PASJ: Publ. Astron. Soc. Japan 55, 1163-1187, 2003 December 25
(© 2003. Astronomical Society of Japan.

GRAPE-6: Massively-Parallel Special-Purpose Computer
for Astrophysical Particle Simulations

Junichiro MAKINO
Department of Astronomy, School of Science, The University of Tokyo, Tokyo 133-0033
makino @astron.s.u-tokyo.ac.jp
Toshiyuki FUKUSHIGE and Masaki KOGA
Department of General System Studies, College of Arts and Sciences, The University of Tokyo, Tokyo 153-8902
Jukushig @provence.c.u-tokyo.ac.jp
and
Ken NAMURA
IBM Japan Industrial Solution Co., Ltd, Yamato, Kanagawa 242-8502
JL26165@jp.ibm.com

(Received 2003 June 10; accepted 2003 October 8)
Abstract

In this paper, we describe the architecture and performance of the GRAPE-6 system, a massively-parallel special-
purpose computer for astrophysical N-body simulations. GRAPE-6 is the successor of GRAPE-4, which was
completed in 1995 and achieved the theoretical peak speed of 1.08 Tflops. As was the case with GRAPE-4, the
primary application of GRAPE-6 is simulations of collisional systems, though it can also be used for collisionless
systems. The main differences between GRAPE-4 and GRAPE-6 are (a) the processor chip of GRAPE-6 integrates
6 force-calculation pipelines, compared to one pipeline of GRAPE-4 (which needed 3 clock cycles to calculate one
interaction), (b) the clock speed is increased from 32 to 90 MHz, and (c) the total number of processor chips is
increased from 1728 to 2048. These improvements resulted in a peak speed of 64 Tflops. We also discuss the design

of the successor of GRAPE-6.

Key words: celestial mechanics — methods: N-body simulations

1. Introduction

The N-body simulation technique, in which the equations of
motion of N particles are integrated numerically, has been one
of the most powerful tools for studying astronomical objects,
such as the solar system, star clusters, galaxies, clusters of
galaxies, and large-scale structures of the universe.

Roughly speaking, the target systems for N-body simula-
tions can be classified into two categories: collisional systems
and collisionless systems. In the case of collisional systems,
the evolution of the system is driven by a two-body relax-
ation process, in other words, by the microscopic exchange
of thermal energies between particles. In this case, the
simulation timescale tends to be long, since the relaxation
timescale measured by the dynamical timescale is proportional
to N/log N, where N is the number of particles in the system.

The calculation cost of the simulation of collisional systems
increases rapidly as we increase the number of particles, N,
for the following two reasons. First, as stated above, the relax-
ation timescale increases roughly linearly as we increase N.
This means that the number of timesteps also increases at least
linearly (Makino, Hut 1988). The second reason is that it is not
easy to use fast and approximate algorithms, such as Barnes—
Hut tree algorithm (Barnes, Hut 1986) or the fast multipole
method (Greengard, Rokhlin 1987), to calculate the interaction
between particles. These facts imply that the cost per timestep
is O(N?), and that the total cost of the simulation is O(N?).

There are two reasons why the use of approximate

algorithms for the force calculation is difficult. The first reason
is the need for relatively high accuracy. Since the total number
of timesteps is very large, we need a rather high accuracy for
the force calculation. The other reason is the wide difference in
the orbital timescale of particles. A unique nature of the gravi-
tational N-body problem is that particles interact only through
gravity, which is an attractive force. This means that two parti-
cles can approach arbitrary close during a hyperbolic close
encounter. In addition, spatial inhomogeneity tends to develop,
resulting in a high-density core and a low-density halo. Even
on average, particles in the core require much smaller timesteps
than do particles in the halo.

It is clearly very wasteful to apply the same timestep to all
particles in the system, and it is crucial to be able to apply
an individual and adaptive timestep to each particle. Such
an “individual timestep” algorithm, first developed by Aarseth
(1963, 1999), has been the core for practically any program
that handles the time integration of collisional N-body systems,
such as star clusters and systems of planetesimals.

The basic idea of the individual timestep algorithm is to
assign different times and timesteps to particles in the system.
For particle i, its next time is #; + At;, where ¢; is the current
time and Ay; is the current timestep. To integrate the system,
we first choose a particle with minimum #; + Ay; and set the
current system time ¢ to be t; + At;. Then, we predict the
positions of all particles at time ¢ and calculate the force on
particle i. Finally, we correct the position of particle i using
the calculated force, update #; and determine the new timestep

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

1164 J. Makino et al.

At;. In practice, we force the size of timesteps to be powers of
two, so that the system time is quantized and multiple particles
have exactly the same time. In this way, we can use parallel
or vector processors efficiently, since we can integrate multiple
particles in parallel (McMillan 1986; Makino 1991a).

It is necessary to use the linear multistep method (predictor—
corrector method) with variable stepsize for the time integra-
tion. Aarseth adopted an algorithm with third-order Newton
interpolation. Recently, the method based on the third-order
Hermite interpolation (Makino 1991b; Makino, Aarseth 1992)
has become widely used, because of its simplicity.

In principle, it is not impossible to combine the individual
timestep algorithm and fast algorithms, such as the Barnes—Hut
tree algorithm or FMM. McMillan and Aarseth (1993) devel-
oped such a combination, where the tree structure is dynam-
ically updated according to the motion of the particles, and
force is calculated using multipole expansion up to octupole.
They assigned predictor polynomials to each node of the tree
structure so that they could calculate the force from nodes to
particles at arbitrary times.

A serious problem with such a combination is that there
is no known method to implement it on parallel computers
with distributed memory. It is not simple to achieve a good
parallel performance with the individual timestep algorithm,
even without the tree algorithm. The reason is that simple
methods require fast and low-latency communication between
processors. A recently proposed two-dimensional algorithm
(Makino 2002) somewhat relaxes the requirement for the
communication bandwidth, but it still requires low-latency
communication. When combined with the tree algorithm,
efficient parallelization becomes even more difficult.

Distributed-memory parallel computers have been used to
run large-scale cosmological simulations, with or without the
individual timestep algorithm (Dubinski 1996; Springel et al.
2001). In this case, we use simple spatial decomposition to
distribute particles over the processors. This works fine with
large-scale cosmological simulations, where the distribution of
particles on the large scale is almost uniform. Many structures
form from initial density fluctuations, and many small high-
density regions develop. Even so, we can still divide the entire
system so that the calculation load is reasonably well balanced.
In addition, the range of the timesteps is relatively small.

To parallelize the simulation of a single star cluster is much
more difficult, because the calculation cost is dominated by
a small number of particles in a single, small core (Makino,
Hut 1988). Therefore, communication latency becomes the
bottleneck, and it is difficult to parallelize the simple direct
summation algorithm. As a result, no good parallel implemen-
tation of the combination of the tree algorithm and individual
timestep algorithm exists. To really accelerate the calculation
of a single cluster, we need an approach different from what
has been tried.

There are three different approaches to improve the speed
of any simulation: a) to use a faster computer, b) to use
algorithms with a smaller calculation cost, and ¢) to improve
the efficiency of the algorithm used. Usually, option (a) means
to use commercially available fast computers, which at present
means distributed-memory parallel computers. An alterna-
tive possibility is to develop a computer by ourselves. We

[Vol. 55,

have been pursuing this direction, starting with GRAPE-1 (Ito
et al. 1990).

The basic idea of the GRAPE (GRAvity piPE) architec-
ture (Sugimoto et al. 1990) is to develop a fully pipelined
processor specialized for calculating the gravitational interac-
tion between particles. In this way, a single force-calculation
pipeline integrates more than 30 arithmetic units, which all
operate in parallel. In the case of an Hermite time integra-
tion, we also need to calculate the first time derivative of the
force, resulting in nearly 60 arithmetic operations. This means
that we can integrate a large number of arithmetic units into a
single hardware with a minimal amount of additional logic.

GRAPE-1 was an experimental hardware with a very short
word format (relative force accuracy of 5% or so), and was not
really suited for simulations of collisional systems. However,
its exceptionally good cost—performance ratio made it useful
for simulations of collisionless systems (Okumura et al. 1991;
Funato et al. 1992). Also, we developed an algorithm to accel-
erate the Barnes—Hut tree algorithm using GRAPE hardware
(Makino 1991c), and developed GRAPE-1A (Fukushige
et al. 1991), which was designed to achieve good performance
with the tree code. Thus, the GRAPE approach turned out
to be quite effective, not only for collisional simulations, but
also for collisionless simulations as well as SPH simulations
(Umemura et al. 1993; Steinmetz 1996). GRAPE-1A and its
successors, GRAPE-3 (Okumura et al. 1993) and GRAPE-5
(Kawai et al. 2000), have been used by researchers worldwide
for many different problems.

In this paper, we discuss GRAPE-6, our newest machine
for simulating collisional systems. We briefly summarize the
history of the hardwares here.

GRAPE-2 (Ito et al. 1991) adopted the usual 64- and
32-bit floating-point number format, and could be used with
Aarseth’s NBODY3 program. After GRAPE-2, we developed
GRAPE-3 (Okumura et al. 1993), which was essentially an
LSI implementation of GRAPE-1. In GRAPE-1, arithmetic
operations were realized by fixed-point ALU chips and ROM
chips, and in GRAPE-2 by floating-point ALU chips. Thus,
we needed several tens of LSIs to realize a single pipeline.
With GRAPE-3, we implemented a single pipeline to a single
custom LSI chip, and developed a board with 24 chips. In this
way, we achieved a speed of 9 Gflops per board (24 chips each
performing 38 operations on 10 MHz clock cycle).

GRAPE-4 (Makino et al. 1997) was similarly a single-LSI
implementation of GRAPE-2, or actually that of HARP-1
(Makino et al. 1993), which was designed to calculate force
and its time derivative. A single GRAPE-4 chip calculated one
interaction in every three clock cycles, performing 19 opera-
tions. Its clock frequency was 32 MHz and peak speed of a
chip was 608 Mflops.

A major difference between GRAPE-4 and previous
machines was its size. GRAPE-4 integrated 1728 pipeline
chips, for a peak speed of 1.08 Tflops. The machine was
composed of 4 clusters, each with 9 processor boards. A single
processor board housed 48 processor chips, all of which shared
a single memory unit through another custom chip to handle
predictor polynomials. GRAPE-4 chip used two-way virtual
multiple pipeline, so that one chip looked like two chips with
half the clock speed. Thus, one GRAPE-4 board calculated the

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

No. 6]

forces on 96 processors in parallel. Different boards calculated
the forces from different particles, but to the same 96 parti-
cles. Forces calculated in a single cluster were summed up by
special hardware within the cluster.

In this paper, we describe the architecture and performance
of GRAPE-6, which is the direct successor of GRAPE-4.
The main difference between GRAPE-4 and GRAPE-6 is in
the performance. The GRAPE-6 chip integrates 6 pipelines
operating at 90 MHz, offering a speed of 30.8 Gflop, and the
entire GRAPE-6 system with 2048 chips offers a speed of
63.04 Tflop.

The plan of this paper is as follows. In section 2, we describe
the overall architecture, and in sections 3 and 4 the details
of implementation. In section 5, we discuss the difference
between GRAPE-4 and GRAPE-6. In section 6 we discuss
the performance. Section 7 is for discussions. Those who
are interested in how to use GRAPE-6, but not much in the
design details, could skip subsection 2.1, most of section 3 and
section 5.

2. The Architecture of GRAPE-6

In this section, we give an overview of the architecture of
GRAPE-6. What GRAPE-6 calculates are the following. First,
it calculates the gravitational force, its time derivative, and
potential, given by equations:

_ rij
ai= ZGmi 2 + 2y &y
J Y

o _ Vi 3y erijri;
a;= ZGm_, T At |)
J

1
¢i = ; Gm; W 3)
where a;, a;, and ¢; are the gravitational acceleration, its first
time derivative, and the potential of particle i; m;, x;, and v;
are the mass, position, and velocity of particle i, G is the gravi-
tational constant, and € is the softening parameter. GRAPE-6
hardware assumes G = 1. If necessary, the host computer can
multiply the result calculated by GRAPE-6 by some constant
to use a G other than one. Also note that the potential is calcu-
lated without minus sign. The relative position, r;;, and relative
velocity, v;;, are defined as

rij=x;—Xx;,)
Vi =0; —0;. (5)

While calculating the force, it also evaluates the distance to the
nearest neighbor,

rmin:minrijs (6)
J#

and the value of index j, which gives the minimum distance.
In addition, it constructs a list of neighboring particles, whose
distance squared (with softening, r/; + €?) is smaller than a pre-
specified value h?.

The position x; and velocity v; of particles that exert forces
are “predicted” by the following predictor polynomial:

GRAPE-6 1165
Atf o) AL Aty
Xjp= Hajyo + Taj,() + dey() + At_,-v_,-,o +Xj0, @)
3
_AG o A A g
Dj,p—Tan0+ Taj,0+ tiajo+vjo, (8)

where x; ;, and v; , are the predicted position and velocity; x o,
Vo0, a0, and a; o are the position, velocity, acceleration, and
its time derivative of particle j attime ¢; o; and A¢; is the differ-
ence between the current time ¢; of particle j and system time ¢,
ie.,

Atj=t —1t;.)

2.1. Individual Timestep on GRAPE Hardware

Here, we briefly summarize how GRAPE-6 (and GRAPE-4)
works with the individual timestep algorithm. For a more
detailed discussion, see Makino et al. (1997) or Makino and
Taiji (1998).

The time integration proceeds in the following steps:

a) As the initialization procedure, the host sends all data
(position, velocity, acceleration, its first time derivative,
mass, and time) of all particles to the GRAPE memory
unit.

b) The host creates a list of particles to be integrated at the
present timestep.

¢) For each particle in the list, steps (d)—(g) are repeated.

d) The host predicts the position and velocity of the particle,
and sends them to GRAPE. GRAPE stores them in the
registers of the force calculation pipeline. It also sets the
current time to a register in the predictor pipeline.

e) GRAPE calculates the force from all other particles. The
positions and velocities of other particles at the current
time are calculated in the predictor pipeline.

f) After the calculation is finished, the host retrieves the
result.

g) The host integrates the orbits of the particles and deter-
mines new timesteps.

h) The present system time is updated and the process
returns to step (b).

Here, the key to achieving good performance is to send
only particles updated in the current timestep to the GRAPE
hardware. Thus, the GRAPE hardware needs to have a memory
unit large enough to keep all particles in the system. This is
usually not a severe limitation, since even with fast GRAPE
hardwares, the number of particles that we can handle with the
direct summation algorithm is not very large.

2.2. Top-Level Network Architecture

The top-level architecture of GRAPE-6 is shown in figure 1.
It consists of 4 “clusters”, each of which comprises 16
GRAPE-6 processor boards (PB), 4 host computers (H), and
interconnection networks. These 4 clusters are connected by
Gigabit Ethernet. For host computers, we currently use PCs
with AMD Athlon XP 1800+ CPU and SiS 745 chipset.
Ethernet cards are 1000 BT cards with NS 83820 single-chip
Ethernet controllers.

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

1166 J. Makino et al.

Fig. 1. Top level network structure of GRAPE-6. “H” indicates a host
computer and “PB” indicates a processor board.

In the following, we describe how we run parallel programs
on GRAPE-6. First, let us concentrate on parallelization within
a cluster.

Figure 2 shows one cluster. Four processor boards are
connected to a host computer through a network board. Four
network boards are connected to each other, so that we can use
a cluster as a single unit or as multiple units.

First consider the simplest case, where we just use 4 hosts
to run independent calculations. In this case, 4 processor
boards connected to a host through one network board calcu-
late the forces on the same set of particles, but from a different
set of particles [what we called j-parallelism in Makino
et al. (1997)]. Each processor board stores different subsets
of particles in the particle memory, and calculates the forces on
the particles stored in the registers in the processor chips. The
partial forces calculated in different boards are sent in parallel
to the network board, where they are added together by an
adder tree. The host computer receives the summed-up forces.
As discussed later, multiple processor chips on one board also
have their local memories to store particles. They calculate the
forces on the same set of particles, but from different sets of
particles. The partial forces are summed up by the adder tree
on the processor board. From a logical point of view, there is
no difference between a single-board system and multi-board
system, as long as we use a single host. We can regard the
entire system as just a huge adder tree with processor chips at
all leaves.

When all 16 boards and 4 hosts are used as a single unit,
the particles are divided to 4 groups, and each group is
assigned to one host. Conceptually, the j-th board connected
to hosti calculates the force on particles in host i, from
particles in host j. Summation of the partial forces is
performed in the same way as in the case of a single-host
calculation. The only difference is that the data to be stored

[Vol. 55,

PBO
PB1

PB2

\J PB3

PBO
PB1

Z
o9)

PB2

_ PB3

PBO
PB1

Z
w

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

PB2
\J PB3

PBO
PB1

NB
PB2

\J PB3

Fig. 2. GRAPE-6 cluster. “NB” indicates a network board.

» GRAPEO

From 1 O
Hosts \E
2 »

GRAPE1

GRAPE2

)
il

GRAPES3

Fig.3. A 4-input example of a switching network for parallel
GRAPE.

in the memory come from other hosts.

In order to allow both single-host and multi-host calcula-
tions, the network board must switch between the broadcast
mode (for the single-host calculation) and the point-to-point
mode (for the multi-host calculation). It would also be useful
if we can use two hosts together. In this case, it is necessary
to accept two inputs, and to pass each of them to two boards.
Thus, we need three operation modes for the network board.
One simple way to implement these three modes is shown in
figure 3. Here, nodes A and B simply output the inputs from
the left-hand side ports to two output ports. Nodes C, D, and
E can select one from two inputs. In the case of node C, the
selected input is sent to two output ports.

No. 6] GRAPE-6 1167
- 36
proc % SSRAM
module 36 G6 Chip "
sum
unit — SSRAM
36
EEE—
‘*’-SSRAM
e m G6 Chip
unit fe— 36
output port +— Sul::: m%?je 36 sum SSRAM
ot — unit 36
input port) EEEEEE— SSRAM
G6 Chip | 35
proc - SSRAM
dul
— module %
| sum it [SSRAM
- SSRAM
proc
<7module Fig. 5. Structure of the processor module.
sum
unit [|
L |

Fig. 4. Structure of the processor board.

This network can be configured in three ways. In the first
mode, all nodes select the input from the lower ports in figure 3.
In other words, C takes the input from input port 2, D from
input port 1, and E from input port 3. In this case, each GRAPE
receives data from the input port with the same index. In this
mode we can use this 4-GRAPE network as part of a 4-host,
16-GRAPE system. In the second mode, node C selects the
input from port 2, while D and E select data from upper input
port in figure 3 (nodes B and C for nodes D and E, respec-
tively). In this mode, GRAPEs 0 and 1 receive the same
data from port 0. Similarly, GRAPEs 2 and 3 receive data
from port 2. In other words, GRAPEs 0 and 1 (and 2 and
3 as well) are effectively bundled together to behave as one
system, and we can use this system as a part of the 2-host,
8-GRAPE system. In the third mode, all nodes select upper
inputs, thereby sending the data from port O to all GRAPEs. In
this way, we can use this 4-GRAPE network as a single system
connected to one host.

An important character of this network is that its hardware
cost is O(p), where p is the number of GRAPE hardwares.
Thus, even for very large systems, the cost of the network
remains small. By using this hardware network to send data
from multiple hosts to processor boards under one host in
parallel, we can improve the parallel efficiency quite signifi-
cantly.

There are many possible algorithms to parallelize the calcu-
lation over multiple clusters. Here, we show just one
example, which is a generalization of the “copy” algorithm
(Makino 2002). In the copy algorithm, each node has the
complete copy of the system. At each timestep, each node,
however, integrates its own share of particles, which is either
statically or dynamically assigned to it. After one step is
finished, all nodes broadcast the particles that they updated,

so that all nodes have the same updated system. In the case of
a multi-cluster calculation, each cluster has a complete copy of
the system, which is distributed to 4 hosts. For example, host 0
of cluster 0 and host 0 of cluster 1 have the same data. In the
time integration, calculation load is divided between all hosts
in the different clusters with the same internal index. After one
step is finished, updated data are exchanged again between the
hosts in different clusters with the same index. One could use
a “ring” algorithm or 2-D algorithm (Makino 2002), but for
4 clusters the difference in the performance is rather small.

In principle, we could extend the network board to form an
8-input, 8-output switch, so that we can use all 64 boards as
a “single cluster”. We decided not to do this, since for many
scientific applications we will use the system as a correction of
single-host systems to run multiple simulations independently.
To run multiple calculations, it is more efficient to have larger
number of host computers.

2.3. Board-Level Structure

Figure 4 shows the structure of a processor board. It houses
8 processor modules. The processor board has one broadcast
network that broadcasts data from the input port to all processor
modules, and one reduction network that reduces the results
obtained on 32 chips and returns it to the host through the
output port.

Each processor module consists of 4 processor chips, each
with its memory, and one summation unit. The structure of a
processor module is the same as that of the processor board,
except that it has 4 processor chips instead of 8 processor
modules. Figure 5 shows the structure of a processor module.

The memories attached to one processor chip can store up
to 16384 particles. Thus, a single board with 32 chips can
handle up to 524288 particles, for a direct summation code with
individual timestep. A (4 x 4)-board cluster can handle up to
2 million particles. If one wants to use more than 2 million
particles with direct summation, it is possible to use the ring
algorithm (see subsection 5.2). A calculation with 8 million

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

1168 J. Makino et al.

1/O PORTS

JP

Address MEMORY IP

To — O CONTROLAND | P

INTERFACE
Memory 10 UNIT
. Data UNIT FO
Chips 4———

PREDICTOR
PIPELINE [——

UNIT

I
INTERACTION
PIPELINE
UNIT

Fig. 6. Block diagram of the processor chip.

particles is theoretically possible on a single cluster with 16
processor boards.

In the next two sections, we present a detailed description
of the hardware, in a bottom-up fashion. In section 3, we
describe the processor chip and in section 4 the processor
board, network board, and interconnection.

3. The Processor Chip

The GRAPE-6 processor chip was fabricated using the
Toshiba TC-240 process (nominal design rule of 0.25 um).
The physical size of the chip is roughly 10 mm by 10 mm, and
is packaged into 480-contact BGA package. It operates at a
90 MHz clock cycle. The power supply voltage is 2.5 V. Heat
dissipation is around 12 W at the maximum.

A processor chip consists of six force calculation pipelines,
a predictor pipeline, a memory interface, a control unit, and I/O
ports. Figure 6 shows an overview of the chip. In the following,
we discuss each block in turn.

3.1. Force Calculation Pipeline

The task of the force calculation pipeline is to evaluate
equations (1)—(3). It also determines the nearest neighbor
particle and its distance. This function is rather convenient
for detecting close encounters or physical collisions between
particles that require special treatments. For this purpose, the
indices of particles that exert forces are supplied to the pipeline.

The indices are also used to avoid self-interaction. The force
calculation pipeline has the register for the index of the particle
for which the force is calculated, and avoids the accumulation
of the result if two indices are the same. This capability is intro-
duced to avoid the need to send particles twice to the memory
in the case of the individual timestep algorithm.

With the individual timestep algorithm and the hardwired
predictor pipeline, the data of particles which exert forces are
evaluated by the predictor pipeline on the chip, while the data
for the particle for which the force is calculated is evaluated on
the host computer and sent to the register of the force calcu-
lation pipeline. These two values are not exactly the same,
since the data format and accuracy of the hardware predictor
are different from that of the host computer. The GRAPE-4
pipeline does not have logic to use a particle index, and the only
way to avoid the self interaction is to make the data exactly the
same. To achieve this, for the particles to be updated, we send

[Vol. 55,

Table 1. Arithmetic operations in the force calculation pipeline.

Operation Format Length Mantissa
1 dxe—x;—x; fixed 64
2 dr? e« |dx|]* + € float 36 24
3 calculation of r; ¢, float 36 24
where « =1,3,5
4 ¢ij — mjrs_' float 36 24
5 ¢i—¢i + ¢ij fixed 64 v
6 a;—mr dx float 36 24
7 a;—a;+a; fixed 64
8 dve—uv;—v; float 36 24
9 s«dv-dx float 32 20
10 ji<dx-3sm;r;> float 32 20
11 joe—dv-mry? float 32 20
12 aij— i+ o float 32 20
13 a; —a; +d,'j fixed 32

the predicted data at the current time to the memory as well
as the registers. This means that we have to send j-particles
twice per timestep. With the index-based approach, we need to
send j-particles only once per timestep, resulting in a signifi-
cant reduction in the total amount of communication.

For GRAPE-6 pipeline, have we adopted the 8-way VMP
(virtual multiple pipeline, Makino et al. 1997), in which a
single physical pipeline serves as eight virtual pipelines, calcu-
lating the forces on 8 different particles. In this way, we can
reduce the requirement for memory bandwidth by a factor of 8,
since all VMPs (and also physical multiple pipelines on a chip)
calculate the forces from the same particle.

In the physical implementation of the pipeline, we have
adopted several different number representations, depending
on the required accuracy. For input position data, we use the
64-bit fixed-point format. The reason that we used the fixed-
point format here is to simplify the hardware. An additional
advantage of using the fixed-point format is that the imple-
mentation of the periodic boundary condition is simpler than
that in the case of the floating-point data format (Fukushige
et al. 1996).

After first subtraction between two position vectors, the
result is converted to a floating-point format with a 24-bit
mantissa. Here, the floating-point format is preferred, since
otherwise we need very large multipliers.

For the final accumulation, we return to the 64-bit fixed-
point format, again to simplify the hardware. Here, we specify
the scaling factor for each particle, so that we can calcu-
late forces with very different magnitudes, without causing an
overflow or underflow.

The pipeline for the calculation of the time derivative is
designed in a similar way, but with a 20-bit mantissa for inter-
mediate data and the 32-bit fixed-point format for the final
accumulation. Since the time derivative is one order higher
than the force, the required accuracy is lower.

Figure 7 shows a block diagram of the pipeline. It consists
of arithmetic units to perform the operations listed in table 1.
We briefly discuss each operations below.

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

No. 6] GRAPE-6 1169
12-bit fixed
sqrt Pcut
64 bit fixed
> % m/r o
-36-bit float . Feut .
S + "
64 bit fixed - | J > w3
1 r2 —— Func.eval X X X m
o | [tadjitaSN] —
— >< _|_ =l a;
/\f]- =/_/_/ I |(=
5
P 32-bit float s)
-bit float (S
v = rv X
1 m:
i - groteasenees 32 bit fixed --------- .
H + — + al-
x [
Fig. 7. Block diagram of the force calculation pipeline.

311 dx<«—x;—x result is 10000000, it is also rounded to 1001. Thus, out of

The position data are expressed in the 64-bit 2°s complement
fixed-point format. The result of subtraction is then converted
to the floating-point format. The floating-point format used
here consists of the sign bit, the zero bit, 10-bit exponent and
24-bit mantissa. The sign bit expresses the sign (one denotes a
negative number). The zero bit indicates if the number is zero
or not (one indicates that the expressed value is zero). In the
standard IEEE floating-point format, a zero value is expressed
in a special format (both exponent and mantissa are zero). This
convention is useful to achieve the maximum accuracy for a
given word length. However, using zero bit is more cost-
effective in the internal expression for the hardware, since the
logic to handle a zero value is greatly simplified.

For the result of subtraction, the range of the exponent
is 6bits. We use a biased format, and extend the exponent
to 10bits. For all floating-point operations, we use 10-bit
exponents, to avoid overflows in intermediate results (in partic-
ular for r—?).

The length of the mantissa is 24 bits, with the usual “hidden
bit” at MSB (most significant bit). For the rounding mode,
we use the “force-1” rounding, with a correction to achieve
unbiased rounding. With the “force-1” rounding, we always
set the LSB of the calculated result (after proper shifting) to be
one, regardless of the contents of the field below LSB. Thus, if
the LSB is already one, the result is rounded toward zero, and
if the LSB is zero, the result is rounded toward infinity. Thus,
this rounding gives an almost unbiased result.

However, in this simple form this rounding is still biased,
since the treatment for the case where all bits below LSB
are zero is not symmetric. Consider the following example,
where we use 4 bits for the mantissa, and the calculated result
is in 8 bits (for example with multiplication). If the result is
10010000 in the binary format, it is rounded to 1001. If the

32 possible combinations of LSB bit and 4 bits under LSB, for
16 cases the rounding is upward, 15 cases downward, and one
case no change. This gives a slight upward bias for the rounded
result.

One way to remove this bias is not to force one if all bits
below LSB are zero. This can be implemented with a rather
simple logic, and we use this method with all floating-point
arithmetic units used in GRAPE-6.

Compared to the usual “round-to-the-nearest-even” round-
ing, this bias-corrected rounding is significantly easier to
design and test. In particular, there is no need for the condi-
tional incrementer that would be necessary with the usual
nearest rounding. Of course, this simpler design does not mean
a smaller number of gates, since our rounding requires the
length of the mantissa to be longer than that for the nearest
rounding by 1bit. However, it is also true that the additional
number of gates is rather small, because we do not need the
conditional incrementer.

3.1.2. dr?« |dx]> + €

These are realized with the usual floating-point multipliers
and adders. The design of the adder used here is simpler
than that of the general-purpose floating-point adders, since we
know that both operands are positive. This means that the result
of the addition of the two mantissas is always greater than the
larger of the two operands, and we need to shift the result at the
maximum by one bit. With the general-purpose adder, if two
operands have similar magnitudes and different signs, the result
of the addition can be much smaller, and we need a shifter with
the capability to shift up the result by up to the length of the
mantissa, itself.

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

1170 J. Makino et al.

3.1.3. Calculation of r 7

Here, we follow the design of the GRAPE-4 chip, where
we use a segmented second-order polynomial to calculate r5 =
ry>. We then multiply rs by m ;, and then by r? twice to obtain
mir; > and m;/r.

To calculate r; 5, we first normalize r? to the range of
[1/4,1). In other words, ry is expressed as 22a+b . \where
a is an integer number, b is either O or 1, and c is in the range
of [1/2,1). The “exponent” a is multiplied by —5 to obtain the
exponent of the resulting r,~>.

We use a table with 512 entries to obtain the coefficients
for the polynomial. This table accepts b and eight MSB bits
(excluding the hidden bit) as the input address. The output of
the table consists of the coefficients for the second-order term
(12 bits), first-order term (18 bits), zeroth-order term (24 bits),
and exponent (3 bits). Note that the calculated result is always
smaller than the zeroth-order term, since both the first and
second derivatives have minus signs. Therefore, the MSB of
the calculated result can turn to zero, even though MSB of
the zeroth-order term is always one. In this case, we need
to shift the result by one bit, and adjust the exponent by one.
This adjusted exponent is then added to a previously calculated
exponent to obtain the exponent of the final result.

5

3.14. ¢,‘j = m_,-r;]

As described in the previous subsection, we actually
calculate m;r;> and then multiply it by r? twice. These
are usual floating-point multiplications, with bias-corrected
force-1 rounding.

3.1.5. ¢i = ¢; +¢ij

The potential is accumulated in the 64-bit fixed-point format.
The pairwise potential, ¢;;, which is obtained in the floating-
point format, is shifted before addition according to the shift
length, ey — s4;, where ey is the value of exponent of the
pairwise potential, ¢;;, and s, ; is the scaling coefficient for the
potential of particle i. Note that the coefficient, sy ;, is specified
on a per-particle basis, and we can specify different values for
48 virtual pipelines. This coefficient should be calculated from
a reasonably good estimate of the total potential of particle i,
to avoid both overflow and underflow during calculation.

3.1.6. a;j :mjrs_3dx
These are usual floating-point multiplications.

3.1.7. a;=a; +a;;

Here, we use the same design as that for accumulation of
the potential. The scaling coefficient is common for all three
components.

318 dv—v;—v;

This and the remaining operations to be discussed in this
section are all for the time derivative of the forces. For these
operations, we use a number format with a 20-bit mantissa. For
this first subtraction, the mantissa of the input is 24 bits, and the
result is given with the 20-bit mantissa.

[Vol. 55,

shift
register

r
Pipeline 0

shift
register

o

Pipeline 1

counter

write
enable

address

Flag &
particle Index
index memory

Fig. 8. Block diagram of the neighbor list unit.

3.1.9. s=dv-dx
This is an inner-product of two vectors in three dimensions.
The mantissa of dx is first truncated to 20 bits.

3.1.10. d,'=di+d,'j

As in the case of the potential and the force, we use a fixed-
point format with a scaling coefficient for the final accumula-
tion. Instead of the 64-bit format, however, here we use a 32-bit
format, since only the contributions from nearby particles are
important for the time derivative.

3.1.11. Cutoff Unit

In figure 7, there are three boxes in the “12-bit fixed” format
region. These are used to implement the Gaussian cutoff of the
1/r potential, to be used with the Ewald summation method
to calculate the gravitational force with a periodic boundary
condition. The details of the operation of these boxes will
be described elsewhere, along with a discussion of the perfor-
mance and accuracy of the Ewald method on GRAPE-6. In
this paper, we can regard these two boxes, “Pcut” and “Fcut”,
as just boxes with constant (unit) outputs.

3.2. Neighbor List Unit

The neighbor list unit of GRAPE-6 chip is essentially the
same as that of the GRAPE-4 board. It consist of two memory
units, one for the indices of the j-particles and the other for
flags to indicate (virtual) pipelines. One neighbor list unit
serves 16 virtual pipelines (two physical pipelines). Thus we
integrated three units to one chip. One neighbor list unit can
store up to 256 neighbor particles.

Figure 8 shows one neighbor list unit. Each pipeline has
registers (for each of the virtual pipelines) for the neighbor
radius squared 42, and if the distance to the current j-particle is
not larger than the neighbor radius, a flag is asserted. This flag
is stored to a shift register. Once per every eight clock cycles,
this shift register contains eight flags from different VMPs for
the same j particles. At this cycle, if any of the 16 flags from 16
virtual pipelines is asserted, the index of the current j-particle
and the flags, themselves, are written to the memory.

3.3. Predictor Pipeline

The predictor pipeline evaluates the predictor polynomials
expressed in equations (7) and (8). As stated earlier, we use
8-way VMP for the force calculation pipeline. Therefore, the
predictor pipeline can use eight clock cycles to produce the

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

No. 6]

Xp

Vp

Fig. 9. Block diagram of the predictor unit.

predicted position and velocity of one particle. To take advan-
tage of this fact, we implement one pipeline, which processes
the x, y, and z components sequentially. In principle, we could
further reduce the hardware size by using one pipeline for both
the position and the velocity. We do not adopt this approach,
since the circuit size for the predictor pipeline is already a small
fraction of the total size of the chip.

In the design of the predictor pipeline, we have tried to
minimize the amount of data to express the predictor for one
particle, since it directly affects the time needed for commu-
nication and the number of wires needed between the memory
chips and the processor chip.

With GRAPE-4, the predictor data for one particle is
expressed in 19 32-bit words (2 for time, 6 for position, 3 for
each of velocity, acceleration, and time derivative of acceler-
ation, 1 for mass, and 1 for memory address). With a similar
format, GRAPE-6 predictor would need 23 words, since we
need one more word for the particle index and three more for
the second time derivative of the acceleration. In many applica-
tions, inclusion of the second derivative improves the accuracy
rather significantly.

To reduce the data length, we have adopted the following
two methods. First, for the particle time, instead of sending
the time itself, we send the location of the bit below which the
current system time ¢ can be different from the particle time ¢;.
In this way, we can reduce the number of bits to express time
from 64 to just 7.

Second, we use a block floating-point format with the
mantissa length optimized for each of the predictor coeffi-
cients. Thus, we use 32, 20, 16, and 10 bits, for the velocity,
acceleration, and first and second time derivatives, respectively.

With these two changes, we can make one predictor data
to be expressed in 16 32-bit words. Thus, we can use a 64-bit
memory bus with the clock speed being the same as that for the
pipeline, to supply one particle data in every 8 clock periods.

Figure 9 shows a block diagram of the predictor unit.

The predictor pipeline performs the following operations:

a) At «—1t—tj,

b) pi — Ar-(a?/18),
c) pr <« p1-0.75,

d) p3 < p2 +(a/6),
e) ps< p3-At,

f) ps < pa+(a/2),
g) pe < ps-At,

h) p7 < ps + v,

i) ps < p7-At,

GRAPE-6 1171

a

n —l .
l—
; 163:0] [63] |XOR

shifter >
[62:40]

Fig. 10. Block diagram of the logic to handle subtraction of the time.

)] Xp <X + pg,

k) g1« p1 +(a/6),
D) g2 —q1-15,
m) gz < g+ At,

n) g4 < q3 + (a/2),
0) g5 < q4-2,

P) g6 < g5 - At,

q) v, <V + ge.

Here, p; is the output of i-th arithmetic unit of the predictor
pipeline for the position, and ¢; is that for the velocity.

In the following, we describe operations a, b, ¢, d, j, and
q. Other operations are simple fixed-point addition, multipli-
cation, or multiplication by a constant implemented in a way
similar to that for operations b, d, and c.

331 At—t—t

The current system time ¢ is expressed in the 64-bit fixed-
point format. The particle time #; is expressed by the bit
location n, above which ¢ and ¢; are the same. This location
is the location of MSB of the timestep At;. Consider the
following example. If 7; =0.5 and At; =0.125, the current time
¢ must be in the range of [¢;,1; + At;], i.e., [0.5,0.625]. In this
case, t — t; can be calculated by simply masking all bits equal
to or higher than MSB of Atz; (i.e., 0.125 and above). This
works for any value of ¢ in the range [0.5, 0.625). However,
if + = 0.625, this procedure returns 0, but the correct value
is 0.125. This is simply because we masked the bit which
represents the exact value of A¢;. This problem can be solved
by supplying the value of #; at that bit. Unless ¢ is equal to
tj + Atj, the values of this bit for # and ¢; are the same. In
this case, the corresponding bit of the resulting Ar must be 0.
However, if ¢ is equal to #; + At;, the values of this bit for
t and ¢; are different. In this case, MSB of the result must
be one. Thus, by taking XOR of the two input bits, we can
determine the MSB value of the result. Figure 10 shows the
actual circuit. Here, a is the value of the bit of #; which corre-
sponds to the non-zero bit of A¢; and n is the location of that
bit. The result is expressed in a 24-bit unsigned fixed-point
format. Here, the rounding is simple rounding to zero. This
can cause a very small bias in the predicted position, if the
timestep of the current blockstep is very small and the timestep
of the predicted particle is large. In this case, however, the error
in the prediction does not degrade the accuracy. Therefore we
do not perform a rounding correction here.

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

1172 J. Makino et al.

332, p;—At-(a?/18)

Both inputs are supplied in a 10-bit fixed-point format. Here,
we use the sign—magnitude format, instead of the usual 2’s
complement format, to simplify the design of the multiplier.
Note that Az is supplied in the 24-bit format. Therefore, we
need to truncate it to the 10-bit format, using the bias-corrected
force-1 rounding discussed earlier. The result is also rounded
to the 10-bit format.

3.3.3. p2+<—p;-0.75

This multiplication by a constant is achieved by adding p; /2
and p; /4. These two values can be calculated by shifting them
to the right by one bit and two bits, respectively. These shift-
ings, in hardware, require just wiring and no logic. Thus, this
multiplication is actually implemented by a single adder. Here,
we do not round the result, since the effect of the error in the
multiplication in the predictor is usually very small.

3.34. p3<—p2+(a/6)

Here, p, is in the 10-bit sign-and-magnitude format, and
(a/6) is in a 16-bit format. Thus, we first extend p; to 16 bits.
If two inputs have different signs, we need to determine which
one is larger. We do this by calculating both a —b and b —a. If
a — b does not cause an overflow, we can see that a > b, and use
a — b as the result. The sign of the result is the same as that of
a. This circuit is rather complicated and larger than that for the
2’s complement format. However, the gate count is practically
negligible.

3.3.5. Operations (e)—(i)
All of these are the usual fixed-point addition or multiplica-
tion, implemented in the same way as operations (b) and (d).

3.3.6. X, x+ ps

Here, we add two numbers in different formats. One is x in
the 64-bit 2’s complement fixed-point format. The other is pg
in the floating-point format with a sign, exponent and mantissa.
Since we do not perform any normalization during the calcula-
tion of pg, the mantissa is not normalized. This means that we
do not use the hidden bit for pg. We first shift pg according to
the value of the exponent of the velocity, and then add it to (or
subtract it from) x according to the sign bit.

3.3.7. Operations (k)—(p)

These operations are implemented in the same way as
similar operations for the position predictor pipeline are imple-
mented.

338 v,—v+gs

This is essentially the same addition as used in other opera-
tions, but here we post-normalize the result. For the output
format we use a mantissa with the hidden bit.

3.4. Memory Interface

The memory interface has two functions. The first one is to
write the data sent from the host, and the second one is to read
the memory during a calculation.

The data of one particle is packed into 16 32-bit words.
A data packet sent from the host consists of two control

[Vol. 55,

Table 2. GRAPE-6 chip input port signal definition.

Signal Width

DATA 36
WE 1

Description

32 bit data with 4 bit parity
write enable

words and this 16-word data. The first control word contains
following three fields: command code (2 bits), chip identity
(10bits) , and chip identity mask (10 bits). The second word is
the starting address in the memory for the particle data.

The chip identity field is used to select the chip that actually
stores the particle data. With the design of GRAPE-6, all chips
on one board, or on multiple boards connected to the same
host, receive the same data from the host. We, however, have
to let different chips calculate the forces from different parti-
cles, and this can be achieved by specifying, in the particle
data packet, the identity of the chip that actually store the data.
When a chip receives one j-particle data packet, it writes the
data to the memory only if the chip identity field of the packet
(masked by the identity mask) is the same as its identity register
(also masked by the identity mask). The identity register itself
must be all different on different chips. How we achieve this
is discussed in the next subsection . The identity mask field is
usually all ones.

The memory interface is designed to control two SSRAM
(synchronous static random-access memory) chips with a
36-bit data width. All of the signal lines drive only one chip, so
that we can minimize the signal length. Using a combined data
width of 72bits, we implemented ECC (SECDED or single
error correct and double error detect) for data received from
the memory.

The memory interface is programmable, in the sense that
practically all access latencies can be adjusted by writing to
on-chip registers. Thus, we can use almost any type of SSRAM
with different access timings.

During the calculation, both memory chips output data at
every clock cycle. The memory address counter is initialized
to 8N, where N is the number of particles, and decremented
at each clock. For writing data, we use a slower access, where
we write two SSRAM chips at alternate clock cycles. In this
way, we can reduce the switching noise and can also relax the
timing requirement for the data bus.

3.5. 1/O Ports and Handshake Protocol

Tables 2 and 3 show the signal definition for the input
and output ports. Both ports operate on the clock with a
frequency 1/4 of that of the internal logic and memory inter-
face. As a result, the communication bandwidth is rather
limited. However, the electrical design of the board is easier
with a lower clock speed. Also, with the 32-bit data width, we
can still achieve a data-transfer speed of around 100 MBs~!,
which is fast enough to match with the speed of the PCI bus of
the host computer.

The input port is very simple, with data lines and a single
write-enable line. The chip actually has two input ports, one
dedicated to the data sent to the memory (we call this the JP
port), and the other for everything else (the IP port). On the

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

No. 6]
Table 3. FO port signal description.
Signal Direction (I/0) Description
DO0-D35 (0] data (4 bits for parity)
VD O valid data
ND (6] new data
STS O status
ACTIVE (0] if 0, chip is unused
WD 1 wait data

JP port, the data of one particle consists of 18 32-bit words,
and the control logic handles this 18-word packet. The IP
port is a general-purpose port. It accepts variable-length data
packets. The first word of the packet is the starting address of
the on-chip register. The second word is the number of data
words to follow, and the remaining words are all data.

The output port is more complicated, because we need to
implement flow control. The reason we need flow control
is that for some data, for example for the neighbor list, the
host must receive the data directly from all chips. In the case
of the force, all chips output the results synchronously and
the onboard reduction network reduces the data on the fly.
However, the neighbor list data has to be transferred to the host
without any reduction.

It is possible to read the data of neighbor particles from each
chip without using hardware flow control by letting the host
computer send the commands to each chip sequentially until
it receives all data. In this case, the processor chip itself does
not need any flow control. However, this procedure would be
rather slow, since the host has to set up the DMA transfer many
times. Therefore, we chose to let the host send the command to
all chips. The reduction network takes care of the flow control.
In table 3, the WD signal is used for flow control.

When the WD signal is asserted, the chip stops sending new
data. When the chip sends new data, it asserts both VD and
ND signals. The VD signal is asserted as long as the data is
valid, but ND is asserted only when the data is actually updated.
The STS line is a special signal which tells whether the force
calculation pipeline is working or not. The ACTIVE signal
is used to indicate defective chips. The output of this pin is
programmable from the host, and if ACTIVE is negated, the
reduction network ignores the output from the chip.

4. Processor Board and Network Hardware
4.1. Processor Module and Processor Board

Figures 4 and 11 show the processor board. A single board
houses 32 processor chips. Logically, the design of the board
is rather simple. The input data is broadcasted to all chips, and
the output data of the chips are reduced through a reduction
network.

The nodes of the reduction network are made of FPGA
chips. It has two operation modes, a reduction mode and a
pass-through mode. In the reduction mode, it receives data
from lower-level nodes (either the processor chips or lower-
level FPGA nodes), and performs reduction. Since one particle
data consist of force, potential, time derivative of the force, the

Fig. 11. Processor board.

distance and index of the nearest neighbor particle, and status
flags, the operation of the reduction ALU needs to change
according to the data type, and is controlled by a sequencer.

In the pass-through mode, a node sends data received from
the lower level node without applying any operation. Since
multiple lower-level nodes might try to send data simultane-
ously, every node controls the WD signal (which is also imple-
mented in a node FPGA as well) so that only one chip (or node)
actually sends data at one time. When one chip (or node)
indicates the end of the data by negating the VD signal, the
node negates the WD signal for the next chip to start receiving
data from that chip.

As can be seen in figure 11, one processor board is designed
to house up to eight processor “modules”. A single module
houses 4 processor chips, 8 SSRAM chips, and an FPGA chip
which realizes a 4-input, 1-output reduction tree. We made this
division between the board and module, to make the manufac-
turing easier. With this separation, all BGA chips (with large
number of pins) are mounted on small-size module boards.
Thus, the rate of the soldering error should be lower, compared
to the case where we mount them on large boards. In addition,
if there is an error, only a module with 4 chips would be
defective. Of course, having to connect the board and module
through a connector increases the probability of a failure, but
we expected that the failure rate of the connector would be
significantly lower than the failure rate of the soldering (which
turned out to be the case)

The tree nodes are implemented using Altera ACEX series
chips. In the lowest level (processor module level), we used
EPIKS50A chips in 484-connect BGA packages. This chip
implements a four-input node. Higher levels are implemented
on EP1K30A chips in 208-pin QFP packages. This chip imple-
ments a 2-input node. These nodes are on the processor board.

The processor board is an 8-layer standard PCB. The
processor module board is an 11-layer board with inner via
holes. The FPGA and processor chips are mounted on the top
side, and SSRAM chips on the bottom side. By this layout,
we can minimize the wire length between SSRAM chips and
processor chips, and still achieve a rather high packaging
density. We use 4 Mbit SSRAM chips. Two SSRAM chips

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

1174 J. Makino et al.

Controller

PCI PCI
32bit, Interface
33MHz

Parallel->Serial
Parallel->Serial

36 18 '
l—— FIFO 18->36) Serial->Parallel Inlink

Outlink 1

Outlink 2

Fig. 12. Host interface board.

connected to a processor chip can store up to 16384 particles.
One board can store up to 524288 particles.

The SSRAM chip we chose requires 2.5V power supply
for I/0 and 3.3V for the core. Both the processor board and
the module board have separate power planes for both 2.5 and
3.3V power supplies.

Though the chip has separate ports for j-particles and other
data, for the board we decided to use a common data line to
simplify the design and reduce the manufacturing cost.

Currently, the core of the processor chip operates on a
90MHz clock, and the I/O part on a 22.5MHz clock. The
reduction network and other logics of the control board also
operate on a 22.5 MHz clock.

For the board—board connection, we use a semi-serial LVDS
signal. We use 4-wire (3 for signals and 1 for transmission
clock) chipset, which performs 7 : 1 parallel-serial conversion.
Since our basic transfer unit is a 32-bit word, we use two cycles
of this chipset to transmit one data. Thus, the chipset operates
on a 45 MHz clock, and the signal lines operate at a data rate of
315MHz. For conversion between the 22.5 MHz data rate of
the board logic and the 45 MHz data rate of the LVDS chipset,
we use additional FPGA chip.

With this LVDS chipset, the receiver chipset itself is driven
by the clock signal that comes with the data. In order to allow
the two boards connected to a link to operate on independent
clocks, we add FIFO chips after the data rate is reduced to
22.5 MHz.

The physical form factor of the card is that of an 8U
Eurocard (with the length of 400 mm). For the backplane
connection, we use connectors designed for Compact PCI
cards. The power supply is also from a backplane bus, through
special power connectors.

It is possible to connect a single processor board directly
to the host through the host interface card, without using the
network card. For this purpose, the processor board also
has connectors for twisted-pair cables for the LVDS inter-
face. These connectors are standard RJ-45 modular jacks
widely used for 10/100/1000BT Ethernet connection. Standard
category 5 (or enhanced 5) cables can be used for connections.

For LVDS interface chips, we use SN75LVDS85 and
SN75LVD86A chips from Texas Instruments.

4.2. Host Interface Card

Figure 12 shows a block diagram of the host interface card.
It is a standard (32-bit, 33 MHz) PCI card. To transfer data
from the host to GRAPE-6, the host sets up the data to be
transferred in its memory and lets the PCI interface chip on
the interface card perform DMA transfer. The data received

[Vol. 55,

4 I

Host :

and

other . IJP-UNIT

NBs : PBs

Host FO-UNIT PBs

_ J

Fig. 13. Network board.

by this DMA transfer is sent directly through the output link.
In the design of the host interface card we implemented two
output ports so that they can separately supply data to the JP
and IP ports. As stated earlier, we decided to use only one port
for the processor board. Therefore, the second output port of
the interface card is not used.

The input port is more complicated, with an FIFO memory to
store the received data. This FIFO memory is necessary, since
we cannot guarantee the response time of the host operating
system to a DMA request from the interface card. We need to
have the memory large enough to avoid any possible overflow.

For the PCI interface, we use the 9080 chip from PLX
technology.

4.3. Network Board

Figure 13 shows a block diagram of the network board. It
has two basic functions. One is to broadcast (or multicast)
data received from the host (or possibly higher-level network
boards) to the processor boards (or lower-level network
boards). This part is shown as [JP-UNIT. The other is a reduc-
tion network for the calculated result, shown as FO-UNIT. The
reduction network is exactly the same as that on the processor
board, except for the fact that the interface to the module board
is replaced by the interface for the processor board (with LVDS
link chipset).

The IJP-UNIT has 4 input ports. One of them is a special
port designed to connect to the host. The other three ports
are designed to accept data from other network boards (see
figure 2). Each of the four input ports has a “copy” output,
shown on the left-hand side of the unit, so that we can cascade
multiple network boards.

Figure 14 shows a block diagram of the multicast network.
The boxes in the center of the figure are all data buffers
with an output enable control input, which realize the multi-
cast network. Note that this structure implements a network
logically equivalent to what is shown in figure 3.

The control input for these buffers is supplied from the
control logic implemented on the FPGA for a 45 MHz-
22.5 MHz data rate change. This FPGA integrates a sequencer
to decode IP/JP port data packets, which reacts to the address
space assigned to the network board.

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

No. 6]
INO :—\oum
IN1 ; g
IN2 ; g

Fig. 14. Physical implementation of the multicast network.

4.4. Packaging and Power Distribution

In the standard configuration, eight processor boards and
two network boards are installed in a card rack with a special
backplane for the LVDS link. The network board is a single-
height unit, but the processor board occupies a two-unit height,
to allow sufficient airflow.

To both of the network boards and processor boards,
electrical power is supplied through backplane connectors.
However, in our present packaging, each processor board has
its own power supply unit. A power supply unit accepts DC
330V input, and supplies DC 2.5V and 3.3 V. The DC 330V
power is generated by another power unit from a three-phase
AC power line. For all of these power units, we use products
from Vicor.

We chose Vicor product primarily to reduce the response
time of the power supply to the change in power consump-
tion by the boards. One advantage of the CMOS logic is that
it consumes power only when the logic state changes. This
means that even though we pay absolutely no effort to reduce
the power consumption of the chip, its power consumption
almost halves when the pipeline is not active.

This “feature” of the chip is rather good from the point of
view of the running cost of the machine, but pauses a rather
serious problem to the power supply. The typical response
timescale of a switching power supply unit is on the order
of one millisecond. On the other hand, GRAPE-6 switches
between calculation and idle (or communication) states in
about one millisecond. This means that the response time of
the power supply is too long to compensate for a change in
the load between the calculation state and the idle state, and
the supply voltage becomes rather unstable. Thus, we had to
look for power supplies with a relatively short response time.
For switching power supplies, a short response time means a
high operating frequency, and Vicor products had the highest
frequency among commercially available power units.

Even with high-frequency power supplies, the response time

GRAPE-6 1175

Fig. 15. The 64-board, 4-cluster GRAPE-6 with the racks for the host
computers in front.

was still on the order of 100 microseconds, and the only way to
stabilize the power supply was to add large bypass capacitors.
We attached capacitors with a total capacitance of about 0.1 F
to the 2.5V power line of each processor board. We could not
use the usual aluminium electrolytic capacitors because their
internal resistance (equivalent series resistance, ESR) is too
large. We used low-ESR electrolytic capacitors from Sanyo
to meet our need.

In hindsight, it would probably have been better to design a
small switching power supply unit integrated into the processor
module, since such a power supply unit, which is used on every
motherboard for PCs, is inexpensive and highly reliable.

Figure 15 shows the complete GRAPE-6 system consisting
of five racks (three with two subracks and two with one
subracks), with 16 host computers in front of them. Host
computers are Linux-running PCs, with AMD Athlon XP
1800+ processors and ECS K7S6A motherboards. They are
connected with Gigabit Ethernets. The total power consump-
tion of the system is around 40 kW, when in full operation.

5. Differences between GRAPE-4 and GRAPE-6

As described in the previous sections, the architecture of
GRAPE-6 is quite different from that of GRAPE-4, even
though it is the direct successor of GRAPE-4 for essentially
the same goal. In this section, we describe what design changes
were made, and why.

5.1. Differences in the Semiconductor Technology

The primary difference is that for the GRAPE-6 processor
chip we use the 0.25 um design rule, while with GRAPE-4 we
used the 1 um design rule. This difference with an additional
advance in wiring enables us to integrate a roughly 20-times
larger number of transistors, with a 3—4 times faster clock
speed. Thus, roughly speaking, a single GRAPE-6 chip offers
a speed two orders of magnitude higher than that of GRAPE-4.

This large advance, however, implies that almost every
design decision had to be changed. In the following, we
summarize the changes made.

Zz0z 1snbny /| uo Jesn sonsnr jo Juswpedsq ‘S'N Aq £229502/€91 L/9/GG/0101e/[sed/woo dno-olwepese//:sdpy woly pepeojumod

1176 J. Makino et al.

GRAPE
GRAPE

GRAPE
GRAPE

Fig. 16. A simple parallel-host, paralle]l-GRAPE system.

Network
Switch

5.2. Host Computer and Overall Architecture

In GRAPE-4, 4 clusters were connected to a single host,
sharing one I/0 bus. For the peak speed of 1 Tflops, a single
host was still okay for simulations with a large number of
particles (10° and larger), and communication through a single
I/0 bus was also okay.

With GRAPE-6, however, the peak speed is increased by a
factor of 60. On the other hand, the speed of a single host
would be improved only by a factor of 10 or so, if we assume
the standard Moore’s law (performance doubling time of 18
months). Thus, if we want to achieve a reasonable speed for a
similar number of particles as that for GRAPE-4, we need to
use around 10 host computers and the communication channel
must be 10-20 times faster than that used for GRAPE-4.

Around the time of the design, it was clear that a shared-
memory multiprocessor system with 8—16 processors and a
sufficient I/O bandwidth would be prohibitingly expensive,
with a price tag on the order of 1 M USD. On the other hand, a
cluster of 8—16 single-processor workstations or PCs would be
much less expensive. As far as the cost is concerned, clearly
a cluster of single-processor machines would be better than a
shared-memory multiprocessor system.

One problem with the cluster is that the simplest configura-
tion (see figure 16) does not work. The reason is as follows.

With this configuration, there are two different ways to
distribute particle data over processors (Makino 2002). One
is that each processor has a complete copy of the system (the
“copy” algorithm). In this case, parallelization is performed
as follows. At each blockstep, each processor determines
which particles it updates. After all processors update their
share of particles, they exchange the updated particles so
that all processors have an updated copy of the system.
This algorithm has been used to implement the individual
timestep algorithm on distributed-memory parallel computers
(Spurzem, Baumgardt 1999)

In this algorithm, at the end of the block timestep each
processor receives the particles updated on all other proces-
sors. This means that the amount of communication is indepen-
dent of (or, strictly speaking, is a slowly increasing function of)
the number of processors, and the overall performance of the
system is limited by the speed of communication.

The other possibility is to let each processor to have a
non-overlapping subset of the system, so that one particle

[Vol. 55,

resides only in one processor. In this case, with the block-
step algorithm we need to pass around the particles in the
current blockstep, so that each processor can calculate the
forces from its own particles to particles on other processors
(the “ring” algorithm). The amount of communication (host—
host and host-GRAPE) per blockstep is again independent of
the number of processors. This algorithm is also implemented
on distributed-memory parallel computers with direct summa-
tion (Dorband et al. 2003) and even with the tree algorithm
(Springel et al. 2001).

For general-purpose parallel computers, this simple algo-
rithm actually works rather well, simply because the calcula-
tion speed of a single node is so slow. Even a cluster with
several hundred nodes is still slower than a single GRAPE-4.
Thus, the communication speed of 10—-100 MB s~ is sufficient.
However, with GRAPE-6 we do need a faster speed.

We now understand that it is possible to use a hybrid of the
above two algorithms to solve the bottleneck (Makino 2002).
In this hybrid algorithm, we organize processors into a two-
dimensional grid, and distribute the particles so that each row
(and each column) has a complete copy of the system.

In the standard realization, this algorithm requires that the
total number of processors is 72, where r is a positive integer.
We divide N particles into r subsets, each with N /r particles.
If we number processors from pi; to p,,, processor p;; has
copies of both the i-th and j-th subsets.

At the beginning of each blockstep, each processor selects
the particles to be updated from subset i. Then, all of them
calculate the force on them from subset j. After that, the
total forces can be calculated by taking a summation over
the columns. Here, we assume that the summed results are
obtained on diagonal processors p;;.

After particles in the current block are updated on p;;, they
are broadcasted to all other processors in the same row (py;)
and also in the same column (p;,), so that both subsets i and j
are updated on each processor.

In this algorithm, the amount of communication for one
node is O(N/r). In other words, the effective communication
bandwidth (both host-host and host-GRAPE) is increased by
a factor r. Thus, the communication speed is improved by a
factor proportional to the square root of the number of proces-
sors.

At present, this solution looks fine, since the price of the
fastest single-processor frontend is now rather cheap. The
cost of the communication is also rather cheap, with Gigabit
Ethernet adapters available for less than 100 USD per unit.

When we started the design of GRAPE-6 in 1996, we did
not expected such a drastic change in the price of fast frontend
processors. At that time, RISC microprocessors were still
several-times faster than PCs with the IA-32 architecture, and
100 Mbit Ethernet adapters were still expensive. Thus, we had
to come up with a design that did not need r> processors or fast
host-host communication.

It was not really difficult to come up with such a design,
since the only thing non-diagonal processors do is the force
calculation. Instead of a two-dimensional grid of host proces-
sors, we can construct a two-dimensional grid of GRAPE
hardwares with orthogonal broadcast networks (figure 17). The
GRAPE hardware in the same row store the same data to their

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

No. 6]

Fig. 17. Two-dimensional network of GRAPE hardware connected to
a one-dimensional host network.

particle memories. When they calculate the forces, GRAPEs
in the same column receive the same particles and calculate the
forces on them from particles in the memory. The calculated
results on the boards in the same column are then summed and
returned to the host.

One practical problem with this network architecture is that
we cannot divide the system to smaller configurations so that
we can run multiple programs. In the case of r? hosts, we
can divide the system to any sub-squares, down to r2 single
host-GRAPE pairs. In the case of a 2D hardware network,
we do not have any such division. This problem can be partly
circumvented by attaching a simple switching network before
the memory interface, so that they can select the input. So we
adopted the network structure shown in figure 3.

In the final design of GRAPE-6, we actually adopted a
hybrid of the host-grid approach and the GRAPE-network
approach, to make a reasonable compromise between the
flexibility and absolute performance. Of course, this shift
from the pure hardware network to a hybrid one was made
partly because we took into account the evolution of the host
computers during the development period of GRAPE-6. It has
become more cost effective to use a large number of inexpen-
sive (yet fast) computers as the host than to have an elaborate
hardware network to connect GRAPEs to a small number of
hosts.

5.3. Board—Board Connection

GRAPE-4 consisted of 36 processor boards, organized in a
two-stage simple tree network. Nine boards were housed in one
rack, with one backplane bus. These boards were all connected
to a control board, which broadcasted the data from the host to
all processor boards and took the summation of the calculated
data on nine processor boards. Since all boards were connected

GRAPE-6 1177

through a shared backplane bus, the control board had to access
processor boards sequentially. In order to improve the data-
transfer rate, we used a wide data bus with the width of 96 bits.

The connection between the control board and the host was
a 32-bit parallel connection through a coaxial flat cable. This
connection was robust and reliable, but had three drawbacks:
it was physically large, it was difficult to use long wires, and it
was fairly expensive. Because a common clock signal was used
on both sides of the connection, the wire length was limited by
the allowable signal skew, which meant that it was difficult to
use a fast clock (GRAPE-4 used 16 MHz clock).

A more practical problem is that board—board wiring would
become too bulky and cumbersome, with hundreds of flat
cables and nearly 10000 contact points, if we use the same
connection for GRAPE-6. In particular, it would be difficult
to design the network board, since it needs to have more than
10 connectors. Also, it would be impractical to use a backplane
to connect the network board and processor boards, since the
number of pins on the network board would be too large.

An obvious solution to this problem would be to use a fast
serial signal, such as the physical layer of the Gigabit Ethernet.
At the time of our design decision, however, Gigabit Ethernet
was impractical because a copper wire connection was not
available in 1998. An optical connection would be too expen-
sive and would dissipate too much heat.

We adopted what is called a “LVDS Link” or a “Flat Panel
Display (FPD) link”, which uses four twisted-pair differential
signal lines (three for signals and one for the clock). The
reason we chose this interface was that inexpensive serial-
izer/deserializer chips were commercially available, and that
we could use standard category 5 shielded 4-pair cables for
a 100 Mbit Ethernet cable and its connectors for reliable data
transmission, for a cable length of up to about 5 meters.

An additional advantage of this choice is that we can use
a backplane connection (with custom-designed signal pattern)
for connection between the network board and the processor
boards. Because the number of signals is small (8 for one port),
we can pack many ports into a standard backplane connector
(we adopted Compact PCI connector).

5.4. Pipeline Chip and Memory Interface

The processor chip for GRAPE-4 had a single pipeline,
which calculated the force on two particles in every six clock
cycles (2-way VMP). During the force calculation, the chip
received the data of one particle (position, velocity, and mass)
in every three external clock cycles, and the width of the input
data bus was 107 bits.

One GRAPE-4 board housed 48 pipeline chips, all of which
received the same particle data from the memory and calcu-
lated the force on two particles. This meant that a single board
calculated the forces on 96 particles in parallel.

This shared-memory architecture is simple to implement.
However, we could not use this architecture for GRAPE-6,
since the hardware parallelism would become excessively
large. The pipeline chip for GRAPE-6 would be roughly
50-times faster than that for GRAPE-4. Thus, even if we
somehow increase the data transfer rate by a factor of 5, the
number of particles on which the forces are calculated in
parallel would increase by a factor of 10, from 100 to 1000.

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

1178 J. Makino et al.

This number is too large if we want to obtain a reasonable
performance for simulations of star clusters with small, high-
density cores. Note that with multiple-board configurations,
this number would become even larger. On an r X r two-
dimensional system, the degree of parallelism becomes larger
by a factor of r.

The data-transfer rate of GRAPE-4 chip was about
200MBs~!. To keep the degree of parallelism to be around
100 or less, the GRAPE-6 chip would have to have a data-
transfer rate of SGBs~!, which was well beyond our capability
of designing and manufacturing. At 100 MHz clock, the speed
of 5GBs~! requires 400 input pins. It is quite difficult to have
400 signal lines, all with a 100 MHz data rate, to connect more
than a few chips.

Clearly, a different design was necessary. Excessive degrees
of parallelism arose from our decision to let a large number
of chips share one memory unit. If we reduce the number of
chips to share the memory, we can thus solve the problem. An
extreme solution is to attach one memory unit to each pipeline
chip, and let multiple pipelines calculate the force on the same
set of chips, but from different set of particles.

This extreme solution has one important practical advantage.
The connection between the processor chip and its memory
is point-to-point, and physically short (since we can put a
processor chip and its memory next to each other). This means
that a high clock frequency, such as 100 MHz, is relatively easy
to achieve.

To attach memory chips directly to the processor chips,
we need to integrate the predictor pipeline and the memory
controller unit (generation of address and other control signals)
to the processor chip. These do not consume many transistors.
Therefore, it does not have any effect to the performance of the
chip.

With GRAPE-6, we adopted a 72-bit (with ECC) data
width for transfer between the memory and the processor
chip. A GRAPE-6 chip integrates six 8-way VMP pipelines.
Therefore, it calculates the forces on 48 particles in parallel.
All pipelines on board calculate the forces on the same set of
particles. Thus, even with the largest configuration that we
have considered (an 8 x 8 system), the degree of the parallelism
is still less than 400, not much different from that of the full-
size GRAPE-4 (which was also 400).

This change from the shared memory design to the local
memory design implied that we had to take the summation of a
large number of partial forces obtained on chips on one board.
With GRAPE-4, we also had to take the summation of forces
obtained on different boards, and we used commercially avail-
able single-chip floating-point arithmetic units for this summa-
tion. With GRAPE-6, we could not apply this solution simply
because such chips no longer existed. Thus, we have to either
integrate this summation function into the processor chip, or
develop another chip to take the summation.

We adopted the latter approach, but used FPGA (field-
programmable gate array) chips to implement adders. It was
not impossible to integrate floating-point adders into FPGAs,
but such a design would require rather large, expensive FPGA
chips and a complex design. In order to simplify the design,
we chose to use a block floating-point format for the force
and the other calculated result. In this format, we specify the

[Vol. 55,

exponent of the result before we start the calculation. Because
the actual value of the exponent can be different for forces
on different particles, we can calculate the forces with wildly
different magnitudes in parallel.

With this block floating-point method, we can greatly
simplify the design of the hardware to take the summation. Of
course, we have to supply the value of exponent, but its value
at the previous timestep is almost always okay. For the initial
calculation, we sometimes need to repeat the force calculation
a few times until we have a good guess about the exponent.

A rather important advantage of using the block-floating
point format is that the calculated result is independent of the
number of processor chips used to calculate one force. Since
the actual summations, both within the chip and outside the
chip, are done in the fixed-point format, no round-off error is
generated during summation. Of course, a round-off error is
generated when we shift the calculated force to meet the block-
floating point format, but this error is independent of the order
in which the summation is performed. In the case of the usual
floating-point format used in GRAPE-4, the round-off error
generated in the summation depends on the order in which the
forces from different particles are accumulated, and therefore
the calculated force is not exactly the same if the number of
boards in the system is different.

Of course, this difference does not have any effect on the
accuracy of the simulation, itself, since the word length itself is
chosen as such. However, it is quite useful to be able to obtain
exactly the same results on machines with different sizes, since
it makes the validation of the result much simpler.

6. Performance

In this section, we discuss the performance of the GRAPE-6
system, both for the direct summation algorithm with the indi-
vidual timestep and the tree algorithm. For both algorithms,
we discuss the performance of the single-host system and the
multi-host system.

6.1. Direct Summation with Individual Timestep

Here, we discuss the performance of GRAPE-6 for the
individual timestep algorithm. As the benchmark runs, we
integrate the Plummer model with equal-mass particles for
1 time unit [we use the “Heggie” unit, Heggie and Mathieu
(1986), where the gravitational constant G and total mass of
the system M are both unity and the total energy of the system
E is —1/4]. We use the standard Hermite integrator (Makino,
Aarseth 1992) with the third-order predictor. The timestep
criterion is that of Aarseth (1999) with n =0.01. For softening
parameter, we tried three different choices. The first one was a
constant softening, € = 1/64. We also tried € = 1/[8(2N)'/?] and
€ =4/N to investigate the effect of the softening size. Note that
for N =256, all three choices of the softening gave the same
value. In the following, we first describe the performance of a
single-host system (with 4 processor boards). We then discuss
the performance of a single cluster with 2 or 4 hosts, and finally
discuss the performance of multiple-cluster configurations.

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

No. 6] GRAPE-6 1179
105 E- T TTTT T LELILRRLY | IR 3 [T T T T T
[p] 3 E
10* | T4 1000 ¢ =
~ f : O 5
21000 | St]
2 E E 5
5 i] S 100 £ i,
> 100 ¢ E 8 f]
o E E o L]
°© .] @ I e=1/64 :
10 3 e=1/64 3 =1 (2193013
o e=1/(2"3N/3y] 10 F 4
e e=4/N 3 E """ e=4/N E
01 Lol v v i A R R
100 1000 10* 10° 10° 100 1000 10% 10° 10°

N

Fig. 18. CPU time in seconds to integrate a Plummer model for 1 time
unit plotted versus the number of particles N. The solid, dashed,
and dotted curves indicate the result with constant, 1/N'/3, and 1/N
softenings, respectively.

6.1.1. Single-host performance

Figure 18 shows the CPU time to integrate the system for one
time unit. We actually measured the CPU time for integration
from time 0.25 to 1.0 and multiplied the result by 4/3, since the
step size after the start of the integration is too small because
of the initialization procedure. From figure 18 we can see that
the CPU time is almost proportional to N for N < 10°, but for
N-dependent softenings the dependence is slightly higher. For
N > 107, the slope approaches 2.

Figure 19 shows the actual calculation speed achieved. The
theoretical peak speed of the single-host, 4-PB system is
3.94 Tflop. Here, we define the calculation speed as

S =57 N ngeps. (10)

where ngeps is the average number of individual steps
performed per second. The factor 57 means that we count one
pairwise force calculation as 57 floating-point operations. We
took this number from recent literatures. From this figure, we
can see that the achieved speed is practically independent of
the choice of the softening. The reason why calculations with
smaller softening take more CPU time is that the number of
timesteps is larger, as shown in figure 20. For calculations with
N-dependent softenings, the number of block steps increases
significantly as we increases N. This means that the average
number of particles in one block grows rather slowly. However,
as we can see from figure 19, this does not affect the achieved
performance.

Roughly speaking, we can model the calculation time per
one particle step as follows:

Tsingle = (1 - f)Thosl + Tcnmm + maX(TGRAPE» f Thost)a (1 1)

where Thg is the time for the host computer to perform compu-
tations to integrate one particle, T¢omm is the time needed for
communication, and Tgrapg 1S the time to calculate the force on

N

Fig. 19. Same as figure 18, but the calculation speed in Gflops is
plotted.

109 E LELLELARLL | LA | LA | RELARLY | T 3
: FOE
L e=1/64 e]
8 7

10 E_ _ e=1/(2193N1/3) S 3
: P E
[... e=4/N]
107 .
g 10° E i
o " F z
wn E E
10° E E
10* £ E
1000 LT v i o

100 1000 10* 10° 10°

N

Fig. 20. Same as figure 18, but the number of total individual steps
(upper) and block steps (lower) are plotted.

GRAPE. The factor f is the fraction of operations that the host
computer can perform while GRAPE is calculating the force.
The program we use tries to perform the time integration on
host and the force calculation on GRAPE with as much concur-
rency as possible.

We can estimate T.omm as follows. The total amount of data
transferred for one particle step is currently 200 bytes. With the
present host, the effective data transfer rate for DMA transfer
is 80MBs~!. Therefore,

Teomm = 200/(8 X 107) s=2.5x107° s. (12)

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

1180 J. Makino et al. [Vol. 55,
51075 (e e e e e — —
[oN
9 L . 1000
n
B (%]
o 2x107° t 1)
o o
£ L
- °
2)
o -5 [0
(_) — —
1071] 8100
r measured 1
5><‘IO_6 | — — -theory]
L theory(2) .
PR Ll sl sl L
100 1000 10* 10° 108 10
1000

N

Fig. 21. CPU time per one particle step plotted as a function of the
number of particles, N. The solid curve is the measured result. The
dashed and dotted curves denote two different theoretical estimates.

The calculation time on GRAPE is expressed as
TorapE = N/(9 X 107npipes) s=1.447x 1071'N s, (13)

where npipes is the total number of pipelines. With our current
system npipes = 768.

In figure 21, the solid curve shows the measured CPU time
per step. The dashed curve is a fit, with Tjoq = 8.5 X 10~%s
and f =0. We can see that agreement between the theory and
experimental result is good for large N, but is rather poor for
small N. This is because we ignored the effect of the cache
memory on Tyos. The dotted curve is the theoretical estimate
with a heuristic model for the cache effect. For this curve, we
used

Thost =5.5x 107 %¢c +8.5x 107°(1 —¢) s, (14)
where c is expressed as

1, (N < 1000),

={ VNJTO00, (N > 1000),

This model is purely empirical, but apparently gives a reason-
able description for the performance. Since this effect of the
cache is rather large, it turned out to be difficult to determine
the value of f empirically. We assumed f =0.

For N < 1000, the experimental value is larger than the
prediction of the refined theory. This is because the number
of particles in one block is too small. The overhead to invoke
DMA operations becomes visible.

Up to here, we have discussed only the speed of a 4-PB
system. Since there are many installations of GRAPE-6 outside
Tokyo university with one PB connected to a host, it would
be useful to give the performances of smaller configurations.
Figure 22 gives the estimated performance of the 4-, 2-, and
1-PB system. One can see that performance difference is rather
small for N <3 x 10*. For N > 10°, the performance difference
becomes significant.

5)

Fig. 22. Estimated performance of the 4-, 2-, and 1-PB systems as a
function of the number of particles, N. The solid, dashed and dotted
curves denote the speed of the 4-, 2-, and 1-PB systems, respectively.

6.1.2. Multi-host performance

Figure 23 shows the calculation speed for multi-host systems
with up to 4 hosts. The peak speeds of the 2- and 4-host
systems are 7.88 Tflops and 15.76 Tflops, respectively. For up
to 4 hosts, the network boards are used to distribute the data,
and the communication network between the host computers
are used primarily for synchronization. The parallel program,
itself, was written using MPI, and we used MPICH/p4 over
TCP/IP as the MPI library. The network interface is Planex
GN-1000TC Gigabit NIC, which uses the NS 83820 chip. We
found the performance of MPICH/p4 on this network inter-
face to be quite unsatisfactory, and used UNIX TCP/IP socket
system calls for actual communication.

We can see that multi-host codes require a rather large
number of particles to achieve a speed faster than that of the
single-host code. Even with constant softening, the two-host
code becomes faster than the single-host code only at N ~
3000, and for € = 4/N this crossover point moves to around
N ~ 10%.

Figure 24 shows the calculation time per one particle step for
a 4-node parallel calculation. The measured value is obtained
by dividing the total number of particle steps by the wallclock
time. This figure clearly shows why the value of N for the
crossover is rather large. For a “small” N (N < 10%), the calcu-
lation time is inversely proportional to the number of particles,
N. This is because the communication between hosts, which
takes constant time per one blockstep, dominates the total cost
in this regime. To be quantitative, the calculation time per one
particle step is expressed as

Tmn,p = single/p + Tcomm,hosts: (16)

where p is the number of nodes in a cluster and Tiomm,hosts 1S
the communication time, expressed as

Teomm,hosts = 6 (10g2 p+1 tsync/”bs 17)

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

No. 6] GRAPE-6 1181
104 E LELELELLLL | LELELILARLL | LELELLRRLL | T ""',"'I T E 104 E LAY LR | LELELILARLL | LELELLRRLL | T E
%1000 [3 000 g E
o o 7 Q o 7
o r . i r]
© o
8 100 3 E $ 100 3 3
o F 3 a £ 7]
(%) r] n r]
10 3 10§ 3
1 1 111 Ill.r' 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 1 1 1 1 IIII‘II "'I 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 1
100 1000 10* 10° 108 100 1000 10* 10° 108

N

N

Fig. 23. Calculation speed in Gflops plotted as a function of N. The solid, dashed, and dotted curves show the results for the 1, 2, and 4-node systems,
respectively. The left panel shows the result for constant softening, and the right panel for e =4/N.

2x107° }
107° |
- I
541070
— L
| measured |
-6
2x10 " ¢ — — -theory 1
------ theory(2)
0—5 Lol Lol Lo
1000 10* 10° 108

N

Fig. 24. Same as figure 21, but for the case of a 4-node parallel calcu-
lation.

where (log, p + 1) tyyne is the time to complete a barrier
synchronization for the parallel code running on p nodes. The
logarithmic factor comes from the fact that synchronization
requires log, p + 1 stages. The divisor, ny, is the average
number of particles integrated in one blockstep. For our current
implementation of the synchronization, we found #sync =250 us.
The factor 6 is the number of synchronization operations neces-
sary in one blockstep.

The theoretical estimates shown in figure 24 were calculated
using equation (16). Here again, the agreement between the
measured result and the theory with the effect of the cache
memory of the host is very good. To evaluate Ty, We used

N/p instead of N in equation (15), since one node handles
N/ p particles.

6.1.3. Multi-cluster performance

Figure 25 shows the calculation speed for multiple-cluster
systems, as a function of the number of particles in the
system, N. The crossover point at which multi-cluster sys-
tems becomes faster than single-cluster system is rather high
(N ~ 10°), and even for N = 10, the speedup factors achieved
by multi-cluster systems are significantly smaller than those for
the ideal speedup.

For a multi-cluster system, the calculation time per one
particle step can be estimated as follows. In our current imple-
mentation of the multi-cluster calculation code, one host of
a p-hosts, g-cluster system (therefore p/g hosts in a cluster)
handles N/p particles. The forces from the particles in the
hosts in the same cluster can be calculated using the hardware
network on the side of GRAPE-6. However, one cluster needs
to gather information on particles of different clusters. By
letting each of the p/gq hosts in one cluster receive data from
other g — 1 hosts, we can let one cluster maintain complete date
of all N particles. This is just one of many possible implemen-
tations. For a small value of ¢, theoretically, this is close to the
best possible implementation.

With this implementation, the calculation time per one
particle step is expressed as

Tmc.p = single/p + Tcomm,hosts + Tcomm.clusters, (18)

where Teomm.clusters 1S the time for communication between
hosts in different clusters. It is expressed as

Teomm,clusters = 72 (2 fcomm,net + tcomm.grape)(q -1/p, (19)

where fcomm,net aNd feomm,grape are the time to send 1-byte date
through the network interface of the host and the host-GRAPE
interface, respectively. The constant factor of 72 is the length of

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

1182 J. Makino et al.

10
@
a
o
e
pe)
[}
(]
Q.
2

0.1 :

10* 10° 10°
N

Fig. 25. Calculation speed in Tflops plotted as a function of N. The
solid, dashed, and dotted curves show the results for the 4, 8, and
16-host (1, 2, and 4-cluster) systems, respectively. Constant softening
is used for all runs.

data for one particle in bytes. The next factor of 2 comes from
the fact that each node needs to both send and receive data. The
factor ¢ — 1 appears since one node receives data from g — 1
other nodes. We used #comm,net = 1.7 X 10~%s and feomm, grape =
1.25 x 10~%s. These values are based on separate measure-
ments using small benchmark programs. Figure 26 shows the
calculation time per one particle step for a full-cluster calcula-
tion (16 nodes, 4 clusters). The agreement between the theoret-
ical estimate and the measured value is fairly good, but not
ideal. We probably have underestimated fcomm net in the real
program.

6.1.4. Summary for the direct summation code

In this section we present the performance figures of
GRAPE-6 for a direct N-body simulation. As described in
the introduction, this kind of simulations is the main target
of GRAPE-6. This, we made a fairly detailed analysis of the
performance. What we have found is summarized as follows.

In the case of the single-host configuration, the calculation
speed of the present host computer is the largest bottleneck of
the performance, and the communication speed is relatively
unimportant. This means that we can keep improving the
overall performance of the system just by replacing the host
computer, for the next several years.

For the multi-host configuration, the situation is rather
different. In the case of a single cluster (no host-host data
transfer), the performance for small-N runs is determined
by the overhead of the barrier synchronization between host
computers. We currently use standard UNIX implementa-
tion of the TCP/IP socket for the basic communication; the
TCP/IP socket is certainly not the communication software
with the lowest possible latency. The use of communication
software/hardware with a lower latency would significantly
improve the performance.

[Vol. 55,

1075

measured

5x1078 | 1\ T theen -

Tnp=16

2x107° |

1076 . bl
10* 10° 10°

N

Fig. 26. Same as figure 21, but for the case of a 16-host parallel calcu-
lation.

Finally, for the case of the multi-cluster configuration, as
expected, the performance is limited by the bandwidth of the
communication between the hosts. Currently, we use a Gigabit
Ethernet card on a 32-bit, 33-MHz PCI bus. Clearly, by going
to a faster bus (PCI-66 or PCI-X) and a faster CPU, the commu-
nication bandwidth will be significantly improved.

To summarize, at present the performance of GRAPE-6
for small-N calculations is limited by the speed of the host
computer, and by the latency of the communication between
the hosts when multi-host or multi-cluster systems are used.
Even so, GRAPE-6 can achieve a speed exceeding 100 Gflops,
for relatively small number of particles, such as 16k. In the
coming several years, improvements of the host computer will
improve the overall performance of the system.

6.2. Tree Algorithm

Here, we discuss the performance of GRAPE-6 for the
Barnes—Hut tree algorithm. We use the modified algorithm
introduced by Barnes (1990). We discuss the performance of
a single-host code and a multi-host (parallel) code with up to
12 host computers. The parallel algorithm is based on a space
decomposition similar to the well-known orthogonal recursive
bisection (ORB) method (Dubinski 1996). The details of the
parallel algorithm will be discussed elsewhere.

6.2.1. Single-host performance

Figure 27 shows the CPU time per timestep as a function
of the number of particle, N. The distribution of particles is a
Plummer model, with an outer cutoff radius of 22.8 in Heggie
units. We used n, = 20000 as the maximum group size for the
modified algorithm.

We can see that the CPU time grows practically linearly as
we increase N. Also, the dependence on the opening angle, 6,
is rather weak. This weak dependence is the characteristic of
GRAPE implementation of the tree algorithm (Makino 1991c;

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

No. 6]

100 T LI L L | T L N | T

T T T TTTT
L1111

(@)

CPU time (s)

Fig. 27. CPU time in seconds per timestep plotted as a function of
the number of particles, N, on a single-host configuration. The solid,
dashed, and dotted curves are for 6 = 1, 0.75, 0.5, respectively.

Table 4. CPU time distribution for the treecode.

Operation Time (s,60=1) (0=0.5)
Tree construction 7.57 7.57
Force calculation 18.40 27.62
Other operations 1.86 1.86
Total 27.83 37.05

Athanassoula et al. 1998).

Table 4 gives a breakdown of the CPU time per step for
calculations with N =22!. The average length of the interaction
list is 1.01 x 10* and 1.69 x 10* for # = 1.0 and 0.5, respec-
tively. The number of groups is 310 for both cases. As in the
case of a tree algorithm on older GRAPE hardware, the perfor-
mance is limited by the speed of the host and that of commu-
nication. The actual calculation on GRAPE-6 takes less than
three seconds for the case of & = 0.5. The calculation on the
host (tree construction, tree traversal, and other calculations
including the data conversion between GRAPE-6 format and
floating-point format) counts for roughly 2/3 of the remaining
time, and actual communication 1/3. This, again, implies that
there is a rather large room for the improvement of the speed,
just by moving to faster host computers.

6.2.2. Multi-host performance

Since the performance of the single-host GRAPE-6 is
limited by the speed of the host computer, an obvious way to
improve the performance is to use multi-host systems.

Figure 28 shows the performance of the parallel tree
algorithm. The program used is a newly written one based
on orthogonal recursive multi-section, a generalization of the
widely used ORB tree that allows a division to an arbitrary

GRAPE-6 1183

20

o

o

CPU time (sec)

Fig. 28. CPU time in seconds per timestep plotted as function of the
number of host computers, 7. The parallel tree algorithm is used with
6 = 1.0. The upper and lower curves are the result for 22! and 220
particles, respectively. The initial distribution of the particles is the
Plummer model.

number of domains in one dimension, instead of allowing only
bisection. The primary advantage of this algorithm is that it
can be used when the number of host computers is not exactly
a power of two. We measured the performance on 1, 2, 3, 4, 6,
8, and 12 hosts.

The distribution of the particles is again the Plummer model.
One can see that the scaling is again quite good. A 12-host
calculation is 9.3 times faster than a single-host calcula-
tion. The parallel efficiency is better than 75%, even for the
relatively small number of particles shown here.

7. Discussion
7.1. Hindsights

Though we regard GRAPE-6 to be a reasonable success, this
certainly does not mean that we have done everything correctly.
We did make quite a few mistakes, some of which affected the
performance, some affected the reliability, some extended the
development time, and some limited the application range. In
the following we briefly discuss them in turn.

7.1.1. Performance

Concerning the performance, the largest problem with
GRAPE-6 is that its clock frequency is somewhat below the
expected value. The design goal (for the “worst case”) was
100 MHz, while our actual hardware is currently running at
90MHz. With GRAPE-4, the design goal was 33 MHz, and
the machine operated without any problem at 32 MHz. The
processor chip itself was confirmed to operate fine at 41 MHz.

The primary reason for the low operating frequency is a
problem with the stability of the power supply to the chip, or
the impedance of the power line. Compared to the GRAPE-4

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

1184 J. Makino et al.

processor chip, the GRAPE-6 processor chip consumes about
a two-times larger power at half the supply voltage. Thus, to
keep the relative drop of the supply voltage to be the same, the
impedance of the power line must be 1/8 of that of GRAPE-4.

This is a quite difficult goal to achieve. Initially, even the
manufacturer of the chip did not fully appreciated how hard it
would be. As a result, the first sample of the chip could not
operate correctly at a clock speed higher than 60 MHz. The
problem was that, when calculation starts, the power consump-
tion of the chip increases by about a factor of two compared
to that when the chip is idle. Because of the large total resis-
tance of the power line in the LSI package and the power plane
of the silicon chip, itself, the supply voltage to the transistors
decreases, and as a result their switching speed slows down.

In the second design, the manufacturer came up with an
additional power plane and an increased number of power
and ground pins, which reduced the resistance significantly.
However, the result was still rather unsatisfactory.

The manufacturer was not alone in making this kind of
mistake. In the design of the processor board and the power
supply, we also made similar mistakes. In the first design, we
used traditional large switching power units with relatively low
switching frequency. This unit turned out to be unable to react
to a quick change in the load between the idle and calculation
states. The normal electrolytic capacitors also turned out to
be completely useless in stabilizing the power supply voltage.
Thus, we need to redesign the power supply unit with high-
frequency inverters and low-ESR capacitors.

In hindsight, we could have borrowed the design of power
supply units for standard PC motherboards (for Intel proces-
sors), which were designed to meet quite similar requirements,
but for an extremely low cost. The power supply circuit for
a typical PC motherboard would be good enough to support
single module with 4 chips. We could then supply 12 V to PCB.

These apparently minor technical details are absolutely
crucial for manufacturing of high-performance computers.

Another problem with the current GRAPE-6 chip is its
limited 1/0O performance of only 90MBs~!. As we stated
earlier, this bandwidth is sufficient to keep the standard PCI
interface busy, and it is not really a bottleneck, since, for
many applications, calculations on the host computer are more
time-consuming. Even so, in a few years the I/O perfor-
mance will become a problem. An additional problem is that
host computers with faster PCI interfaces (PCI64 and PCI-X)
are now available. We cannot take advantage of these faster
interfaces with the current GRAPE-6 design, because the /0
bandwidth of the processor chip is limited. We could have
increased the I/O bandwidth of the chip without too much
problem, by allowing a change in the ratio between the chip
clock and board clock. With our current design, this ratio is
effectively fixed at 4.

Even with the current chip design, we could have increased
the communication bandwidth of the processor board without
increasing that of the chip, by letting multiple chips transfer the
data simultaneously. This possibility should have been consid-
ered to increase the lifetime of the hardware.

[Vol. 55,

7.1.2. Reliability

Since the GRAPE-6 system consists of an exceptionally
large number of arithmetic units, one might imagine that the
primary source of the error is the calculation logic, itself. In
practice, however, we have almost never seen any calculation
error, once the power supply had become good enough. On the
other hand, we found quite a few errors in data transfer.

We implemented an ECC circuit for the memory interface
of the processor chip, but only added a parity detection circuit
to the I/O ports. We thought that this is reasonable, since the
memory ports operate on a 90 MHz clock and the I/0 ports on
22.5MHz. However, it turned out that a memory parity error
almost never occurs, while parity errors for I/O occur rather
frequently. Since we do not exactly know the type of error,
it is not 100% clear whether the ECC capability would have
helped or not. However, it is at least clear that more reliable
data transmission would be better.

A more serious problem concerning the reliability was a
very high defect rate for mass-produced processor boards and
processor modules. Practically all failures were due to unreli-
able soldering, and most of the soldering problems turned out
to be simply due to a lack of skill of the manufacturer. This
may be telling something about the present performance of the
Japanese high-tech industry. Even so, it is certainly true that to
manufacture a rather small quantity of PCB boards is difficult.
We could have designed either more automated test procedures
for boards (with JTAG standard) or made redundant connec-
tions. Yet another possibility was to reduce the number of wires
by using higher-frequency signals.

7.1.3. Development time

As discussed in section 5, the use of a parallel host was
inevitable. However, the use of a multicast network was not,
at least in hindsight. We assumed that the price of high-end
uniprocessor computers would not change greatly, and that the
cost of high-bandwidth network adapters (1 Gbs~! or higher)
would remain high. In other words, we assumed that we could
not afford to buy ~ 100 fast host computers and to connect
all of them by a fast network. Therefore, we designed our
own network, which connects host computers to 72 processor
boards. This approach worked fine, as we have shown in the
previous section. However, an alternative design, in which we
connect each processor board to its own host computer, would
have been much easier to develop.

In 1997, the fastest systems were RISC-based UNIX
workstations, with price higher than 20k USD. In 2003,
systems based on the Intel x86 architecture offer a speed
similar to that of the RISC-based systems with the highest
performance for a cost of less than 2k USD. To illustrate this,
we use SPECfp (either 95 or 2000) numbers as being repre-
sentative of the performance. In 1997 the speed difference
between the RISC systems and the x86 systems was nearly a
factor of three. This ratio was almost constant during 1990s.
The reason why the ratio started to shrink is simply that the rate
of improvement of the performance of RISC-based systems
slowed down. Thus, it would have been difficult to predict the
present state in 1997, or even in 1999. In other words, even
though it is now clear that the network hardware of GRAPE-6
is not necessary, until 2000 we had no other choice.

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

No. 6]

Another reason for the rather long development time (aside
from the problems with the power supply) is the fact that
we effectively integrated all functions of the system to the
processor chip. It integrates the memory controller, the
predictor pipeline, and all other control logics. Except for the
predictor pipeline, all of these logics were implemented with
FPGAs on GRAPE-4. This integration simplified the design
of the board, but fortunately we have not made any serious
mistake in the design of these parts. The integration of these
complicated logics onto hardware required extremely careful
design and test procedures, which were time-consuming. With
the present price of moderately large FPGA chips, all of these
control logics could be implemented using FPGAs, with very
small additional cost. Of course, such a moderately large
and inexpensive FPGA was not available when we decided on
the design of the GRAPE-6 chip. However, we could have
predicted the direction of the evolution of FPGA chips and
estimated their price.

7.1.4. Application range

Since GRAPE-6 is designed solely for the gravitational
N-body problem, one might think that there is not much range
of applications. However, even within N-body simulations,
there are many factors.

The overall design of GRAPE-6 is highly optimized to
parallel execution of the direct force calculation with the
individual timestep algorithm. This of course means that it is
not optimal for other applications, such as the tree algorithm
and SPH calculations of a self-gravitating fluid.

With the case of the tree algorithm, the performance is
limited mainly by the speed of the host computer. Thus, in
this case, adding more host computers would have greatly
improved the performance.

In principle, we could have improved the performance of the
tree algorithm in several other ways. One obvious approach
is to reduce the data to send. With the tree algorithm, we
would not use a predictor. Moreover, we would not need the
full 64-bit resolution for the position data. Thus, we could
have implemented some way to reduce the data to send for
Jj-particles, if our memory controller was not implemented
in hardware. Actually, the memory controller of GRAPE-6
has some programmability. However, one “feature” of this
memory controller prevented us from taking full advantage of
this programmability to reduce the amount of data transfer.

With an FPGA implementation of the memory controller, we
could implement other ways to further reduce the communica-
tion. For example, we could implement indirect addressing,
so that we could send indices of j particles instead of sending
their physical data.

Concerning the design of the pipeline, one thing which
might have been useful for simulating collisionless systems
or composite N-body+SPH systems is the ability to
apply different softening lengths on different particles in a
symmetrized way. This can be achieved by calculating the
softened distance as
re=rl €l + e (20)

N

The pipeline will need one more addition, which is relatively
inexpensive.

GRAPE-6 1185

With SPH, the main problem is that the calculation of
SPH interactions, itself, cannot be done on GRAPE-6. The
PROGRAPE system (Hamada et al. 2000), with the calculation
pipeline fully implemented in FPGA, could be used to calcu-
late SPH interaction. An moderately large PROGRAPE system
is currently under development.

With the logic design of the pipeline, we have noticed a few
problems which we could not foresee. One is the length of the
accumulator for the time derivative of the force. For the force
and potential, we used 64-bit accumulators, but for the time
derivative we used 32-bit accumulators. As far as the accuracy
is concerned, this length is long enough. However, when we
performed simulations with a large number of particles, we
realized that overflow occurred rather frequently. The reason
why overflows occurs is that the magnitude of the time deriva-
tive of the force can change by a large factor in a single
timestep. A large change occurs when the previous value
happens to be almost zero. We could circumvent this problem
by combing a guess for the likely value of the time deriva-
tive of the force based on the value of force and timestep,
but it is cumbersome to implement and expensive to evaluate.
By increasing the accumulator length to, say, 40bits, we
could have almost completely eliminated the overflow. This
overflow does not have any noticeable impact on the perfor-
mance. However, the need to handle overflows made the inter-
face program rather complicated.

7.2. GRAPE-7/8

Given that GRAPE-6 is now completed and we have already
had the experience of running it for almost two years, it would
be natural to put some thought into how its successor will look.
In this section, we first discuss changes in technologies, and
then give an overview of the design possibilities.

7.2.1. Technological changes and the basic design

Compared to the technology used in GRAPE-6, what will be
used in the next GRAPE system (we call it NGS for short) will
be different in:

(a) semiconductor technology,
(b) development cost,
(c) host I/0 bus.

First, let us discuss semiconductor technology. GRAPE-6
uses 0.25um technology, while NGS would use, depending on
the time to start, either 130nm or 90 nm technology. Since
it seems that we will not get the necessary budget very soon,
we will probably use 90nm. This means that we can pack
about 8-times more transistors into a chip of the same size,
and the switching speed will be about 3-times faster. Thus, a
single chip of the same size can offer 20-times more computing
power. If the power supply voltage is reduced by the same
factor, the power consumption would remain the same, but
most likely the supply voltage would be somewhat higher,
resulting in a significant increase in the power consumption.

To express in concrete numbers, a single chip would
integrate around 50 pipeline processors, each with 60 arith-
metic units operating at a 300 MHz clock speed, with a 1.2V
supply voltage and power consumption of 20 W. The theoret-
ical peak speed of the chip will be around 600 Gflops.

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

1186 J. Makino et al.

Compared to the projected speed of general-purpose micro-
processors in, say, 2007, this speed is quite attractive. In 2007,
microprocessors will, at best, have a peak speed 10-times faster
than they have now, or about 30 Gflops. The typical perfor-
mance on real applications would be around 10 Gflops or less,
for a power consumption of 100 W or more.

A necessary consideration is how to connect the pipelines
to memory. If we use the same memory system as we used
for GRAPE-6, the total number of virtual pipelines per chip
becomes 1000, which is too large for a simulation of any colli-
sional system. As is the case with GRAPE-6, it is necessary
to keep the number of i-particles calculated in parallel to be
around 500 or less for large systems with many chips. Thus,
the number of virtual pipelines per chip must be less than
200, or ideally less than 100. In other words, the memory
bandwidth must be increased by at least a factor of five, to
around 3.5GBs~!.

This number, by itself, sounds relatively easy to achieve. It
is the same as what was used with the first Intel P4 processor
(3.2GBs™ 1, using two DRDRAM channels each with a 16-bit
data width. The Intel P4 has been around for more than two
years. We can now also use DDR 400 memory chips, which
have 4-times more throughput than the SSRAM chips used in
GRAPE-6. We could also use DDR SRAMs.

The choice of the memory interface has strong impact on
the range of applications. One major limitation of GRAPE-6
is that, as discussed in the previous section, its memory
addressing scheme is limited only to sequential access to a full
set of predictor data. Thus, it is not easy to use the tree or
other sophisticated algorithms efficiently on GRAPE-6. One
possibility to solve this problem is to implement the memory
controller and other control logics in an FPGA chip. The
connection between the FPGA chip and the pipeline chip must
be quite fast, but this is relatively easy to achieve, since the data
transfer is unidirectional from the FPGA chip to the pipeline
chip. The memory controller will be implemented in the FPGA
chip. Thus, it will be possible to use different types of memory
(DRDRAM, DDR DRAM/SRAM) without any need to change
the pipeline chip.

As we discussed earlier, parallelism will be achieved by a
two-dimensional network of host computers. Each of them
will have a relatively small GRAPE system. As an example,
we consider a system with 256 host computers, each with two
GRAPE cards. Each card houses 4 processor chips with their
own memory control units and memories. All of them can be
packaged into a single card of the PCI form factor, though we
need to use special care for the power supply.

For the interface to the host, the easiest solution is to use
PCI-X, which is now available with a data transfer speed of up
to 1GBs~!. PCI-X gives us an order-of-magnitude increase in
the communication speed, which roughly balances the increase
in the performance of a factor of 20. One problem is whether
or not PCI-X will be available around 5 years from now. We
need to predict the market trend, or develop a design that can
use multiple interfaces.

Note that this factor-of-10 increase in the communication
implies that the chip-to-chip communication must also be
faster by the same factor. This is not easy, but since the
physical size of the board will be much smaller, it would not

[Vol. 55,

be impossible to use fast clocks.

Thus, the design of NGS seems to be simple, as long as we
set the parallel execution of the individual timestep algorithm
with direct summation as the primary design target.

The only, but quite serious, problem is that the predicted
initial cost for the custom chip will be very high. The initial
cost for a custom chip has been increasing quite steeply.
Roughly speaking, the initial cost has been proportional to
the inverse of the design rule. Thus, while the initial cost of
the GRAPE-4 chip was around 200 k USD, that for GRAPE-6
exceeded 1 M, and for NGS it will reach 3M. Even though
this is “small” compared to the price of any massively-parallel
supercomputer or even PC clusters, to obtain a grant of this
size within the small community of theoretical astrophysics in
Japan is not easy.

7.2.2. Combination with sophisticated algorithms

One rather fundamental question concerning the next
GRAPE system is whether direct summation is really the
best solution or not. McMillan and Aarseth (1993) have
demonstrated that it is possible to implement a combination
of the Barnes—Hut tree algorithm and the individual timestep
algorithm that runs efficiently at least on a single-processor
computer, and potentially also on shared-memory parallel
computers. Even when we require very high accuracy, the gain
by the tree algorithm is large for a large N. For example, the
number of interactions per particle to achieve a relative force
accuracy of 107 is around 8000 when the quadrupole moment
is used, and around 2000 when the octupole moment is used,
for around 10° particles. Thus, even if we assume that the
calculation cost of an octupole is 10-times higher than that of
a point-mass force, the calculation cost of the tree algorithm
would be a factor of 50 less than that of a direct calculation.

Even though the scaling is not as drastic as that of the tree
algorithm, the Ahmad—Cohen scheme (1973, also known as
the neighbor scheme) offers a quite significant reduction of the
calculation cost over the simple direct summation. The theoret-
ical gain in the calculation cost is O(N'/%) for the neighbor
scheme (Makino, Hut 1988; Makino, Aarseth 1992). However,
the actual speedup is nearly a factor of 10 for only 1000 parti-
cles. Thus, for 10° particles the gain can reach a factor of 50.

For 10° particles, both the tree algorithm and neighbor
scheme, at least theoretically, offer reduction in the calcula-
tion cost of around a factor of 50. This factor is certainly
still smaller than the advantage of the GRAPE hardware over
general-purpose computers, since the difference in the price—
performance ratio will exceed 10>. However, if we can incor-
porate either of these sophisticated algorithms, even with a
significant loss in the hardware efficiency, like a factor of 5 or
even more, we can still achieve a very significant improvement
in the overall speed. We are currently investigating several
possible ways to achieve this goal.

We would like to thank all of those who are and have
been involved in the GRAPE project. In particular, we thank
Daiichiro Sugimoto for his continuous support to the project,
Atsushi Kawai for helping with the hardware design, Yoko
Funato, Eiichiro Kokubo, Simon Portegies Zwart, Piet Hut,
Steve McMillan, Makoto Taiji, Sverre Aarseth, Takayuki Saito

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

No. 6]

and many others for discussions on their experience with
GRAPE-4 and 5. We are grateful to Mary Inaba and Junichiro
Shitami for discussions on the network performance, and
for providing us with their software to measure the network

GRAPE-6 1187

performance. This work is supported by the Research for the
Future Program of Japan Society for the Promotion of Science
(JSPS-RFTF97P01102).

References

Aarseth, S. J. 1963, MNRAS, 126, 223

Aarseth, S. J. 1999, Celest. Mech. Dyn. Astron., 73, 127

Ahmad, A., & Cohen, L. 1973, J. Comput. Phys., 12, 389

Athanassoula, E., Bosma, A., Lambert, J. C., & Makino, J. 1998,
MNRAS, 293, 369

Barnes, J. E. 1990, J. Comput. Phys., 87, 161

Barnes, J., & Hut, P. 1986, Nature, 324, 446

Dorband, E. N., Hemsendorf, M., & Merritt, D. 2003, J. Comput.
Phys., 185, 484

Dubinski, J. 1996, New Astron., 1, 133

Fukushige, T., Ito, T., Makino, J., Ebisuzaki, T., Sugimoto, D., &
Umemura, M. 1991, PASJ, 43, 841

Fukushige, T., Taiji, M., Makino, J., Ebisuzaki, T., & Sugimoto, D.
1996, Apl, 468, 51

Funato, Y., Makino, J., & Ebisuzaki, T. 1992, PASJ, 44, 613

Greengard, L., & Rokhlin, V. 1987, J. Comput. Phys., 73, 325

Hamada, T., Fukushige, T., Kawai, A., & Makino, J. 2000, PASJ, 52,
943

Heggie, D. C., & Mathieu, R. D. 1986, in The Use of Supercomputers
in Stellar Dynamics, ed. P. Hut & S. McMillan (New York:
Springer), 233

Ito, T., Ebisuzaki, T., Makino, J., & Sugimoto, D. 1991, PASJ, 43, 547

Ito, T., Makino, J., Ebisuzaki, T., & Sugimoto, D. 1990, Comput.
Phys. Comm., 60, 187

Kawai, A., Fukushige, T., Makino, J., & Taiji, M. 2000, PASJ, 52, 659

Makino, J. 1991a, PASJ, 43, 859

Makino, J. 1991b, ApJ, 369, 200

Makino, J. 1991c, PASJ, 43, 621

Makino, J. 2002, New Astron., 7, 373

Makino, J., & Aarseth, S. J. 1992, PASJ, 44, 141

Makino, J., & Hut, P. 1988, ApJS, 68, 833

Makino, J., Kokubo, E., & Taiji, M. 1993, PAS]J, 45, 349

Makino, J., & Taiji, M. 1998, Scientific Simulations with Special-
Purpose Computers — The GRAPE Systems (Chichester: John
Wiley and Sons)

Makino, J., Taiji, M., Ebisuzaki, T., & Sugimoto, D. 1997, ApJ, 480,
432

McMillan, S. L. W. 1986, in The Use of Supercomputers in Stellar
Dynamics, ed. P. Hut & S. McMillan (New York: Springer), 156

McMillan, S. L. W., & Aarseth, S. J. 1993, ApJ, 414, 200

Okumura, S. K., et al. 1993, PAS]J, 45, 329

Okumura, S. K., Ebisuzaki, T., & Makino, J. 1991, PAS]J, 43, 781

Springel, V., Yoshida, N., & White, S. D. 2001, New Astron., 6, 79

Spurzem, R., & Baumgardt, H. 1999, MNRAS submitted

Steinmetz, M. 1996, MNRAS, 278, 1005

Sugimoto, D., Chikada, Y., Makino, J., Ito, T., Ebisuzaki, T., &
Umemura, M. 1990, Nature, 345, 33

Umemura, M., Fukushige, T., Makino, J., Ebisuzaki, T., Sugimoto,
D., Turner, E. L., & Loeb, A. 1993, PASJ, 45, 311

220z 1snbny /| uo sesn sopsnr jo Juswpedaq 'S N Aq £229502/€91 L/9/GG/2101He/[sed/woo dno-olwepeoe//:sdyy wouy papeojumoq

