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The problem of choosing the appropriate Hranularit~ (size) 

of lockable objects is introduced and the tradeoff between 

concurrency and overhead is discusseS. A locking protocol 

which allows simultaneous locking at various granularities 

by different transactions is presented. It is based on 

the introduction of additional lock modes besides the 

conventional share mode an5 exclusive mode. A proof is 

given of the equivalence of this protocol to a 

conventional one. 

Next the issue of consistency in a shared environment is 

analyze~. This discussion is motivated by the realization 

that some existing data base systems use automatic lock 

protocols which insure protection only from certain types 

of inconsistencies (for instance those arising from 

transaction backup), thereby automatically providing a 

limited degree of consistency. Four ~ S ~  ~ 

consistency are introduced. They can be roughly 

characterized as follows: degree 0 protects others from 

your updates, degree I additionally provides protection 

from losing updates, degree 2 additionally provides 

protection from reading incorrect data iteas, and degree 3 

additionally provides protection from reading incorrect 

relationships among data items (i.e. total protection). A 

discussion follows on the relationships of the four 

degrees to locking protocols, concurrency, overhead, 

recovery and transaction structure. 

Lastly, these ideas are compared with existingdata 

management systems. 

I. GRANULARITY OF LOCKS: 

An important issue which arises in the design of a data Dase 

management system is the choice of lockable unitE, i.e. the data 

aggregates which are atomically locked to insure consistency. 

Examples of lockable units are areas, files, individual records, 

field values, and intervals of field values. 

The choice of lockable units presents a tradeoff between concurrency 

and overhead, which is related to the size or Kranularit Z of the 

units themselves. On.the one hand, concurrency is increased if a 

fine lockable unit (for example a record or field) is chosen. Such 

unit is appropriate for a "simple" transaction which accesses few 

records. On the other hand a fine unit of locking would be costly 

for a "complex" transaction which accesses a large number of 

records. Such a transaction would have to set and reset a large 
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number of locks, incurring the computational overhead of many 

invocations of the lock subsystem, and the storage overhead of 

representing many locks. A coarse lockable unit (for example a 

file) is probably convenient for a transaction which accesses many 

records. However, such a coarse unit discriminates against 

transactions which only want to lock one member of the file. From 

this ~iscussion it follows that it would be desirable to have 

lockable units of different granularities coexisting in the same 

system. 

This paper presents a lock protocol satisfying these requirements 

and discusses the related implementation issues of scheduling, 

granting and converting lock requests. 

Hierarchical locks: 

We will first assume that the set of resources to be locked is 

organized in a hierarchy. Note that this hierarchy is used in the 

context of a collection of resources and has nothing to do with the 

data model used in a data base system. The hierarchy of Figure I 

may be suggestive. We adopt the notatios that each level of the 

hierarchy is given a node type which is a generic name for all the 

node instances of that type. For example, the data base has nodes 

of type area as its immediate descendants, each area in turn has 

nodes of type file as its immediate descendants and each file has 

no~es of type record as its immediate descendants in the hierarchy. 

Since it is a hierarchy, each node has a unique parent. 

DATA BASE 

i 

l 
AREAS 

i 

I 
FILES 

l 

i 
RECORDS 

Figure 1. A sample lock hierarchy. 

Each node of the hierarchy can be locked. If one requests exclusive 

access (X) to a particular node, then when the request is granted, 

the requestor has exclusive access to that node and implicitly to 

each of its descendants. If one requests shared access (S) to a 

particular node, then when the request is granted, the reguestor has 

shared access to that node and i_mp_l_icitly to each descendant of that 

node. These two access modes lock an entire subtree rooted at the 

requested node. 

3ur goal is to find some technique for i_m~_l_icitl~ locking an entire 

subtree. In order to lock a subtree rooted at node R in share or 

exclusive mode it is important to prevent share or exclusive locks 

on the ancestors of R which would implicitly lock R and its 

descendants. Hence a new access mode, intention mode (I), is 

introduced. Intention mode is used to "tag" (lock) all ancestors of 

a node to be locked in share or exclusive mode. These tags signal 

the fact that locking is being done at a "finer" level and thereby 

prevents implicit or explicit exclusive or share locks on the 

ancestors. 
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The protocol to lock a subtree rooted at node R in exclusive or 

share mode is to first lock all ancestors of R in intention mode and 

%hen to lock node R in exclusive or share mode. For example, using 

Figure I, to lock a particular file one should obtain intention 

~czess to the data base, to the area containing the file and then 

request exclusive (or share) access to the file itself. This 

implicitly locks all records of the file in exclusive (or share) 

mode. 

Access modes and compatibility: 

we say that two lock requests for the same node by two different 

transactions are compatible if they can be granted concurrently. 

The mode of the request determines its compatibility with requests 

made by other transactions. The three modes X, S and I are 

incompatible with one another but distinct S requests may be granted 

together and distinct I requests may be granted together. 

The compatibilities among modes derive from their semantics. Share 

mode allows reading but not modification of the corresponding 

resource by the requestor and by other transactions. The semantics 

of exclusive mode is that the grantee may read and modify %he 

resource but no other trans~ction may read or modify the resource 

while the exclusive lock is set. The reason for dichotomizing share 

and exclusive access is that several share requests can be granted 

concurrently (are compatible) whereas an exclusive request is not 

compatible with any other request. Intention mode was introduced to 

be incompatible with share and exclusive mode (to prevent share and ~ 

exclusive locks). However, intention mode is compatible with itself 

since two transactions having intention access to a node will 

explicitly lock descendants of the node in X, S or I mode and 

thereby will either be compatible with one another or will be 

scheduled on the basis of their requests at the finer level. For 

example, two transactions can simultaneously be granted the data 

base and some area and some file in intention mode. In this case 

their explicit locks on particular records in the file will resolve 

any conflicts among them. 

The notion of intention mode is refined to intention share mode (IS) 

and intention exclusive mode (IX) for two reasons: the intention 

share mode only requests share or intention share locks at the lower 

nodes of the tree (i.e. never requests an exclusive lock below the 

intention share node), hence IS is compatible with S mode. Since 

read only is a common form of access it will be profitable to 

distinguish this for greater concurrency. Secondly, if a 

transaction has an intention share lock on a node it can convert 

%his to a share lock at a later time, but one cannot convert an 

intention exclusive lock to a share lock on a node. Rather to get 

the combined rights of share mode and intention exclusive mode one 

must obtain an X or SIX mode lock. (This issue is discussed in the 

section on rerequests below). 

We recognize one further refinement of modes, namely share and 

intention exclusive mode (SIX). Suppose one transaction wants to 

read an entire subtree and to update particular nodes of that 

subtree. Using the modes provided so far it would have the options 

of: (a) requesting exclusive access to the root of %he subtree and 

doing no further locking or (b) requesting intention exclusive 

access to the root of the subtree and explicitly locking the lower 

nodes in intention, share or exclusive mode. Alternative (a) has 

low concurrency. If only a small fraction of the read nodes are 
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updated then alternative (b) has high locking overhead. The correct 

access mode would be share access to the subtree thereby allowing 

the transaction to read all nodes of the subtree without further 

locking _and intention exclusive access to the subtree thereby 

allowing the transaction to set exclusive locks on those nodes in 

the subtree which are to be updated and IX or SiX locks on the 

intervening Nodes. Since this is such a common case, SIX mode is 

introduced for this purpose. It is compatible with IS mode since 

other transactions requesting IS mode will explicitly lock lower 

nodes in IS or S mode thereby avoiding any updates (IX or X mode) 

produced by the SIX mode transaction. However SIX mode is not 

compatible with IX, S, SIX or X mode requests. 

Table 1 gives the compatibility of the request modes, where for 

completeness we have also introduced the null mode (NL) which 

represents the absence of requests of a resource by a transaction. 

I_ NL 

I NL Y ES 

I IS YES 

1 IX Y ES 

I S YES 

I S IX Y ES 

I_X___I_YES 

IS IX S SIX X 

YES YES YES YES YES 

YES YES YES YES NO 

YES YES NO NO NO 

YES NO YES NO NO 

[ES NO NO NO NO 

NO NO NO NO NO 

Table 1. Compatibilities among access modes. 

To summarize, we recognize six modes of access to a resource: 

NL: Gives no access to a node, i.e. represents the absence of a 

request of a resource. 

IS: Gives •intention share access to the requested node and allows 

the requestor to lock descendant nodes in S or IS mode. (It 

does no implicit locking.) 

IX: Gives intention exclusive access to the requested node and 

allows the reguestor to exRli____qcit_~l x lock descendants in X, S, 

SiX, IX or IS mode. (It does no implicit locking.) 

S: Gives share access to the requested node and to all descendants 

of the requested node without setting further locks. (It 

implicitly sets S locks on all descendants of the requested 

node. ) 

SIX: Gives share and intention exclusive access to the requested 

node. (In particular it implicitly locks all descendants of the 

node in share mode ~nd allows the requestor to explicitly lock 

descendant nodes in X, SIX or IX mode.) 

X: Gives exclusive access to the requested node and to all 

descendants of the requested node without setting further locks. 

(It implicitly sets X locks on all descendants. Locking lower 

nodes in S or IS mode would give no increased access.) 

IS mode is the weakest non-null form of access to a resource. It 

carries fewer privileges than IX or S modes. IX mode allows IS, IX, 

S, SIX and X mode lecks to be set on descendant nodes while S mode 

allows read only access to all descendants of the node without 

further locking. SIX mode carries the privileges of S and of IX 
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mode (hence the name SIX). X mode is th. = most privileged form of 

azcess and allows reading and writing of all descendants of a node 

without further locking. Hence the mod~s can be ranked in the 

partial order (lattice) of privileges shown in Figure 2. Note that 

it is not a total order since IX and S are incomparable. 

X 

I 

I 
SIX 

I 

I 

I 
IX 

I 

I 

I 

I 
IS 

I 

I 
NL 

Figure 2. The partial ordering of modes by their privileges. 

Rules for request_in S nodes: 

Th- = implicit locking of nodes will not work if transactions are 

allowed to leap into the middle of the tree and begin locking nodes 

at random. The implicit locking implied by the S and X modes 

depends on all transactions obeying the following protocol: 

(a) Before requesting an S or IS lock on a node, all ancestor nodes 

of the requested node must be held in IX or IS mode by the 

reguestor. 

(b) Before requesting an X, SIX or IX lock on a node, all ancestor 

nodes of the requested node must be held in SIX or IX mode by 

the requestor. 

(c) Locks should be released either at the end of the transaction 

(in any order) or in leaf to root order. In particular, if locks 

are not held to end of transaction, one should not hold a lock 

after releasing its ancestors. 

To paraphrase this, locks are requested, root to le_aaf, a_n__dd _released 

leaf to root. Notice that leaf nodes are never requested in 

intention mode since they have no descendants. 

Several examples: 

To lock record R for read: 

lock data-base with mode = IS 

lock area containing R with mode = IS 

lock file containing R with mode = IS 

lock record R with mode = S 

Don't panic, the transaction probably already 

area and file lock. 

has the data base, 
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To lock record R for write-exclusive access: 

lock data-base with mode = IX 

lock area containing R with mode = IX 

lock file containing R with mode = IX 

lock record R with mode = X 

Note that if the records of this and the previous example are 

distinct, each request can be granted simultaneously to different 

transactions even though both refer to the same file. 

To lock a file F for read and write access: 

lock data-base with mode = IX 

lock area containing F with mode = IX 

lock file F with mode = X 

Sinc~ this reserves exclusive access to the file, if this request 

uses the same file as the previous two examples it or the other 

transactions will have to wait. 

To lock a file F for complete scan and occasional update: 

lock data-base with mode = IX 

lock area containing F with mode = IX 

lock file F with mode = SIX 

Thereafter, particular records in F can be locked for update by 

locking records in X mode. Notice that (unlike the previous 

example) this transaction is compatible with the first example. 

This is the reason for introducing SIX rood_ ~. 

To quiesce the data base: 

lock data base with mode = X. 

Note that this locks everyone else out. 

Directed acycl_~ic qra]~hs of locks: 

The notions so far introduced can be generalized to work for 

~irected acyclic graphs (DAG) of resources rather than simply 

hierarchies of resources. A tree is a simple DAG. The key 

observation is that to implicitly or explicitly lock a node, one 

should lock _all the parents of the nod~ in the DAG and so by 

induction lock all ancestors of the node. In particular, to lock a 

subgraph one must implicitly or explicitly lock all ancestors of the 

subgraph in the appropriate mode (for a tree there is only one 

parent). To give an example of a non-hierarchical structure, 

imagine the locks are organized as in Figure 3. 

DATA BASE 

I 

I 
AREAS 

I 

I I 
FILES INDICES 

I I 

I __I 

I 

I 
R ECOR DS 

Figure 3. A non-hierarchical lock graph. 
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We postulate that areas are "physical" nDtions and that files, 

indices and records are logical notions. The data base is a 

collection of areas. Each area is a collection of files and 

indices. Each file has a corresponding index in the same area. 

Each record belongs to some file and to its corresponding index. A 

record is comprised of field values and so~e field is indexed by the 

index associated with the file containing the record. The file 

gives a sequential access path to the records and the index gives an 

associative access path to the records based on field values. Since 

individual fields are never locked, they ~o not appear in the lock 

graph. 

To write a record R in file F with index I: 

lock data base with mode = IX 

lock area containing F with mode = IX 

lock file F with mode = IX 

lock index I with mode = IX 

lock record E with mode = X 

Note that all paths to record R are locked. Alternaltively, one 

could lock F and I in exclusive mode thereby implicitly locking R in 

exclusive mode. 

To give a more complete explanation we observe that a node can be 

locked e_/x~lici_t!~ (by requesting it) or implici_tl I (by appropriate 

explicit locks on the ancestors of the node) in one of ~ive modes: 

IS, IX, S, SIX, X. However, the definition of implicit locks and 

the protocols for setting explicit locks have to be extended for 

DAG's as follows: 

A node is i_m~licit_!l ~ granted in S mode to a transaction if at least 

one of its parents is (implicitly or explicitly) granted to the 

transaztion in S, SIX or X mode. By induction that means that at 

least one of the node's ancestors must be explicitly granted in S, 

SIX or X mode to the transaction. 

A node is imDl~Gitl__[ ~ranted in X mode if ~!! of its parents are 

(implicitly or explicitly) granted to the transaction in X mode. By 

induction, this is equivalent to the condition that all nodes in 

some cut set of the collection of all paths leading from the node to 

the roots of the graph are explicitly granted to the transaction in 

X mode and all ancestors of nodes in the cut set are explicitly 

granted in IX or SIX mode. 

From Figure 2, a node is implicitly granted in IS mode if it is 

implicitly granted in S mode, and a node is implicitly granted in 

IS, IX, S and SIX mode if it is implicitly granted in X mode. 

~h~ protocol for ~ ! ~ ! ~  ~s~t~n~ locks on a DAG: 

(a) Before requesting an S or IS lock on a node, one should request 

at least one parent (and by induction a path to a root) in IS 

(or greater) mode. As a consequence none of the ancestors along 

this path can be granted to another transaction in a mode 

incompatible with IS. 

(b) Before requesting IX, SIX or X mode access to a node, one should 

request all parents of the node in IX (or greater) mode. As a 

consequence all ancestors will be held in IX (or greater mode) 

and cannot be held by other transactions in a mode incompatible 

with IX (i. e. S, SIX, X). 
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(c) Locks should be released either at the end of the transaction 

(in any order) or in leaf to root order. In particular, zt 

locks are not held to the end of transaction, one should not 

hold a lower lock after releasing its ancestors. 

To giv~ an example using Figure 3, a sequential scan of all records 

in file F need not use an index so one can get an implicit share 

lock on each record in the file by: 

lock data base 

lock area containing F 

lock file F 

with mode = IS 

with mode = IS 

with mode = S 

This gives implicit S mode access to all records in F. Conversely, 

to read a record in a file via the index I for file F, one need not 

get an implicit or explicit lock on file F: 

lock data base 

lock area containing R 

lock index I 

with mode = IS 

with mode = IS 

with mode = S 

This again gives 

(in file F). In 

readinq. 

implicit S mode access to all records in index I 

both these cases, ~n__II o n~ 9ath was locked for 

But to insert, delete or update a record R in file F with index I 

one must get an implicit or explicit lock on all ancestors of R. 

The first example of this section showed how an explicit X lock on a 

record is obtained. To get an implicit X lock on all records in a 

file one can simply lock the index and file in X mode, or lock the 

area in X mode. The latter examples allow bulk load or update of a 

file without further locking since all records in the file are 

implicitly granted in X mode. 

Proof of !~uivalence of the lock protocol. 

We will now prove that the described lock protocol is equivalent to 

a conventional one which uses only two modes (S and X), and which 

explicitly locks atomic resources (the leaves of a tree or sinks of 

a DAG). 

Let G = (N,A) be a finite (directed acyclic) ~_raph where N is the 

set of nodes and A is the set of arcs. G is assumed to be without 

circuits (i.e. there is no non-null path leading from a node n to 

itselt~. A node p is a parent of a node a and n is a child of p if 

there is an arc from p to n. A node n is a source (sink) if n has 

no parents (no children). Let SI be th~ set of sinks of G. An 

ancestor of node n is any node (including n) in a path from a source 

to n. A node-slice of a sink n is a collection of nodes such that 

each path from a source to n contains at least one node of the 

slice. 

We also introduce the set of lock modes M = [NL, IS, IK,S,SIX,X} and 

the compatibility matrix C : MxM->{YES,N3} described in Table I. 

Let c : mxm->{YES,NO} be the restriction of C to m = [NL, S,X}. 
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A lock_-qr_a~h is a mapping L : N->M such that: 

(a) if L(n) e {IS,S} then either n is a source or there exists a 

parent p of n such that L(p) e [IS,IX,S,SIX,X}. By induction 

there exists a path from a source to n such that L takes only 

values in {IS,IX,S,SIX, X] on it. Equivalently L is not equal to 

NL on the path. 
(by if L(n) e {IX,SIX,X] then either n is a root or for all parents 

pl...pk of n we have L(pi) e {IX, SIX, X} (i=1...k). By induction 

L takes only values in {IX,SIX, X] on all the ancestors of n. 

The interpretation of a lock-graph is that it gives a map of the 

explicit locks held by a particular transaction observing the six 

state lock protocol described above. The notion of projection of a 

lock-graph is now introduced to model the set of implicit locks on 

atomic resources acquired by a transaction. 

The ~rojection of a lock-graph L is the mapping I: SI->m constructed 

as follows: 
(a) l(n)=X if there exists a node-slice [nl...ns} of n such that 

L(ni) =X for each node in the slice. 

(b) 1 (n)=S if (a) is not satisfied and there exists an ancestor a of 

n such that L(a) q [S,SIX,X]. 

(c) I(n)=NL if (a) and (b) are not satisfied. 

Two lock -graphs LI an d L2 are said to be comma tible if 

C(LI(n) ,L2(n))=YES for all n e N. Similarly two projections 11 and 

12 are compatible if c(11 (n),12 (n))=YES for all n e SI. 

Theorem: 

If two lock-graphs LI and L2 are compatible then their projections 

11 and 12 are compatible. In other words if the explicit locks set 

by two transactions do not conflict then also the three-state locks 

implicitly acquired do not conflict. 

Proof: Assume that 11 and 12 are incompatible. We want to prove 

that LI and L2 are incompatible. By definition of compatibility 

there must exist a sink n such that ll(n)=X and 12(n) e [S,X} (or 

vize versa). By definition of projection there must exist a 

node-slice {nl...ns} of n such that LI(nl)=.,.=LI (ns)=X. Also there 

must exist an ancestor nO of n such that L2 (nO) e [S,SIX,X}. From 

the definition of lock-graph there is a path P1 from a source to nO 

on which L2 does not take the value NL. 

If P 1 intersects the node-slice at ni then LI and L2 are 

incompatible since Ll(ni)=X which is incompatible with the non-null 

value of L2 (hi). Hence the theorem is proved. 

Alternatively there is a path P2 from n0 to the sink n which 

intersects the node-slice at hi. From the definftion of lock-graph 

LI takes a value in {IX,SIX,X] on all ancestors of hi. In 

particular LI (nO) e {IX, SiX, X] . Since L2 (n0) e [S,SIX,X} we have 

C (L1(n0) ,L2 (n0)) =NO. Q.E.D. 

Dynamic lock qr_a~hs: 

Thus far we have pretended that the lock graph is static. However, 

examination of Figure 3 suggests otherwise. Areas, files and 

indices are dynamically created and destroyed, and of course records 

are continually inserted, updated, and deleted. (If the data Dase 

is only read, then there is no need for locking at all.) 
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We introduce the lock protocol for dynamic DAG' s by example. 

Consider the implementation of index i__nterval locks. Rather than 

being forced to lock entire indices or individual records, we would 

like to be able to lock all records with a certain contiguous range 

of index values; for example, lock all records in the bank account 

file with the location field equal to Napa. Therefore, the index is 

partitioned into lockable key value intervals. Each indexed record 

"belongs', to a particular index interval and all records in a file 

with the same field value on an indexed field will belong to the 

same key value interval (i.e. all Napa accounts will belong to the 

same interval). This new structure is depicted in Figure 4. In [ I] 

such locks were called predicate locks and and an alternate (more 

general but less efficient) implementation was proposed. 

I 

I 

I 
UN-INDEXED 

FIELDS 

DATA BASE 

I 

i 
AREAS 

l 

l 
FILE 

l 

l 

I 
INDICES 

l 

l 
INDEX 

INTERVALS 

........ l 

I I 

I I 

I I I 

I I I 

I I I 
~ECORD INDEXED 

IDENTIFIERS FIELDS 

Figure 4. The lock graph with index interval locks. 

The only subtle aspect of Figure 4 is the dichotomy between indexed 

and un-indexed fields. Since the indexed field value and record 

identifier (logical address) appear in the index, one can read the 

indexed field directly (i.e. without "touching" the record). Hence 

an index interval is a parent of the corresponding field values. 

Further, the index "points,, via record i~eatifiers to all records 

with that value and so is a parent of all such record identifiers. 

On the other hand, one can read and update un-indexed fields of the 

re=ord without affecting the index and so the file is the only 

parent of such fields. 

When an indexed field is updated, it and its record identifier move 

from one index interval to another. For example, when a Napa 

account is moved to the St. Helena branch, the account record and 

its location field "leave" the Napa interval of the location index 

and "join" the St. Helena index interval. When a new record is 

inserted it "joins" the interval containing the new field value and 

also it "joins" the file. Deletion rem3ves the record from the 

index interval and from the file. index is not a lock ancestor ot 

such fields. 
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Since Figure 4 defines a DAG, albeit a dynamic DAG, the protocol of 

the previous section can be used to lock the nodes of the DaG. 

However, the protocol should be extended as follows to handle 

dynamic changes to the lock graph: 

(d} Before moving a nods in the lock graph, the node must be 

implicitly or explicitly granted in X mode in both its old and 

its new position in the graph. Further, the n~de must not be 

moved in such a way as to create a cycle in the graph. 

Carrying out the example of this section, to move a Napa Dank 

account to the St. Helena branch: 

lock data base in mode = IX 

lock area containing accounts in mode = IX 

lock accounts file 

lock location index 

lock Napa interval 

lock St. Helena interval 

lock record 

lock field 

Alternatively, one could 

in mode = IX 

in mode = IX 

in mode = IX 

in mode = IX 

in mode = IX 

in mode = X. 

get an implicit lock on the field by 

requesting explicit X mode locks on the record and index intervals. 

i; 

Schedulinq and ~ran~n~ r~ues~s: 

Thus far we have described the semantics of the various request 

modes and have described the protocol which requestors must follow. 

To complete the discussion we discuss how requests are scheduled and 

granted. 

The set of all requests for a particular resource are kept in a 

queue sorted by some fair scheduler. By "fair" we mean that no 

particular transaction will be delayed indefinitely. First-in 

first-out is the simplest fair scheduler and we adopt such a 

scheduler for this discussion modulo deadlock preemption decisions. 

The group of mutually compatible requests for a resource appearing 

at the head of the queue is called the ~ranted ~ro_u~. all these 

requests can be granted concurrently, assuming that each 

transaction has at most one request in the queue then the 

compatibility of two requests by different transactions depends only 

on the modes of the requests and may be computed using Table I. 

Associated with the granted group is a Wro_u~ mode which is the 

supremum mode of the members of the group which is computed using 

Figure 2 or Table 3. Table 2 gives a list of the possible types of 

requests that can coexist in a group and the corresponding mode of 

the group. 

Table 2. Possible request groups and their group mode. 

Set brackets indicate that several such requests may be present. 

[ MODES OF 

L____RE.Q_B_E_S,T S 
I X 

I szx, {zs} 
I s, {s}, [Is} 

I IX, ~{IX], [IS} 

I . . . .  I S - [ I _ S }  . . . .  

MODE OF 

GR 0 UP 

X 

SIX 

S 

IX 

IS 

Figure 5 depicts the queue for a particular resource, showing the 
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requests and their modes. The granted group consists of five 

requests and has group mode IX. The next request in the queue is 

for S mode which is incompatible with the group mode IX and hence 

must wait. 

* GRANTED GROUP: GROUP~ODE = IX * 

t is i--i ix i--i ZSl--i ZSl--i ZSl--,- i s [- i is [- ix i- iZSl- fix i 

Figure 5. The queue of requests for a resource. 

When a new request for a resource arrives, the scheduler appends it 

to the end of the queue. There are two cases to consider: either 

someone is already waiting or all outstanding requests for this 

resource are granted (i.e. no one is waiting). If no one is waiting 

and the new request is compatible with the granted group mode then 

the new request can be granted immediately. Otherwise the new 

request must wait its turn in the queue and in the case of deadlock 

it may preempt some incompatible requests in the queue. 

(Alternatively the new request could be canceled. In Figure 5 all 

the requests decided to wait.) When a particular request leaves the 

granted group the group mode of the group may change. If the mode 

of the first waiting request in the queue is compatible with the new 

mode of the granted group, then the waiting request is granted. In 

Figure 5, if the IX request leaves the group, then the group mode 

becomes IS which is compatible with S and so the S may be granted. 

The new group mode will be S and since this is compatible with IS 

mode the IS request following the S request may also join the 

granted group. This produces the situation depicted in Figure 6: 

GRANTED GROUP GROUPMODE = S * 

• I IS  I - - I I S I - -  I I S l - - I  Z S l - - I  S l - ,  I Z S l - - * -  I X l -  I IS  I -  I I X  I 

Figure 6. The queue after the IX request is released. 

The X request of Figure 6 will not be granted until all the requests 

leave the granted group since it is not compatible with any mode. 

conversions: 

A transaction might re-request the same resource for seve ~-al 

reasons: Perhaps it has forgotten that it already has access to the 

record: after all, if it is setting many locks it may be simpler to 

just always request access to the record rather than first asking 

itself "have I seen this record before". The lock subsystem has all 

the information to answer this question and it seems wasteful to 

duplicate. Alternatively, the transaction may know it has access to 

the record, but want to increase its access mode (for example from S 

to X mod ~- if it is in a read, test, and sometimes update scan of a 

file). So the lock subsystem must be prepared for re-requests by a 

transaction for a lock. We call such re-requests conversions. 

When a request is found to be a conversion, the old (granted) mode 

of the reguestor to the resource and the newly requested mode are 

compared using Table 3 to compute the new mode which is the supremum 

of the old and the requested mode (ref. Figure 2). 
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Table 3. The new mode given the requested and old mode. 

I NEW 8ODE 

I .... I IS IX S SiX X 

I IS I IS IX S SIX X 

I IX I IX IX SIX SIX X 

I S I S SIX S SIX X 

I SIX I SIX SIX SIX SIX X 

l__X___i X X X X X 

So for example, if one has IX mode and requests S mode then the new 

mode is SIX. 

If the new mode is equal to the old mode (note it is never less than 

the old mode) then the request can be granted immediately and the 

granted mode is unchanged. If the new mode is compatible with the 

group mode of the other members of the granted group (a requestor is 

~lways compatible with himself) then again the request can be 

granted immediately. The granted mode is the new mode and the group 

mode is recomputed using Table 2. In all other cases, the 

requested conversion must wait until the group mode of the other 

granted requests is compatible with the new mode. Note that this 

immediate granting of conversions over waiting requests is a minor 

violation of fair scheduling. 

If two conversions are waiting, each of which is incompatible with 

an already granted request of the other transactioa, then a deadlock 

exists and the already granted access of one must be preempted. 

3therwise there is a way of scheduling the waiting conversions: 

namely, grant a conversion when it is compatible with all other 

granted modes in the granted group. (Since there is no deadlock 

cycle this is always possible.) 

The following example may help to clarify these points. Suppose the 

queue for a particular resource is: 

GROUPMODE = is * 

IISI---IIS I 

Figure 7. A simple queue. 

Now suppose the first transaction wants to convert to X mode. It 

must wait for the second (already granted) request to leave the 

queue. If it decides to wait then the sitaation becomes: 

GROUPMODE = IS 

IIS<-XI---IISI- 

Figure 8. ~ conversion to X mode waits. 

NO new request may enter the granted group since there is now a 

conversion request waiting. In general, conversions are scheduled 

before new requests. If the second transaction now converts to IX, 

SIX, or S mode it may be granted immediately since this does not 

conflict with the ~_ranted (IS) mode of the first transaction. When 

the second transaction eventually leaves the queue, the first 

conversion can be made: 
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GROUPMODE = IS 

IIXl ..................................... 

Figure 9. One transaction leaves and the conversion is granted. 

However, if the second transaction tries to convert to exclusive 

mode one obtains the queue: 

GROUPZODE = IS 

IIS<-XI-~-WIS<-XI 

Figure 10. Two conflicting conversions are waiting. 

Since X is incompatible with IS (see Table I), this situation 

implies that each transaction is waiting for the other to leave the 

queue (i.e. deadlock) and so one transaction mu~ be preempted. In 

all other cases (i.e. when no cycle exists) there is a way to 

schedule the conversions so that no already granted access is 

violated. 

Deadlock and lock thrashinq: 

Whenever a transaction waits for a request to be granted, it runs 

the risk of waiting forever in a deadlock cycle. For the purposes 

of deadlock detection it is important to know who is waiting for 

whom. The request queues give this information. Consider any 

waiting request R by transaction T. There are two cases: If R is a 

conversion, r is WAITING_FOR all transactions granted incompatible 

requests to the queue. If R is not a conversion, r is WAITING FOR 

all transactions ahead of it in the queue granted or waiting for 

incompatible requests. Given this WAITING_FOR relation computed for 

all waiting transactions, there is no deadlock if and only if 

WAITING_FOR is acyclic. 

The WAITING FOR relation may change whenever a request or release 

occurs and when a conversion is granted. If a transaction may wait 

for at most one request at a time, then the deadlock state can only 

change when some process decides to wait. In this special case 

(synchronous calls to lock system) , only waits require recomputation 

of the WAITING_FOR relation. If deadlock is improbable, deadlock 

testing can be done periodically rather than on each wait, further 

reducing computational overhead. 

One new request may form many cycles and each such cycle must be 

broken. When a cycle is detected, to break the cycle some granted 

or waiting request must be preempted. The lock scheduler should 

choose a minimal cost set of victims to preempt, so that all cycles 

are broken, undo all the changes to the data base made by the 

victims since the preempted resources were granted, and then preempt 

the resource and signal the victims that they have been backed up. 

The issues discussed so far--lock scheduling, detecting and breaking 

deadlocks--are low level scheduling decisions. They must be 

connected with a high level transaction scheduler which regulates 

the load on the system and regulates the entry and progress of 

transactions to prevent long waits, high probability o~ waiting 
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(lock thrashing), and deadlock. By analogy, a page management 

system with only a low level page frame scheduler, which allocates 

and preempts page frames in a fairly naive way, is likely to produce 

page thrashing unless it is coupled with a working set scheduler 

which regulates the number and character of processes competing for 

page frames. 

II. DEGREES OF CONSISTENCY: 

We now focus on how locks can be used to construct transactions out 

of atomic actions. The data base consists of entities which are 

related in certain ways. These relationships are best thought of as 

assertions about the data. Examples of such assertions are: 

'Names is an index for Telephonenumbers.' 

'The value of Count of x gives the number of employees in 

department x.' 

The data base is said to be consistent if it satisfies all its 

assertions [I]. In some cases, the data base must become 

temporarily inconsistent in order to transform it to a new 

consistent state. For example, adding a new employee involves 

several atomic actions and the updating of several fields. The data 

base may be inconsistent until all these updates have been 

completed. 

To cope with these temporary inconsistencies, sequences of atomic 

actions are grouped to form transactions. Transactions are the 

units of consistency. They are larger atomic actions on the data 

base which transform it from one consistent state to a new 

consistent state. Transactions preserve consistency. If some 

action of a transaction fails then the entire transaction is 

'undone' thereby returning the data base to a consistent state. 

Thus transactions are also the units of recovery. Hardware failure, 

system error, deadlock, protection violations and program error are 

each a source of such failure. 

If transactions are run one a% a time then each transaction will see 

the consistent state left behind by its predecessor. But if several 

transactions are scheduled concurrently then locking is required to 

insure that the inputs to each transaction are consistent. 

Responsibility for requesting and releasing locks can either be 

assumed by the user or be delegated to the system. User controlled 

locking results in potentially fewer locks due to the user's 

knowledge of the semantics of the data. On the other hand, user 

controlled locking requires difficult and potentially unreliable 

application programming. Hence the approach taken by some data base 

systems is to use automatic lock protocols which insure protection 

from general types of inconsistency, while still relying on the user 

to protect himself against other sources of inconsistencies. For 

example, a system may automatically lock updated records but not 

records which are read. Such a system prevents lost updates arising 

from transaction backup. Still, the user should explicitly lock 

records in a read-update Sequence to insure that the read value does 

not change before the actual update. In other words, a user is 

guaranteed a limited automatic desree of consistency. This degree 

of consistency may be system wide or the system may provide options 

to select it (for instance a lock protocol may be associated with a 

transaction or with an entity). 
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we now present several e~uivalent definitions of four consistency 

degrees. The first definition is an operational and intuitive one 

useful in describing the system behavior to users. The second 

definition is a procedural one in terms of lock protocols, it is 

useful in explaining the system implementation. The third 

definition is in terms of a trace of the system actions, it is 

useful in formally stating and proving properties of the various 

consistency degrees. 

Informal definition of consistenci: ~ 

An output (write) of a transaction is committed when the transaction 

abdicates the right to 'undo' the write thereby making the new value 

available to all other transactions. Outputs are said to be 

uncommitted or dirty if they are not yet committed by the writer. 

Concurrent execution raises the problem that reading or writing 

other transactions' dirty data mayyield inconsistent data. 

Using this notion of dirty data, the degrees of consistency may be 

defined as: 

Definition 1: 

Degree 3: Transaction T sees deqree 3 consistency if: 

(a) T does not overwrite dirty data of other transactions. 

(b) T does not commit any writes until it completes all its writes 

(i.e. until the end of transaction (EOT)). 

(z) T does not read dirty data from other transactions. 

(d) Other transactions do not dirty any data read by T before T 

completes. 

Degree 2: Transaction T sees deqree 2 consisten~x if: 

(a) T does not overwrite dirty data of other transactions. 

(b) T does not commit any writes before EOT. 

(c) T does not read dirty data of other transactions. 

Degree I: Transaction T sees deqree I consistency if: 

(a) T does not overwrite dirty data of other transactions. 

(b) T does not commit any writes before EOT. 

Degree 0: Transaction T sees deqree 0 consistency if: 

(a) T does not overwrite dirty data of other transactions. 

Note that if a transaction sees a high degree of consistency then it 

also sees all the lower degrees. 

Degree 0 consistent transactions commit writes before the end of 

transaction. Hence backing up a degree 0 consistent transaction may 

require undoing an update to an entity locked by another 

transaction. In this sense, degree 0 transactions are 

unrecoverable. 

Degree 1 transactions do not committ writes until the end of the 

transaction. Hence one may undo (back up) an in-progress degree I 

transaction without setting additional locks. This means that 

transaction backup does not erase other transactions' updates. This 

is the principal reason one data management system automatically 

provides degree I consistency to all transactions. 

Degree 2 consistency isolates a transaction from the uncommitted 
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data of other transactions. With degree I consistency a transaction 

might read uncommitted values which are subsequently updated or are 

undone. In degree 2 no dirty data values are read. 

Degree 3 consistency isolates the transaction from dirty 

relationships among values. Reads are r_~eatable. For example, a 

degree 2 consistent transaction may read two different (committed) 

values if it reads the same entity twice. This is because a 

transaction which updates the entity could begin, update and end in 

the interval of time between the two reads. More elaborate kinds of 

anomalies due to concurrency are possible if one updates an entity 

after reading it or if more than one entity is involved (see example 

below). Degree 3 consistency completely isolates the transaction 

from inconsistencies due to concurrency [ I]. 

Each transaction can elect the degree of consistency appropriate to 

its function. When the third definition is given we will be able to 

state the consistency and recovery properties of such a system more 

formally. 

Briefly: 

If one elects degree i consistency then one sees a degree i 

consistent state (so long as all other transactions run at 

least degree 0 consistent) 

If all transactions run at least degree I consistent, system 

backup (undoing all in-progress transactions) loses no updates 

of completed transactions. 

If all transactions run at least degree 2 consistent, 

transaction backup (undoing any in-progress transaction) 

produces a consistent state. 

To give an example which demonstrates the application of these 

several degrees of consistency, imagine a process control system in 

which some transaction is dedicated to reading a gauge and 

periodically writing batches of values into a list. Each gauge 

reading is an individual entity. For performance reasons, this 

transaction sees degree 0 consistency, committing all gauge readings 

as soon as they enter the data base. This transaction is not 

recoverable (can't be undone). A second transaction is run 

periodically which reads all the recent gauge readings, computes a 

mean and variance and writes these computed values as entities in 

the data base. Since we want these two values to be consistent with 

one another, they must be committed together (i.e. one cannot commit 

the first before the second is written). This allows transaction 

undo in the case that it aborts after writing only one of the two 

values. Hence this statistical summary transaction should see 

degree I. A third transaction which reads the mean and writes it on 

a display sees degree 2 consistency. It will not read a mean which 

might be 'undone' by a backup. ~nother transaction which reads both 

the mean and the variance must see degree 3 consistency to insure 

that the mean and variance derive from the same computation (i.e. 

th~ same run which wrote the mean also wrote the variance). 

Lock protocol definition of consistenc_z: 

Whether an instantiation of a transaction sees degree o, I, 2 or 3 

consistency depends on the actions of other concurrent 

transactions. Lock protocols are used by a transaction to guarantee 

itself a certain degree of consistency independent of the behavior 

of other transactions (so long as all transactions at least observe 



382 11%'. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger 

the degree 0 protocol). 

The degrees of consistency can be procedurally defiaed by the lock 

protocols which produce them. A transaction locks its inputs to 

guarantee their consistency and locks its outputs to mark them as 

dirty (uncommitted). 

For this section, locks are dichotomized as share mode locks which 

allow multiple readers of the same entity and exclusive mode locks 

which reserve exclusive access to an entity. (This is the "two 

mode" lock protocol. Its generalization to the "six mode" protocol 

of the previous section should be obvious.) Locks may also be 

characterized by their duration: locks held for the duration of a 

single action are called short duration locks while locks held to 

the end of the transaction are called lonq duration locks. Short 

duration locks are used to mark or test for dirty data for the 

duration of an action rather than for the duration of the 

transaction. 

The lock protocols are: 

Definition 2: 

Degree 3: transaction T observes de~ree 3 lock protocol if: 

(a) T sets a long exclusive lock on any data it dirties. 

(b) T sets a long share lock on any data it reads. 

Degree 2: transaction T observes de~ree 2 lock ~rotocol if: 

(a) T sets a long exclusive lock on any data it dirties. 

(b) T sets a (possibly short) share lock on any data it reads. 

Degree I: transaction T observes de__gree I lock P[~E~! if: 

(a) T sets a long exclusive lock on any data it dirties. 

Degree 3: transaction T observes degree 0 lock protocol if: 

(a) T sets a (possibly short) exclusive lock on any data 

dirties. 

it 

The lock protocol definitions can be stated more tersely with the 

introduction of the following notation. A transaction is ~! 

formed with respect to writes ([ead____ss) if it always locks an entity 

in exclusive (shared or exclusive) mode before writing (reading) 

it. The transaction is well formed if it is well formed with 

respect to reads and writes. 

A transaction is _two phase (with r_e_spect to reads or _updates) if it 

does not (share or exclusive) lock an entity after unlocking some 

entity. A two phase transaction has a growing phase during which it 

acquires locks and a shrinking phase during which it releases 

locks. 

Definition 2 is too restrictive in the sense that consistency will 

not require that a transaction hold all locks to the EOT (i.e. the 

EOT is the shrinking phase) . Rather, the constraint that the 

transaction be two phase is adequate to insure consistency. On the 

other hand, once a transaction unlocks an updated entity, it has 

committed that entity and so cannot be undone without cascading 

backup to any transactions which may have subsequently read the 

entity. For that reason, the shrinking phase is usually deferred to 

the end of the transaction; thus, the transaction is always 

recoverable and all updates are committed together. The lock 

protocols can be redefined as: 
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Definition 3!: 

Degree 3: T is well formed 

and T is two phase. 

Degree 2: T is well formed 

and T is two phase with respect to writes. 

Degree 1: T is well formed with respect to writes 

and T is two phase with respect to writes. 

Degree 0: T is well formed with respect to writes. 

All transactions are re~ired to observe the degree 

protocol so that they do not update the uncommitted 

others. Degrees I, 2 and 3 provide increasing 

consistency. 

0 locking 

updates of 

syst es-guarant eed 

Consisten~ of schedules: 

The definition of what it means for a transaction to see a degree of 

consistency was given in terms of dirty data. In order to make the 

notion of dirty data explicit it is necessary to consider the 

execution of a transaction in the context of a set of concurrently 

executing transactions. To do this we introduce the notion of a 

schedule for a set of transactions. A schedule can be thought of as 

a history or audit trail of the actions performed by the set of 

transactions. Given a schedule the notion of a particular entity 

being dirtied by a particular transaction is made explicit and hence 

the notion of seeing a certain degree of consistency is formalized. 

These notions may then be Used to connect the various definitions of 

consistency and show their equivalence. 

The system directly supports entities and actions. Actions are 

categorized as beq!n actions, en_dd actions, share lock actions, 

exclusive lock actions, unlock actions, read actions, and write 

actions. An end action is presumed to unlock any locks held by the 

transaction but not explicitly unlocked by the transaction. For the 

purposes of the following definitions, share lock actions and their 

corresponding unlock actions are additionally considered to be read 

actions and exclusive lock actions and their corresponding unlock 

actions are additionally considered to be write actions. 

A transaction is any sequence of actions beginning with a begin 

action and ending with an end action and not containing other begin 

or end actions. 

Any (sequence preserving) merging of the actions of a set of 

transactions into a single sequence is called a schedule for the set 

of transactions. 

A schedule is a history of the order in which actions were executed 

(it does not record actions which were undone due to backup). The 

simplest schedules run all actions of one transaction and then all 

actions of another transaction,... Such one-transaction-at-a-time 

schedules are called serial because they have no concurrency among 

transactions. Clearly, a serial schedule has no concurrency induced 

inconsistency and no transaction sees dirty data. 

Locking constrains the set of allowed schedules. In particular, a 

schedule is le_~a!l only if it does not schedule a lock action on an 



384 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger 

entity for one transaction when that entity is already locked by 

some other transaction in a conflicting mode. 

An initial state and a schedule completely define the system's 

behavior. At each step of the schedule one can deduce which entity 

values have been committed and which are dirty: it locking is used, 

updated data is dirty until it is unlocked. 

Since a schedule makes the definition of d~rty data explicit, one 

can apply Definition 1 to define consistent schedules: 

Definition 3: 

A transaction runs at ~E~9 ~ (!, 2 or 3) c___onsistency in schedule S 

if T sees degree 0 (I, 2 or 3) consistency in S. (Conversely, 

transaction T sees degree i consistency if all legal schedules run T 

at degree i consistency.) 

If all transactions run at degree 0 (1,2 or 3) consistency in 

schedule S then S is said to be a _de_qree ~ (I, 2 or 3) consistent 

schedule. 

Given these definitions one can show: 

Assertion I: 

(a) If each transaction 

(b) 

observes the degree 0 (1, 2 or 3) lock 

protocol (Definition 2) then any legal schedule is degree 0 (1, 

2 or 3) consistent (Definition 3) (i.e, each t ransactlon sees 

degree 0 (1, 2 or 3) consistency in the sense of Definition 

1). 

Unless transaction T observes the degree I (2 or 3) lock 

protocol then it is possible to define another transaction T' 

which does observe the degree I (2 or 3) lock protocol such 

that T and T' have a legal schedule S but T does not run at 

degree 1 (2 or 3) consistency in S. 

In [ 1] we proved Assertion I for degree 3 consistency. That 

argument generalizes directly to this result. 

Assertion 1 says that if a transaction observes the lock protocol 

definition of consistency (Definition 2) then it is assured of the 

informal d=_finition of consistency based on committed and dirty ,data 

(Definition 1). Unless a transaction actually sets the locks 

prescribed by degree 1 (2 or 3) consistency one can construct 

transaction mixes and schedules which will cause the transaction te 

run at (see) a lower degree of consistency. However, in particular 

cases such transaction mixes may never occur due to the structure or 

use of the system. In these cases an apparently low degree of 

locking may actually provide degree 3 consistency. For example, a 

data base reorganization usually need do no locklng since it is run 

as an off-line utility which is never run concurrently with other 

transactions. 

Assertion 2: 

If each transaction in a set of transactions at least observes the 

degree 0 lock protocol and if transaction T observes the degree I (2 

or 3) lock protocol then T runs at degree 1 (2 or 3) consistency 

(Definitions 1, 3) in any legal schedule for the set of 

transactions. 
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Assertion 2 says that each transaction can choose its degree of 

consistency so long as all transactions observe at least aegree 0 

protocols. Of course the outputs of degree 0, I or 2 consistent 

transactions may be degree 0, I or 2 consistent (i.e. inconsistent) 

because they were computed with potentially inconsistent inputs. 

3ne can imagine that each data entity is tagged with the degree of 

consistency of its writer: Degree 0 entities are purple, degree I 

entities are red, degree 2 entities are yellow and degree 3 entlties 

are green. The color of the outputs of a transaction is the minimum 

of the transaction's color and the colors of the entities it reads 

(because they are potentially inconsistent). Gradually the system 

will turn purple or red unless everyone runs with a high degree of 

consistency. If the transaction 's author knows something about the 

systems structure which allows an apparently degree 1 consistent 

protocol to produce degree 3 consistent results then this color 

coding is pessimistic. But, in general a transaction must beware of 

reading entities tagged with degrees lower than the degree of the 

transaction. 

DeRendencies amonq transactions: 

9ne transaction is said to depeP_~d on another if the first takes some 

of its inputs from the second. Thenotion of dependency is defined 

differently for each degree of consistency. These dependency 

relations are completely defined by a schedule and can be useful in 

~iscussing consistency and recovery. 

Each schedule defines three relations: <, << and <<< on the set of 

transactions as follows. Suppose that transaction T performs action 

a on entity e at some step in the schedule and that transaction T' 

performs action a' on entity e at a later step in the schedule. 

Further suppose that T does not equal T'. Then: 

T <<< T' if a is a write action and a' is a write action 

or a is a write action and a' is a read action 

or a is a read action and a' is a write action 

T << T' if a is a write action and a' is a write action 

or a is a write action and a' is a read action 

T < T' if a is a write action and a' is a write action 

So degree I does not care about read dependencies at all. Degree 2 

cares only about one kind of read dependency. And degree 3 ignores 

only read-read dependencies (reads commute). The following table is 

notationally convenient way of seeing these definitions: 

<<< : W->W I W->R I R->W 

<< : W->W "I W ->R 

< : W ->W 

meaning that (for example)T <<< T' if T writes (W) something later 

read (R) by T' or written (W) by T' or T reads (R) something later 

written (W) by T'. 

Let <~ be the transitive closure of <, then define: 

BEFOBEI (T) = {T'I T' <~ T} 

AFTERI (T} = {T' I T <~ T']. 

The sets BEFORE2, AFTER2, BEFOPF3 and AFTER3 are defined analogously 
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from << and <<<. 

The obvious interpretation for this is that each BEFORE set is the 

set of transactions which contribute inputs to T and each AFTER set 

is the set of transactions which take their inputs from T (where the 

ordering only considers d=_pendencies induced by the corresponding 

consistency degree). 

If some transaction is both before T and after T in some schedule 

then no serial schedule could give such results. In this case 

concurrency has introduced inconsistency. On the other hand, if all 

relevant transactions are either before or after T (but not both) 

then T will see a consistent state (of the corresponding degree). 

If all transactions dichotomize others in this way then the relation 

<e (<<~ or <<<e) will be a partial order and the whole schedule will 

give degree I (2 or 3) consistency. This can be strengthened to: 

Assertion 3: 

A schedule is degree I (2 or 3) consistent if and only if 

the relation <~ (<<e or <<<~) is a partial order. 

The <, << and <<< relations are variants of the dependency sets 

introduced in [1]. In that paper only degree 3 consistency is 

introduced and Assertion 3 was proved for that case. In particular 

such a schedule is equivalent to the serial schedule obtained by 

running the transactions one at a time in <<< order. The proofs of 

[ I ] generalize fairly easily to handle assertion 1 in the case of 

degree I or 2 consistency. 

Consider the following example: 

T1 LOCK A 

TI READ A 

T I UNLOCK A 

T2 LOCK A 

T2 WRITE A 

T2 LOCK B 

T2 WRITE B 

T2 UNLOCK R 

T2 UNLOCK B 

TI LOCK B 

T1 WHITE B 

T1 UNLOCK B 

In this schedule T2 gives B to TI and T2 updates A after TI reads A 

so T2<TI, T2<<T1, T2<<<T1 and TI<<<T2. The schedule is degree 2 

consistent but not degree 3 consistent. It runs TI at degree 2 

consistency and T2 at degree 3 consistency. 

It would be nice to define a transaction to see degree I (2 or 3) 

consistency if and only if the BEFORE and AFTER sets are disjoint in 

some schedule. However, this is not restrictive enough; rather one 

must require that the before and after sets be disjoint in all 

schedules in order to state Definition 1 in terms of dependencies. 

Further, there seems to be no natural way to define the dependencies 

of degree 0 consistency. Hence the principal application of the 

dependency definition is as a proof technique and for discussing 

schedules and recovery issues. 

! 
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RelationshiR t_~o transaction backu E ~nd ~ recover~: 

A transaction T is said to be recoverable if it can be undone before 

'EOT' without undoing other transactions' updates. A transaction T 

is said to be repeatable if it will reproduc~ the original output if 

rerun following recovery, assuming that no locks were released in 

the backup process. Recoverability requires system wide degree 1 

consistency, repeatibility requires that all other transactions be 

~t least degree I and that the repeatable transaction be degree 3. 

The no___rmal (i.e. trouble free) operation of a data base system can 

be described in terms of an initial consistent state $0 and a 

schedule of transactions mapping the data base into a final 

consistent state S3 (see Figure 11). S1 is a checkpoint state, 

since transactions are in progress, $1 may be inconsistent. A 

system crash leaves the data base in state $2. Since transactions 

T3 and T5 were in progress at the time of crash, S2 is potentially 

inconsistent. System recovery amounts to bringing the data base in 

a new consistent state in one of the following ways: 

(a) Starting from state S2, undo all actions of transactions 

in-progress at the time of the crash. 

(by Starting from state S I first undo all actions of transactions in 

progress at the time of the crash (i.e. actions of T3 and T~ 

before SI) and then redo all actions of transactions which 

completed before the crash (i.e. actions of T2 and T3 after 

Sl) . 

(c) starting at S0 redo all transactions which completed before the 

crash. 

observe that (a) and (c) are degenerate cases of (b). 

I TII ............. I I > I 

I T21 ....... :" .... I--- I < I 

I T31 ............ I ........... > .... I I 

I I T~ I--- I < I 

I I T51 ..... > ..... I I 

S0 S I $2 S3 

Figure 11. System states, SO is initial state, S1 is checkpoint 

state, S2 is a crash and S3 is the state that results in the absence 

of a crash. 

Unless all transactions run at least degree 1 consistency, system 

recovery may lose updates. If for example, T3 writes a record, r, 

and then T~ further updates r then undoing T3 will cause the update 

of T~ to r to be lost. This situation can only arise if some 

transaction does not hold its write locks to EOT. 

(a) If all the transactions run in at least degree 1 consistency 

then system recovery loses no updates of complete 

transactions. However there may be no schedule which would 

give the sa~e result because transactions may have read outputs 

of undone transactions. 
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(b) If all the transactions run in at least degree 2 then the 

recovered state is consistent and derives from the schedule 

obtatined from the original system schedule by deleting 

incomplete transactions. Note that degree 2 prevents read 

dependencies on transactions which might be undone by system 

recovery, of all the Completed transactions results in a 

meaningful schedule. 

(c) If a transaction 

reproducible. 

is degree 3 consi stent then it is 

Transaction crash gives rise to transaction backu~ which has 

properties analogous to system recovery. 

Cost of deqrees of consistencL: 

The only advantage of lower degrees of consistency is performance. 

If less is locked then less computation and storage is consumed. 

Further if less is locked, concurrency is increased since fewer 

conflicts appear. (Note that the granularity lock scheme of the 

first section was motivated by minimizing the number of explicit 

locks set.) 

We will make some vet Z crude estimates of the storage and 

computation resources consumed by the locking protocols as a 

function of the consistency degree. For the remainder of this 

section assume that all transactions are identical. Also assume 

that they do R reads and W writes (and hence set approximately R 

share mode locks and W exclusive mode locks}. Further we assume 

that all the transactions run at the same consistency degree. 

Each outstanding lock request consumes a queue element. The maximum 

per-transaction space for these queue elements as a function of 

consistency degrees is: 

Table 4. Consistency degrees vs storage consumption. 

I I 
CONSISTENCY DEGREE I STORAGE (in queue elements) J 

I I 
I I 

0 I 1 I 
I I ~ . I  
2 I W+1 I 
3 I W.,-l~ I 

I I 

Observe that degrees I and 2 consume roughly the same amount of 

storage but that degree 3 consumes substantially more storage. This 

observation is aggravated by the fact that reads are typically ten 

times more common than writes. 

The estimation of computation (CPU) overhead is much more subtle. 

We make only a crude estimate here. First one may consider the 

overhead in requesting and releasing locks. This is shown in TaDle 

5 as a function of consistency degrees. 
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TABLE 5. Computational overhead vs degrees of consistency. 

CONSISTENCY DEGREE CPU (in calls to lock sys) 

W 

W 

W+R 

W+R 

Table 5 indicates that the computational overhead of degrees 2 and 3 

are comparable and are greater than the overhead of degrees 0 or 1. 

These pairs of degrees set the same locks, they just hold them for 

different durations. 

Table 5 ignores the observation that some lock requests are 

trivially satisfied (the request is granted immediately) while 

others require a task switch and hence are quite expensive. The 

probability that a read lock will have to wait is proportional to 

the number of conflicting locks [write) currently granted. The 

probability that a write lock will have to wait is proportional to 

the number of conflicting (read or write) locks that are currently 

granted. Table 4 gives a guess of the maximum number of ic~ks of 

each type held by each transaction. If there are 2~N+I transactions 

one can multiply the entries of Table 4 by N to get an average 

number of locks held by all Others. If a wait lock request is C÷I 

times as expensive as an immediately granted request and if P is the 

probability that two different requests are for the same resource 

then the relative computational costs are roughly computed: 

degree 0 overhead: W 

p~C~N~W 

cost of setting locks 

cost of waits 

degree I overhead: w 

p~C~N*W*W 

cost of writes 

cost of waits 

degree 2 overhead: W+R 

P~C~N~W= (W+I) 

P~C~N*R~W 

cost of setting locks 

cost of write waits 

cost of read waits 

degree 3 overhead: W+R 

p*C~N~R~W 

cost of setting locks 

cost of waiting for writes 

cost of waiting for reads 

TABLE 6. Computational overhead vs degrees of consistency. 

CONSISTENCY DEGREE CPU (in calls to lock sys) 

I 

W+P~C~N*N~ (I) 

W+R÷P~C~N ~W • (W+2~R) 

To consider a specific example, a simple banking transaction does 

five reads (R=5) and six (W=6) writes. A transaction accesses a 
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random account and there are millions of accounts so the probability 

of collision, P, is roughly .000001. Suppose there are one hundred 

transactions per second. A lock takes one hundred instructions and 

a wait requires five thousand instructions; hence, C=50. So the 

term P*C~N~W evaluates to 0.015. This implies that Table 5 gave a 

good estimate of the CPU overhead because the last term in Table 6 

is miniscule compared to the term W+R. Of course this analysis is 

very sensitive to P and one must design the data base so that P 

takes on a very small value. 

The striking thing about these estimates is that degree 2 and degree 

3 seem to have similar computational overhead which seems to be 

substantially larger than the overhead of degree 0 or I 

consistency. We suspect that this conclusion would survive a more 

careful study of the problem. 
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ISSUE l DEGREE 0 ] DEGREE I ] DEGREE 2 I DEGREE 3 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

COMMITTED 

DATA 

DIRTY 

DATA 

LOCK 

PROTOCOL 

TRANSACTION 

STRUCTURE 

WRITES ARE 

COMMITTED 

IMMEDIATELY 

YOU DONIT 

UPDATE DIRTY 

DATA 

WRITES ARE 

COM M ITTED 

AT EOT 

0 AND NO ONE 

ELSE UPDATES 

YOUR DIRTY 

DATA 

SAME AS 1 

0, I AND YOU 

DON'T READ 

DIRTY DATA 

SET SHORT 

EXCL. LOCKS 

ON ANY DAT A 

YOU WRITE 

WELL FORMED 

WRT WRITES 

SAME AS 1 

0,1 ,2 AND 

NO ONE ELSE 

DIRTIES DATA 

YOU READ 

SET LONG 

EXCL. LOCKS 

ON ANY DATA 

YOU WRITE 

(WELL FORMED 

AND 2 PHASE) 

WRT WRITES 

I AND SET SHORT 

SHARE LOCKS 

ON ANY DATA 

YOU READ 

WELL FORMED 

(AND 2 PHASE 

WRT WRITES) 

CONCURRENCY GREATEST : GREAT: MEDIUM: 

ONLY WAIT ONLY WAIT ALSO WAIT FOR 

FOR SHORT FOR WRITE READ LOCKS 

WRITE LOCKS LOCKS 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

OVERHEAD LEAST: SMALL: MEDIUM: 

ONLY SET ONLY SET SET BOTH KINDS 

SHORT WRITE WRITE LOCKS OF LOCKS BUT 

LOCKS NEED NOT STORE 

SHORT LOCKS 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  J 

TRANSACT- CAN NOT UNDO 

ION BACKUP WITHOUT 

CASCADING TO 

OT HE RS 
. . . . . . . . . . . . . . . . . . . . . . . . . .  

PROTECTION 

PROVIDED 

LETS OTHERS 

RUN HIGHER 

CONSISTENC Y 

APPLY LOG 

IN ORDER OF 

ARRIVAL 

SYSTEM 

RECOVERY 

TECHNIQUE 

UN-DO ALL 

INCOMPLETE 

TRANSACTIONS 

IN ANY ORDER 

0 AND CAN'T 

LOSE WRITES 

UN-DO ANY 

INCO~PLE~ 

TRANSACTIONS 

IN ANY ORDER 

0,1 AND CAN'T 

READ BAD DATA 

ITEMS 

APPLY LOG SAME AS I: BUT 

IN < ORDER RESULT IS SAME 

AS SOME SCHEDULE 

W- >W W- >W 

W->R 

DEPENDENCIES NONE 

ORDERING NONE < IS AN << IS AN 

ORDERING OF ORDERING OF 

THE TRANS- THE TRANS- 

ACTIONS ACTIONS 

I AND SET LONG 

SHARE LOCKS 

ON ANY DATA 

YOU READ 

WELL FORMED 

AND TWO PHASE 

LOWEST: 

ANY DATA 

TOUCHED IS 

LOCKED TO ROT 

HIGHEST : 

SET AND STORE 

BOTH KINDS OF 

LOC KS 

SAME AS 2 

0, 1,2 AND CAN' T 

READ BAD DATA 

RELATIONSHIPS 

2 AND SCHEDULE 

IS S ER IAL 

W->W 

W->R 

R->W 

<<< IS AN 

ORDERING OF 

THE TRANS- 

ACT IONS 
............................. £ ............................................. 

Table 7. Summary of consistency degrees. 
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II!. LOCK GRANULARITY AND DEGREES OF CONSISTENCY IN EXISTING 

SYSTEMS: 

IMS/VS with the program isolation feature [2 ] has a two level lock 

hierarchy: segment types (sets of records), and segment instances 

(records) within a segment type. Segment types may be locked in 

EXCLUSIVE (E) mode (which corresponds to our exclusive (x) mode) or 

in EXPRESS READ (R) , RETRIEVE (G) , or UPDATE (U) (each of which 

correspond to our notion of intention (I) mode) [ 2, pages 

3.18-3.27 ]. Segment instances can be locked in share or exclusive 

mode. Segment type locks are requested at transaction initiation, 

usually in intention mode. Segment instance locks are dynamically 

set as the transaction proceeds. In addition IMS/~S has user 

controlled share locks on segment instances (the =Q option) which 

allow other read requests but not other ~Q or exclusive requests. 

IMS/VS has no notion of S or SIX locks on segment types (which would 

allow a scan of all members of a segment type concurrent with other 

readers but without the overhead of locking each segment instance). 

Since IMS/VS does not support S mode on segment types one need not 

distinguish the two intention modes IS and IX (see the section 

introducing IS and IX modes). In general, IMS/VS has a notion of 

intention mode and does implicit locking but does not recognize all 

the modes described here. It uses a static two level lock tree. 

IMS/VS with the program isolation feature basically provides degree 

2 consistency. However degree 1 consistency can be obtained on a 

segment type basis in a PCB (view) by specifying the EXPRESS READ 

option for that segment. Similarly degree 3 consistency can be 

obtained by specifying the EXCLUSIVE or UPDATE options. IMS/VS also 

has the user controlled share locks discusseH above which a program 

can request on selected segment instances to obtain additional 

consistency over the degree I or 2 consistency provided by the 
system. 

IMS/VS without the program isolation feature (and also the previous 

version of IMS namely IMS/2) doesn't have a lock hierarchy since 

locking is done only on a segment type basis. It provides degree I 

consistency with degree 3 consistency obtainable for a segment type 

in a view by specifying the EXCLUSIVE option. User controlled 

locking is also provided on a limited basis via the HOLD option. 

DMS 1100 has a two level lock hierarchy [ q]: areas and pages within 

areas. Areas may be locked in one of seven modes when they are 

OPENed: EXCLUSIVE RETRIEVAL (which corresponds to our notion of 

exclusive mode), PROTECTED UPDATE (which corresponds to our notion 

of share and intention exclusive mode), PROTECTED RETRIEVAL (which 

we call share mode), UPDATE (which corresponds to our intention 

exclusive mode), and RETRIEVAL (which is our intention share mode). 

Given this transliteration, the compatibility matrix displayed in 

Table 1 is identical to the compatibility matrix of DMS 1100 [3, 

page 3.59]. However, DMS 1100 sets only exclusive locks on pages 

within areas (short term share locks are invisibly set during 

internal pointer following). Further, even if a transaction locks 

an area in exclusive mode, DMS 1100 continues to set exclusive locks 

(and internal share locks) on the pages in the area, despite the 

fact that an exclusive lock on an area precludes reads or updates of 

the area by other transactions. Similar observations apply to the 

DMS 1100 implementation of S and SIX modes. In general, DMS 1100 

recognizes all the modes described here and uses intention modes to 

detect conflicts but does not utilize implicit locking. It uses a 

static two level lock tree. 
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DMS 1100 provides level 2 consistency by setting exclusive locks on 

the modified pages and and a temporary lock on the page 

corresponding to the page which is "current of run unit". The 

temporary lock is released when the "current of run unit" is moved. 

In addition a run-unit can obtain additional locks via an explicit 

K~P command. 

The ideas presented were developed in the process of designing and 

implementing an experimental data base system at the IBM San Jose 

Research Laboratory. (We wish to emphasize that this system is a 

vehicle for research in data base architecture, and does not 

indicate plans for future IBN products.) R subsystem which provides 

the modes of locks herein described, plus the necessary logic to 

schedule requests and conversions, and to detect and resolve 

deadlocks has been implemented as one component of the data 

manager. The lock subsystem is in turn used by the data manager to 

automatically lock the nodes of its lock graph (see Figure 12). 

Users can be unaware of these lock protocols beyond the verbs "begin 

transaction" and "end transaction". 

The data base is broken into several storage areas. Each area 

contains a set of relations (files), their indices, and their 

tuples(records) along with a catalog of the area. Each tuple has a 

unique tuple identifier (data base key) which can be used to quickly 

(directly) address the tuple. Each tuple identifier maps to a set of 

field values. All tuples are stored together in an area-wide heap 

to allow physical clustering of tuples from different relations. 

The unused slots in this heap are represented by an area-wide pool 

of free tuple identifiers (i.e. identifiers not aliocated to any 

relation). Each tuple "belongs" to a unique \relation, and all 

tuples in a relation have the same number and type of fields. One 

may construct an index on any sub~et of the fields of a relation. 

Tuple identifiers give fast direct access to tuples, while indices 

give fast associative access to field values and to their 

corresponding tuples. Each key value in an index is made a lockable 

object in order to solve the problem of "phantoms" [1] without 

locking the entire index. We do not explicitly lock individual 

fields or whole indices so those nodes appear in Figure 12 only for 

pedagogical reasons. Figure 12 gives only the "logical" lock graph; 

there is also a graph for physical page locks and for other low 

level resources. 

Rs can be seen, Figure 12 is not a tree. Heavy use is made of the 

techniques mentioned in the section on locking DAG's. For example, 

one can read via tuple identifier without setting any index locks 

but to lock a field for update its tuple identifier and the old and 

new index key values cowering the updated field must be locked in X 

mode. Further, the tree is not static, since data base keys are 

dynamically allocated to relations: field values dynamically enter, 

move around in, and leave index value intervals when records are 

inserted, updated and deleted; relations and indices are dynamically 

created and destroyed within areas; and areas are dynamically 

allocated. The implementation of such operations observes the lock 

protocol presented in the section on dynamic graphs: when a node 

changes parents, all old and new parents must be held (explicitly or 

implicitly) in intention exclusive mode and the n~de to be moved 

must be held in exclusive mode. 

The described system supports concurrently consistency degrees 1,2 

and 3 which can be specified on a transaction basis. In addition 

share locks on individual tuples can be acquired by the user. 
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DATA BASE 

I 

I 
AREAS 

I 

I 

I 
RELATIONS 

I 

I 

I 
IN DICE S 

I 

I 
INDEX KEY 

INTERVALS 

FREE 

TUPLE 

IDENTIFIERS 

I 

I 
UN-INDEXED 
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I 
I 
I 

I 
I 
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I 

I I 

I I 
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Figure 12. ~ lock graph. 
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