GRANULATION, MAGNETO-HYDRODYNAMIC WAVES, AND THE HEATING OF THE SOLAR CORONA
I. Magneto-hydrodynamic waves in Sun.-If a magnetic field H_{0} is given in an electrically conducting liquid, any motion of the liquid gives rise to magneto-
 $V=H_{0} \sqrt{ }(\mu / 4 \pi \rho) \quad$ (I.I)
 the magnetic lines of force through the waves. These are characterized by a mechanical (hydrodynamic) motion, a change in the magnetic field and a set of If the electrical
If the electrical conductivity is finite, the waves are damped. A sine wave with
the frequency ω travelling in the direction of the z-axis, taken parallel to H_{0}, can
 (1.2)
(1.3)
As the Sun has a good electric conductivity (and a low viscosity) and possesses a general magnetic field, the conditions for generation of magneto-hydrodynamic

 with the waves give rise to sunspots.

* Originally submitted in different form on 1946 July 15.
\dagger H. Alfvén, Ark. Mat. Astr. Fys., 29B, No. 2, 1942.

§ H. Alfvén, Ark. Mat. Astr. Fys., 29A, No. 12, 1943; C. Walén, Ark. Mat. Astr. Fys., 30A,
No. 15, 1944, and 31B, No. 3, 1944; H. Alfvén, M.N., 105, 3, 1945; and 105, 382, 1945.

Hannes Alfvén, Granulation, Magneto-Hydrodynamic Vol. Io7
It seems worth while to investigate whether magneto-hydrodynamic waves It seems worth while to investigate whether magneto-hydrodynamic waves
could be produced elsewhere in the Sun. As any motion changing the shape of a magnetic line of force produces a magneto-hydrodynamic oscillation of the line, we must expect that the turbulence of the photosphere which we observe as granulation gives rise to magneto-hydrodynamic waves. The scope of this paper is to study the possible effects of these waves.

The velocity of the magneto-hydrodynamic waves in the photosphere where the granulation takes place can according to (I) be calculated if we know the general magnetic field H_{0} and the density ρ. For the former the value $H_{p}=25$ gauss at the poles (and half of that at the equator) has generally been used, founded upon Hale's measurements of the Zeeman effect. According to a recent report, Thiessen has found the value $H_{p}=53 \pm \mathrm{I} 2$ gauss, as a result of Zeeman effect measurements by a new method.* The displacement of the sunspot zone indicates that the dipole moment of the Sun is likely to be within the limits. $\mathrm{I} \cdot 5 \times 1 \mathrm{I}^{33}$ and 6.2×10^{33} gauss $\mathrm{cm} .^{3}$, corresponding to $H_{p}=9$ and $H_{p}=37$ gauss. \dagger We adopt as a reasonable value $H_{p}=40$ gauss (equatorial value $H_{e}=20$ gauss, average for the whole surface ~ 30 gauss).

The density of the photosphere is estimated as 10^{-7} to $10^{-8} \mathrm{~g} . \mathrm{cm} .^{-3}$. Putting $H=30$ gauss and $\rho=3 \times 10^{-8} \mathrm{~g} . \mathrm{cm} .^{-3}$ (as average) we obtain
(土.4) the extreme values $H_{p}=40 ; \rho=\mathrm{IO}^{-8}$ and $H_{e}=20, \rho=1 \mathrm{O}^{-7}$ giving $V=\mathrm{II} \times \mathrm{IO}^{4}$ and $2 \times 10^{4} \mathrm{~cm} . \mathrm{sec}^{-1}$.
2. Generation of magneto-hydrodynamic waves through the granulation.-Any motion in the photosphere gives rise to waves transmitted with the velocity (I.I). According to some observations the granulae are displaced with a velocity of about $3 \mathrm{~km} . \mathrm{sec} .^{-1}$. It is possible that this is a real velocity but maybe the motion is only apparent. If real it corresponds to an average kinetic energy of

$$
\frac{1}{2} \rho v^{2}=\frac{1}{2}\left(3 \times 10^{-8}\right)\left(3 \times 10^{5}\right)^{2}=\mathrm{I} .4 \times 10^{3} \mathrm{ergcm} .^{-3} .
$$

The granulation is observed as a difference in brilliance of different small parts of the photosphere. The maximum light difference is about $\Delta=15$ per cent
 compression of an ideal gas the change in pressure must be $(5 / 2)(\mathrm{I} / 4) \Delta=9$ per cent.

 order of magnitude as those in the kinetic energy. This indicates that the velocities
 may be real.

In a magneto-hydrodynamic wave the magnetic energy equals the kinetic energy and also the pressure difference Δp associated with the wave: $(\mu / 8 \pi) H^{\prime 2}=\frac{1}{2} \rho v^{2}=\Delta p$. Here H^{\prime} means the magnetic field of the wave, which is superimposed upon the general field $H_{0} ; v$ means the material velocity in the wave. As the granulation reveals the existence of fluctuations in the kinetic and potential energy of the order of 10^{3} to $10^{4} \mathrm{erg} \mathrm{cm} .^{-3}$ we must expect a varying magnetic field between $H^{\prime}=\sqrt{\left(8 \pi \times 10^{3}\right)}=160$ and $H^{\prime}=\sqrt{\left(8 \pi \times 10^{4}\right)}=500$ gauss. * Observatory, 66, $230,1946$.
\dagger H. Alfvén, loc. cit.
No. 2, 1947 Waves, and the Heating of the Solar Corona
Because of the granulation the general solar magnetic field must be superimposedBecause of the granulation the general solar magnetic field must be superimposed-
in the photosphere-by an irregularly varying magnetic field with an amplitude of a
Such fields would give a Zeeman effect broadening of spectral lines of about o.oI a. It would probably be rather difficult though not impossible to find this effect by observations.
3. Transmission of the magneto-hydrodynamic waves.-The turbulence of the photosphere is usually thought to be due to an instability which is located in the
 at some depth below the photosphere, because a turbulence produced at some
 in the same way as the turbulence in the solar core causes sunspots at the solar surface after a wave transmission. Against the assumption that the cause of the
 is independent of the latitude. Near the equator, where the magnetic field is horizontal a turbulence at some depth could not so easily be transmitted to the

[^0]

The magneto-hydrodynamic waves may be generated in the photosphere itself-as perhaps is most probable-or in a deeper layer; in any case they must be

 chromosphere or corona. Decisive for the reflection is the ratio between the scale-height z_{0} (defined through $z / z_{0}=e n \rho / \rho_{0}$) and the wave-length λ. As

$$
\begin{aligned}
& \lambda=\frac{2 \pi V}{\omega}=\frac{\sqrt{ } \pi H_{0}}{\omega \sqrt{ } \rho} \\
& \text { force are vertical as near the poles) } \\
& \frac{z_{0}}{\lambda}=\frac{\omega}{\sqrt{ } \pi H_{0}} z_{0} \sqrt{ } \rho
\end{aligned}
$$

	$\begin{gathered} \circ 8^{\varepsilon} \\ 9 \\ \text { z. } \\ \angle . t \\ 91 \\ \mathcal{E}_{9} \end{gathered}$	$\begin{aligned} & \text { s.o } \\ & \text { oz } \\ & \text { ot } \end{aligned}$			
	$\frac{{ }^{a} H}{d \mathcal{\Lambda}^{0} z}$	ssnes ${ }^{a} H$ stxe fe Ploy จทุวนริอโ	-un ${ }^{0} z$ 7чถิว - - ${ }^{\text {BOS }}$		u : -uo/sponied јо Iəquin $^{\mathrm{N}}$
$\left(z^{\prime} \cdot \varepsilon\right)$	$\cdot d \mathcal{L}^{0} z \frac{H^{0} H^{\nu} \Lambda}{m}=\frac{\gamma}{0_{z}}$				

$$
\lambda=\frac{2 \pi V}{\omega}=\frac{\sqrt{ } \pi H_{0}}{\omega \sqrt{ } \rho},
$$

we have (if the magnetic lines of force are vertical as near the poles)
we have (if the magnetic lines of force are vertical as near the poles)

Hannes Alfvén, Granulation, Magneto-Hydrodynamic Vol. Ioł

$$
\lambda \approx_{4} \pi z_{0}
$$

 α is the angle between the field and the vertical) for λ. Hence no considerable reflection takes place if the wave is smaller than
(3.3)
If ϕ is the latitude and H_{p} the field at the axis, we have $\cos \alpha=2 \sin \phi\left(\mathrm{I}+3 \sin ^{2} \phi\right)^{-\frac{1}{5}}$ and $H_{0}=\frac{1}{2} H_{p}\left(\mathrm{I}+3 \sin ^{2} \phi\right)^{\frac{1}{2}}$. Hence we have

$$
(3.4)
$$

(3.5)
requencies above this are not considerably reflected.
If the damping and reflection is neglected the amplitude of v varies as ρ^{-4}

 contrary, increases when ρ decreases and if the damping of the waves were negligible it would reach very high values up in the corona.
 photosphere, v would have increased 100 times, i.e. to $300 \mathrm{~km} . \mathrm{sec} .^{-1}$. This

 place and this is also what could be expected theoretically, as will be shown in the next section.
As in a wave, the kinetic energy w_{k} equals the magnetic energy w_{H}, the energy transmitted upwards from the photosphere is
As we have found, V is of the order of $5 \times 10^{4} \mathrm{~cm} . \mathrm{sec}^{-1}$ and $w_{H}=10^{3}$ to $10^{4} \mathrm{erg} \mathrm{cm} .^{-3}$ $\mathrm{sec} .^{-1}$. Thus we find that U is of the order 10^{8} to $10^{9} \mathrm{erg} \mathrm{cm} .^{-2} \mathrm{sec} .^{-1}$. This is of the order of one per cent of the total energy radiated by the $\operatorname{Sun}\left(5 \times 10^{10} \mathrm{erg} \mathrm{cm} .^{-2}\right.$
4. The absorption of the waves.-A magneto-hydrodynamic wave is always associated with an electric current. A sine wave in the z-direction $H^{\prime}=A \sin \omega(t-z / V)$,

$i=A \frac{c \omega}{H_{0}} \sqrt{\left(\frac{\rho}{4 \pi \mu}\right)} \cos \omega\left(t-\frac{z}{V}\right)$.

No. 2, $1947 \quad$ Waves, and the Heating of the Solar Corona 215
The current flows in the x-direction if the induced magnetic field H^{\prime} goes in the y-direction and the initial magnetic field H_{0} is parallel to the z-axis.

If the conductivity σ is finite, the current produces a Joule heating w_{j} of the
liquid. Its mean for one whole period is

$$
w_{j}=\frac{\mathrm{I}}{\sigma}\left(\text { mean of } i^{2}\right)=\frac{1}{2} A^{2} \frac{c^{2}}{\sigma} \frac{\omega^{2}}{H^{2}} \frac{\rho}{4 \pi \mu} .
$$

(4.3)

 Chapman and Cowling have calculated the conductivity of an ionized gas. perpendicular to the field, especially at low pressures. Writing his formula in Gaussian units and introducing $p_{e}=n k T\left(k=\mathrm{I} \cdot 37 \times 10^{-16}\right)$ we obtain for the conductivity σ perpendicular to the magnetic field H

$$
(4.4)
$$

where T is the temperature, Z the mean ionization, n the number of electrons per cubic centimetre. \dagger As our current i is perpendicular to the given field H_{0} as well
 As long as the wave amplitude A is small ($A \ll H_{0}$), the magnetic field to be introduced into Cowling's formula equals H_{0}. At large amplitudes, the matter becomes
more complicated. According to (4.I) and (4.2), H^{\prime} is zero when i is maximum,
 magnitude of the conductivity we use H_{0}. This may give too high values of the conductivity, if the amplitude is large.

Let us calculate the damping exponent α for completely ionized hydrogen. We introduce $\rho=n \times m_{H}$ ($m_{H}=$ mass of the hydrogen atom) and $\mu=\mathrm{I}$ into (I.3). With the help of (4.4) we obtain

$$
=\frac{\omega^{2}}{H_{0}^{3}}\left[b_{1} H_{0}^{2} n^{-\frac{1}{2}} T^{3 / 2}+b_{2} n^{3 / 2} T^{-3 / 2}\right]
$$

with $b_{1}=2.2 \times 10^{-10} \mathrm{~cm} .^{-3} g^{\frac{1}{2}} \mathrm{sec}$. deg..$^{-3 / 2} ; b_{2}=2.6 \times \mathrm{I}^{-22} \mathrm{~cm} .^{2} \mathrm{sec} .^{-1} g^{3 / 2} \mathrm{deg} .{ }^{3 / 2}$.
 probably covers a wide range down to the limit given by (3.5). Taking an average

\ddagger The Hall current, for which Cowling gives an expression, may complicate the phenomena.
magneto-hydrodynamic waves upwards from the photosphere is absorbed at the base of the corona.
Waves of different frequencies are absorbed at different heights. This is
easily seen if in Fig. I we plot as a dotted curve $\alpha=I / \Delta$, where Δ means the vertical

distance over which the density changes by a factor 10. Consequently the intersection with the full curves indicates where the waves are absorbed
If ω is to times as high as assumed above, the value of α becomes 100 times larger. Such waves are in part absorbed already in the higher chromosphere. If $\omega>$ I considerable absorption takes place already in the photosphere, so higher

 Rydbeck, only a small fraction of them escapes reflection.
5. The heating of the corona.-Since B. Edlén's identification of the corona lines it can be considered as certain that the temperature of the corona is of the order of 10^{6} degrees. The problem how the corona is heated has become very important.

 Sun itself.

 -sұчธิ!

 The temperature which can be reached in this way is limited only by the thermal losses.

$\angle I Z$
Waves, and the Heating of the Solar Corona
For the ratio between the total corona radiation and the radiation of the Sun if heated to the corona temperature (10^{6} degrees), Waldmeier ${ }^{*}$ gives the figure 2.5×10^{-12}. As the radiation is proportional to T^{4} we find for the total radiation

 dynamic waves. In any case we should not expect the corona to radiate more than
 outlined gives energy enough to heat the corona.
If we exclude the heating through meteors, it is difficult indeed to find an alternative to the heating through electric currents (heating through nuclear reactions being obviously insufficient). The electric currents can be supplied in different ways. The currents associated with " granulation waves" as considered above may supply the "normal" more or less constant heating. But no doubt currents could be produced also in other ways. In a series of papers the view has been propagated that the phenomena termed "solar activity" are essentially of electromagnetic or magneto-hydrodynamic nature. \dagger The prominences can be understood as electric discharges (mainly along the magnetic lines of force) produced by electromotive forces generated through a process similar to unipolar induction. \ddagger The coronal arcs recently discovered by Lyot§, may be discharges

 lation between the coronal shape and the occurrence of prominences. As was pointed out several years ago the corona may be an atmosphere, more or less in thermal equilibrium, heated electrically to an enormous temperature.||
According to what is said above, the material velocity of magneto-hydrodynamic waves is about 3 km .sec. ${ }^{-1}$ in the photosphere where the density is $n=10^{15}$ to IO^{17} particles $\mathrm{cm} .^{-3}$. In the chromosphere the density is about IO^{11} to $10^{14} \mathrm{~cm} .^{-3}$, and as the material velocity is proportional to $\rho^{-\frac{7}{6}}$ the velocity ought to be

 that the observed values of the turbulence are only a little in excess of the chromospheric values.
6. The density of the corona.-Some years ago it was pointed out that the low density gradient of the corona may be explained simply as a consequence of the fact that the temperature is very high. I Thus the corona may be in gravitational is supported by the radiation pressure or some hypothetical force.
supported by the radiation pressure or some hypothetical force.
If we assume that no other force than gravitation acts upon the
calculate the temperature in each point of the corona from the density function.
Waldmeier, Mitt. Aargau. naturf. Ges., 22, 199, 1945. cit. ; H. Alfien, M.N., 105, 3, 1945.; H. Alfven, Ark. Mat. Astr. Fys.. 27 A, No. 20, 1940 and
No. 25, 194I. (Sections 7-10 of No. 25 should be cancelled because the effe.t of the magnetic field is introduced in an erroneous way.)
$\|$ H. Alfvén, loc. cit.,
$\|$ H. Alfvén, loc. cit.
218 Hannes Alfvén, Granulation, Magneto-Hydrodynamic Vol. IO7
The latter has been derived by Baumbach* from all available photometric

tronic density at the height $\eta=R / R_{\odot}$, Baumbach gives the empirical formula

Of course the charge of the electrons must be compensated by the same amount of positive charge (from positive ions). As hydrogen is likely to be predominant, we assume for an estimation of the order of magnitude that most of the ions in the corona are hydrogen ions. Thus the number of protons per $\mathrm{cm} .^{3}$ amounts also
 equilibrium between the "molecules" (but of course not between molecules and quanta!), we can apply the common laws of kinetic gas theory. We assume that the mean energy of the molecules (in our case electrons and protons) amounts to $E=3 k T / 2$. As there are $2 N$ molecules the gas pressure is

$$
p=(2 / 3) 2 N E
$$

If $m_{H}=\mathrm{I} \cdot 66 \times 10^{-24} \mathrm{~g}$. is the mass of a hydrogen atom and $g \odot=2.74 \times 10^{4} \mathrm{~cm} . \mathrm{sec} .^{-2}$ is the acceleration at the Sun's surface, the gravitational force acting upon a cubic centimetre is $g_{\odot} N m_{H} \eta^{-2}$. As we have assumed that this force is compensated by the pressure gradient, we have

$$
\stackrel{\overparen{6}}{\stackrel{\ominus}{6}}
$$

(6.4)

$$
\begin{aligned}
& \text { or, according to (6.1), } \\
& \qquad \frac{E}{E_{0}}=\frac{\frac{0.036}{2.5} \eta^{-2.5}+\frac{\mathrm{I} \cdot 55}{7} \eta^{-7}+\frac{2.99}{17} \eta^{-17}}{0.036 \eta^{-1.5}+\mathrm{I} \cdot 55 \eta^{-6}+2.99 \eta^{-16}} \text {. } \\
& \text { The value of } E / E_{0} \text { from this formula is shown in Fig. 2. The temperature in } \\
& \text { the inner corona is about constant, having the value } E / E_{0}=0 \cdot \mathrm{I2} \text {, which corresponds } \\
& \text { to about } 2,000, \text { ooo. } \\
& \text { Taking account of the fact that the corona contains other gases than hydrogen } \\
& \text { the temperature becomes still higher. } \\
& \text { As has been pointed out especially by Grotrian the coronal light is probably }
\end{aligned}
$$

$E_{0}=\frac{3}{4} g_{\odot} R_{\odot} m_{H}=2 \cdot 38 \times I O^{-9} \mathrm{erg}=\mathrm{I} \cdot 49 \times I O^{3} \mathrm{e}$. volts.
From (6.4) we obtain
Differentiating (6.2) we obtain from (6.2) and (6.3)
$\frac{d}{d \eta}\left(\frac{E}{E_{0}}\right)+\frac{1}{N} \frac{d N}{d \eta} \frac{E}{E_{0}}=-\frac{1}{\eta^{2}}$,
where

*S. Baumbach, boc, cit., P. 121.

$\stackrel{9}{9}$

[^0]: The minimum value of $\left(z_{0} \sqrt{ } \rho\right) / H_{p}$ is about 3 sec .
 The minimum value of $\left(z_{0} \sqrt{ } \rho\right) / H_{p}$ is about 3 sec .

