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After an introduction situating Computer Aided Software 
Engineering (CASE) in general and indicating the possiblities 
of CASE for digital signal processing (DSP), a design example 
clarifies the development stages of a typical DSP application. 
A large part of this article i s  devoted to an overview of exist- 
ing development tools for DSP. Finally, the CASE tool GRAPE 
(GRAphical Programming Environment) is  presented, which 
allows for easy programming, compiling, debugging and 
evaluating high frequency real-time DSP systems. I t s  main 
distinctive feature i s  that the tool spans the whole design 
process, ranging from analysis over simulation and emula- 
tion up to implementation on general purpose DSP multipro- 
cessors or integration on an Application Specific Integrated 
Circuit (ASIC). The DSP multiprocessor can be the target 
hardware or can be used for real-time emulation or acceler- 
ated simulation of an ASIC. 

OMPUTER AIDED SOFTWARE ENGINEERING (CASE) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC tools reduce the effort needed to specify, compile, 
debug, run and document software projects by integrat- 
ing all the tools required in the complete life-cycle of the 
project [Ho..~]. They help system designers to express 
their ideas easily, rigorously and consistently. In addition, 
they allow them to manage the huge complexity inherent 
in software analysis, design, implementation and verifica- 
tion. The box "CASE in general" presents a strict defini- 
tion of what the authors mean with CASE. It also offers a 
non-exhaustive list of tasks to be carried out by CASE tools. 

This paper focuses on the use of CASE tools for stream- 
oriented real-time digital signal processing (DSP) applica- 
tions like they are found in such fields as telecommunica- 
tions, consumer electronics, instrumentation, etc. These 
applications are characterized by a continuous stream of 
data samples or a continuous stream of blocks of data 
samples arriving at the processing facility at time in- 
stances completely determined by the outside world. 
Throughput requirements, input-output interfacing and 
degree of inherent parallelism are quite distinct from tra- 
ditional data processing. The data can be processed ei- 
ther to determine a time critical control action to be 
taken-in which case the processing delay must be mini- 
mized to avoid stability problems in the controlled sys- 
tem, or to heavily process the samples itself- in which 
case the global throughput must be maximized. An ex- 
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ample where both types of processing are carried out on 
the same stream of samples can be found in compact disc 
players [Carall. The raw data stream, which is read by the 
laser beam, is decoded, checked and corrected against 
errors, and filtered before it is passed to the audio ampli- 
fiers. In addition, this same data stream is processed to 
control position and focus of the laser beam and speed 
of the disc. 

CASE in general 

Definition: A CASE environment i s  a consistent and in- 
tegrated set of tools to manage a software project on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
all i t s  levels of detail throughout i t s  whole life-cycle. 
What makes CASE tools different from non-CASE ap- 
proaches is their level of consistency and integration: 

the use of a single database to represent all aspects 
of the software project allows for automatic propa- 
gation of design data from one representation to 
the other: re-inputting the same data for use in an- 
other utility can hence be avoided, reducing the 
chance for inconsistency. 
extensive cross-checking of the information avail- 
able in different representations can be provided, 
as well as checking the completeness of the speci- 
fications. 

List of tasks: 

executable specification 
simulation 
code generation 
compilation 
verification 
test pattern generation 
source level debugging 
monitoring 
preparation of documentation 
logging changes to the design specifications 
synthesis of algorithms (application generation) 
optimization 
... 
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Figure 1. Design process of real-time DSP systems. 

The ever shortening product life cycles of such DSP 
applications put an increasing demand on the research 
and development (R&D) tools. Therefore, GRAPE has 
been developed as a CASE tool for the design of stream- 
oriented real-time digital signal processing algorithms 
and for their implementation on a DSP multiprocessor or 
on ASICs. This design process consists of four major 
steps, as depicted in Figure 1. After the specification of 
the algorithm, theoretical analysis and simulation give 
feedback to the system designers and allow them to 
modify the algorithm. Fine tuning can be done during the 
real-time emulation phase. Finally, the algorithm i s  imple- 
mented on a general purpose DSP multiprocessor or 
compiled to silicon. 

To accomplish this iterative design process, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACASE 

tool GRAPE integrates utilities for all four steps. This 
leads to Figure 2 for the general structure of GRAPE. 

In a first design step of a typical DSP project, the speci- 
fication of the application algorithm - internally in GRAPE 
represented as a signal flow graph - is analyzed to predict 
its performance characteristics. The signal flow graph may 
be entered by the designer or generated from frequency 
domain specifications. Next, the same specification i s  
simulated slower than real-time. Also, the surrounding 
equipment that will generate the sample stream to the 
hardware implementing the algorithm, and which will 
consume the processed data stream, i s  simulated. In the 
next step the application is traditionally bread-boarded 
in real-time. A much more flexible way to achieve this is 
to employ a reusable set of general purpose DSP proces- 
sors. In general, the real-time requirements will make the 
use of a multiprocessor inevitable. 
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Figure 2. General structure of GRAPE. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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GRAPE thus includes a set of tools to partition an appli- 
cation in tasks and to assign these tasks to the available 
processors. When communicating tasks are assigned 
to different processors, GRAPE automatically includes 
communication primitives. Simulation of the surround- 
ing equipment i s  gradually replaced by hardware as pro- 
totypes become available. This makes i t  possible to 
develop and test the environment of the ASIC before 
the first silicon becomes available. Finally, the single 
specification can be implemented on a general purpose 
(multi-)DSP, embedded in a product, or i s  compiled to 
silicon. The description of the simulator and the silicon 
compiler goes beyond the scope of this article on CASE. 
More details however can be found in [Schell, respec- 
tively [DeMall. 

The emulation phase can further be divided in three 
sub-phases: algorithmic, bit-true and architecture-true 
emulation. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalgorithmic emulation, correctness of the 
specification of the algorithm is verified, using an abun- 
dant word length for all computations, restricted natu- 
rally to the word length of the emulation engine. In a 
next step, the influence of restricted word length is ana- 
lyzed in the bit-true emulation phase. This i s  very im- 
portant in order to select target signal processors with 
minimal word length or to reduce silicon area on an 
ASIC. Finally, the hardware implementation of the algo- 
rithm could be checked in the architecture-true emula- 
tion phase. 
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Currently, GRAPE contains tools for algorithmic and 
bit-true emulation on a parallel computer. The software 
tools and the programmable hardware for architecture- 
true emulation are in development. This hardware will 
consist of a printed circuit board containing an array of 
software programmable gate arrays [Anonl] equivalent to 
54000 gates, four general purpose DSP processors and up 
to 1728 Kbytes of fast static RAM, accessible by the gate 
arrays as well as by the DSP processors [Engel, Schol]. 
When the board i s  used for algorithmic or bit-true emula- 
tion, the application algorithm will be mapped on the 
DSP processors, while the gate arrays will implement a 
fast parallel cross-bar between the processors mutually 
and between the board and the outside world. When the 
board i s  used for architecture-true emulation, software 
tools w i l l  map the application algori thm onto  the 
gate arrays, to which the DSP processors are attached 
as co-processors. 

As a case study, section 1 demonstrates briefly the dif- 
ferent steps required to develop an ASIC which imple- 
ments a digital audio application. This example i s  too 
simple to justify the development of a high powered tool 
like GRAPE but still it can give a clear indication of the dif- 
ferent tools that are required. Section 2 presents a dis- 
cussion of existing development tools for DSP. From this 
overview, it i s  clear that none of the available tools can 
support the complete design path from specification via 
analysis, simulation and emulation up to implementation 
on a general purpose multiprocessor or integration on an 
ASIC. This was the motivation for the plan to develop 
GRAPE as a shell, which integrates existing tools as much 
as possible. 

The rest of the paper i s  devoted to the tools required 
for the simulation and emulation process. In the specifi- 
cation phase (section 3), the behavior of the application 
algorithm is described. This single specification is used as 
an input for the simulator, emulator and silicon compiler. 
The compilation phase (section 4) generates the code for 
the DSP multiprocessor. It includes translation of the 
high-level language modules to relocatable assembly 
code, assignment of the modules to the processing 
nodes, scheduling the modules assigned to a node and 
linking them into executable code. In the evaluation 
phase (section 5), the user verifies if the algorithm i s  satis- 
factory, and figures out the minimal word length for each 
signal in order to select the cheapest DSP processor or 
to reduce the chip area of the ASIC without violating the 
frequency domain specifications. 

on and off. The graphic equalizer i s  realized by 10 cas- 
caded second order sections (see 'application' in fig- 
ure 3).  A top-down design from specifications to an 
IC-layout was presented in [VGinll. A programmable sig- 
nal processor could also be the target for such an algo- 
rithm but in this example, DSPs are only employed as a 
vehicle for prototyping. We will briefly step through the 
design flow of this example with emphasis on software 
tools for improving the design time and quality. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Algorithm Specification, Analysis and Optimization 

In a first step, frequency domain specifications such as 
cut-off frequencies, stop-band attenuation and pass-band 
ripple, constitute the constraints for the transfer func- 
tions of the filters. The order of these transfer functions 
must be minimal to obtain the cheapest realization with 
respect to hardware requirements, while still satisfying 
the frequency domain specifications. The next step i s  the 
synthesis of the filter networks, resulting in a block dia- 
gram (or signal flow graph) consisting of adders, delay el- 
ements and multipliers. While techniques exist to derive 
these functions from their analog equivalents [Oppell, 
direct synthesis of the digital filter from specifications i s  
available from a number of filter design packages. 

The word lengths of coefficients and signals st i l l  have 
to be minimized from their virtually infinite precision. 
The result may influence the selection of the cheapest 
DSP-processor or save silicon area on a custom chip. 
Therefore, the filter coefficients must be truncated to 
minimal word lengths, while still satisfying the frequency 
domain specifications. On the other hand, the necessary 
signal word length i s  determined by finite word length 
phenomena such as statistical quantization noise, limit 
cycles bounds, and overflow bounds. Therefore, the op- 
timal word lengths must be determined. To do this the 
designer can use analysis and bit-true simulation tools. 

Real-time Emulation 

The optimized digital filter algorithm i s  in principle 
ready for implementation. However, for many applica- 
tions a real-time prototype i s  required for various rea- 
sons: auditive evaluation, proof of concept, marketing 
approval, tests with real world stimuli, testing of inter- 
faces, etc. Therefore, a bread-boarded prototype, which 
can be used for the pre-amplifier functions, in combina- 
tion with application specific digital filters for analog to 
digital (A/D) and digital to analog (D/A) conversion, i s  
necessary. A functional block diagram of such an existing 
prototype set-up, i s  depicted in figure 3. A better solu- 
tion for this real-time emulation is a multiprocessor con- 
figuration, consisting of general purpose DSP-chips, 
which serves for emulating the audio functions in soft- 
ware. Such a reusable set-up saves a lot of design time 
compared with application specific bread-boards. A vast 
amount of processing power i s  also desirable to provide 
sufficient experimentation room for additional evaluation 

1. DESIGN EXAMPLE: A PRE-AMPLIFIER FOR 

DIGITAL AUDIO 

As an example of an R&D project in the DSP field, 
we consider the design and implementation of a pre-am- 
plifier for digital audio. This design consists of a cascade 
chain of a first order offset filter, a graphic equalizer 
and a third order scratch fi l ter that can be switched zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 3. Real-time emulation set-up. 
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and emulation features such as bit-true modeling of the 
operations, digital signal preparation and post-processing, 
over-sampling, distortion analysis, etc. 

To use this reusable set-up, code generators, high-level 
compilers, and function libraries for the DSP-processor, 
operating on top of the existing traditional development 
tools are crucial. It i s  also desirable that monitoring can 
be performed in a digital way, such as the determining 
of the signal-to-noise ratio of the filter bank. Monitor- 
ing software must be downloadable on the same multi- 
processor and serve as virtual instruments. In this way, it 
can be avoided that the analog parts, which are often the 
least accurate, influence the measurements. O n  the 
other hand, mixed analog/digital measurements such as 
the characterization of the A/D- and D/A-parts, benefit 
from a central control by the host. Available instrumenta- 
tion packages provide virtual panels and displays for the 
host screen. When the application i s  programmable such 
as the graphic equalizer, also those settings can be con- 
trolled through such a panel. 

Implementation 

Once verified, the algorithm can be targeted to i ts  im- 
plementation form, a programmable signal processor or 
a custom chip. For this example, a customized bit-serial 
implementation has been chosen. A silicon compiler, 
providing DSP-architecture synthesis on top of general 
purpose 1.C.-layout and verification software, has been 
used. If the target of the algorithm is a program for a gen- 

I 
I 

1 
--- --- 

I 

eral purpose DSP-processor, a code development tool for 
this processor i s  necessary. 

I I 

I I 
I I 
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2. DISCUSSION OF EXISTING DESIGN TOOLS FOR DSP 

Many software tools for assisting DSP-designers have 
been realized so far. Already in 1979, an important set of 
programs has been collected by the DSP-committee of 
the ASSP Society and published by IEEE press [Anon21. 
Ever since, the list of software systems, programs, sub- 
routines and algorithms has been growing fast. It is the 
authors’ opinion however, that presently no commer- 
cially available integrated CASE tool exists, which covers 
the total design flow for DSP. For an assessment of the 
state of the art, we will first give an overview of the partial 
solutions that are used in the different design phases. 
After this summary, we will derive some general trends 
for DSP software and suggest a number of desirable 
developments.’ 

Functional Families of DSP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATools 

In this section we wil l group the existing software 
packages that are used in the different design steps, 

Application Control I I 
I 
I 

Instrument Control I I 

HOST ‘ 
I 

Program Control 

’It i s  not the intention of the authors to classify specific tools and 
products or to endorse particular houses. The mentioned names of 
specific tools are for illustration of the expressed trends only. The 
reader i s  urged to contact the vendors or research institutions for 
up-to-date specifications in this fast moving field. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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conforming to the design flow of the example in sec- 
tion 1. Hereby, we wil l emphasize features and evolu- 
tions from a user’s viewpoint. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Algorithm specification, analysis and simulation tools 

As mentioned in the design example, the tools used 
in the algorithm specification, analysis, and simulation 
step can be divided in two classes, namely filter de- 
sign packages and bit-true simulation tools. 

Filter design packages 

Tools for digital filter design form perhaps the most 
mature group of design tools, as they can rely on a lot 
of research results, rooted in systems theory, numeri- 
cal analysis, and classical network theory. Software 
packages such as from the IEEE [Anon21 for classical 
digital filters and FALCON [Gazsll for wave digital fil- 
ters are in fact crucial in turning the rather mathemati- 
cal digital filter theory into practice for the designers 
community. Engineering of these software already re- 
sulted in user friendly and integrated synthesis mod- 
ules such as in ILS, MatLab [Littl, Mole l l ,  MATRIX-X 
[Shahll, DFDP2, FDAS, and HYPERSIGNAL. 

Most of the filter synthesis packages are able to ap- 
proximate classical filter structures according to e.g. 
butterworth and elliptic characteristics. Approxima- 
t ion of more arbitrary frequency responses i s  also 
possible for magnitude [Steill or for both magnitude 
and phase [VdEnll. However, these tools try to ap- 
proximate a nominal frequency response. This i s  still 
reminiscent to analog design practices where design 
centering i s  desired. Because digital filters are not  
subject to aging and wear, filter synthesis tools should 
exploit the design margins between upper and lower 
l imits i n  a tolerance diagram of  the frequency re- 
sponse. Such techniques are, however, not  yet re- 
ported to the authors’ knowledge. 

Analysis and bit-true simulation tools 

A number of software environments exist that allow 
for describing DSP algorithms and performing time- 
domain simulations, and frequency-domain analysis. 
One approach i s  block signal oriented. In  ILS, for 
instance, functions are modeled by separate pro-  
grams in sequential languages, such as FORTRAN, op- 
erating on blocks of signals. Feedback loops in the 
DSP-algorithm must be encapsulated in the programs. 
The other approach i s  based on a netlist in terms of 
DSP primitives such as addition, multiplication, etc. In 
this way, arbitrary linear algorithms can be described 
wi thout  programming (e.g. i n  SPW, DSP-DIGEST 
[Clael], ODYSSEE [Covi l ] ,  and SILAGE [Hi l f l ] ) .  This 
description may contain feedback loops and different 
sampling rates (i.e. multirate system). 

An environment such as DSP-DIGEST [Clael, Clae21, 
which was used in the design example, gives the pos- 
sibi l i ty o f  op t im iz ing  the  length o f  the  f i l te r  co- 

efficients and determing the min imum number of  
nonzero coefficient bits for cheap multiplier-less shift- 
and-add operations. In, e.g., DSP-DIGEST and the 
SILAGE language for DSP, different word lengths can 
be attached to any of the nodes, offering both bit-true 
simulation and analysis of quantization noise, over- 
flow and limit cycles [Cattl] from the same description. 

For nonlinear systems, however, there i s  a lack of 
direct analysis tools. Therefore, we are restricted 
to time-domain verif ication. To get an idea of  the 
frequency-domain behavior, post-processing al- 
go r i t h m s, e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg . F FT, ha r m o  n i c d i s  t o r t  i o n an a1 ys i s 
[VPetll and signal statistics, are available. 

Traditional plotting tools, which are used to display 
the results of the analyses and simulations, are cur- 
rently enhanced w i th  electronic spreadsheet l ike 
mathematical formulae entry (DADiSP, PCI-SNAP). In- 
tegration with simulation and analysis tools wil l fur- 
ther allow for on-line updates of the displayed curves, 
which results in a more interactive operation. 

Real-time Emulation Tools 

The previous discussion stated that two types of 
design tools are desirable for  real-time emulation: 
a code development system for general-purpose DSP- 
processors, and an instrumentation package. 

Code development systems for general purpose 
DSP-processors 

As in the microprocessor world, the manufacturers 
of chips and boards make available sets of low-level 
development tools: assemblers, simulators and de- 
buggers. Time associated with the tedious assembly 
language programming can be saved by automatic 
generation of assembly code. This i s  provided by filter 
synthesis programs such as FDAS, HYPERSIGNAL, and 
FALCON. This can result in rather efficient code, be- 
cause the block diagram i s  known in  advance. An- 
other way to  save time, i s  the use o f  a high-level 
language. Recently, C-compilers became available 
from several DSP-chip vendors. Compilers for the 
SILAGE language are discussed in [Genil l and, for bit- 
true compilation, in this paper. The latter i s  especially 
suited for fast prototyping. A retargetable MoDL com- 
piler i s  described in [Jacoll. 

Programming time can also be saved by automating 
services such as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI/O, file-handling, memory allocation 
and multi-tasking. A tool as SPOX is intended to mask 
those implementation details from the user by creating 
a ”virtual DSP” model on  both the host and the real- 
time hardware, in combination with a mathematical 
C-macro library. 

Instrumentation packages 
During the emulation, interfacing with external in- 

struments i s  useful for the analysis of real world data 
and combined digital and analog measurements 



[Small]. Tools such as ASYST and SPW provide inter- 
faces with GPIB-based measurement setups. In addi- 
tion, virtual front panels and displays can be emulated 
on personal computers by packages such as LabView, 
TestTeam and PCI. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Implementation level tools 

For the implementation of the algorithm, two possi- 
bilities exist. First, it can be realized on a general pur- 
pose DSP-processor. Hereby, the code development 
systems can be used, that were already discussed in 
the previous paragraph. Second, the algorithm can 
lead to an IC-layout. Therefore, a silicon compiler i s  
needed. 

Silicon compilers 

Provided a sufficiently large market o r  stringent 
throughput o r  size requirements, the DSP-design 
will be targeted to a semi-custom or full custom 1.C.- 
implementation. Silicon compilers specialized for DSP 
that assist in the layout and/or hardware architecture 
synthesis have been developed: (i) FIRST [Denyll and 
CATHEDRAL-I [Jainl l  for hardwired bit-serial imple- 
mentation, ( i i )  LAGER [Popel l  and CATHEDRAL-II 
[DeMal l  for  microcoded bit-parallel implementa- 
tion and (iii) CATHEDRAL-Ill [Notel l  in development 
for  hardwired bit-paral lel  implementat ion.  Such 
CAD-systems are now gradually being introduced for 
production use in  the industry [e.g. Dela l l  and wil l 
soon play a crucial role for the design of time critical 
applications. 

Because of the overhead in the compiled results of 
these early tools, it may be s t i l l  a matter o f  two to 
four years before top-down DSP-compilers for cus- 
tomized silicon wil l be used for the majority of high 
volume designs which are critical in terms of perfor- 
mance or silicon area. 

Trends and Requirements 

From the previous discussion, we can conclude that 
the current DSP design tools are insufficient to offer a 
user-friendly design environment: 

Filter design packages are lagging behind the devel- 
opment of the theory; most of the currently available 
one-dimensional filter synthesis packages are shells 
around programs with a functionality comparable 
with the IEEE programs [Anon21. Meanwhile how- 
ever, new one-dimensional filter structures have 
been invented such as wave digital filters [Fettl], LDI 
filters [Brutl] as well as novel filter banks [Vaydl]. 
Also, adaptive filters have been extensively studied 
and the field of multidimensional filtering i s  growing 
rapidly as well. In automatic tools, however, little of 
this theory i s  available. 
Simulations nowadays require extremely long simula- 
tion times. Times in the order of one week or even 
more on supermini computers or engineering work- 
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stations are no exception in industry. This i s  espe- 
cially true with highly over-sampled systems or 
analog interfaces. Also, when listening tests are re- 
quired for evaluation of an algorithm, many opera- 
tions have to be performed for a few seconds of 
audio or video. 
Emulation is only possible by the expensive and time 
consuming method of bread-boarding the system. 
Neither the software nor the hardware for a reusable 
emulation set-up are available. 
The implementation of the algorithm requires assem- 
bly language programming or manual IC design. 
The different design-tools are only partial solutions. 
No integrated CASE tool that covers the total design 
flow for DSP i s  available. 

Nowadays, however, a number of trends can be observed, 
which promise improvements in this situation: 

Filter design packages that support the automatic de- 
sign of new filter types are emerging, e.g. FALCON 
for wave digital filters. 
New hardware accelerators that turn slow hosts into 
powerful DSP-workstations, are becoming available 
as uniprocessor plug-in boards and multi-processors 
are being worked out [Engel, Enge2, Kok.11. 
Manual coding for DSP-processors is being replaced 
by corn pi lat ion from high-level descriptions. 
Integrated tools that blend existing and new tools 
into larger design tools are becoming available. This 
was demonstrated with CATHEDRAL-I [Jainll, which 
resulted in an automated path from frequency do- 
main filter specifications to silicon layout. 

To come to a user-friendly DSP design environment, 
however, some future improvements will be necessary: 

The designer experience and DSP theory must also 
be captured in synthesis and optimization tools. This 
must lead to the automatic design of digital filters 
from arbitrary specifications expressed in a tolerance 
diagram and to the algorithm synthesis for non-linear 
functions. 
The code-generation tools for general-purpose DSP- 
processors must further be improved by optimizing 
the code generators and compilers. Hereby, bit-true 
compilers need some special attention. Also, parallel 
processing support for multi-DSP-processors must be 
worked out. 
The different tools must be integrated in an exten- 
sible CASE system with standard representation, 
languages, libraries and interfaces. 

In the sequel, an experimental version of an integrated 
system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis presented as example: the CASE tool GRAPE for 
DSP, in development for a personal computer environ- 
ment. While combining as much as possible available 
programs, the original developments within GRAPE are 
concentrating mainly on hitherto missing topics in DSP 
tool systems related with graphical programming, bit-true 
emulation and parallel processing support. 
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3. SPECIFICATION OF DSP ALGORITHMS 

Specification languages for DSP algorithms may be di- 
vided in three sub-classes: sequential languages, func- 
tional languages and graphical techniques [Lauwll (see 
also the box on 'Languages for DSP multiprocessors'). 

The use of a conventional sequential language (C, For- 
tran, Pascal,. . .) may seem the most obvious approach 
due to i t s  widespread use, to the availability of compilers 
for almost all target processors and to the large libraries 
with useful modules that already exist. However, both 
the ASIC implementation as well as the emulation on a 
DSP multiprocessor allow for the concurrent execution 
of multiple tasks. Sequential languages mask the inher- 
ent parallelism of the application. A parallelizing com- 
piler is thus needed to extract the data dependency 
graph out of the sequential program description [Whitl]. 
The construction of such a compiler i s  a very complex 
task and, up to now, they are only able to find part of the 
implicit parallelism in the program [Colll]. 

To be able to extract the data dependency graph auto- 
matically by a compiler out of a textual representation of 
a program, we need a high-level language which forbids 
the use of constructs masking or introducing data depen- 
dencies not implied by the program itself. In short, we 
need a language that textually describes the data depen- 
dency graph. Functional languages possess this property 
[Agerl, Davill. Silage, for example, i s  a functional lan- 
guage that has been designed specifically to describe 
DSP applications [Hilf l l . One of its distinct features i s  that 
it allows the user to specify the word length of each sig- 
nal. Maybe the only drawback of functional languages is 
that they st i l l  represent the program as a sequential list of 
statements, although the order in which the statements 
occur i s  irrelevant. Indeed, execution order is completely 
determined by the data dependencies. 

The third method i s  the use of graphical techniques, 
where the data dependency graphs are directly drawn by 
the system designers. This technique closely resembles 
the intuitive way they look at the application and think 
about its behavior. This is especially true for DSP applica- 
tions where system designers are already used to devel- 
oping signal flow graphs or block diagrams [Lee.ll. As a 
consequence, some graphical systems for programming 
DSP algorithms already exist. Texas Instruments, for in- 
stance, offers a graphical environment for programming 
their Odyssee system, a multiprocessor built up of sev- 
eral digital signal processors of the TMS320xx family 
[Covil]. Their graphs represent the z-transform diagrams 
of the filter algorithms to be implemented. Another ex- 
ample i s  an internal experiment at Hewlett-Packard, 
where graphical tools for drawing Nassi-Schneidermann 
diagrams were offered to various programming pools 
[Dea.l]. These systems showed, however, that at the low- 
est level of detail, graphical programming becomes 
clumsy and dreadful. 

From this overview it is clear that a mixed graphical and 
textual representation of the algorithm is desirable. On 
the highest levels in programming hierarchy the signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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flow can be represented graphically. This facilitates the 
compilation towards a multi-DSP processor. On the low- 
est levels of detail a textual representation avoids clumsy 
graphics and enables the reuse of the rich software li- 
braries, which are already available for DSP. Therefore, 
the specification tools of GRAPE support the three types 
of specification languages. On the highest levels of de- 
tail, the signal flow graph is graphically represented by 
interconnected black boxes. These black boxes may be 
gradually refined to obtain a hierarchically constructed 
program tree. The lower level black boxes-the leaves of 
the program tree-are described in a sequential or func- 
tional textual language (Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) .  The sequential lan- 
guages C and assembly as well as the functional language 
Silage are currently supported. Since the point for 
switching from graphical to textual programming can be 
chosen freely by the user, pure graphical or pure textual 
specifications are possible. 

To avoid the need to specify the same data more than 
once during the top-down design of the application, the 
CASE tool has to provide following properties: 

Hierarchical top-down design in the graphical repre- 
sentation i s  supported: clicking with the mouse on 
one of the black boxes opens a separate drawing win- 
dow for that box in which the signal flow graph can 
be refined. All information the editor possesses about 
the black box i s  automatically inherited by the lower 
level representation: number of input and output sig- 
nals, their name, data type, word length, data rate, etc. 
Extensive cross checking i s  provided to maintain con- 
sistency between all levels of representation and all 
instances of the same DSP task, so that changes made 
in one representation are automatically reflected in 
the others. 
When a (language-sensitive) text editor i s  called to fill 
in a black box in some textual language, the program 
structure and the type declarations for all incoming 
and outgoing signals can be generated in the lan- 
guage of the users’ choice. Here too, cross-checking 
is required to maintain consistency between the tex- 
tual and graphical representation of the DSP task. 

A few additional tools are necessary to enhance the use- 
fulness of the specification tool: 

Library toolkit. The break-through of ASIC’s has been 
made possible by the so-called ’meet-in-the-middle’ 

design philosophy where a number of parametrical 
standard building blocks, thoroughly tested and care- 
fully optimized, are presented to the system de- 
signer. This same ’meet-in-the-middle’ philosophy 
may be employed beneficially in our programming 
environment by providing the programmer with a li- 
brary of thoroughly tested and carefully optimized 
program segments, which he may include in his pro- 
gram as a black box. This black box can contain either 
a textual, a graphical representation or a complete hi- 
erarchical mixed graphical and textual program. 

Code generator. A code generator i s  available for 
modules that implement a digital filter; after the speci- 
fication of some parameters including filter type, pass- 
band and stop-band ripple and frequency, the filter 
coefficients are computed and assembly language 
source code i s  generated. 
/con editor. Instead of writing the abstract name of 
the routine in the box representing the task (Fig- 
ure sa), it i s  often more meaningful to fill the box 
with an icon as depicted in Figure 5b. An icon editor 
has been included to assist the user in creating mean- 
ingful icons for frequently used DSP tasks. 
Property definitions. Properties may be assigned to 
any instance of a DSP task in the form of attributes 
and to any signal channel. They include data rates, 
word lengths, real-time constraints, etc. Special pro- 
visions have been made to indicate parameters that 
may be changed during execution of the program. It 
instructs the compiler to keep track of the memory 
addresses where these parameters are stored in the 
target machine. During program execution, it becomes 
possible to change a parameter (ex. pass-band fre- 
quency, amplification, etc.) by just clicking with the 
mouse on the high-level representation of the module. 

I I 
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All together, the utilities of the specification tool make it 
possible to describe an application easily and accurately. 
The single specification can then be used as an input for 
the simulator, the emulator or the silicon compiler, pro- 
vided Silage i s  used for the textual parts. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. COMPILATION FOR A DSP MULTIPROCESSOR 

EMULATION FACILITY 

Once the modular specification for a given application 
has been completed, GRAPE provides for tools to transform 
this DSP algorithm into executable code for the available 
DSP multiprocessor architecture. 

In a first step, each of the modules specified in a high- 
level language is translated into relocatable assembly 
code. Currently, GRAPE supports the translation of speci- 
fications in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC and SILAGE. 

The next step i s  of particular importance, whenever real- 
time emulation is required. Using estimates of the compu- 
tation time for each module (extracted by examining the 
assembly language representation of the modules) and of 
the inter-module communication requirements, the parti- 
tioner assigns the modules to the available hardware 
resources in order to minimize the interprocessor com- 
munication. Note that the partitioner has specifically 
been included in GRAPE to support parallel processing. 
The tool can be bypassed when code is generated for a 
uniprocessor. 

The next step in the transformation provides for appro- 
priate scheduling of the tasks assigned to a single pro- 
cessing node in the previous step. Besides determining 
the order in which the tasks assigned to a node have to 
be executed-this i s  done by examining the data depen- 
dency graph-the scheduler adds communication mod- 
ules to control the ADCs and DACs and to establish 
interprocessor communication. Scheduling is followed 
by a post-optimization step that optimizes the use of the 
internal processor registers by analyzing the life-time of 
the variables. 

Finally, the individual (relocatable) assembly language 
modules for each of the processing nodes, are linked to- 
gether, resulting in the executable code for each of the 
available processors. In the remainder of this section, the 
design of a bit-true compiler for the applicative language 
SILAGE i s  discussed in more detail. Currently, the com- 
piler produces code for the Motorola 56001 DSP processor 
[Anon31. The description of other optimizing compilers 
for general purpose signal processing may be found in 
[Genill and [Jacoll. 

A straightforward- but time consuming-approach to 
the generation of bit-true code would be to provide an 
appropriate mask for the result of each computation per- 
formed in the generated code. In the compiler described 
above, a special technique has been applied based on an 
appropriate representation of the numeric data in the 
generated program, i.e. by cleverly placing the data in 
the internal accumulator of the DSP processor, we can 
avoid the extra overhead required for masking the result 

of a bit-true computation. Additional instructions ensur- 
ing bit-true computation are only incorporated in the 
assembler program; at the moment an explicit type- 
conversion-i.e., a change in data word length-is per- 
formed in the corresponding Silage program. 

5. VERIFICATION O F  THE DSP ALGORITHM 

At this point the algorithm that must be emulated has 
been specified and compiled (bit-true or not) for a DSP 
multiprocessor. The only task left for GRAPE i s  to provide 
tools to verify if the algorithm itself i s  satisfactory and to 
verify, e.g., the minimal word length for each signal in or- 
der to reduce the chip area of the ASIC without violating 
the distortion specifications. 

This verification may cover a number of aspects: 

Verification of the correctness of the developed algo- 
rithm (algorithmic emulation). Typically, all the corn- 
putations in this step are performed using an abundant 
word length. 
Investigation of the influence of a restricted word 
length (bit-true emulation). In this step, all the corn- 
putations in the emulated algorithm are performed 
with a restricted word length. 
Verification of the real-time behavior of the given al- 
gorithm (real-time emulation). 
Verif icat ion of the hardware implementat ion 
(architecture-true emulation). 

To accomplish these verification tasks, the user must 

apply signals to the emulator and to control their 
characteristics; 
measure the output signals coming from the emula- 
tor, to gather statistics of these signals and to corn- 
pare them with the specifications; 

be able to 

change parameters of the emulated algorithm. 

Three special tools are being integrated in the graphi- 
cal programming environment GRAPE to accomplish these 
verification tasks: 

From within GRAPE, wave-form generators and mea- 
suring instruments are directly controlled. The set- 
tings of these instruments are manipulated via pop-up 
front panels and are communicated to them via an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I EEE-488 interface bus. 
A software library of virtual instruments such as 
wave-form generators, spectrum analyzers, data log- 
gers, distortion analyzers, etc. i s  available. Indeed, 
instead of employing separate measuring instru- 
ments, it is possible, depending on the signal data 
rate, to program their function in software and im- 
plement these measuring modules together with the 
applicatilon algorithm on the same multiprocessor 
system. Also, for these virtual instruments, pop-up 
front panels are used for controlling their parameters. 
It i s  possible to design pop-up front panels for the 
application algorithm that runs on the multiproces- 
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sor. For example, a front panel may be designed for 
a digital amplifier that mimics a linear potentiometer. 
Using these front panels, the user can interactively 
change the parameters of the algorithm and verify 
their effect in real-time. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

CONCLUSION 

This article discussed the usefulness of CASE tools for 
the design and implementation of stream-oriented real- 
time DSP applications. The design process of a typical 
DSP ASIC was analyzed and an indication was given of 
the development tools that could speed-up the project or 
improve i t s  quality. A systematic overview of existing de- 
velopment tools was presented next. From this overview, 
it i s  clear that no CASE tool exists which covers the whole 
design process starting from specification via analysis, 
simulation and real-time emulation up to implementation 
on a general purpose programmable DSP multiprocessor 
or integration on silicon. The article then presented the 
CASE tool GRAPE that aims at filling this gap. This can be 
achieved by using state-of-the-art techniques for graphi- 
cal programming, for the code generator, the bit-true 
compiler, the multiprocessor partitioner, the scheduler, 
the virtual instrument controller and the silicon compiler. 
In the near future, GRAPE will be enhanced with tools to 
enable architecture-true emulation of an ASIC on an ar- 
ray of programmable gate arrays. 
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NEURAL NETWORKS 
1989 

8 New Tutorial Videotapes 
presented by 

IEEE's Educational Activities Board 
in Cooperation with the 

IEEE Neural Network Committee 

ADAPIlVE PA'ITERN RECOGNITION - Lton Cooper 
NEUROBIOLOGY REVIEW - 1989 -Walter Freeman 
ADAPTIVE SENSORY - MOTOR CONTROL - 
Stephen Grossberg 
NEURAL NETWORKS: ALGORITHMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND 
MICROHARDWARE! -John Hopfield 
VLSI TECHNOLOGY AND NEURAL NETWORK 
CHIPS - Lawrence Jackel 
OPTICAL NEUROCOMPUTERS - 1989 - Demetri Psaltis 
SARTING A HI-TECH COMPANY - Peter Wallace 
REINFORCEMENT LEARNING - Ronald Williams 

For more information, call IEEE, 
Educational Activities at (201) 562-5499, 
or write IEEE, Educational Activities 
445 Hoes Lane, PO Box 1331 
Piscataway, NJ 08855-1331. 
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PROCESSING 

Developed by Andrew Sekey I 
A smooth transition from the fundamentals of 
speech production to modern applications! 
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