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ABSTRACT
In this paper, we describe the architecture and performance of the GRAPE-4 system, a massively

parallel special-purpose computer for N-body simulation of gravitational collisional systems. The calcu-
lation cost of N-body simulation of collisional self-gravitating system is O(N3). Thus, even with present-
day supercomputers, the number of particles one can handle is still around 10,000. In N-body
simulations, almost all computing time is spent calculating the force between particles, since the number
of interactions is proportional to the square of the number of particles. Computational cost of the rest of
the simulation, such as the time integration and the reduction of the result, is generally proportional to
the number of particles. The calculation of the force between particles can be greatly accelerated by
means of a dedicated special-purpose hardware. We have developed a series of hardware systems, the
GRAPE (GRAvity PipE) systems, which perform the force calculation. They are used with a general-
purpose host computer which performs the rest of the calculation. The GRAPE-4 system is our newest
hardware, completed in 1995 summer. Its peak speed is 1.08 TFLOPS. This speed is achieved by running
1692 pipeline large-scale integrated circuits (LSIs), each providing 640 MFLOPS, in parallel.
Subject headings : instrumentation : miscellaneous È methods : numerical

1. INTRODUCTION

The N-body simulation technique, in which the equations
of motion of N particles are integrated numerically, has
been one of the most powerful tools for the study of astron-
omical objects such as the solar system, star clusters, gal-
axies, clusters of galaxies and large-scale structures of the
universe.

The calculation cost of direct N-body simulation
increases rapidly as we increase the number of particles.
Because of the following two reasons, the calculation cost of
N-body simulations of star clusters is roughly proportional
to N3. The Ðrst is that the gravity is a long-range attractive
force. We cannot neglect the contributions of distant par-
ticles to the force on a particle. In many other particle simu-
lations, the force is of a short-range nature, as in the case of
the van der Waals force or the contributions of the distant
particles can be neglected.

The second reason is that for collisional systems, the
timescale of the evolution of the system is proportional to
the number of particles. For star clusters such as open clus-
ters and globular clusters, the thermal relaxation timescale
is considerably shorter than the age of the universe. Thus,
the simulation of such systems must cover the thermal time-
scale. The ratio between the thermal timescale of the cluster
and the orbital timescale of a typical star in the cluster is
proportional to N/log N.

Simulations with large N are very expensive. For
example, a simulation of a 105-body system would take
several hundred years, if performed on a supercomputer
with the e†ective speed of 1 GFLOPS Makino, &(Hut,

1 Present address : The Institute of Statistical Mathematics, 4-6-7
Minami-Azabu, Minato-ku, Tokyo 106, Japan.

McMillan Very roughly speaking, the number of par-1988).
ticles one can handle increased by a factor of 10 every 15
years, which is consistent with the fact that the speed of the
computers has been improved by a factor of 100 every 10
years.

This slow progress has been the major obstacle to the
study of the dynamical evolution of globular clusters.
Though some of the important phenomena could be studied
using more approximate approaches such as a conducting
gas sphere or an orbit-averaged one-dimensional Fokker-
Planck equation, many interesting problems could not. Just
to give an example, the number of exotic objects such as
millisecond pulsars is known to vary widely among di†erent
clusters. For example, 47 Tuc has about one-third of all
millisecond pulsars found so far in globular clusters

et al. Thus, the formation rate of these(Robinson 1995).
objects seems to depend strongly on the dynamics of clus-
ters. To model the formation and evolution of these objects
in an evolving globular cluster is a very complex problem,
since the behavior of these objects has rather strong e†ect
on the evolution of the cluster as a whole. Thus, the only
reliable way is to perform a direct N-body simulation of the
whole cluster.

Even the evolution of an idealized cluster of point-mass
particles cannot be fully understood by means of approx-
imate methods. In the case of an isolated cluster, whether
the core oscillation & Bettwieser would(Sugimoto 1983)
take place or not needs to be tested by an N-body simula-
tion. The number of the particles in the core at the
maximum contraction is so small that the Fokker-Planck
approximation breaks down. Moreover, the evolution of a
cluster with a high fraction of primordial binaries is difficult
to study with the Fokker-Plank method et al.(Hut 1992 ;
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Hut, & Makino If we take into accountMcMillan, 1990).
the tidal Ðeld of the parent galaxy, a recent argument by
Weinberg suggests that the e†ect of the nonspherical, time-
dependent tidal Ðeld is much more important than had been
believed (Weinberg All these can be1994a, 1994b, 1994c).
easily studied if an N-body simulation with a sufficiently
large number of particles is possible but are very difficult or
impossible to study with more approximate methods.

The increase of the number of particles of a factor of 10 in
more than 10 years appears to be quite slow, when com-
pared with the advance in the number of particles in cosmo-
logical N-body simulations. In the late 1970s, the number of
particles one could use for cosmological simulations was
around 1000. At the present, many people use routinely
more than 10 million particles. Thus, the increase of the
number of particles by a factor of 10,000 in 20 years has
been achieved for cosmological simulations (see, e.g.,

et al.Warren 1992).
The reason that the number of particles in cosmological

simulations has increased so rapidly is that the calculation
cost is O(N log N). The simulation covers the dynamical
timescale of the universe. Therefore, the number of time
steps does not depend strongly on the number of particles.
Moreover, fast algorithms to calculate the gravitational
potential such as the PM scheme or Barnes-Hut tree algo-
rithm & Hut can be used because the required(Barnes 1986)
accuracy is low. In particular, the invention of the tree algo-
rithm made it possible to compute the gravitational poten-
tial of particles in a highly clustered distribution, which had
been difficult with PM or traditional P3M algorithms. The
P3M method with an adaptive multiple grid (Couchman,
Thomas, & Pearce which has become available1995),
recently, seems to be able to provide performance compara-
ble, if not superior, to the tree algorithms.

For simulations of star clusters, it is difficult to apply
these fast techniques to calculate the interparticle forces.
The simulation of the long-term evolution of star clusters
requires very accurate calculation of the interparticle force.
Moreover, the number density and orbital timescale of stars
range over many orders of magnitude in a single cluster. As
a result, the Ðxed resolution of the PM scheme is not appro-
priate. The P3M scheme is not appropriate either, since the
calculation cost of a grid cell with high density becomes
very large. The tree algorithm does not help much, since the
required accuracy of the force is high & Aarseth(McMillan
1993).

There is another reason that the fast algorithms are diffi-
cult to use. As stated above, the orbital timescale of particles
ranges over many orders of magnitudes. In addition, the
fraction of particles that require short time steps is relatively
small. It is impractical to use the same time step for all
particles.

To overcome this difficulty, an algorithm called the indi-
vidual time step scheme has been used The(Aarseth 1985).
basic idea is to allow particles to have their own times and
time steps. As a result, integration proceeds by updating the
particle with minimum where and are thet

i
] *t

i
, t

i
*t

icurrent time and time step of particle i.
This individual time step scheme, sometimes referred to

as the Aarseth scheme, is an extremely powerful method
when applied to the late stage of the evolution of star clus-
ters. The gain in the computational speed is O(N) (Makino
& Hut at the late stage of evolution. This O(N) gain1988)
implies that only a small number of particles have small

time steps.
For the individual time step algorithm, et al.Hut (1988)

estimated that the maximum possible speed-up factor for a
sophisticated scheme such as the tree algorithm over the
direct summation would be around a factor of 100, even for
a gigantic calculation using 105 particles. Such a calcu-
lation, if performed on a supercomputer with the sustained
speed of 1 GFLOPS, would take several hundreds years.

At Ðrst sight, this factor of 100 looks pretty large.
However, the efficiency of parallel/vector machines is much
better for the direct summation because of its simplicity.

As parallel/vector computers become more widely avail-
able, the algorithmic gain of sophisticated algorithms
becomes less important. In practice, it is already a signiÐ-
cant challenge to implement the straightforward direct sum-
mation method with an individual time step algorithm on
massively parallel computers because a naive implementa-
tion requires very fast interprocessor communication. The
attempt to implement the Ahmad-Cohen neighbor scheme
has not been very successful so far. The tree algorithm
without individual time steps is perfectly vectorizable

as well as(Barnes 1990 ; Hernquist 1990 ; Makino 1990)
parallelizable & Warren Most(Barnes 1986 ; Salmon 1994).
schemes, however, rely on the fact that forces on all particles
can be evaluated in parallel. For the individual time step
algorithm, the degree of the parallelism is much smaller
than the number of particles. Thus, the efficient parallel
implementation is very difficult.

In this paper, we describe a rather di†erent approach to
this problem, which is to build a dedicated special-purpose
computing device tailored for the requirement of the simu-
lation of collisional N-body simulation with individual time
step algorithm.

The idea of building a computer by ourselves might
sound rather silly, since to develop a computer is a very
expensive and risky enterprise. Even if we limit our atten-
tion to the Ðeld of large-scale scientiÐc computation, it
seems very difficult to design and build a successful
machine. Even the most successful company could not
maintain its existence.

If we limit the application to a very narrow range, the
design is extremely simpliÐed, and the price-performance
ratio is improved by several orders of magnitude. An
example of such a special-purpose hardware is the FX pro-
cessor for the radio interferometer et al.(Chikada 1987),
which is a dedicated hardware to perform the FFT oper-
ation. In the early 1980s, it achieved an incredible 100
GOPs (giga operations per second) for the total budget of
200 M yen.

In this paper, we describe the GRAPE-4 system, which
made it possible to perform a direct N-body simulation of
small globular clusters (N ¹ 105). It is a massively parallel
computer that consists of 1692 processor chips. Each pro-
cessor chip integrates about 15 Ñoating point arithmetic
units and one function evaluator. The peak speed of a chip
is 640 MFLOPS, and that of the total machine is 1.08
TFLOPS. The hardware was completed in 1995 June, and it
is the fastest computer in the world as of 1996 summer.

GRAPE-4 is now being used for the study of various
problems, such as the core oscillation of the globular cluster

the evolution of open clusters(Makino 1996), (Aarseth
the evolution of the black hole binary in the center of1996),

a galaxy & Ebisuzaki the(Makino 1996 ; Makino 1997),
formation of the dark matter halo & Makino(Fukushige
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and the evolution of the system of planetesimals1997),
(Kokubo & Ida In this paper we describe the1996a, 1996b).
basic idea, the hardware, the software, the achieved per-
formance, and future prospects. In we describe the basic° 2,
concept of GRAPE systems and how they work for the case
of the individual time step algorithm. In we describe the° 3,
GRAPE-4 hardware. In we describe the software. In° 4, ° 5,
we present the measured performance. In we discuss the° 6,
future of the GRAPE system.

2. BASIC CONCEPTS

2.1. GRAPE
The basic idea of GRAPE (GRAvity PipE) is shown in

A special-purpose hardware is connected to aFigure 1.
general-purpose front end. The special-purpose hardware is
used as a back-end processor, on which only the force (and
related) calculations are performed. The rest of the compu-
tation, such as the actual orbit integration, is performed on
the host computer. For almost all systems, we used a
UNIX-based workstation as the host computer. In the sim-
plest case, the host computer sends the positions and masses
of all particles to GRAPE. Then GRAPE calculates the
forces between particles and sends them back to the host
computer.

We have developed several hardware systems, namely
GRAPE-1 et al. GRAPE-1A et al.(Ito 1990), (Fukushige

and GRAPE-3/3A et al. which are1991), (Okumura 1993),
straightforward realizations of the concept shown in Figure

(GRAPE-2 will be discussed later). All systems calculate1
the force using the specialized pipeline processor. The di†er-
ence between GRAPE-1 and GRAPE-3 is that in GRAPE-
1, the force calculation pipeline was implemented using
o†-the-shelf IC chips, while for GRAPE-3, we developed a
custom LSI chip that implements a complete force calcu-
lation pipeline in a single chip. GRAPE-3 integrated 48 of
these chips operating in parallel, each providing the speed
of 300 MFLOPS. The peak speed of GRAPE-3 was 14.4
GFLOPS. In GRAPE-3, these 48 chips calculate the forces
on 48 di†erent particles in parallel. These chips calculate the
forces from the same particles. Thus, all chips share one
memory unit. In practice, GRAPE-3 consists of two boards,
each with its own memory, but in the standard operation
mode, the contents of the two memory units are identical.

shows the structure of one board of GRAPE-3.Figure 2
The direct summation algorithm with a shared (and in

most cases constant) time step is the simplest application of
these hardware systems. They can also be used to accelerate
the Barnes-Hut tree algorithm and the(Makino 1991a)
P3M algorithm Summers, & Ostriker(Brieu, 1995).

The main reason for building a special-purpose computer
is that it can achieve a better price-performance ratio better
than that of general-purpose computers. The production

FIG. 1.ÈBasic structure of the GRAPE system

FIG. 2.ÈBlock diagram of a GRAPE-3 board

cost of the GRAPE-1A system was about $7000. Its theo-
retical peak speed was 240 MFLOPS, and half of the peak
speed was achieved on direct summation for a few thousand
particles. The development cost of GRAPE-3 was about
$100,000. Most of the cost was spent for the design and
manufacture of the pipeline chip. The reproduction cost of
GRAPE-3 system would be around $10,000. Thus, even
though the total cost of GRAPE-3 was 10 times higher than
the reproduction cost, it still o†ered raw performance that
was at least 100 times faster than the performance of a
general-purpose computer of a similar price.

Once a custom chip is designed, the manufacturer can
produce a number of identical chips for the cost of about
$100 per chip. On the other hand, designing of a custom
chip is a rather costly venture. Therefore, it is crucial to use
a reasonably large number of custom chips in parallel to
achieve a good price performance.

With the GRAPE architecture, it is easy to use a number
of pipelines in parallel, since all chips can share one memory
unit. Thus, if the total amount of budget is larger than the
initial design cost of the custom LSI, GRAPE can almost
always achieve very high price-performance.

A number of research institutes both within and outside
Japan acquired copies of the GRAPE-3A board. These
institutes include Princeton University, University of Cali-
fornia at Berkeley, Marseille Observatory, Max Planck
Institute for Astrophysics, Edinburgh University, Tokyo
University, Kyoto University, and Tohoku University. As
of 1996 August, more than 20 laboratories have acquired
more than 40 GRAPE-3A boards.

2.2. Individual T ime Step Algorithm
As stated earlier, the individual time step algorithm

is the essential part of any simulation(Aarseth 1963)
program for gravitational collisional systems.

In the individual time step algorithm, each particle has its
own time step and maintains its own time To inte-*t

i
t
i
.

grate the system, one Ðrst selects the particle for which the
next time is the minimum. Then, one predicts its(t

i
] *t

i
)

position at this new time Positions of all othert \ t
i
] *t

i
.

particles at time t must be predicted also. Then the force on
that particle from other particles is calculated following
NewtonÏs law of gravity. The position and velocity of the
particle are then corrected, and the new time step is calcu-
lated. The integration scheme is a variant of KroghÏs
scheme modiÐed for second-order equations.(Krogh 1974)
It is essentially a classical Adams-Bashforth-Moulton
(ABM) linear multistep predictor-corrector method, modi-
Ðed to allow variable time steps. The order of the integrator
is four. For a wide range of the required accuracy and the
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number of particles, the fourth-order scheme is close to
optimal though there had been some claims(Makino 1990),
that higher order scheme would be more efficient &(Press
Spergel 1988).

A modiÐcation of this individual time step algorithm is
now used to achieve higher efficiency on vector/parallel
machines and special-purpose computers(McMillan 1986)

This scheme is called the hierarchical time(Makino 1991b).
step scheme. In this scheme, the time steps of particles are
forced to integer powers of 2. In addition, the time step of a
particle is chosen so that the current time of that particle is
an integer multiple of the time step. These two criteria make
it possible to force many particles to share exactly the same
time.

In the original individual time step algorithm, only one
particle can be integrated at one time. Thus, the parallelism
is rather limited. One still can use multiple processors to
calculate the force from other N [ 1 particles in parallel,
but the speed-up is rather limited.

In the hierarchical time step algorithm, a fairly large
number of particles can share the same time. Theoretically,
the average number of particles to share the same time is

where is the number of particles in the core ofO(N
c
2@3), N

cthe cluster (Makino 1991b).
It should be noted that the estimates for the optimal

order given in or & Spergel areMakino (1990) Press (1988)
for the original individual time step algorithm. In this case,
the calculation cost per one particle step increases as we
increases the order of the integrator. However, for the hier-
archical time step scheme, the calculation cost is almost
independent of the order of the integrator. Therefore, the
integrator with order higher than 4 might be preferred.

2.3. T he Hermite Integration Scheme
As stated before, the standard time integration method

for collisional N-body simulation had been the variableÈ
step-size linear multistep method. The implementation of
such a scheme is rather complicated because it requires a
considerable amount of bookkeeping. Roughly speaking,
one has to maintain the calculated accelerations at several
previous time steps as well as the previous time steps them-
selves.

When the time integration is started, the accelerations at
previous time steps are not available. Therefore, a special
procedure to start up the integration is required. The initial-
ization of the integrator occurs rather often, since we apply
special procedures for close encounters and close binaries
(see Standard bootstrapping is not appropri-Aarseth 1985).
ate since it would signiÐcantly increase the calculation cost.
Aarseth implemented the start-up procedure in which the
time derivatives of the gravitational forces are analytically
calculated and converted to forces at the previous time
steps.

The fourth-order Hermite integrator (Makino 1991a ;
& Aarseth is much simpler than the ABMMakino 1992)

scheme, and yet it o†ers similar (but somewhat better) accu-
racy for the same calculation cost. The Hermite scheme uses
the Hermite interpolation formula to construct the predic-
tor and the corrector. To construct a Hermite interpolation
formula, both the values of the function and its derivatives
are used. For example, if we know the values of the acceler-
ation and its Ðrst time derivative at two points in time, we
can construct a third-order interpolation polynomial. If the
information of the time derivative is not available, we need

values of accelerations at four di†erent points in time.
The predictor of the fourth-order Hermite scheme is

expressed as
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Here, v is the softening parameter.
The corrector is given by
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Here, a(2) and a(3) are the second and third derivatives of the
acceleration at time which are constructed from thet0,
third-order Hermite interpolation by

a(2)\ [6(a0[ a1) [ 2 *t(2a5 0] a5 1)
*t2 (9)

a(3)\ 12(a0[ a1) ] 6 *t(a5 0] a5 1)
*t3 , (10)

where and are the acceleration and its derivative cal-a1 a5 1culated at time using the predicted position andt0] *t
velocity.

If we neglect the a(3) term in position, we obtain a much
simpler form for the corrector (see, e.g., Lambert 1973)
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o†ers essentially the same accuracy asEquation (11)
The local truncation error of the position ofequation (7).

this formula is *t5, while that for is *t6.equation (7)
However, this di†erence does not have any e†ect on the
global error, since the error in the velocity is *t5 for both
schemes.

The predictor given in uses position, velocity,equation (1)
acceleration, and its derivative at time t. The acceleration
and its time derivative are calculated from the position and
velocity. Therefore, no information concerning the previous
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time step is necessary. The corrector also requires informa-
tion concerning the present and old time steps only. Thus,
the fourth-order Hermite scheme is a one-step, self-starting
scheme. It is particularly suitable for use with the individual
time step scheme.

as well as & AarsethMakino (1991a) Makino (1992)
made detailed comparisons between the Aarseth-type
schemes and Hermite schemes of various orders. Their con-
clusions are summarized as follows. First, the Hermite
scheme allows a time step that is roughly twice as long as
that of the Aarseth scheme of the same order for the same
accuracy. Second, the fourth-order scheme is close to
optimal for a wide range of required accuracy. In short, the
fourth-order Hermite scheme is better than the Aarseth
scheme, in terms of accuracy, efficiency, and simplicity of
the algorithm.

2.4. Hermite Scheme on GRAPE
Neither the individual time step scheme nor the Hermite

scheme can be directly used on GRAPE hardware systems
in their original forms, which are designed for shared-time
step algorithms. The basic GRAPE architecture must be
modiÐed in two ways to run the individual time step scheme
with the Hermite integrator. The changes required are the
following :

1. The force calculation pipeline must be extended so
that it calculates the time derivatives as well.

2. The hardware to calculate the predicted positions and
velocities of the particles must be implemented.

shows the hard-wired pipeline to calculate forceFigure 3
and its time derivatives. The upper half is the original
GRAPE pipeline.

shows the hardware to evaluate the positions ofFigure 4
particles at the present time. is used to evaluateEquation (1)
these quantities. The hardware to evaluate the velocities is
essentially the same.

The complete system with one pipeline is shown in Figure
The complete system consists of a control unit, a memory5.

unit, a predictor pipeline, a force calculation pipeline, and
the interface to the host. We call this architecture HARP
(Hermite AcceleRator Pipeline).

We developed several versions of experimental hardware
systems for the individual time step algorithm (GRAPE-
2/2A; Ito et al. and the Hermite scheme (HARP-1991, 1993)
1 ; Makino, & Taiji We did not implementKokubo, 1994).
the predictor pipeline in these systems in order to simplify
the design. On these machines, the prediction was per-
formed on the host computer.

On a complete system, the time integration proceeds in
the following steps :

FIG. 3.ÈPipeline to calculate the gravitational force and its Ðrst time
derivative (HARP pipeline).

FIG. 4.ÈPredictor pipeline for position. The pipeline for the velocity
looks similar.

1. As the initialization procedure, the host sends all data
(position, velocity, acceleration, its Ðrst time derivative,
mass, and time) of all particles to the HARP memory unit.

2. The host creates the list of particles to be integrated at
the present time step.

3. For each particle in the list, repeat steps (4)È(7)
4. The host predicts the position and velocity of the par-

ticles and sends them to HARP. HARP stores them in the
registers of the force calculation pipeline. It also sets the
current time to a register in the predictor pipeline.

5. HARP calculates the force from all other particles.
Positions and velocities of other particles at the current
time are calculated in the predictor pipeline.

6. After the calculation is Ðnished, the host retrieves the
result.

7. The host integrates the orbits of the particles and
determines new time steps.

8. Update the present system time and go back to step
(2).

Using the present VLSI technology, it is not very difficult
to implement the pipelines for force calculation and predic-
tion into a single VLSI chip. In order to achieve a really
high performance, however, we have to integrate a number
of pipeline units into a single system. In the next section, we
describe the parallel architecture of the present GRAPE-4
system.

3. THE GRAPE-4 SYSTEM

3.1. Architecture
shows the GRAPE-4 system, andFigure 6 Figure 7

shows its structure. The GRAPE-4 system consists of a host
computer and four clusters. One cluster has one host-
interface board, one control board, and nine processor
boards. The total number of processor boards is thus 36.
Each processor board houses 48 HARP (Hermite Accel-
eRator Pipeline) chips, which are custom LSI chips to cal-

FIG. 5.ÈOverview of the hardware accelerator for the Hermite scheme
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FIG. 6.ÈGRAPE-4 system

culate the gravitational force and its Ðrst time derivative. It
also has one PROMETHEUS chip, another custom LSI to
calculate the predicted positions and velocities of particles
at a given time. The peak speed is 1.08 TFLOPS for the
system clock of 16 MHz. In the following, we describe each
components in some detail,

3.2. T he Host Computer
We chose a DEC Alpha AXP workstation as the host

computer. Currently, we are using a DEC AXP 3000/900.
We selected the host taking into account the following

considerations. First, its scalar computational speed should
be reasonably fast. At present, this is achieved by selecting
one of the high-end RISC workstations. Second, the I/O
bus must be reasonably fast, and the latency of the I/O bus
must be small. Some of the midrange server machines have
I/O buses with very large transfer rates. On these machines,
however, I/O is controlled by a separate I/O processor. As a
result, the latency of I/O operations tends to be very long.
The DEC Alpha AXP systems have the TURBOchannel

FIG. 7.ÈOverview of GRAPE-4

with the peak transfer rate of 100 MB s~1, which was pretty
good as of 1993. In addition, they do not have separate I/O
processors. Therefore, the latency of I/O operations is small.
Third, it is desirable that the development of the device
driver software be easy, since the available manpower for
software development is severely limited. The UNIX oper-
ating system from DEC is reasonably stable, and develop-
ment of the device driver is not very difficult.

The selection of the TURBOchannel caused one practical
problem. DEC stopped the development of the machines
with TURBOchannel in 1994 and switched to the PCI bus.
We foresaw such a problem and designed the total system
so that it is relatively easy to connect it to I/O buses di†er-
ent from the TURBOchannel, as described in the next sub-
section.

3.3. T he Host Interface Board
The most important function of the host interface board

is to extend the I/O bus of the host. In addition, the inter-
face board converts the data transfer protocol of the host
I/O bus to the protocol used for the link between the host
interface board and the control board. The protocol on the
link is designed so that it does not depend on the protocol
of the host I/O bus. Because of this structure, we can
connect GRAPE-4 to di†erent host computers by changing
the host interface board. We are currently developing a new
host interface board to the PCI bus, since at present the
PCI bus seems to be the most widely available I/O bus.

In this paper, we describe the TURBOchannel interface
board. The host interface board and the control board are
connected with a 32 bit parallel interface. We adopted a
coaxial Ñat cable for the physical connection between them.
The length of the cable is 1 m. The characteristic impedance
of the signal lines is 95 ). Unidirectional signal wires are
terminated with 100 ) passive terminators, while bidirec-
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tional lines are terminated with 200 ) passive terminators
at both ends. This conÐguration is good enough for the
system clock speed up to 20 MHz.

shows the structure of the host interface board.Figure 8
It consists of the data transceivers (trcv) to exchange data
with the host and the control board, the FIFO (Ðrst-in
Ðrst-out) unit to bu†er the data, and the control logic. The
size of FIFO unit is 2048 32 bit words (8 kbyte). The data
transfer rate between the host interface unit and the control
unit is slower than that between the host and the host inter-
face board. Using the FIFO bu†er, the host computer can
send the data at the peak transfer speed. In addition, there
are several restrictions for the DMA (direct memory access)
transfer on the TURBOchannel bus. For example, the
number of words to be transferred in a single burst must not
exceed 128 words, and the address should not go across a 2
kbyte boundary. The FIFO bu†er allows the control board
to transfer data without checking the status of the host bus.
As a result, the design of the control board becomes inde-
pendent of the host bus.

The control logic is made of three 22V10 PLD
(programmable logic device) chips and one AMD
MACH230 complex PLD chip. The AMD MACH chip
integrates most of the control logics such as the DMA
sequence controller and DMA word address counter. Other
PLD chips perform timing-critical handshake operations
on both the TURBOchannel and the control-board inter-
face. We used Cypress CY7C453-14 clocked FIFO chips for
the data FIFO. This clocked FIFO chip accepts separate
clock signals for read and write data paths. The interface to
TURBOchannel operates on the TURBOchannel clock,
while the interface to the control board operates on the
clock signal provided by the processor board. For other
data bu†er/transceivers, we used the 74FCT series logic
chips from Integrated Device Technology.

3.4. T he Control Board
The control board has two main functions. The Ðrst one

is to distribute the data received from the host computer to
processor boards. The second one is to sum up the force and
potential calculated on processor boards. The summed
result is transferred to the host computer through the host
interface board. This summation is necessary to reduce the
bandwidth of the communication with the host computer

Kokubo, & Taiji(Makino, 1993).
Each processor board of GRAPE-4 has multiple pipe-

lines that share one memory unit. These pipelines calculate
the forces on di†erent particles from the same set of par-
ticles, as in the case of GRAPE-3.

There are two di†erent ways to use multiple boards. One
is to let all chips calculate the force on di†erent particles
from the same set of particles. In this case, the content of the
memory of all processor boards would be identical. The
other way is to let each processor board calculate the force

FIG. 8.ÈHost interface board

on the same set of particles, but from di†erent set of par-
ticles. In this case, each processor board calculates the
partial forces that need to be added with results obtained on
other boards.

The former approach is simpler. However, it is not practi-
cal in the case of GRAPE-4 with more than 1000 pipelines,
since the average number of particles that share the same
time is less than 1000 for many cases. Thus, we adopted the
latter approach. The main problem with the latter approach
is that the amount of communication is proportional to the
number of processor boards. If we connect all the processor
boards directly to the host computer, the communication
would take too much time. In order to solve this problem,
we designed the control board so that it can add the results
calculated on the processor boards under its control.

The internal structure of the cluster is not visible to the
application program. To the host computer, a cluster looks
like a board with single memory unit and multiple pipeline
chips.

In order to distribute the calculation over di†erent clus-
ters, we use the same algorithm as that used for di†erent
processor boards in one cluster. If we have four clusters, the
host sends N/4 particles to each cluster, where N is the total
number of particles that exert the force. In this case, each
processor board takes care of the contributions from N/36
particles. The host computer adds the partial forces calcu-
lated on clusters.

The control board and processor boards are connected
by a backplane bus (the HARP bus) with 96 bit data width.
A synchronous, pipelined protocol with a Ðxed latency is
used on this HARP bus. For the backplane board of the
HARP bus, we used the backplane board of the VME bus.
Three VME J1 backplane boards are used to construct a
HARP bus. This choice eliminated the need to design the
backplane board and card racks. The physical size of the
control board (and the processor board) is 366.7 mm by 450
mm.

shows the structure of the control board. ItFigure 9
consists of the control logic unit, three accumulator/bu†er
units, and several transceivers and bu†ers. The control unit
generates all necessary signals to control the HARP bus.
The 96 bit data bus is divided into three 32 bit subbuses,
each of which is connected to di†erent accumulator/bu†er
unit. The accumulator/bu†er unit contains a 64 bit Ñoating
point ALU, which accumulates the result calculated on pro-
cessor boards.

FIG. 9.ÈControl board
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FIG. 10.ÈProcessor board

The control logic unit consists of three AMD MACH230
complex PLDs. The accumulator/bu†er unit consists of a
TI 74ACT8847 64 bit Ñoating point LSI chip and trans-
ceivers, bu†ers, and FIFO chips.

3.5. Processor Board
shows the structure of a processor board. TheFigure 10

particle data memory stores the data of particles that exert
the force. The PROMETHEUS LSI is used to predict the
position (and velocity) of particles at a speciÐed time. The
HARP LSI chips calculate the gravitational accelerations
and their Ðrst time derivatives for particles. One board has
48 HARP chips.

The main control logic is implemented using Altera
EP7256 FPGA (Ðeld-programmable gate array) chip. For
most of interface logics, TI 74ALS series IC chips are used.
As will be described in the clock frequency of the° 3.6,
HARP chips is twice that for the rest of the system. The base
clock signal is generated in the control board and is distrib-
uted to all processor boards. Within each board, the clock
signals are distributed using PLL (phase-locked loop) clock
replicator chips (Cypress 7B991). This chip can multiply the
clock frequency and is also used to generate the clock
signals for the HARP chip.

3.6. HARP Chip
shows the architecture of the HARP chip. It isFigure 11

a fully pipelined hardware implementation of equations (3)
and We adopted an architecture in which the x, y, and z(4).
components of all vector quantities are processed sequen-
tially, in order to reduce the gate count. Thus, it takes three
clock periods to calculate one interaction.

FIG. 11.ÈHARP chip

Each chip calculates the forces on two particles, using the
““ virtual multiple pipeline ÏÏ (VMP). With VMP, the clock
period of the pipeline LSI is 2 times that of the system clock,
and it calculates the forces on two di†erent particles at
alternate clock cycles. From the outside, one force calcu-
lation chip looks as if it has two pipelines. The advantage of
this architecture is that we can increase the performance of
the pipeline chip without increasing the system clock cycle.

This approach is conceptually similar to what is used in
““ superpipeline ÏÏ chips such as MIPS R4000 and ““ clock-
doubled ÏÏ chips such as Intel i486DX2. In our VMP archi-
tecture, however, the chip actually has two separate sets of
registers, and two virtual pipelines operate independently.
On the other hand, in the case of the chips such as i486DX2,
the CPU still looks like one CPU. Only the cycle time of the
external memory bus is reduced to a fraction of the internal
clock cycle. The clock-doubling in the i486DX2 causes
some performance penalty, since the relative speed of the
main memory becomes slower. The penalty of the cache
miss-hit ratio increases signiÐcantly. Thus, it is not practical
to increase further the ratio between the internal and exter-
nal clock, unless the width of the memory bus is increased.

It is also possible to compare our VMP with multi-
threaded architectures such as the Denelcor HEP
(Heterogeneous Element Processor ; or TeraKowalik 1985)
Computer MTA (multithreaded architecture). The pro-
cessors of these machines have multiple register sets so that
a fast processor looks like a collection of slow processors.
Thus, the idea is quite similar to that of VMP. With a
multithreaded architecture, however, the data transfer rate
of the main memory must still be fast enough to supply the
data to a large number of ““ slow ÏÏ processors. It is still not
very easy to design the memory system.

In the case of VMP, neither of the above problems limits
the performance, since all virtual pipelines share the same
input data. As a result, it is not very difficult to increase the
number of virtual pipelines. In our architecture, it is also
easy to have physical multiple pipelines in one chip, when a
larger number of gates becomes available. In the present
HARP chip, the number of VMPs is two because the exter-
nal clock speed of 16 MHz is already sufficiently low to
make the design of the processor board easy. In addition, a
further decrease in the clock cycle of the processor board
would cause a decrease in the data transfer rate between the
control board and the processor boards.

The number format used in the HARP chip is essentially
the same as that used in HARP-1. HARP-1 et al.(Kokubo

is a machine made of o†-the-shelf Ñoating point LSI1994)
chips. The subtraction of the position vectors and the accu-
mulation of the calculated accelerations are performed in 64
bit Ñoating point format. Other calculations to obtain the
acceleration are performed in 32 bit format. The subtraction
of velocity vectors and the accumulation of the time deriv-
atives are performed in 38 bit format. Other calculations to
obtain the time derivative are performed in 29 bit format, in
which the length of mantissa is 20 bits.

The HARP chip is designed using the cell-based method.
It is fabricated by the LSI Logic Corporation. The design
rule is 1 km, and the gate count is about 100K. The total
number of transistors is about 400K. The die size is 14.2 by
14.2 mm. The worst case clock cycle of the chip is 30 MHz.
We started the design of the chip in 1992 summer and com-
pleted the design in 1993 spring. Sample chips were
delivered in 1993 August, and they had no design failure.
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3.7. MCM Package for HARP Chip
Eight HARP chips are packaged in an MCM (multichip

module) package manufactured by Kyocera. As shown in
16 HARP chips share the same data bus. There-Figure 10,

fore, all eight HARP chips in a MCM share the same input
data bus and I/O bus. This design is well suited for an
MCM package because several difficult problems with
MCM packages do not arise.

The use of MCM makes it possible to integrate a large
number of HARP chips on a single processor board. As
stated earlier, one processor board houses 48 HARP chips
(six MCMs). If we use a usual single-chip package, it would
be very difficult to integrate more than 16È24 chips to a
single board. The total number of processor boards would
be around 100, and the manufacturing cost would be about
40% higher.

In general, MCMs are difficult to use because of the fol-
lowing two problems : testability and yield. Each LSI must
be tested before actual use. However, the test for an MCM
is difficult to design because some of the signals cannot be
set/sensed from outside the module. In the case of HARP
MCM, there is no such difficulty, since all the I/O pins of
HARP chips can be directly accessed from outside. There-
fore, the test procedure for an MCM is the same as that for
a single chip.

The yield of an MCM tends to be low, since the probabil-
ity of getting a working MCM is the product of probabil-
ities to get working chips for all chips in the module. For
example, if the yield of a single chip is 90%, the yield of an
MCM with eight chips would be (0.9)8\ 43%. We expected
the yield of the single chip after DC test to be around 98%.
In this case, the yield of the MCM is still higher than 80%.
In other words, the yield is not a severe problem. We
designed the processor board so that it can accommodate
MCMs with defective chips by adding the translation table
between the logical chip number and physical chip number.
Thus, if each board has (at the maximum) two defective
chips, we can use all other 46 chips even if the physical
locations of the defects are di†erent on di†erent boards.

The actual yield of MCMs with no defect was around
70%. This is slightly lower than our expectation but good
enough to assemble required number of working modules.

3.8. PROMET HEUS Chip
gives the architecture of the PROMETHEUSFigure 12

chip. It is a straightforward hard-wired implementation of
the predictor equations and The subtraction of time(1) (2).
and the addition of and the higher order term are per-x

j

FIG. 12.ÈPROMETHEUS chip

formed in 64 bit format. All other calculations are per-
formed in 32 bit format. The PROMETHEUS chip handles
x, y, and z components sequentially in the same way as the
HARP chip. Its clock is, however, the same as that of the
system clock of the processor board.

The PROMETHEUS chip is a 1 km CMOS gate array.
It is fabricated by LSI Logic Corp. The raw gate count is
about 182K. The actual used gates is about 60K. It is pack-
aged into a 391 pin CPGA (ceramic pin-grid array)
package.

4. GRAPE-4 SOFTWARE

4.1. L ibrary Interface
gives the list of subroutines (FORTRANTable 1

callable). The routines h3open and h3close acquire/release
the right to use the GRAPE-4 hardware. GRAPE-4 is
designed as a single-user system, like most of hardware
accelerators and attached processors. A simple access
control mechanism is required since the operating system of
the host computer is multitasking. We used the Ðle-locking
mechanism to control the access to GRAPE-4. The inter-
face board is accessed through a device Ðle associated with
the board. The function h3open locks this device Ðle when
called. If someone else is using GRAPE-4, the process that
called h3open is put into the sleep state until the other
process releases the GRAPE-4. Requests from multiple pro-
cesses are automatically queued by the Ðle-locking mecha-
nism of the operating system.

The function h3npipe returns the number of pipelines
available on the hardware, and h3setti sets the present time

for the predictor unit.(t
i
)
The function h3mjpdma–indirect sends the particle data

to the memory unit of GRAPE-4. This function updates the
memory data of particles speciÐed by the index array. It
accesses both the memory of the host computer and that of
GRAPE-4 indirectly in order to minimize the number of
copy operations within the host main memory.

The function h3calc actually lets GRAPE-4 calculate the
force. It receives the positions, velocities, softenings, and the
neighbor sphere radii of the particles in order to calculate
the accelerations and their time derivatives and returns
them and potentials as well.

The function h3calc lets the GRAPE-4 calculate the force
and waits until GRAPE-4 Ðnishes the calculation. Thus, the
host computer cannot perform useful work while GRAPE-4
is working. We implemented an additional set of functions
that allows the concurrent computation of the host and
GRAPE-4. The function h3calc–Ðrsthalf initiates the calcu-
lation on GRAPE-4 and returns immediately, and
h3calc–lasthalf retrieves the calculated result. Thus, the host

TABLE 1

GRAPE-4 INTERFACE ROUTINES

Name Function

h3open . . . . . . . . . . . . . . . . . . . . Acquire GRAPE-4
h3close . . . . . . . . . . . . . . . . . . . . Release GRAPE-4
h3npipe . . . . . . . . . . . . . . . . . . . Return the number of pipelines
h3setti . . . . . . . . . . . . . . . . . . . . Store the current time
h3mjpdma–indirect . . . . . . Send particle data to memory
h3calc . . . . . . . . . . . . . . . . . . . . . Let GRAPE-4 calculate force
h3calc–Ðrsthalf . . . . . . . . . . . Let GRAPE-4 calculate force and return
h3calc–lasthalf . . . . . . . . . . . Retrieve calculated force from GRAPE-4
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computer can do useful work while GRAPE-4 calculates
the force.

There are several other functions that retrieve the neigh-
bor list for each particle.

Beside the bookkeeping functions, there are only two
functions to be called. One is h3mjpdma–indirect that
stores the data to the memory, and the other is h3calc that
lets the GRAPE-4 calculate the force and retrieve the result.

4.2. Implementation of the L ibrary Functions
As stated in the communication between the present° 3.3,

host interface board and the host computer relies on the
DMA transfer, which makes the implementation of the
communication software somewhat more complicated than
the simple direct access described in & FunatoMakino

All GRAPE hardware systems other than GRAPE-1(1993).
and GRAPE-4 operate as a VME-bus slave. This means
that it looks like a memory card on the I/O bus to the host
computer. The virtual memory system of the UNIX oper-
ating system allows the application program to read/write
directly the address space assigned to GRAPE through
memory mapping. Thus, once the mapping is accomplished,
the application program accesses the GRAPE hardware
without any intervention from the operating system.

When DMA is used, the communication becomes more
complicated. The traditional way to implement the data
transfer using DMA in a UNIX operating system is the
following. In the case of a ““ read ÏÏ operation, the user
process requests the operating system kernel to transfer
data from a device. Then the operating system issues the
command to the device to write the data to the bu†er within
the kernel address space. After the data transfer by the
device is completed, the kernel copies the data in its bu†er
to the address space of the user process and returns the
control to the user process. This process has two per-
formance problems. First, the overhead of transferring the
control between the user process and the kernel process is
very large. Second, the time spent to copy the data between
the kernel bu†er and user memory is considerable. In fact,
on the DEC Alpha workstations that we used, the data

transfer through DMA can achieve a speed of more than 90
MB s~1 quite easily, while the throughput of the copy
within the main memory is around 50 MB s~1. Thus, a
single copy operation by the host CPU e†ectively reduces
the data transfer speed by a factor of 3.

In order to avoid these overheads, we designed the inter-
face library so that the application process can invoke the
DMA transfer to/from its memory space directly. In order
to implement this, the user process needs to know the physi-
cal address of the data area in its virtual address space. A
special system call was developed for this purpose. This
solution, however, is not perfectly reliable, since the oper-
ating system might change the physical address without
notifying the user process when a page fault occurs.

5. PERFORMANCE

In this section, we present the measured speed of the
GRAPE-4 system.

To measure the performance, we performed test runs on
various conÐgurations. As the initial conditions, we used
the King proÐles with nondimensional central potential W

cof 3, 7, and 10. We changed the number of particles from
128 to 524,288, and we measured the speed for the conÐgu-
rations with one, two, and three clusters. The fourth cluster
was unavailable at the time of experiments.

The system of units is chosen so that the total mass of the
system M and the gravitational constant G are both unity.
The total energy of the system E is & Mathieu[14 (Heggie

The softening parameter is 1/N, where N is the1986).
number of particles. The mass of all particles is m\ 1/N.
We integrated the system for one time unit and measured
the CPU time on the host. The host computer was a DEC
Alpha AXP 3000/900 with a 448 MB memory.

shows the calculation speed of GRAPE-4 inFigure 13
GFLOPS and the actual CPU time per unit time for the
runs from King models with The achieved speed isW

c
\ 3.

roughly proportional to the number of particles for
103\ N \ 105 and is almost independent of the number of
clusters. In this range, the use of more than one cluster
actually decreases the overall speed, since the total per-

FIG. 13a FIG. 13b

FIG. 13.È(a) Calculation speed of GRAPE-4 system in GFLOPS and (b) CPU time per time unit plotted as a function of the number of particles into the
system. Initial particle distribution is a King model with W

c
\ 3.
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formance of the system is limited by the speed of the host
computer. As described in the amount of the commu-° 3.4,
nication increases as the number of clusters increases. For
256K particle runs, two- and three-cluster conÐgurations
are actually faster than the one-cluster conÐguration. For
512K particle runs, the three-cluster conÐguration is the
fastest. The CPU time per time unit is about 8 hr for a 512K
particle run on the three-cluster system. Thus, such a simu-
lation & Makino is feasible at least for the(Fukushige 1996)
crossing time scale. For the relaxation time scale, simula-
tions with a particle number less than 105 have been per-
formed (Makino 1996a).

shows the speed of the three-cluster conÐgu-Figure 14
ration for various initial models. For small-N runs, the
speed is lower for a higher central concentration. For
large-N runs, the di†erence is very small. This di†erence is
due to the di†erence in the average number of particles, n

s
,

sharing the same time that is shown in If this isFigure 15. n
ssmaller than the number of force calculation pipelines, the

performance of GRAPE-4 becomes lower since some of the
pipelines are not used. The number of pipelines is 94 in
GRAPE-4.

shows that is quite well approximated byFigure 15 n
s(N)1@2, though it depends somewhat on the structure of the

cluster. This dependence is di†erent from the theoretical
model which predicts(Makino 1991b),

n
s
P N2@3 . (13)

The disagreement between the theoretical prediction and
the experimental result for is caused by the di†erence inn

sthe average number of time steps The theoretical modelsavg.is derived using the assumption that the average number of
the time steps per particle per time unit, should satisfysavg,

savg P N1@3 , (14)

and the number of the system time steps per time unit (the
time average of the inverse of the minimum time step), iss

b
,

O(N2@3). shows as the function of the numberFigure 16 savgof particles N. The behavior of is systematically di†erentsavg

FIG. 14.ÈSame as but for di†erent initial modelsFig. 13

FIG. 15.ÈNumber of system time updates per unit time, plotted as an
s
,

function of the number of particles N.

from the theoretical prediction. The formula

savg P N1@6 (15)

seems to be a good Ðt. The experimental result of equation
is a direct consequence of the fact that we used the time(15)

step criterion based on the time derivatives of the acceler-
ation. Any criterion that is expressed as a nondimensional
function of the acceleration and its time derivatives shows a
dependence of the form of & Hutequation (15) (Makino

On the other hand, is derived from the1988). equation (14)
assumption that the time step should be proportional to the
average interparticle distance. In other words, the time step
criterion we have been using might fail to resolve close
encounters for very large N. For the range of N we tested,
the di†erence between N1@3 and N1@6 is only a factor of 4.
Therefore, it is rather unlikely that the close encounters are
not resolved properly.

FIG. 16.ÈAverage number of time steps per particle per unit time
plotted as a function of the total number of particles N.
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FIG. 17.ÈActual and estimated performance of GRAPE-4 system
plotted as a function of total number of particles N.

Conceptually, the time to integrate one particle on
GRAPE-4 system is given as follows :

Tstep\ Thost ] Tgrape ] Tcomm , (16)

where and are the time to integrate theThost, Tgrape, Tcommorbit of one particle on host, the time to calculate the force
on one particle on GRAPE-4, and the time to transfer data
between the host and GRAPE-4, respectively. In reality, the
actual time can be made shorter than this estimate because
the calculations on GRAPE and that on the host partially
overlap.

The three terms in the right-hand side of areequation (16)
expressed as

Thost \ 250thost , (17)

Tgrape \ c
3Ntpipe
47ncl npr

, (18)

Tcomm\ (34] 20cncl)tcomm1 . (19)

Here, is the average time for the host computer tothostperform one Ñoating point operation. For the Hermite
scheme, the total number of Ñoating point operations per
particle per time step is 200È300. The actual speed of the
host computer for the part of the code executed on the host
is rather low, 15È20 MFLOPS. We thus estimate that

s. In N is the number ofthost \ 5 ] 10~8 equation (18),
particles in the system, is the cycle time of the HARPtpipechip, and and denote the number of clusters and thencl nprnumber of processor boards per cluster. The parameter c is
the loss of parallel efficiency of multiple pipelines, which is
estimated as

c\
Cn

s
] nvp[ 1

n
s

D
. (20)

Here, [x] denotes the maximum integer that does not
exceed x, and is the number of virtual pipelines. In realnvpGRAPE-4, For present GRAPE-4, the clock cyclenvp\ 94.
of HARP chips is 32 MHz, and the number of processor
boards per cluster is nine, i.e., s andtpipe \ 3.125 ] 10~8

In is the time to transfer onenpr\ 9. equation (19), tcomm1

word (4 bytes) between the host and a control board. The
number of words to be transferred between the host and a
control board is in the present implementation34 ] 20ncl,of the control board.

For the communication time, we used the value tcomm1\
1.8] 10~7 s. The raw speed of the DMA on the TURBO-
channel interface is close to 100 MB s~1, which is translated
to s. The actual time spent for the com-tcomm1 \ 4 ] 10~8
munication is signiÐcantly larger simply because the data
copying within the main memory takes a rather long time as
is discussed in The DMA function of HIB can directly° 4.2.
access the user address space. Even so, the user process need
to pack/unpack the data because a single DMA operation
can transfer only a block of memory.

We can see from that the theoretical per-Figure 17
formance model agrees well with the experimental result for
both small- and large-N but tends to overestimate the speed
for intermediate values of N. Most likely, this is because our
estimate for c is too crude.

The actual performance is quite notably lower than our
original assessment et al. This is mainly(Makino 1994).
because we underestimated In our original assess-tcomm1.ment, we neglected the time to move data within the main
memory.

6. FUTURE PROSPECTS

6.1. Planned Improvements
The GRAPE-4 hardware achieved the planned peak

speed of 1 TFLOPS. However, the sustained performance
for small-N simulations is somewhat less than expected.
This is simply because the speed of the host computer we
are currently using is lower than our expectation of early
1994. In 1994, we hoped to have the host computer about 3
times faster than what we had then.

Since the performance of the general-purpose work-
station doubles every 18 months, our expectation was rea-
sonable. The actual reason the expected performance is not
achieved is that most recent workstations cannot be con-
nected to the present GRAPE-4 because the interface is
di†erent.

As mentioned in we are currently developing a new° 3.3,
host interface board for the PCI bus Fukushige, &(Kawai,
Makino This new interface board will allow us to1997).
connect GRAPE-4 to a wide range of computers, from
Intel-based PCs to big servers from DEC, SGI, or HP.

As is discussed in the previous section, the bottleneck of
the total performance of the current GRAPE-4 system is the
bandwidth of the main memory of the host computer, not
really the calculation speed of the CPU of the host com-
puter. Thus, in order to improve the performance, we
should chose a machine with high-memory bandwidth.
Unfortunately, present UNIX workstations provide rather
poor main memory performance, if we compare it with the
speed of the CPU Traditional vector pro-(McCalpin 1995).
cessors seem to have a better balance between the main
memory bandwidth and the speed of the processor. Unfor-
tunately, vector processors are quite difficult to use as the
host computer of GRAPE systems because they almost
always have rather complicated systems for handling I/O.
Thus, it is difficult to meet the requirement of I/O with very
low latency.

For the near future, we plan to use an SMP (shared-
memory multiprocessor) box with multiple PCI interfaces
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as the host. This should give us at least a factor of 4
improvement in the speed of I/O, which means that 50% of
the peak speed will be achieved for less than 105 particles. In
2 or 3 years, we will probably use a cluster of personal
computers such as the Beowulf et al. or(Becker 1995)
PAPERS as the host computer. An Intel-based personal
computer currently o†ers a main memory bandwidth com-
parable to that of high-end RISC workstations for a frac-
tion of the price. A cluster of such machines would be the
natural choice, if the communication between processors is
reasonably fast.

It might be rather difficult to develop a parallelized simu-
lation program. In practice, we can achieve good through-
put even if a single simulation program is not well
parallelized, because we can simply use multiple hosts (or
multiple CPUs on a single host) to run separate programs.

6.2. Advantage of GRAPE Architecture
The GRAPE-4 hardware achieved the speed of 1

TFLOPS for a total cost less than $2,000,000. Compared to
the speed of general-purpose computers of a similar price,
this is faster by at least 1 order of magnitude. The actual
di†erence is even larger, since GRAPE-4 can actually
achieve a sizable fraction of the theoretical peak per-
formance for real applications. On the other hand, the
actual performance of many general-purpose computers on
real applications is much lower than the theoretical peak.

The essential reason that GRAPE-4 has a price-
performance ratio so much better than that of general-
purpose computers is that the general-purpose computers
do not make full use of the available resources. GRAPE-4
integrates about 35,000 Ñoating point arithmetic units. On
the other hand, the largest number of Ñoating point units
ever integrated on a single general-purpose machine is
around 4000. With GRAPE-4, it was relatively easy to inte-
grate a number of arithmetic units for the following reasons.
First, because of the pipelined architecture, a number of
Ñoating point units can be integrated into a single chip with
a relatively small number of I/O pins. Second, because of
the nature of the problem, a number of these pipelines can
be connected to a single memory unit. Third, since the
problem is computation intensive, the amount of memory
required for the machine is quite small.

These three characteristics allow us to use almost all tran-
sistors available on a VLSI chip for Ñoating point units. In
both the GRAPE and HARP chips, practically all the tran-
sistors are used for arithmetic units. The HARP chip inte-
grates about 20 arithmetic units on the chip with 4 ] 105
transistors. A 64 bit Ñoating point multiplier needs about
105 transistors. The HARP chip could integrate 20 arith-
metic units because we adopted a 32 bit (and in some parts
a 29 bit) format for multipliers. This choice does not a†ect
the accuracy of the Ðnal result.

A very small fraction of the transistors is used for the
arithmetic units in present microprocessors. A typical
microprocessor of 1996 integrates 5È10 million transistors,
which is more than a factor of 10 larger than that of the
HARP chip. Even so, most of these chips have just one
multiplier and one adder. Some chips have two adders and
two multipliers. No chip has more than four arithmetic
units. Thus, the arithmetic units consume less than 10% of
the total silicon available on the chip. This is because none
of the three characteristics of GRAPE architecture is shared
by general-purpose microprocessors. In a programmable

computer, if we have multiple Ñoating point units, the band-
width of the memory must be increased accordingly. This is
true for both the multiple units within a chip and multiple
processor chips. Thus, a large fraction of the total cost of a
general-purpose parallel computer is spent for the intercon-
nection between the memory and processors.

The silicon VLSI technology is expected to advance con-
tinuously for at least next 15 years. This advancement
implies that the available number of transistors would
quadruple every 3 years, and the clock speed would double
in the same period (the latter might be a bit too optimistic,
though).

GRAPE architecture can take full advantage of the
increase in the number of transistors and the reduction in
the clock cycle. This means that we can improve the per-
formance of GRAPE by a factor of 8 every 3 years or by a
factor of 1000 in a decade. On the other hand, the per-
formance of general-purpose computers has been improved
at a rate of a factor of 100 per decade, and this rate is
expected to remain constant Messina, & Smith(Sterling,

because of diminishing efficiency. Thus, GRAPE will1995)
be more cost-e†ective in the future.

Recently, the idea of using Ðeld-programmable gate
arrays (FPGAs) as custom computing engines has become
popular (see, e.g., Arnold, & Kleinfelder ABuell, 1996).
FPGA chip consists of logic elements and interconnections
that can be programmed electrically. The FPGA has the
important advantage over custom LSI chips that the devel-
opment cost of the hardware is small. The development cost
of a custom VLSI chip is somewhere between $40,000 and
$400,000, depending on various factors such as company,
technology, size of the chip, and so on. For example, we
paid $250,000 for the design and samples of HARP chips.
Using public domain design software and the service o†ered
by MOSIS, one could develop a similar chip for a total cost
of about $50,000. On the other hand, the investment neces-
sary to acquire the programming tools for a FPGA is less
than $10,000, and one can develop a number of di†erent
chips with this tool.

For small experimental projects, FPGAs are handy and
quite useful because the initial investment is small. In addi-
tion, the Ñexibility o†ered by FPGAs might be useful.

If the total budget is large enough to allow the design and
development of a custom chip, it is almost always more
cost-e†ective than the implementation using FPGA. There
is a big di†erence between the amount of the circuit that can
be integrated in an FPGA and that can be integrated in a
custom LSI. As of 1996 summer, it is not impossible to
integrate about 5 ] 106 gates on a single custom chip ; on
the other hand, the number of gates on the most advanced
FPGAs is around 5] 104. Thus, there is a di†erence of
about 2 orders of magnitude. In addition, the clock speed of
a custom chip would be signiÐcantly faster than that of an
FPGA chip. Therefore, a single custom chip can provide a
performance level several hundred times greater than that
of an FPGA.

6.3. Next-Generation Hardware
To illustrate the relative advantage of GRAPE systems,

let us outline what a next-generation machine would look
like. In the following, we assume using the technology that
will be available in 1998È1999, which will be 0.25 km tech-
nology. With this level of technology, one can pack 2] 107
transistors, or about 5 M gates, into a single chip. The clock
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speed of 150 MHz will not be very difficult. Thus, the
number of transistors is 50 times larger than that of a
HARP chip, and the clock frequency is 5 time larger. A
single chip should provide about 150 GFLOPS.

If we construct a machine with 1400 chips, it will have a
peak speed of 200 TFLOPS. The total cost and the overall
architecture will not be much di†erent from that of current
GRAPE-4, since the total number of pipeline chips is
similar. Such a machine can be completed by year 2000 for a
total cost of about $2,000,000. For a total cost of $10,000,
000 the speed of the machine can be increased to 1
PFLOPS.

A machine with a speed in the range of 100 TFLOPS to 1
PFLOPS will allow us to study, for example, the evolution
of globular clusters with up to 106 particles and the
dynamics of galactic cores containing more than 107 par-
ticles. The former would allow us to study various aspects of
the evolution of real globular clusters. The latter would
make it possible to follow the evolution of, for example, the
central black holes with necessary accuracy.

In practice, the most important outcome of the next-
generation project is not a few gigantic calculations but
rather the possibility of producing a number of copies of a
multi-TFLOPS system. A single next-generation chip will
deliver 150 GFLOPS. Thus, it will be relatively easy to
construct a board with 5È15 chips, which will have a peak
speed of 1È2 TFLOPS. Such a board will cost $10,000È$20,
000 and can be hooked to a workstations to instantly
change it to a supercomputer.

6.4. Other Applications
The present GRAPE-4 is specialized for gravitational

N-body simulations with 1/r potential. However, the basic
idea of the GRAPE system can be applied to any particle-
based simulations. In fact, a few machines for molecular
dynamics simulations had been developed before we started
GRAPE project & Bruin Dimmler, &(Bakker 1988 ; Fine,
Levinthal In these machines, the force law was pro-1991).
grammable using a lookup table and polynomial inter-
polation.

We also have developed GRAPE-2A et al. and(Ito 1993)
MD-GRAPE et al. Using the programmable(Taiji 1994).
force table, they can run P3M and the Ewald method, which
are used for cosmological simulations with periodic bound-
ary conditions et al.(Fukushige 1996).

Another promising application is SPH. In fact, currently,
a large number of GRAPE-3A hardware systems are used
for SPH simulations et al.(Umemura 1993 ; Steinmetz

In SPH simulations, the GRAPE-3A hardware is1996).
used to calculate the gravitational interactions and con-
struct the list of neighbor particles. The host computer uses

this list to evaluate the SPH interactions. The number of
neighbors for which the SPH interaction is calculated is
typically 30È50. Therefore, the cost of the SPH interaction
is essentially O(N). Even so, the calculation cost is relatively
large, in particular when GRAPE is used.

Since the calculation of the SPH interaction is rather
similar to that performed in GRAPE, there have been a few
attempts to build a hard-wired pipeline for SPH calcu-
lations using a design similar to that of GRAPE. No hard-
ware has been completed yet, but one system is supposed to
be completed soon (Yokono 1996).

There are several technical problems with a hardware
specialized for SPH. The actual gain that could achieved is
largely unknown, since there is no detailed analysis of the
behavior of the calculation cost of SPH simulations yet. If
one particle actually interacts with only 30È50 neighbors,
the gain one can achieve with an SPH hardware would be
rather limited.

In practice, however, there are two di†erent factors that
seem to suggest that the gain is larger. First, most of the
present SPH implementations for cosmological simulations
pose a lower limit to the kernel size h. This is necessary to
keep the minimum time step from becoming too small.
However, if such a limit is used, the calculation cost of SPH
interaction is likely to be dominated by the particles with
this minimum h, since they have the largest local densities
(and therefore largest number of neighbors) and smallest
time steps. Therefore, it is quite likely that the calculation
cost of SPH interaction is no longer O(N).

Second, with the present implementation of the individ-
ual (hierarchical) time step, most existing calculation codes
perform O(N) calculation (prediction of physical quantities
of all the particles) at each system step, no matter how small
the number of particles to be updated at that system step. In
this case, if the prediction is performed on the specialized
hardware, the gain in the speed can be very large. It should
be noted, however, that it is in theory possible to avoid this
prediction altogether & Funato(Makino 1993).

To summarize, the gain that can be achieved by SPH
hardware seems to be larger than the naive estimate, and it
needs to be studied more carefully. This is an ideal project
for an experimental hardware using FPGA.
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