
.

÷

.L

Modelling in Data Base Management Systems. G.M. Ni]ssen, (ed.)
North Holland Publishing Company, 1976

Granularity of Locks and Degrees of Consistency

in a Shared Data Base

J.N. Gray, R.A. Lorie, G.R. Putzolu, I.L. Traiger

IBM ~esearch Laboratory

San 3ose, California

The problem of choosing the appropriate Hranularit~ (size)

of lockable objects is introduced and the tradeoff between

concurrency and overhead is discusseS. A locking protocol

which allows simultaneous locking at various granularities

by different transactions is presented. It is based on

the introduction of additional lock modes besides the

conventional share mode an5 exclusive mode. A proof is

given of the equivalence of this protocol to a

conventional one.

Next the issue of consistency in a shared environment is

analyze~. This discussion is motivated by the realization

that some existing data base systems use automatic lock

protocols which insure protection only from certain types

of inconsistencies (for instance those arising from

transaction backup), thereby automatically providing a

limited degree of consistency. Four ~ S ~ ~

consistency are introduced. They can be roughly

characterized as follows: degree 0 protects others from

your updates, degree I additionally provides protection

from losing updates, degree 2 additionally provides

protection from reading incorrect data iteas, and degree 3

additionally provides protection from reading incorrect

relationships among data items (i.e. total protection). A

discussion follows on the relationships of the four

degrees to locking protocols, concurrency, overhead,

recovery and transaction structure.

Lastly, these ideas are compared with existingdata

management systems.

I. GRANULARITY OF LOCKS:

An important issue which arises in the design of a data Dase

management system is the choice of lockable unitE, i.e. the data

aggregates which are atomically locked to insure consistency.

Examples of lockable units are areas, files, individual records,

field values, and intervals of field values.

The choice of lockable units presents a tradeoff between concurrency

and overhead, which is related to the size or Kranularit Z of the

units themselves. On.the one hand, concurrency is increased if a

fine lockable unit (for example a record or field) is chosen. Such

unit is appropriate for a "simple" transaction which accesses few

records. On the other hand a fine unit of locking would be costly

for a "complex" transaction which accesses a large number of

records. Such a transaction would have to set and reset a large

365

366 J.N. Gray, R.A. Lorie, G.R. Putzolu and.LL. Traiger

number of locks, incurring the computational overhead of many

invocations of the lock subsystem, and the storage overhead of

representing many locks. A coarse lockable unit (for example a

file) is probably convenient for a transaction which accesses many

records. However, such a coarse unit discriminates against

transactions which only want to lock one member of the file. From

this ~iscussion it follows that it would be desirable to have

lockable units of different granularities coexisting in the same

system.

This paper presents a lock protocol satisfying these requirements

and discusses the related implementation issues of scheduling,

granting and converting lock requests.

Hierarchical locks:

We will first assume that the set of resources to be locked is

organized in a hierarchy. Note that this hierarchy is used in the

context of a collection of resources and has nothing to do with the

data model used in a data base system. The hierarchy of Figure I

may be suggestive. We adopt the notatios that each level of the

hierarchy is given a node type which is a generic name for all the

node instances of that type. For example, the data base has nodes

of type area as its immediate descendants, each area in turn has

nodes of type file as its immediate descendants and each file has

no~es of type record as its immediate descendants in the hierarchy.

Since it is a hierarchy, each node has a unique parent.

DATA BASE

i

l
AREAS

i

I
FILES

l

i
RECORDS

Figure 1. A sample lock hierarchy.

Each node of the hierarchy can be locked. If one requests exclusive

access (X) to a particular node, then when the request is granted,

the requestor has exclusive access to that node and implicitly to

each of its descendants. If one requests shared access (S) to a

particular node, then when the request is granted, the reguestor has

shared access to that node and i_mp_l_icitly to each descendant of that

node. These two access modes lock an entire subtree rooted at the

requested node.

3ur goal is to find some technique for i_m~_l_icitl~ locking an entire

subtree. In order to lock a subtree rooted at node R in share or

exclusive mode it is important to prevent share or exclusive locks

on the ancestors of R which would implicitly lock R and its

descendants. Hence a new access mode, intention mode (I), is

introduced. Intention mode is used to "tag" (lock) all ancestors of

a node to be locked in share or exclusive mode. These tags signal

the fact that locking is being done at a "finer" level and thereby

prevents implicit or explicit exclusive or share locks on the

ancestors.

Gra.ularity o f locks and degrees o f eonsistemy 367

The protocol to lock a subtree rooted at node R in exclusive or

share mode is to first lock all ancestors of R in intention mode and

%hen to lock node R in exclusive or share mode. For example, using

Figure I, to lock a particular file one should obtain intention

~czess to the data base, to the area containing the file and then

request exclusive (or share) access to the file itself. This

implicitly locks all records of the file in exclusive (or share)

mode.

Access modes and compatibility:

we say that two lock requests for the same node by two different

transactions are compatible if they can be granted concurrently.

The mode of the request determines its compatibility with requests

made by other transactions. The three modes X, S and I are

incompatible with one another but distinct S requests may be granted

together and distinct I requests may be granted together.

The compatibilities among modes derive from their semantics. Share

mode allows reading but not modification of the corresponding

resource by the requestor and by other transactions. The semantics

of exclusive mode is that the grantee may read and modify %he

resource but no other trans~ction may read or modify the resource

while the exclusive lock is set. The reason for dichotomizing share

and exclusive access is that several share requests can be granted

concurrently (are compatible) whereas an exclusive request is not

compatible with any other request. Intention mode was introduced to

be incompatible with share and exclusive mode (to prevent share and ~

exclusive locks). However, intention mode is compatible with itself

since two transactions having intention access to a node will

explicitly lock descendants of the node in X, S or I mode and

thereby will either be compatible with one another or will be

scheduled on the basis of their requests at the finer level. For

example, two transactions can simultaneously be granted the data

base and some area and some file in intention mode. In this case

their explicit locks on particular records in the file will resolve

any conflicts among them.

The notion of intention mode is refined to intention share mode (IS)

and intention exclusive mode (IX) for two reasons: the intention

share mode only requests share or intention share locks at the lower

nodes of the tree (i.e. never requests an exclusive lock below the

intention share node), hence IS is compatible with S mode. Since

read only is a common form of access it will be profitable to

distinguish this for greater concurrency. Secondly, if a

transaction has an intention share lock on a node it can convert

%his to a share lock at a later time, but one cannot convert an

intention exclusive lock to a share lock on a node. Rather to get

the combined rights of share mode and intention exclusive mode one

must obtain an X or SIX mode lock. (This issue is discussed in the

section on rerequests below).

We recognize one further refinement of modes, namely share and

intention exclusive mode (SIX). Suppose one transaction wants to

read an entire subtree and to update particular nodes of that

subtree. Using the modes provided so far it would have the options

of: (a) requesting exclusive access to the root of %he subtree and

doing no further locking or (b) requesting intention exclusive

access to the root of the subtree and explicitly locking the lower

nodes in intention, share or exclusive mode. Alternative (a) has

low concurrency. If only a small fraction of the read nodes are

368 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

updated then alternative (b) has high locking overhead. The correct

access mode would be share access to the subtree thereby allowing

the transaction to read all nodes of the subtree without further

locking _and intention exclusive access to the subtree thereby

allowing the transaction to set exclusive locks on those nodes in

the subtree which are to be updated and IX or SiX locks on the

intervening Nodes. Since this is such a common case, SIX mode is

introduced for this purpose. It is compatible with IS mode since

other transactions requesting IS mode will explicitly lock lower

nodes in IS or S mode thereby avoiding any updates (IX or X mode)

produced by the SIX mode transaction. However SIX mode is not

compatible with IX, S, SIX or X mode requests.

Table 1 gives the compatibility of the request modes, where for

completeness we have also introduced the null mode (NL) which

represents the absence of requests of a resource by a transaction.

I_ NL

I NL Y ES

I IS YES

1 IX Y ES

I S YES

I S IX Y ES

I_X___I_YES

IS IX S SIX X

YES YES YES YES YES

YES YES YES YES NO

YES YES NO NO NO

YES NO YES NO NO

[ES NO NO NO NO

NO NO NO NO NO

Table 1. Compatibilities among access modes.

To summarize, we recognize six modes of access to a resource:

NL: Gives no access to a node, i.e. represents the absence of a

request of a resource.

IS: Gives •intention share access to the requested node and allows

the requestor to lock descendant nodes in S or IS mode. (It

does no implicit locking.)

IX: Gives intention exclusive access to the requested node and

allows the reguestor to exRli____qcit_~l x lock descendants in X, S,

SiX, IX or IS mode. (It does no implicit locking.)

S: Gives share access to the requested node and to all descendants

of the requested node without setting further locks. (It

implicitly sets S locks on all descendants of the requested

node.)

SIX: Gives share and intention exclusive access to the requested

node. (In particular it implicitly locks all descendants of the

node in share mode ~nd allows the requestor to explicitly lock

descendant nodes in X, SIX or IX mode.)

X: Gives exclusive access to the requested node and to all

descendants of the requested node without setting further locks.

(It implicitly sets X locks on all descendants. Locking lower

nodes in S or IS mode would give no increased access.)

IS mode is the weakest non-null form of access to a resource. It

carries fewer privileges than IX or S modes. IX mode allows IS, IX,

S, SIX and X mode lecks to be set on descendant nodes while S mode

allows read only access to all descendants of the node without

further locking. SIX mode carries the privileges of S and of IX

Granularity o flocks and degrees of consistency 369

mode (hence the name SIX). X mode is th. = most privileged form of

azcess and allows reading and writing of all descendants of a node

without further locking. Hence the mod~s can be ranked in the

partial order (lattice) of privileges shown in Figure 2. Note that

it is not a total order since IX and S are incomparable.

X

I

I
SIX

I

I

I
IX

I

I

I

I
IS

I

I
NL

Figure 2. The partial ordering of modes by their privileges.

Rules for request_in S nodes:

Th- = implicit locking of nodes will not work if transactions are

allowed to leap into the middle of the tree and begin locking nodes

at random. The implicit locking implied by the S and X modes

depends on all transactions obeying the following protocol:

(a) Before requesting an S or IS lock on a node, all ancestor nodes

of the requested node must be held in IX or IS mode by the

reguestor.

(b) Before requesting an X, SIX or IX lock on a node, all ancestor

nodes of the requested node must be held in SIX or IX mode by

the requestor.

(c) Locks should be released either at the end of the transaction

(in any order) or in leaf to root order. In particular, if locks

are not held to end of transaction, one should not hold a lock

after releasing its ancestors.

To paraphrase this, locks are requested, root to le_aaf, a_n__dd _released

leaf to root. Notice that leaf nodes are never requested in

intention mode since they have no descendants.

Several examples:

To lock record R for read:

lock data-base with mode = IS

lock area containing R with mode = IS

lock file containing R with mode = IS

lock record R with mode = S

Don't panic, the transaction probably already

area and file lock.

has the data base,

370 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

To lock record R for write-exclusive access:

lock data-base with mode = IX

lock area containing R with mode = IX

lock file containing R with mode = IX

lock record R with mode = X

Note that if the records of this and the previous example are

distinct, each request can be granted simultaneously to different

transactions even though both refer to the same file.

To lock a file F for read and write access:

lock data-base with mode = IX

lock area containing F with mode = IX

lock file F with mode = X

Sinc~ this reserves exclusive access to the file, if this request

uses the same file as the previous two examples it or the other

transactions will have to wait.

To lock a file F for complete scan and occasional update:

lock data-base with mode = IX

lock area containing F with mode = IX

lock file F with mode = SIX

Thereafter, particular records in F can be locked for update by

locking records in X mode. Notice that (unlike the previous

example) this transaction is compatible with the first example.

This is the reason for introducing SIX rood_ ~.

To quiesce the data base:

lock data base with mode = X.

Note that this locks everyone else out.

Directed acycl_~ic qra]~hs of locks:

The notions so far introduced can be generalized to work for

~irected acyclic graphs (DAG) of resources rather than simply

hierarchies of resources. A tree is a simple DAG. The key

observation is that to implicitly or explicitly lock a node, one

should lock _all the parents of the nod~ in the DAG and so by

induction lock all ancestors of the node. In particular, to lock a

subgraph one must implicitly or explicitly lock all ancestors of the

subgraph in the appropriate mode (for a tree there is only one

parent). To give an example of a non-hierarchical structure,

imagine the locks are organized as in Figure 3.

DATA BASE

I

I
AREAS

I

I I
FILES INDICES

I I

I __I

I

I
R ECOR DS

Figure 3. A non-hierarchical lock graph.

Gramdarity of looks and degrees of consisteney 371

We postulate that areas are "physical" nDtions and that files,

indices and records are logical notions. The data base is a

collection of areas. Each area is a collection of files and

indices. Each file has a corresponding index in the same area.

Each record belongs to some file and to its corresponding index. A

record is comprised of field values and so~e field is indexed by the

index associated with the file containing the record. The file

gives a sequential access path to the records and the index gives an

associative access path to the records based on field values. Since

individual fields are never locked, they ~o not appear in the lock

graph.

To write a record R in file F with index I:

lock data base with mode = IX

lock area containing F with mode = IX

lock file F with mode = IX

lock index I with mode = IX

lock record E with mode = X

Note that all paths to record R are locked. Alternaltively, one

could lock F and I in exclusive mode thereby implicitly locking R in

exclusive mode.

To give a more complete explanation we observe that a node can be

locked e_/x~lici_t!~ (by requesting it) or implici_tl I (by appropriate

explicit locks on the ancestors of the node) in one of ~ive modes:

IS, IX, S, SIX, X. However, the definition of implicit locks and

the protocols for setting explicit locks have to be extended for

DAG's as follows:

A node is i_m~licit_!l ~ granted in S mode to a transaction if at least

one of its parents is (implicitly or explicitly) granted to the

transaztion in S, SIX or X mode. By induction that means that at

least one of the node's ancestors must be explicitly granted in S,

SIX or X mode to the transaction.

A node is imDl~Gitl__[~ranted in X mode if ~!! of its parents are

(implicitly or explicitly) granted to the transaction in X mode. By

induction, this is equivalent to the condition that all nodes in

some cut set of the collection of all paths leading from the node to

the roots of the graph are explicitly granted to the transaction in

X mode and all ancestors of nodes in the cut set are explicitly

granted in IX or SIX mode.

From Figure 2, a node is implicitly granted in IS mode if it is

implicitly granted in S mode, and a node is implicitly granted in

IS, IX, S and SIX mode if it is implicitly granted in X mode.

~h~ protocol for ~ ! ~ ! ~ ~s~t~n~ locks on a DAG:

(a) Before requesting an S or IS lock on a node, one should request

at least one parent (and by induction a path to a root) in IS

(or greater) mode. As a consequence none of the ancestors along

this path can be granted to another transaction in a mode

incompatible with IS.

(b) Before requesting IX, SIX or X mode access to a node, one should

request all parents of the node in IX (or greater) mode. As a

consequence all ancestors will be held in IX (or greater mode)

and cannot be held by other transactions in a mode incompatible

with IX (i. e. S, SIX, X).

372 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

(c) Locks should be released either at the end of the transaction

(in any order) or in leaf to root order. In particular, zt

locks are not held to the end of transaction, one should not

hold a lower lock after releasing its ancestors.

To giv~ an example using Figure 3, a sequential scan of all records

in file F need not use an index so one can get an implicit share

lock on each record in the file by:

lock data base

lock area containing F

lock file F

with mode = IS

with mode = IS

with mode = S

This gives implicit S mode access to all records in F. Conversely,

to read a record in a file via the index I for file F, one need not

get an implicit or explicit lock on file F:

lock data base

lock area containing R

lock index I

with mode = IS

with mode = IS

with mode = S

This again gives

(in file F). In

readinq.

implicit S mode access to all records in index I

both these cases, ~n__II o n~ 9ath was locked for

But to insert, delete or update a record R in file F with index I

one must get an implicit or explicit lock on all ancestors of R.

The first example of this section showed how an explicit X lock on a

record is obtained. To get an implicit X lock on all records in a

file one can simply lock the index and file in X mode, or lock the

area in X mode. The latter examples allow bulk load or update of a

file without further locking since all records in the file are

implicitly granted in X mode.

Proof of !~uivalence of the lock protocol.

We will now prove that the described lock protocol is equivalent to

a conventional one which uses only two modes (S and X), and which

explicitly locks atomic resources (the leaves of a tree or sinks of

a DAG).

Let G = (N,A) be a finite (directed acyclic) ~_raph where N is the

set of nodes and A is the set of arcs. G is assumed to be without

circuits (i.e. there is no non-null path leading from a node n to

itselt~. A node p is a parent of a node a and n is a child of p if

there is an arc from p to n. A node n is a source (sink) if n has

no parents (no children). Let SI be th~ set of sinks of G. An

ancestor of node n is any node (including n) in a path from a source

to n. A node-slice of a sink n is a collection of nodes such that

each path from a source to n contains at least one node of the

slice.

We also introduce the set of lock modes M = [NL, IS, IK,S,SIX,X} and

the compatibility matrix C : MxM->{YES,N3} described in Table I.

Let c : mxm->{YES,NO} be the restriction of C to m = [NL, S,X}.

Granularity of locks and degrees of consistency 373

A lock_-qr_a~h is a mapping L : N->M such that:

(a) if L(n) e {IS,S} then either n is a source or there exists a

parent p of n such that L(p) e [IS,IX,S,SIX,X}. By induction

there exists a path from a source to n such that L takes only

values in {IS,IX,S,SIX, X] on it. Equivalently L is not equal to

NL on the path.
(by if L(n) e {IX,SIX,X] then either n is a root or for all parents

pl...pk of n we have L(pi) e {IX, SIX, X} (i=1...k). By induction

L takes only values in {IX,SIX, X] on all the ancestors of n.

The interpretation of a lock-graph is that it gives a map of the

explicit locks held by a particular transaction observing the six

state lock protocol described above. The notion of projection of a

lock-graph is now introduced to model the set of implicit locks on

atomic resources acquired by a transaction.

The ~rojection of a lock-graph L is the mapping I: SI->m constructed

as follows:
(a) l(n)=X if there exists a node-slice [nl...ns} of n such that

L(ni) =X for each node in the slice.

(b) 1 (n)=S if (a) is not satisfied and there exists an ancestor a of

n such that L(a) q [S,SIX,X].

(c) I(n)=NL if (a) and (b) are not satisfied.

Two lock -graphs LI an d L2 are said to be comma tible if

C(LI(n) ,L2(n))=YES for all n e N. Similarly two projections 11 and

12 are compatible if c(11 (n),12 (n))=YES for all n e SI.

Theorem:

If two lock-graphs LI and L2 are compatible then their projections

11 and 12 are compatible. In other words if the explicit locks set

by two transactions do not conflict then also the three-state locks

implicitly acquired do not conflict.

Proof: Assume that 11 and 12 are incompatible. We want to prove

that LI and L2 are incompatible. By definition of compatibility

there must exist a sink n such that ll(n)=X and 12(n) e [S,X} (or

vize versa). By definition of projection there must exist a

node-slice {nl...ns} of n such that LI(nl)=.,.=LI (ns)=X. Also there

must exist an ancestor nO of n such that L2 (nO) e [S,SIX,X}. From

the definition of lock-graph there is a path P1 from a source to nO

on which L2 does not take the value NL.

If P 1 intersects the node-slice at ni then LI and L2 are

incompatible since Ll(ni)=X which is incompatible with the non-null

value of L2 (hi). Hence the theorem is proved.

Alternatively there is a path P2 from n0 to the sink n which

intersects the node-slice at hi. From the definftion of lock-graph

LI takes a value in {IX,SIX,X] on all ancestors of hi. In

particular LI (nO) e {IX, SiX, X] . Since L2 (n0) e [S,SIX,X} we have

C (L1(n0) ,L2 (n0)) =NO. Q.E.D.

Dynamic lock qr_a~hs:

Thus far we have pretended that the lock graph is static. However,

examination of Figure 3 suggests otherwise. Areas, files and

indices are dynamically created and destroyed, and of course records

are continually inserted, updated, and deleted. (If the data Dase

is only read, then there is no need for locking at all.)

374 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

We introduce the lock protocol for dynamic DAG' s by example.

Consider the implementation of index i__nterval locks. Rather than

being forced to lock entire indices or individual records, we would

like to be able to lock all records with a certain contiguous range

of index values; for example, lock all records in the bank account

file with the location field equal to Napa. Therefore, the index is

partitioned into lockable key value intervals. Each indexed record

"belongs', to a particular index interval and all records in a file

with the same field value on an indexed field will belong to the

same key value interval (i.e. all Napa accounts will belong to the

same interval). This new structure is depicted in Figure 4. In [I]

such locks were called predicate locks and and an alternate (more

general but less efficient) implementation was proposed.

I

I

I
UN-INDEXED

FIELDS

DATA BASE

I

i
AREAS

l

l
FILE

l

l

I
INDICES

l

l
INDEX

INTERVALS

........ l

I I

I I

I I I

I I I

I I I
~ECORD INDEXED

IDENTIFIERS FIELDS

Figure 4. The lock graph with index interval locks.

The only subtle aspect of Figure 4 is the dichotomy between indexed

and un-indexed fields. Since the indexed field value and record

identifier (logical address) appear in the index, one can read the

indexed field directly (i.e. without "touching" the record). Hence

an index interval is a parent of the corresponding field values.

Further, the index "points,, via record i~eatifiers to all records

with that value and so is a parent of all such record identifiers.

On the other hand, one can read and update un-indexed fields of the

re=ord without affecting the index and so the file is the only

parent of such fields.

When an indexed field is updated, it and its record identifier move

from one index interval to another. For example, when a Napa

account is moved to the St. Helena branch, the account record and

its location field "leave" the Napa interval of the location index

and "join" the St. Helena index interval. When a new record is

inserted it "joins" the interval containing the new field value and

also it "joins" the file. Deletion rem3ves the record from the

index interval and from the file. index is not a lock ancestor ot

such fields.

Granularity o f locks and degrees o f consistency 375

Since Figure 4 defines a DAG, albeit a dynamic DAG, the protocol of

the previous section can be used to lock the nodes of the DaG.

However, the protocol should be extended as follows to handle

dynamic changes to the lock graph:

(d} Before moving a nods in the lock graph, the node must be

implicitly or explicitly granted in X mode in both its old and

its new position in the graph. Further, the n~de must not be

moved in such a way as to create a cycle in the graph.

Carrying out the example of this section, to move a Napa Dank

account to the St. Helena branch:

lock data base in mode = IX

lock area containing accounts in mode = IX

lock accounts file

lock location index

lock Napa interval

lock St. Helena interval

lock record

lock field

Alternatively, one could

in mode = IX

in mode = IX

in mode = IX

in mode = IX

in mode = IX

in mode = X.

get an implicit lock on the field by

requesting explicit X mode locks on the record and index intervals.

i;

Schedulinq and ~ran~n~ r~ues~s:

Thus far we have described the semantics of the various request

modes and have described the protocol which requestors must follow.

To complete the discussion we discuss how requests are scheduled and

granted.

The set of all requests for a particular resource are kept in a

queue sorted by some fair scheduler. By "fair" we mean that no

particular transaction will be delayed indefinitely. First-in

first-out is the simplest fair scheduler and we adopt such a

scheduler for this discussion modulo deadlock preemption decisions.

The group of mutually compatible requests for a resource appearing

at the head of the queue is called the ~ranted ~ro_u~. all these

requests can be granted concurrently, assuming that each

transaction has at most one request in the queue then the

compatibility of two requests by different transactions depends only

on the modes of the requests and may be computed using Table I.

Associated with the granted group is a Wro_u~ mode which is the

supremum mode of the members of the group which is computed using

Figure 2 or Table 3. Table 2 gives a list of the possible types of

requests that can coexist in a group and the corresponding mode of

the group.

Table 2. Possible request groups and their group mode.

Set brackets indicate that several such requests may be present.

[MODES OF

L____RE.Q_B_E_S,T S
I X

I szx, {zs}
I s, {s}, [Is}

I IX, ~{IX], [IS}

I I S - [I _ S }

MODE OF

GR 0 UP

X

SIX

S

IX

IS

Figure 5 depicts the queue for a particular resource, showing the

376 AN. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

requests and their modes. The granted group consists of five

requests and has group mode IX. The next request in the queue is

for S mode which is incompatible with the group mode IX and hence

must wait.

* GRANTED GROUP: GROUP~ODE = IX *

t is i--i ix i--i ZSl--i ZSl--i ZSl--,- i s [- i is [- ix i- iZSl- fix i

Figure 5. The queue of requests for a resource.

When a new request for a resource arrives, the scheduler appends it

to the end of the queue. There are two cases to consider: either

someone is already waiting or all outstanding requests for this

resource are granted (i.e. no one is waiting). If no one is waiting

and the new request is compatible with the granted group mode then

the new request can be granted immediately. Otherwise the new

request must wait its turn in the queue and in the case of deadlock

it may preempt some incompatible requests in the queue.

(Alternatively the new request could be canceled. In Figure 5 all

the requests decided to wait.) When a particular request leaves the

granted group the group mode of the group may change. If the mode

of the first waiting request in the queue is compatible with the new

mode of the granted group, then the waiting request is granted. In

Figure 5, if the IX request leaves the group, then the group mode

becomes IS which is compatible with S and so the S may be granted.

The new group mode will be S and since this is compatible with IS

mode the IS request following the S request may also join the

granted group. This produces the situation depicted in Figure 6:

GRANTED GROUP GROUPMODE = S *

• I IS I - - I I S I - - I I S l - - I Z S l - - I S l - , I Z S l - - * - I X l - I IS I - I I X I

Figure 6. The queue after the IX request is released.

The X request of Figure 6 will not be granted until all the requests

leave the granted group since it is not compatible with any mode.

conversions:

A transaction might re-request the same resource for seve ~-al

reasons: Perhaps it has forgotten that it already has access to the

record: after all, if it is setting many locks it may be simpler to

just always request access to the record rather than first asking

itself "have I seen this record before". The lock subsystem has all

the information to answer this question and it seems wasteful to

duplicate. Alternatively, the transaction may know it has access to

the record, but want to increase its access mode (for example from S

to X mod ~- if it is in a read, test, and sometimes update scan of a

file). So the lock subsystem must be prepared for re-requests by a

transaction for a lock. We call such re-requests conversions.

When a request is found to be a conversion, the old (granted) mode

of the reguestor to the resource and the newly requested mode are

compared using Table 3 to compute the new mode which is the supremum

of the old and the requested mode (ref. Figure 2).

Granu[arity of looks and degrees o f consistency 377

Table 3. The new mode given the requested and old mode.

I NEW 8ODE

I I IS IX S SiX X

I IS I IS IX S SIX X

I IX I IX IX SIX SIX X

I S I S SIX S SIX X

I SIX I SIX SIX SIX SIX X

l__X___i X X X X X

So for example, if one has IX mode and requests S mode then the new

mode is SIX.

If the new mode is equal to the old mode (note it is never less than

the old mode) then the request can be granted immediately and the

granted mode is unchanged. If the new mode is compatible with the

group mode of the other members of the granted group (a requestor is

~lways compatible with himself) then again the request can be

granted immediately. The granted mode is the new mode and the group

mode is recomputed using Table 2. In all other cases, the

requested conversion must wait until the group mode of the other

granted requests is compatible with the new mode. Note that this

immediate granting of conversions over waiting requests is a minor

violation of fair scheduling.

If two conversions are waiting, each of which is incompatible with

an already granted request of the other transactioa, then a deadlock

exists and the already granted access of one must be preempted.

3therwise there is a way of scheduling the waiting conversions:

namely, grant a conversion when it is compatible with all other

granted modes in the granted group. (Since there is no deadlock

cycle this is always possible.)

The following example may help to clarify these points. Suppose the

queue for a particular resource is:

GROUPMODE = is *

IISI---IIS I

Figure 7. A simple queue.

Now suppose the first transaction wants to convert to X mode. It

must wait for the second (already granted) request to leave the

queue. If it decides to wait then the sitaation becomes:

GROUPMODE = IS

IIS<-XI---IISI-

Figure 8. ~ conversion to X mode waits.

NO new request may enter the granted group since there is now a

conversion request waiting. In general, conversions are scheduled

before new requests. If the second transaction now converts to IX,

SIX, or S mode it may be granted immediately since this does not

conflict with the ~_ranted (IS) mode of the first transaction. When

the second transaction eventually leaves the queue, the first

conversion can be made:

378 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

GROUPMODE = IS

IIXl

Figure 9. One transaction leaves and the conversion is granted.

However, if the second transaction tries to convert to exclusive

mode one obtains the queue:

GROUPZODE = IS

IIS<-XI-~-WIS<-XI

Figure 10. Two conflicting conversions are waiting.

Since X is incompatible with IS (see Table I), this situation

implies that each transaction is waiting for the other to leave the

queue (i.e. deadlock) and so one transaction mu~ be preempted. In

all other cases (i.e. when no cycle exists) there is a way to

schedule the conversions so that no already granted access is

violated.

Deadlock and lock thrashinq:

Whenever a transaction waits for a request to be granted, it runs

the risk of waiting forever in a deadlock cycle. For the purposes

of deadlock detection it is important to know who is waiting for

whom. The request queues give this information. Consider any

waiting request R by transaction T. There are two cases: If R is a

conversion, r is WAITING_FOR all transactions granted incompatible

requests to the queue. If R is not a conversion, r is WAITING FOR

all transactions ahead of it in the queue granted or waiting for

incompatible requests. Given this WAITING_FOR relation computed for

all waiting transactions, there is no deadlock if and only if

WAITING_FOR is acyclic.

The WAITING FOR relation may change whenever a request or release

occurs and when a conversion is granted. If a transaction may wait

for at most one request at a time, then the deadlock state can only

change when some process decides to wait. In this special case

(synchronous calls to lock system) , only waits require recomputation

of the WAITING_FOR relation. If deadlock is improbable, deadlock

testing can be done periodically rather than on each wait, further

reducing computational overhead.

One new request may form many cycles and each such cycle must be

broken. When a cycle is detected, to break the cycle some granted

or waiting request must be preempted. The lock scheduler should

choose a minimal cost set of victims to preempt, so that all cycles

are broken, undo all the changes to the data base made by the

victims since the preempted resources were granted, and then preempt

the resource and signal the victims that they have been backed up.

The issues discussed so far--lock scheduling, detecting and breaking

deadlocks--are low level scheduling decisions. They must be

connected with a high level transaction scheduler which regulates

the load on the system and regulates the entry and progress of

transactions to prevent long waits, high probability o~ waiting

Granularity o flocks and degrees o f consistency 379

(lock thrashing), and deadlock. By analogy, a page management

system with only a low level page frame scheduler, which allocates

and preempts page frames in a fairly naive way, is likely to produce

page thrashing unless it is coupled with a working set scheduler

which regulates the number and character of processes competing for

page frames.

II. DEGREES OF CONSISTENCY:

We now focus on how locks can be used to construct transactions out

of atomic actions. The data base consists of entities which are

related in certain ways. These relationships are best thought of as

assertions about the data. Examples of such assertions are:

'Names is an index for Telephonenumbers.'

'The value of Count of x gives the number of employees in

department x.'

The data base is said to be consistent if it satisfies all its

assertions [I]. In some cases, the data base must become

temporarily inconsistent in order to transform it to a new

consistent state. For example, adding a new employee involves

several atomic actions and the updating of several fields. The data

base may be inconsistent until all these updates have been

completed.

To cope with these temporary inconsistencies, sequences of atomic

actions are grouped to form transactions. Transactions are the

units of consistency. They are larger atomic actions on the data

base which transform it from one consistent state to a new

consistent state. Transactions preserve consistency. If some

action of a transaction fails then the entire transaction is

'undone' thereby returning the data base to a consistent state.

Thus transactions are also the units of recovery. Hardware failure,

system error, deadlock, protection violations and program error are

each a source of such failure.

If transactions are run one a% a time then each transaction will see

the consistent state left behind by its predecessor. But if several

transactions are scheduled concurrently then locking is required to

insure that the inputs to each transaction are consistent.

Responsibility for requesting and releasing locks can either be

assumed by the user or be delegated to the system. User controlled

locking results in potentially fewer locks due to the user's

knowledge of the semantics of the data. On the other hand, user

controlled locking requires difficult and potentially unreliable

application programming. Hence the approach taken by some data base

systems is to use automatic lock protocols which insure protection

from general types of inconsistency, while still relying on the user

to protect himself against other sources of inconsistencies. For

example, a system may automatically lock updated records but not

records which are read. Such a system prevents lost updates arising

from transaction backup. Still, the user should explicitly lock

records in a read-update Sequence to insure that the read value does

not change before the actual update. In other words, a user is

guaranteed a limited automatic desree of consistency. This degree

of consistency may be system wide or the system may provide options

to select it (for instance a lock protocol may be associated with a

transaction or with an entity).

380 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

we now present several e~uivalent definitions of four consistency

degrees. The first definition is an operational and intuitive one

useful in describing the system behavior to users. The second

definition is a procedural one in terms of lock protocols, it is

useful in explaining the system implementation. The third

definition is in terms of a trace of the system actions, it is

useful in formally stating and proving properties of the various

consistency degrees.

Informal definition of consistenci: ~

An output (write) of a transaction is committed when the transaction

abdicates the right to 'undo' the write thereby making the new value

available to all other transactions. Outputs are said to be

uncommitted or dirty if they are not yet committed by the writer.

Concurrent execution raises the problem that reading or writing

other transactions' dirty data mayyield inconsistent data.

Using this notion of dirty data, the degrees of consistency may be

defined as:

Definition 1:

Degree 3: Transaction T sees deqree 3 consistency if:

(a) T does not overwrite dirty data of other transactions.

(b) T does not commit any writes until it completes all its writes

(i.e. until the end of transaction (EOT)).

(z) T does not read dirty data from other transactions.

(d) Other transactions do not dirty any data read by T before T

completes.

Degree 2: Transaction T sees deqree 2 consisten~x if:

(a) T does not overwrite dirty data of other transactions.

(b) T does not commit any writes before EOT.

(c) T does not read dirty data of other transactions.

Degree I: Transaction T sees deqree I consistency if:

(a) T does not overwrite dirty data of other transactions.

(b) T does not commit any writes before EOT.

Degree 0: Transaction T sees deqree 0 consistency if:

(a) T does not overwrite dirty data of other transactions.

Note that if a transaction sees a high degree of consistency then it

also sees all the lower degrees.

Degree 0 consistent transactions commit writes before the end of

transaction. Hence backing up a degree 0 consistent transaction may

require undoing an update to an entity locked by another

transaction. In this sense, degree 0 transactions are

unrecoverable.

Degree 1 transactions do not committ writes until the end of the

transaction. Hence one may undo (back up) an in-progress degree I

transaction without setting additional locks. This means that

transaction backup does not erase other transactions' updates. This

is the principal reason one data management system automatically

provides degree I consistency to all transactions.

Degree 2 consistency isolates a transaction from the uncommitted

Granulari~ of locks and degrees of consistency 381

data of other transactions. With degree I consistency a transaction

might read uncommitted values which are subsequently updated or are

undone. In degree 2 no dirty data values are read.

Degree 3 consistency isolates the transaction from dirty

relationships among values. Reads are r_~eatable. For example, a

degree 2 consistent transaction may read two different (committed)

values if it reads the same entity twice. This is because a

transaction which updates the entity could begin, update and end in

the interval of time between the two reads. More elaborate kinds of

anomalies due to concurrency are possible if one updates an entity

after reading it or if more than one entity is involved (see example

below). Degree 3 consistency completely isolates the transaction

from inconsistencies due to concurrency [I].

Each transaction can elect the degree of consistency appropriate to

its function. When the third definition is given we will be able to

state the consistency and recovery properties of such a system more

formally.

Briefly:

If one elects degree i consistency then one sees a degree i

consistent state (so long as all other transactions run at

least degree 0 consistent)

If all transactions run at least degree I consistent, system

backup (undoing all in-progress transactions) loses no updates

of completed transactions.

If all transactions run at least degree 2 consistent,

transaction backup (undoing any in-progress transaction)

produces a consistent state.

To give an example which demonstrates the application of these

several degrees of consistency, imagine a process control system in

which some transaction is dedicated to reading a gauge and

periodically writing batches of values into a list. Each gauge

reading is an individual entity. For performance reasons, this

transaction sees degree 0 consistency, committing all gauge readings

as soon as they enter the data base. This transaction is not

recoverable (can't be undone). A second transaction is run

periodically which reads all the recent gauge readings, computes a

mean and variance and writes these computed values as entities in

the data base. Since we want these two values to be consistent with

one another, they must be committed together (i.e. one cannot commit

the first before the second is written). This allows transaction

undo in the case that it aborts after writing only one of the two

values. Hence this statistical summary transaction should see

degree I. A third transaction which reads the mean and writes it on

a display sees degree 2 consistency. It will not read a mean which

might be 'undone' by a backup. ~nother transaction which reads both

the mean and the variance must see degree 3 consistency to insure

that the mean and variance derive from the same computation (i.e.

th~ same run which wrote the mean also wrote the variance).

Lock protocol definition of consistenc_z:

Whether an instantiation of a transaction sees degree o, I, 2 or 3

consistency depends on the actions of other concurrent

transactions. Lock protocols are used by a transaction to guarantee

itself a certain degree of consistency independent of the behavior

of other transactions (so long as all transactions at least observe

382 11%'. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

the degree 0 protocol).

The degrees of consistency can be procedurally defiaed by the lock

protocols which produce them. A transaction locks its inputs to

guarantee their consistency and locks its outputs to mark them as

dirty (uncommitted).

For this section, locks are dichotomized as share mode locks which

allow multiple readers of the same entity and exclusive mode locks

which reserve exclusive access to an entity. (This is the "two

mode" lock protocol. Its generalization to the "six mode" protocol

of the previous section should be obvious.) Locks may also be

characterized by their duration: locks held for the duration of a

single action are called short duration locks while locks held to

the end of the transaction are called lonq duration locks. Short

duration locks are used to mark or test for dirty data for the

duration of an action rather than for the duration of the

transaction.

The lock protocols are:

Definition 2:

Degree 3: transaction T observes de~ree 3 lock protocol if:

(a) T sets a long exclusive lock on any data it dirties.

(b) T sets a long share lock on any data it reads.

Degree 2: transaction T observes de~ree 2 lock ~rotocol if:

(a) T sets a long exclusive lock on any data it dirties.

(b) T sets a (possibly short) share lock on any data it reads.

Degree I: transaction T observes de__gree I lock P[~E~! if:

(a) T sets a long exclusive lock on any data it dirties.

Degree 3: transaction T observes degree 0 lock protocol if:

(a) T sets a (possibly short) exclusive lock on any data

dirties.

it

The lock protocol definitions can be stated more tersely with the

introduction of the following notation. A transaction is ~!

formed with respect to writes ([ead____ss) if it always locks an entity

in exclusive (shared or exclusive) mode before writing (reading)

it. The transaction is well formed if it is well formed with

respect to reads and writes.

A transaction is _two phase (with r_e_spect to reads or _updates) if it

does not (share or exclusive) lock an entity after unlocking some

entity. A two phase transaction has a growing phase during which it

acquires locks and a shrinking phase during which it releases

locks.

Definition 2 is too restrictive in the sense that consistency will

not require that a transaction hold all locks to the EOT (i.e. the

EOT is the shrinking phase) . Rather, the constraint that the

transaction be two phase is adequate to insure consistency. On the

other hand, once a transaction unlocks an updated entity, it has

committed that entity and so cannot be undone without cascading

backup to any transactions which may have subsequently read the

entity. For that reason, the shrinking phase is usually deferred to

the end of the transaction; thus, the transaction is always

recoverable and all updates are committed together. The lock

protocols can be redefined as:

Gramtlarity of looks and degrees of consistency 383

Definition 3!:

Degree 3: T is well formed

and T is two phase.

Degree 2: T is well formed

and T is two phase with respect to writes.

Degree 1: T is well formed with respect to writes

and T is two phase with respect to writes.

Degree 0: T is well formed with respect to writes.

All transactions are re~ired to observe the degree

protocol so that they do not update the uncommitted

others. Degrees I, 2 and 3 provide increasing

consistency.

0 locking

updates of

syst es-guarant eed

Consisten~ of schedules:

The definition of what it means for a transaction to see a degree of

consistency was given in terms of dirty data. In order to make the

notion of dirty data explicit it is necessary to consider the

execution of a transaction in the context of a set of concurrently

executing transactions. To do this we introduce the notion of a

schedule for a set of transactions. A schedule can be thought of as

a history or audit trail of the actions performed by the set of

transactions. Given a schedule the notion of a particular entity

being dirtied by a particular transaction is made explicit and hence

the notion of seeing a certain degree of consistency is formalized.

These notions may then be Used to connect the various definitions of

consistency and show their equivalence.

The system directly supports entities and actions. Actions are

categorized as beq!n actions, en_dd actions, share lock actions,

exclusive lock actions, unlock actions, read actions, and write

actions. An end action is presumed to unlock any locks held by the

transaction but not explicitly unlocked by the transaction. For the

purposes of the following definitions, share lock actions and their

corresponding unlock actions are additionally considered to be read

actions and exclusive lock actions and their corresponding unlock

actions are additionally considered to be write actions.

A transaction is any sequence of actions beginning with a begin

action and ending with an end action and not containing other begin

or end actions.

Any (sequence preserving) merging of the actions of a set of

transactions into a single sequence is called a schedule for the set

of transactions.

A schedule is a history of the order in which actions were executed

(it does not record actions which were undone due to backup). The

simplest schedules run all actions of one transaction and then all

actions of another transaction,... Such one-transaction-at-a-time

schedules are called serial because they have no concurrency among

transactions. Clearly, a serial schedule has no concurrency induced

inconsistency and no transaction sees dirty data.

Locking constrains the set of allowed schedules. In particular, a

schedule is le_~a!l only if it does not schedule a lock action on an

384 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

entity for one transaction when that entity is already locked by

some other transaction in a conflicting mode.

An initial state and a schedule completely define the system's

behavior. At each step of the schedule one can deduce which entity

values have been committed and which are dirty: it locking is used,

updated data is dirty until it is unlocked.

Since a schedule makes the definition of d~rty data explicit, one

can apply Definition 1 to define consistent schedules:

Definition 3:

A transaction runs at ~E~9 ~ (!, 2 or 3) c___onsistency in schedule S

if T sees degree 0 (I, 2 or 3) consistency in S. (Conversely,

transaction T sees degree i consistency if all legal schedules run T

at degree i consistency.)

If all transactions run at degree 0 (1,2 or 3) consistency in

schedule S then S is said to be a _de_qree ~ (I, 2 or 3) consistent

schedule.

Given these definitions one can show:

Assertion I:

(a) If each transaction

(b)

observes the degree 0 (1, 2 or 3) lock

protocol (Definition 2) then any legal schedule is degree 0 (1,

2 or 3) consistent (Definition 3) (i.e, each t ransactlon sees

degree 0 (1, 2 or 3) consistency in the sense of Definition

1).

Unless transaction T observes the degree I (2 or 3) lock

protocol then it is possible to define another transaction T'

which does observe the degree I (2 or 3) lock protocol such

that T and T' have a legal schedule S but T does not run at

degree 1 (2 or 3) consistency in S.

In [1] we proved Assertion I for degree 3 consistency. That

argument generalizes directly to this result.

Assertion 1 says that if a transaction observes the lock protocol

definition of consistency (Definition 2) then it is assured of the

informal d=_finition of consistency based on committed and dirty ,data

(Definition 1). Unless a transaction actually sets the locks

prescribed by degree 1 (2 or 3) consistency one can construct

transaction mixes and schedules which will cause the transaction te

run at (see) a lower degree of consistency. However, in particular

cases such transaction mixes may never occur due to the structure or

use of the system. In these cases an apparently low degree of

locking may actually provide degree 3 consistency. For example, a

data base reorganization usually need do no locklng since it is run

as an off-line utility which is never run concurrently with other

transactions.

Assertion 2:

If each transaction in a set of transactions at least observes the

degree 0 lock protocol and if transaction T observes the degree I (2

or 3) lock protocol then T runs at degree 1 (2 or 3) consistency

(Definitions 1, 3) in any legal schedule for the set of

transactions.

Granularity of locks and degrees of consistency 385

Assertion 2 says that each transaction can choose its degree of

consistency so long as all transactions observe at least aegree 0

protocols. Of course the outputs of degree 0, I or 2 consistent

transactions may be degree 0, I or 2 consistent (i.e. inconsistent)

because they were computed with potentially inconsistent inputs.

3ne can imagine that each data entity is tagged with the degree of

consistency of its writer: Degree 0 entities are purple, degree I

entities are red, degree 2 entities are yellow and degree 3 entlties

are green. The color of the outputs of a transaction is the minimum

of the transaction's color and the colors of the entities it reads

(because they are potentially inconsistent). Gradually the system

will turn purple or red unless everyone runs with a high degree of

consistency. If the transaction 's author knows something about the

systems structure which allows an apparently degree 1 consistent

protocol to produce degree 3 consistent results then this color

coding is pessimistic. But, in general a transaction must beware of

reading entities tagged with degrees lower than the degree of the

transaction.

DeRendencies amonq transactions:

9ne transaction is said to depeP_~d on another if the first takes some

of its inputs from the second. Thenotion of dependency is defined

differently for each degree of consistency. These dependency

relations are completely defined by a schedule and can be useful in

~iscussing consistency and recovery.

Each schedule defines three relations: <, << and <<< on the set of

transactions as follows. Suppose that transaction T performs action

a on entity e at some step in the schedule and that transaction T'

performs action a' on entity e at a later step in the schedule.

Further suppose that T does not equal T'. Then:

T <<< T' if a is a write action and a' is a write action

or a is a write action and a' is a read action

or a is a read action and a' is a write action

T << T' if a is a write action and a' is a write action

or a is a write action and a' is a read action

T < T' if a is a write action and a' is a write action

So degree I does not care about read dependencies at all. Degree 2

cares only about one kind of read dependency. And degree 3 ignores

only read-read dependencies (reads commute). The following table is

notationally convenient way of seeing these definitions:

<<< : W->W I W->R I R->W

<< : W->W "I W ->R

< : W ->W

meaning that (for example)T <<< T' if T writes (W) something later

read (R) by T' or written (W) by T' or T reads (R) something later

written (W) by T'.

Let <~ be the transitive closure of <, then define:

BEFOBEI (T) = {T'I T' <~ T}

AFTERI (T} = {T' I T <~ T'].

The sets BEFORE2, AFTER2, BEFOPF3 and AFTER3 are defined analogously

386 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

from << and <<<.

The obvious interpretation for this is that each BEFORE set is the

set of transactions which contribute inputs to T and each AFTER set

is the set of transactions which take their inputs from T (where the

ordering only considers d=_pendencies induced by the corresponding

consistency degree).

If some transaction is both before T and after T in some schedule

then no serial schedule could give such results. In this case

concurrency has introduced inconsistency. On the other hand, if all

relevant transactions are either before or after T (but not both)

then T will see a consistent state (of the corresponding degree).

If all transactions dichotomize others in this way then the relation

<e (<<~ or <<<e) will be a partial order and the whole schedule will

give degree I (2 or 3) consistency. This can be strengthened to:

Assertion 3:

A schedule is degree I (2 or 3) consistent if and only if

the relation <~ (<<e or <<<~) is a partial order.

The <, << and <<< relations are variants of the dependency sets

introduced in [1]. In that paper only degree 3 consistency is

introduced and Assertion 3 was proved for that case. In particular

such a schedule is equivalent to the serial schedule obtained by

running the transactions one at a time in <<< order. The proofs of

[I] generalize fairly easily to handle assertion 1 in the case of

degree I or 2 consistency.

Consider the following example:

T1 LOCK A

TI READ A

T I UNLOCK A

T2 LOCK A

T2 WRITE A

T2 LOCK B

T2 WRITE B

T2 UNLOCK R

T2 UNLOCK B

TI LOCK B

T1 WHITE B

T1 UNLOCK B

In this schedule T2 gives B to TI and T2 updates A after TI reads A

so T2<TI, T2<<T1, T2<<<T1 and TI<<<T2. The schedule is degree 2

consistent but not degree 3 consistent. It runs TI at degree 2

consistency and T2 at degree 3 consistency.

It would be nice to define a transaction to see degree I (2 or 3)

consistency if and only if the BEFORE and AFTER sets are disjoint in

some schedule. However, this is not restrictive enough; rather one

must require that the before and after sets be disjoint in all

schedules in order to state Definition 1 in terms of dependencies.

Further, there seems to be no natural way to define the dependencies

of degree 0 consistency. Hence the principal application of the

dependency definition is as a proof technique and for discussing

schedules and recovery issues.

!

Granularity of locks and degrees of consistency 387

RelationshiR t_~o transaction backu E ~nd ~ recover~:

A transaction T is said to be recoverable if it can be undone before

'EOT' without undoing other transactions' updates. A transaction T

is said to be repeatable if it will reproduc~ the original output if

rerun following recovery, assuming that no locks were released in

the backup process. Recoverability requires system wide degree 1

consistency, repeatibility requires that all other transactions be

~t least degree I and that the repeatable transaction be degree 3.

The no___rmal (i.e. trouble free) operation of a data base system can

be described in terms of an initial consistent state $0 and a

schedule of transactions mapping the data base into a final

consistent state S3 (see Figure 11). S1 is a checkpoint state,

since transactions are in progress, $1 may be inconsistent. A

system crash leaves the data base in state $2. Since transactions

T3 and T5 were in progress at the time of crash, S2 is potentially

inconsistent. System recovery amounts to bringing the data base in

a new consistent state in one of the following ways:

(a) Starting from state S2, undo all actions of transactions

in-progress at the time of the crash.

(by Starting from state S I first undo all actions of transactions in

progress at the time of the crash (i.e. actions of T3 and T~

before SI) and then redo all actions of transactions which

completed before the crash (i.e. actions of T2 and T3 after

Sl) .

(c) starting at S0 redo all transactions which completed before the

crash.

observe that (a) and (c) are degenerate cases of (b).

I TII I I > I

I T21 :" I--- I < I

I T31 I > I I

I I T~ I--- I < I

I I T51 > I I

S0 S I $2 S3

Figure 11. System states, SO is initial state, S1 is checkpoint

state, S2 is a crash and S3 is the state that results in the absence

of a crash.

Unless all transactions run at least degree 1 consistency, system

recovery may lose updates. If for example, T3 writes a record, r,

and then T~ further updates r then undoing T3 will cause the update

of T~ to r to be lost. This situation can only arise if some

transaction does not hold its write locks to EOT.

(a) If all the transactions run in at least degree 1 consistency

then system recovery loses no updates of complete

transactions. However there may be no schedule which would

give the sa~e result because transactions may have read outputs

of undone transactions.

388 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

(b) If all the transactions run in at least degree 2 then the

recovered state is consistent and derives from the schedule

obtatined from the original system schedule by deleting

incomplete transactions. Note that degree 2 prevents read

dependencies on transactions which might be undone by system

recovery, of all the Completed transactions results in a

meaningful schedule.

(c) If a transaction

reproducible.

is degree 3 consi stent then it is

Transaction crash gives rise to transaction backu~ which has

properties analogous to system recovery.

Cost of deqrees of consistencL:

The only advantage of lower degrees of consistency is performance.

If less is locked then less computation and storage is consumed.

Further if less is locked, concurrency is increased since fewer

conflicts appear. (Note that the granularity lock scheme of the

first section was motivated by minimizing the number of explicit

locks set.)

We will make some vet Z crude estimates of the storage and

computation resources consumed by the locking protocols as a

function of the consistency degree. For the remainder of this

section assume that all transactions are identical. Also assume

that they do R reads and W writes (and hence set approximately R

share mode locks and W exclusive mode locks}. Further we assume

that all the transactions run at the same consistency degree.

Each outstanding lock request consumes a queue element. The maximum

per-transaction space for these queue elements as a function of

consistency degrees is:

Table 4. Consistency degrees vs storage consumption.

I I
CONSISTENCY DEGREE I STORAGE (in queue elements) J

I I
I I

0 I 1 I
I I ~ . I
2 I W+1 I
3 I W.,-l~ I

I I

Observe that degrees I and 2 consume roughly the same amount of

storage but that degree 3 consumes substantially more storage. This

observation is aggravated by the fact that reads are typically ten

times more common than writes.

The estimation of computation (CPU) overhead is much more subtle.

We make only a crude estimate here. First one may consider the

overhead in requesting and releasing locks. This is shown in TaDle

5 as a function of consistency degrees.

Granularity o flocks and degrees o f consistency 389

TABLE 5. Computational overhead vs degrees of consistency.

CONSISTENCY DEGREE CPU (in calls to lock sys)

W

W

W+R

W+R

Table 5 indicates that the computational overhead of degrees 2 and 3

are comparable and are greater than the overhead of degrees 0 or 1.

These pairs of degrees set the same locks, they just hold them for

different durations.

Table 5 ignores the observation that some lock requests are

trivially satisfied (the request is granted immediately) while

others require a task switch and hence are quite expensive. The

probability that a read lock will have to wait is proportional to

the number of conflicting locks [write) currently granted. The

probability that a write lock will have to wait is proportional to

the number of conflicting (read or write) locks that are currently

granted. Table 4 gives a guess of the maximum number of ic~ks of

each type held by each transaction. If there are 2~N+I transactions

one can multiply the entries of Table 4 by N to get an average

number of locks held by all Others. If a wait lock request is C÷I

times as expensive as an immediately granted request and if P is the

probability that two different requests are for the same resource

then the relative computational costs are roughly computed:

degree 0 overhead: W

p~C~N~W

cost of setting locks

cost of waits

degree I overhead: w

p~C~N*W*W

cost of writes

cost of waits

degree 2 overhead: W+R

P~C~N~W= (W+I)

P~C~N*R~W

cost of setting locks

cost of write waits

cost of read waits

degree 3 overhead: W+R

p*C~N~R~W

cost of setting locks

cost of waiting for writes

cost of waiting for reads

TABLE 6. Computational overhead vs degrees of consistency.

CONSISTENCY DEGREE CPU (in calls to lock sys)

I

W+P~C~N*N~ (I)

W+R÷P~C~N ~W • (W+2~R)

To consider a specific example, a simple banking transaction does

five reads (R=5) and six (W=6) writes. A transaction accesses a

390 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

random account and there are millions of accounts so the probability

of collision, P, is roughly .000001. Suppose there are one hundred

transactions per second. A lock takes one hundred instructions and

a wait requires five thousand instructions; hence, C=50. So the

term P*C~N~W evaluates to 0.015. This implies that Table 5 gave a

good estimate of the CPU overhead because the last term in Table 6

is miniscule compared to the term W+R. Of course this analysis is

very sensitive to P and one must design the data base so that P

takes on a very small value.

The striking thing about these estimates is that degree 2 and degree

3 seem to have similar computational overhead which seems to be

substantially larger than the overhead of degree 0 or I

consistency. We suspect that this conclusion would survive a more

careful study of the problem.

Gmmdarity of locks and degrees of consistency 391

ISSUE l DEGREE 0] DEGREE I] DEGREE 2 I DEGREE 3
.

COMMITTED

DATA

DIRTY

DATA

LOCK

PROTOCOL

TRANSACTION

STRUCTURE

WRITES ARE

COMMITTED

IMMEDIATELY

YOU DONIT

UPDATE DIRTY

DATA

WRITES ARE

COM M ITTED

AT EOT

0 AND NO ONE

ELSE UPDATES

YOUR DIRTY

DATA

SAME AS 1

0, I AND YOU

DON'T READ

DIRTY DATA

SET SHORT

EXCL. LOCKS

ON ANY DAT A

YOU WRITE

WELL FORMED

WRT WRITES

SAME AS 1

0,1 ,2 AND

NO ONE ELSE

DIRTIES DATA

YOU READ

SET LONG

EXCL. LOCKS

ON ANY DATA

YOU WRITE

(WELL FORMED

AND 2 PHASE)

WRT WRITES

I AND SET SHORT

SHARE LOCKS

ON ANY DATA

YOU READ

WELL FORMED

(AND 2 PHASE

WRT WRITES)

CONCURRENCY GREATEST : GREAT: MEDIUM:

ONLY WAIT ONLY WAIT ALSO WAIT FOR

FOR SHORT FOR WRITE READ LOCKS

WRITE LOCKS LOCKS
.

OVERHEAD LEAST: SMALL: MEDIUM:

ONLY SET ONLY SET SET BOTH KINDS

SHORT WRITE WRITE LOCKS OF LOCKS BUT

LOCKS NEED NOT STORE

SHORT LOCKS
. J

TRANSACT- CAN NOT UNDO

ION BACKUP WITHOUT

CASCADING TO

OT HE RS
.

PROTECTION

PROVIDED

LETS OTHERS

RUN HIGHER

CONSISTENC Y

APPLY LOG

IN ORDER OF

ARRIVAL

SYSTEM

RECOVERY

TECHNIQUE

UN-DO ALL

INCOMPLETE

TRANSACTIONS

IN ANY ORDER

0 AND CAN'T

LOSE WRITES

UN-DO ANY

INCO~PLE~

TRANSACTIONS

IN ANY ORDER

0,1 AND CAN'T

READ BAD DATA

ITEMS

APPLY LOG SAME AS I: BUT

IN < ORDER RESULT IS SAME

AS SOME SCHEDULE

W- >W W- >W

W->R

DEPENDENCIES NONE

ORDERING NONE < IS AN << IS AN

ORDERING OF ORDERING OF

THE TRANS- THE TRANS-

ACTIONS ACTIONS

I AND SET LONG

SHARE LOCKS

ON ANY DATA

YOU READ

WELL FORMED

AND TWO PHASE

LOWEST:

ANY DATA

TOUCHED IS

LOCKED TO ROT

HIGHEST :

SET AND STORE

BOTH KINDS OF

LOC KS

SAME AS 2

0, 1,2 AND CAN' T

READ BAD DATA

RELATIONSHIPS

2 AND SCHEDULE

IS S ER IAL

W->W

W->R

R->W

<<< IS AN

ORDERING OF

THE TRANS-

ACT IONS
............................. £ ...

Table 7. Summary of consistency degrees.

392 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

II!. LOCK GRANULARITY AND DEGREES OF CONSISTENCY IN EXISTING

SYSTEMS:

IMS/VS with the program isolation feature [2] has a two level lock

hierarchy: segment types (sets of records), and segment instances

(records) within a segment type. Segment types may be locked in

EXCLUSIVE (E) mode (which corresponds to our exclusive (x) mode) or

in EXPRESS READ (R) , RETRIEVE (G) , or UPDATE (U) (each of which

correspond to our notion of intention (I) mode) [2, pages

3.18-3.27]. Segment instances can be locked in share or exclusive

mode. Segment type locks are requested at transaction initiation,

usually in intention mode. Segment instance locks are dynamically

set as the transaction proceeds. In addition IMS/~S has user

controlled share locks on segment instances (the =Q option) which

allow other read requests but not other ~Q or exclusive requests.

IMS/VS has no notion of S or SIX locks on segment types (which would

allow a scan of all members of a segment type concurrent with other

readers but without the overhead of locking each segment instance).

Since IMS/VS does not support S mode on segment types one need not

distinguish the two intention modes IS and IX (see the section

introducing IS and IX modes). In general, IMS/VS has a notion of

intention mode and does implicit locking but does not recognize all

the modes described here. It uses a static two level lock tree.

IMS/VS with the program isolation feature basically provides degree

2 consistency. However degree 1 consistency can be obtained on a

segment type basis in a PCB (view) by specifying the EXPRESS READ

option for that segment. Similarly degree 3 consistency can be

obtained by specifying the EXCLUSIVE or UPDATE options. IMS/VS also

has the user controlled share locks discusseH above which a program

can request on selected segment instances to obtain additional

consistency over the degree I or 2 consistency provided by the
system.

IMS/VS without the program isolation feature (and also the previous

version of IMS namely IMS/2) doesn't have a lock hierarchy since

locking is done only on a segment type basis. It provides degree I

consistency with degree 3 consistency obtainable for a segment type

in a view by specifying the EXCLUSIVE option. User controlled

locking is also provided on a limited basis via the HOLD option.

DMS 1100 has a two level lock hierarchy [q]: areas and pages within

areas. Areas may be locked in one of seven modes when they are

OPENed: EXCLUSIVE RETRIEVAL (which corresponds to our notion of

exclusive mode), PROTECTED UPDATE (which corresponds to our notion

of share and intention exclusive mode), PROTECTED RETRIEVAL (which

we call share mode), UPDATE (which corresponds to our intention

exclusive mode), and RETRIEVAL (which is our intention share mode).

Given this transliteration, the compatibility matrix displayed in

Table 1 is identical to the compatibility matrix of DMS 1100 [3,

page 3.59]. However, DMS 1100 sets only exclusive locks on pages

within areas (short term share locks are invisibly set during

internal pointer following). Further, even if a transaction locks

an area in exclusive mode, DMS 1100 continues to set exclusive locks

(and internal share locks) on the pages in the area, despite the

fact that an exclusive lock on an area precludes reads or updates of

the area by other transactions. Similar observations apply to the

DMS 1100 implementation of S and SIX modes. In general, DMS 1100

recognizes all the modes described here and uses intention modes to

detect conflicts but does not utilize implicit locking. It uses a

static two level lock tree.

Granularity o flocks and degrees o f consistency 393

DMS 1100 provides level 2 consistency by setting exclusive locks on

the modified pages and and a temporary lock on the page

corresponding to the page which is "current of run unit". The

temporary lock is released when the "current of run unit" is moved.

In addition a run-unit can obtain additional locks via an explicit

K~P command.

The ideas presented were developed in the process of designing and

implementing an experimental data base system at the IBM San Jose

Research Laboratory. (We wish to emphasize that this system is a

vehicle for research in data base architecture, and does not

indicate plans for future IBN products.) R subsystem which provides

the modes of locks herein described, plus the necessary logic to

schedule requests and conversions, and to detect and resolve

deadlocks has been implemented as one component of the data

manager. The lock subsystem is in turn used by the data manager to

automatically lock the nodes of its lock graph (see Figure 12).

Users can be unaware of these lock protocols beyond the verbs "begin

transaction" and "end transaction".

The data base is broken into several storage areas. Each area

contains a set of relations (files), their indices, and their

tuples(records) along with a catalog of the area. Each tuple has a

unique tuple identifier (data base key) which can be used to quickly

(directly) address the tuple. Each tuple identifier maps to a set of

field values. All tuples are stored together in an area-wide heap

to allow physical clustering of tuples from different relations.

The unused slots in this heap are represented by an area-wide pool

of free tuple identifiers (i.e. identifiers not aliocated to any

relation). Each tuple "belongs" to a unique \relation, and all

tuples in a relation have the same number and type of fields. One

may construct an index on any sub~et of the fields of a relation.

Tuple identifiers give fast direct access to tuples, while indices

give fast associative access to field values and to their

corresponding tuples. Each key value in an index is made a lockable

object in order to solve the problem of "phantoms" [1] without

locking the entire index. We do not explicitly lock individual

fields or whole indices so those nodes appear in Figure 12 only for

pedagogical reasons. Figure 12 gives only the "logical" lock graph;

there is also a graph for physical page locks and for other low

level resources.

Rs can be seen, Figure 12 is not a tree. Heavy use is made of the

techniques mentioned in the section on locking DAG's. For example,

one can read via tuple identifier without setting any index locks

but to lock a field for update its tuple identifier and the old and

new index key values cowering the updated field must be locked in X

mode. Further, the tree is not static, since data base keys are

dynamically allocated to relations: field values dynamically enter,

move around in, and leave index value intervals when records are

inserted, updated and deleted; relations and indices are dynamically

created and destroyed within areas; and areas are dynamically

allocated. The implementation of such operations observes the lock

protocol presented in the section on dynamic graphs: when a node

changes parents, all old and new parents must be held (explicitly or

implicitly) in intention exclusive mode and the n~de to be moved

must be held in exclusive mode.

The described system supports concurrently consistency degrees 1,2

and 3 which can be specified on a transaction basis. In addition

share locks on individual tuples can be acquired by the user.

I!

394 J.N. Gray R.A. Lorie, G.R. Putzolu and J.L. Traiger

DATA BASE

I

I
AREAS

I

I

I
RELATIONS

I

I

I
IN DICE S

I

I
INDEX KEY

INTERVALS

FREE

TUPLE

IDENTIFIERS

I

I
UN-INDEXED

FIELDS

I
I
I

I
I

ALLOCATED

TU PL E

IDENTIFIERS

I

I I

I I
INDEXED

FIELDS

Figure 12. ~ lock graph.

ACKNOWLEDGMENT

We gratefully acknowledge many helpful discussions with Phil Macri,

Jim Mehl and Brad Wade on how locking works in existing systems and

how these results might be better presented. We are especially

indebted to Paul McJones in this regard.

[i]

[2]

[3]

REFERENCES

K.P. Eswaran, J.N. Gray, R.A. Lorie, I.L. Traiger, On the

Notions of Consistency and Predicate Locks, technical Report

RJ.I~87, IBM Research Laboratory, San Jose, Ca., Nov. 1974. (to

appear CACM).

Information Management System Virtual Storage (I~S/VS).

Application Design Guide, Form No. SH20-9025-2, IBM

1975.

System

corp. ,

UNIVAC 1100 Series Data Management System (DMS 1100). ANSI

COBOL Field Data Manipulation Language. Order No. UP7908-2,

Sperry Rand Corp., May 1973.

