]. This condition is easily satisfied for the default state

(j = 0), but holds only within a range of q values for the downgrade state (j = 1). This is because

downgrade is the intermediate state between extreme outcomes. For x large, the “unchanged

rating” state Si = 2 dominates at X = x. As x falls, probability mass is shifted both to Si = 1 and

Si = 0. However, at still lower values of x, there is too little mass left on Si = 2, so further increases

in the probability of Si = 0 come at the expense of the state Si = 1. If the distribution of X is

roughly symmetric, π1(x) = x(1− x) peaks near x = E[X], and so the unconditional likelihood of

the downgrade state Si = 1 is greater than the conditional likelihood given X = α1−q(X). Negative

skew in X increases E[X] and α1−q(X), which in turn reduces E[π1(X)] and increases π1(α1−q(X)).

Fixing p2 = 1, we need p1 > 3.8 to guarantee that VaR∞ increases with λ1 at the tail probability

q = 0.999. The restrictions are discussed in more detail in Appendix A.

Comparative statics for the GA are depicted in Figure 9.9 As shown in the upper panel, β

is increasing with λ0. The relationship for λ1, shown in the lower panel, is non-monotonic. The

slope β is decreasing with λ1 at low values of λ1 and increasing at higher values of λ1. In practical

application, λ1 takes on low values (less than the baseline value of 0.2) because loss due to downgrade

is generally much smaller than loss due to default.10 Thus, as observed for CreditMetrics, the GA

in this model can increase with default loss and decrease with migration loss while asymptotic

VaR∞ is increasing in both parameters.

The GA is decreasing in λ1 because migration risk has a smaller impact on VaR for the finite

portfolio than it does for the asymptotic portfolio. To see this, consider first the probability of

downgrade, Si = 1, conditional on a given level of portfolio loss, i.e., L̃ = `. For the finite portfolio

risk-management perspective, it makes no difference whether we define loss in terms of the absolute or log return.
9We have checked that the β of the first-order GA is indeed a close approximation of the gap between VaR and

asymptotic VaR∞ at the modest portfolio size of n = 500. At the baseline parameter values, the relative error of the
GA is under 0.2%.

10For grade A borrowers in the exercises of Section 4, the implied ratio of λ1 to λ0 is less than 0.06 under the
baseline parameter values.
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case,

E[π1(X)|L̃ = `] = E[π1(X)|W̃ = −`] =
1

n
E[N1|W̃ = −`]

=

n∑
i=0

i

n
Pr(N1 = i|W̃ = −`) =

∑n
i=0

i
n

∑n−i
n0=0 χ(n0, i)φ

(
n(−`−c)+λ0n0+λ1i

ξ
√
n

)
∑n

i=0

∑n−i
n0=0 χ(n0, i)φ

(
n(−`−c)+λ0n0+λ1i

ξ
√
n

)
where the last equality is easily derived using Bayes’ rule. A similar expression can be derived

for the conditional default probability, E[π0(X)|L̃ = `]. For the asymptotic case, there is a one-

to-one mapping between a given level of loss and a given quantile of X. Recalling the notation

µ̃(x) = −E[L̃|X = x], we can write the the conditional state probability as πs(µ̃
−1(−`)).

Under baseline parameter values, we have that

E[π0(X)|L̃ = `] > π0(µ̃
−1(−`))

E[π1(X)|L̃ = `] < π1(µ̃
−1(−`))

in the tail of the loss distribution. The gaps between finite portfolio and asymptotic conditional

probabilities of default and migration are plotted in Figure 10 in the neighborhood of the asymptotic

VaR∞. The intuition is that the presence of idiosyncratic risk in the finite portfolio implies that a

tail loss event need not be ascribed exclusively to an unfavorable tail realization of X. Rather, it

is most likely that the residual idiosyncratic risk also contributed to loss, i.e., that the realization

of X was less unfavorable than µ̃−1(−`) and that there were more defaults and fewer non-defaults

than conditionally expected.

Now consider that the conditional downgrade probability is decreasing in ` in the tail of the

loss distribution, as we see in the upper panel of Figure 11. As noted earlier, this is because

the conditional default probability (plotted in the lower panel) “steals” mass from the conditional

downgrade probability at extreme levels of loss. Thus, we have

E[π1(X)|L̃ = αq(L̃)] < E[π1(X)|L̃ = VaR∞] < π1(α1−q(X))

and the opposite inequality for conditional default probabilities. This implies that VaR is less

sensitive to the return on the downgrade state than is asymptotic VaR∞. Since the GA is an

approximation to the difference between VaR and VaR∞, the GA must be decreasing in λ1. By

the same logic, VaR is more sensitive to the return on the default state than is asymptotic VaR∞,

so the GA is increasing in λ0.
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Conclusion

Granularity adjustment is useful as a gauge of how well a bank has diversified idiosyncratic risk.

The results of this paper ease the way for application of the GA methodology to the mark-to-market

models that are favored by more sophisticated financial institutions. We have demonstrated that

the GA is analytically tractable for a large class of mark-to-market models of portfolio credit risk.

This class is restrictive in imposing a single systematic factor, but in other respects is much more

general than the models observed in practical application. In particular, we allow in our analysis

for spreads at the horizon to depend on the realization of the systematic factor.

We derive explicit expressions for the GA for CreditMetrics and KMV Portfolio Manager. As an

application, we explore the comparative statics of the GA in CreditMetrics, and find relationships

that are sometimes non-monotonic and sometimes counterintuitive. In particular, we observe that

the comparative statics for the GA with respect to transition probabilities, maturity, and the

market risk premium are essentially mirror images of the corresponding comparative statics for

asymptotic VaR∞. We have argued that this phenomenon has a single explanation: The presence of

idiosyncratic risk in the finite portfolio implies that a tail loss event need not be ascribed exclusively

to an unfavorable tail realization of X. Rather, extreme losses in the finite portfolio case are most

likely to be generated by a combination of unfavorable systematic and idiosyncratic draws. Default

events induce larger loss than downgrades, so the idiosyncratic effect will manifest as a higher than

conditionally expected default rate. This implies that VaR is more sensitive to default risk and

less sensitive to migration risk than asymptotic VaR∞. As the GA is the difference between VaR

and VaR∞, the comparative statics for the GA with respect to migration risk parameters must be

opposite in sign to the corresponding comparative statics for asymptotic VaR∞.

In the absence of an analytical expression for the GA, this phenomenon would have been difficult

to uncover. Estimation of the GA by simulation is difficult enough, because simulation noise tends

to swamp the small gap between VaR and asymptotic VaR∞. Clean simulation-based estimates of

the comparative statics would have been even more challenging.

A Parameter restrictions in the beta-trinomial model

In this appendix, we obtain parameter restrictions sufficient to guarantee that asymptotic VaR∞

will increase with the state return parameters. The necessary and sufficient condition for VaR∞ to

increase with λj is

πj(α1−q(X)) > E[πj(X)]. (24)

For j = 0, this is satisfied iff

(1− α1−q(X))2 > E[(1−X)2] =
p2(p2 + 1)

(p1 + p2)(p1 + p2 + 1)
,
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This holds for q > q∗0(p1, p2), where q∗0 is a threshold depending on the distributional parameters.

We find that q∗0 increases in p1 and decreasing in p2, i.e., that large negative skew in X implies

high q∗0. For the case of p2 = 1, the beta cdf simplifies as H(x) = xp1 , so α1−q(X) = (1− q)1/p1 . It

is then easily shown that

q∗0(p1, 1) = 1−

(
1−

√
2

(p1 + 1)(p1 + 2)

)p1
≤ 1− exp(−

√
2) ≈ 0.757.

For the downgrade state (j = 1), the left and right hand sides of condition (24) are non-

monotonic, i.e.,

α1−q(X)(1− α1−q(X)) > E[X(1−X)] =
p1p2

(p1 + p2)(p1 + p2 + 1)
.

This holds only for q bounded between thresholds (q−1 , q
+
1 ). For the case of p2 = 1, it is easily

shown that

q±1 (p1, 1) = 1−

(
1

2
∓

√
1

4
− p1

(p1 + 1)(p1 + 2)

)p1
Both q−1 and q+1 increase as p1 increases. For tail probabilities near q = 0.999, the binding constraint

is the upper bound q+1 , which requires that we push p1 well above p2.
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Figure 1a: Asymptotic VaR as function of default probabilities
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Figure 1b: GA as function of default probabilities
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Figure 1c: Relative impact as function of default probabilities
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Figure 2: Asymptotic VaR and GA as functions of ELGD
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Figure 3: Asymptotic VaR and GA as functions of asset correlation
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Figure 4: Conditional transition probabilities

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ

Conditional probability: Grade A to B

Unconditional transition probability

Conditional probability: Grade B to A

Upper line plots the conditional transition probability πAB(αq(X)) as a function of θA, and lower line plots the

conditional transition probability πBA(αq(X)) as a function of θB . Solid line is the −45◦ line representing the
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Figure 5a: Asymptotic VaR as function of stickiness
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Figure 5b: GA as function of stickiness
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Figure 6: Asymptotic VaR and GA as functions of maturity
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Figure 7: Asymptotic VaR and GA as functions of risk premium
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Figure 8: Density of return distribution
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Probability density function for W̃ in beta-trinomial model. Parameters are n = 500, λ0 = 1, λ1 = 0.2, p1 = 5,

p2 = 1, and ξ = 0.03. The constant c is 0.071.
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Figure 9: GA as function of state returns
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Figure 10: Difference in conditional state probabilities
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Difference in conditional state probabilities between finite (n = 500) and asymptotic portfolios. Parameters are

λ0 = 1, λ1 = 0.2, p1 = 5, p2 = 1, and ξ = 0.03.
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Figure 11: Conditional state probabilities
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