
GRAPE: A CASE Tool for Digital
Signal Parallel Processing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Rudy Lauwereins, Marc Engels, lean Peperstraete
Eric Steegmans, lohan Van Ginderdeuren zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

After an introduction situating Computer Aided Software
Engineering (CASE) in general and indicating the possiblities
of CASE for digital signal processing (DSP), a design example
clarifies the development stages of a typical DSP application.
A large part of this article i s devoted to an overview of exist-
ing development tools for DSP. Finally, the CASE tool GRAPE
(GRAphical Programming Environment) is presented, which
allows for easy programming, compiling, debugging and
evaluating high frequency real-time DSP systems. I t s main
distinctive feature i s that the tool spans the whole design
process, ranging from analysis over simulation and emula-
tion up to implementation on general purpose DSP multipro-
cessors or integration on an Application Specific Integrated
Circuit (ASIC). The DSP multiprocessor can be the target
hardware or can be used for real-time emulation or acceler-
ated simulation of an ASIC.

OMPUTER AIDED SOFTWARE ENGINEERING (CASE) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC tools reduce the effort needed to specify, compile,
debug, run and document software projects by integrat-
ing all the tools required in the complete life-cycle of the
project [Ho..~]. They help system designers to express
their ideas easily, rigorously and consistently. In addition,
they allow them to manage the huge complexity inherent
in software analysis, design, implementation and verifica-
tion. The box "CASE in general" presents a strict defini-
tion of what the authors mean with CASE. It also offers a
non-exhaustive list of tasks to be carried out by CASE tools.

This paper focuses on the use of CASE tools for stream-
oriented real-time digital signal processing (DSP) applica-
tions like they are found in such fields as telecommunica-
tions, consumer electronics, instrumentation, etc. These
applications are characterized by a continuous stream of
data samples or a continuous stream of blocks of data
samples arriving at the processing facility at time in-
stances completely determined by the outside world.
Throughput requirements, input-output interfacing and
degree of inherent parallelism are quite distinct from tra-
ditional data processing. The data can be processed ei-
ther to determine a time critical control action to be
taken-in which case the processing delay must be mini-
mized to avoid stability problems in the controlled sys-
tem, or to heavily process the samples itself- in which
case the global throughput must be maximized. An ex-

32 iEEE ASSP MAGAZINE APRIL 1990

ample where both types of processing are carried out on
the same stream of samples can be found in compact disc
players [Carall. The raw data stream, which is read by the
laser beam, is decoded, checked and corrected against
errors, and filtered before it is passed to the audio ampli-
fiers. In addition, this same data stream is processed to
control position and focus of the laser beam and speed
of the disc.

CASE in general

Definition: A CASE environment i s a consistent and in-
tegrated set of tools to manage a software project on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
all i t s levels of detail throughout i t s whole life-cycle.
What makes CASE tools different from non-CASE ap-
proaches is their level of consistency and integration:

the use of a single database to represent all aspects
of the software project allows for automatic propa-
gation of design data from one representation to
the other: re-inputting the same data for use in an-
other utility can hence be avoided, reducing the
chance for inconsistency.
extensive cross-checking of the information avail-
able in different representations can be provided,
as well as checking the completeness of the speci-
fications.

List of tasks:

executable specification
simulation
code generation
compilation
verification
test pattern generation
source level debugging
monitoring
preparation of documentation
logging changes to the design specifications
synthesis of algorithms (application generation)
optimization
...

0740-7467/90/0400-0032 $1 .0001990 IEEE

- 1 ' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'1

I .

DSP chip programming zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L,--,,-, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI

I
I
I

Figure 1. Design process of real-time DSP systems.

The ever shortening product life cycles of such DSP
applications put an increasing demand on the research
and development (R&D) tools. Therefore, GRAPE has
been developed as a CASE tool for the design of stream-
oriented real-time digital signal processing algorithms
and for their implementation on a DSP multiprocessor or
on ASICs. This design process consists of four major
steps, as depicted in Figure 1. After the specification of
the algorithm, theoretical analysis and simulation give
feedback to the system designers and allow them to
modify the algorithm. Fine tuning can be done during the
real-time emulation phase. Finally, the algorithm i s imple-
mented on a general purpose DSP multiprocessor or
compiled to silicon.

To accomplish this iterative design process, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACASE

tool GRAPE integrates utilities for all four steps. This
leads to Figure 2 for the general structure of GRAPE.

In a first design step of a typical DSP project, the speci-
fication of the application algorithm - internally in GRAPE
represented as a signal flow graph - is analyzed to predict
its performance characteristics. The signal flow graph may
be entered by the designer or generated from frequency
domain specifications. Next, the same specification i s
simulated slower than real-time. Also, the surrounding
equipment that will generate the sample stream to the
hardware implementing the algorithm, and which will
consume the processed data stream, i s simulated. In the
next step the application is traditionally bread-boarded
in real-time. A much more flexible way to achieve this is
to employ a reusable set of general purpose DSP proces-
sors. In general, the real-time requirements will make the
use of a multiprocessor inevitable.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Specification

1

1
Signal Flow Graph

Compilation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1

I

rAigorithmiclm-1

I ~ Application embedded 1
programmable

r 1-1 ASIC Implementation

Figure 2. General structure of GRAPE. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I

GRAPE thus includes a set of tools to partition an appli-
cation in tasks and to assign these tasks to the available
processors. When communicating tasks are assigned
to different processors, GRAPE automatically includes
communication primitives. Simulation of the surround-
ing equipment i s gradually replaced by hardware as pro-
totypes become available. This makes i t possible to
develop and test the environment of the ASIC before
the first silicon becomes available. Finally, the single
specification can be implemented on a general purpose
(multi-)DSP, embedded in a product, or i s compiled to
silicon. The description of the simulator and the silicon
compiler goes beyond the scope of this article on CASE.
More details however can be found in [Schell, respec-
tively [DeMall.

The emulation phase can further be divided in three
sub-phases: algorithmic, bit-true and architecture-true
emulation. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalgorithmic emulation, correctness of the
specification of the algorithm is verified, using an abun-
dant word length for all computations, restricted natu-
rally to the word length of the emulation engine. In a
next step, the influence of restricted word length is ana-
lyzed in the bit-true emulation phase. This i s very im-
portant in order to select target signal processors with
minimal word length or to reduce silicon area on an
ASIC. Finally, the hardware implementation of the algo-
rithm could be checked in the architecture-true emula-
tion phase.

APRIL 1990 IEEE ASSP MAGAZINE 33

Currently, GRAPE contains tools for algorithmic and
bit-true emulation on a parallel computer. The software
tools and the programmable hardware for architecture-
true emulation are in development. This hardware will
consist of a printed circuit board containing an array of
software programmable gate arrays [Anonl] equivalent to
54000 gates, four general purpose DSP processors and up
to 1728 Kbytes of fast static RAM, accessible by the gate
arrays as well as by the DSP processors [Engel, Schol].
When the board i s used for algorithmic or bit-true emula-
tion, the application algorithm will be mapped on the
DSP processors, while the gate arrays will implement a
fast parallel cross-bar between the processors mutually
and between the board and the outside world. When the
board i s used for architecture-true emulation, software
tools w i l l map the application algori thm onto the
gate arrays, to which the DSP processors are attached
as co-processors.

As a case study, section 1 demonstrates briefly the dif-
ferent steps required to develop an ASIC which imple-
ments a digital audio application. This example i s too
simple to justify the development of a high powered tool
like GRAPE but still it can give a clear indication of the dif-
ferent tools that are required. Section 2 presents a dis-
cussion of existing development tools for DSP. From this
overview, it i s clear that none of the available tools can
support the complete design path from specification via
analysis, simulation and emulation up to implementation
on a general purpose multiprocessor or integration on an
ASIC. This was the motivation for the plan to develop
GRAPE as a shell, which integrates existing tools as much
as possible.

The rest of the paper i s devoted to the tools required
for the simulation and emulation process. In the specifi-
cation phase (section 3), the behavior of the application
algorithm is described. This single specification is used as
an input for the simulator, emulator and silicon compiler.
The compilation phase (section 4) generates the code for
the DSP multiprocessor. It includes translation of the
high-level language modules to relocatable assembly
code, assignment of the modules to the processing
nodes, scheduling the modules assigned to a node and
linking them into executable code. In the evaluation
phase (section 5), the user verifies if the algorithm i s satis-
factory, and figures out the minimal word length for each
signal in order to select the cheapest DSP processor or
to reduce the chip area of the ASIC without violating the
frequency domain specifications.

on and off. The graphic equalizer i s realized by 10 cas-
caded second order sections (see 'application' in fig-
ure 3). A top-down design from specifications to an
IC-layout was presented in [VGinll. A programmable sig-
nal processor could also be the target for such an algo-
rithm but in this example, DSPs are only employed as a
vehicle for prototyping. We will briefly step through the
design flow of this example with emphasis on software
tools for improving the design time and quality. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Algorithm Specification, Analysis and Optimization

In a first step, frequency domain specifications such as
cut-off frequencies, stop-band attenuation and pass-band
ripple, constitute the constraints for the transfer func-
tions of the filters. The order of these transfer functions
must be minimal to obtain the cheapest realization with
respect to hardware requirements, while still satisfying
the frequency domain specifications. The next step i s the
synthesis of the filter networks, resulting in a block dia-
gram (or signal flow graph) consisting of adders, delay el-
ements and multipliers. While techniques exist to derive
these functions from their analog equivalents [Oppell,
direct synthesis of the digital filter from specifications i s
available from a number of filter design packages.

The word lengths of coefficients and signals st i l l have
to be minimized from their virtually infinite precision.
The result may influence the selection of the cheapest
DSP-processor or save silicon area on a custom chip.
Therefore, the filter coefficients must be truncated to
minimal word lengths, while still satisfying the frequency
domain specifications. On the other hand, the necessary
signal word length i s determined by finite word length
phenomena such as statistical quantization noise, limit
cycles bounds, and overflow bounds. Therefore, the op-
timal word lengths must be determined. To do this the
designer can use analysis and bit-true simulation tools.

Real-time Emulation

The optimized digital filter algorithm i s in principle
ready for implementation. However, for many applica-
tions a real-time prototype i s required for various rea-
sons: auditive evaluation, proof of concept, marketing
approval, tests with real world stimuli, testing of inter-
faces, etc. Therefore, a bread-boarded prototype, which
can be used for the pre-amplifier functions, in combina-
tion with application specific digital filters for analog to
digital (A/D) and digital to analog (D/A) conversion, i s
necessary. A functional block diagram of such an existing
prototype set-up, i s depicted in figure 3. A better solu-
tion for this real-time emulation is a multiprocessor con-
figuration, consisting of general purpose DSP-chips,
which serves for emulating the audio functions in soft-
ware. Such a reusable set-up saves a lot of design time
compared with application specific bread-boards. A vast
amount of processing power i s also desirable to provide
sufficient experimentation room for additional evaluation

1. DESIGN EXAMPLE: A PRE-AMPLIFIER FOR

DIGITAL AUDIO

As an example of an R&D project in the DSP field,
we consider the design and implementation of a pre-am-
plifier for digital audio. This design consists of a cascade
chain of a first order offset filter, a graphic equalizer
and a third order scratch fi l ter that can be switched zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
34 IEEE ASSP MAGAZINE APRIL 1990

I . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N D I Digital
I Filter - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R

, -
I d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I D/A

’ Digital
Filter , Equalizer ~ Filter ’ , Filter

’ Ofiset ’ Graphic Scratch

,
’

Figure 3. Real-time emulation set-up.

’ - - - - _ - ~ - _ _ - _ _ _ - - - _ - - -
I
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L-,-, I

- - - - - - - .

and emulation features such as bit-true modeling of the
operations, digital signal preparation and post-processing,
over-sampling, distortion analysis, etc.

To use this reusable set-up, code generators, high-level
compilers, and function libraries for the DSP-processor,
operating on top of the existing traditional development
tools are crucial. It i s also desirable that monitoring can
be performed in a digital way, such as the determining
of the signal-to-noise ratio of the filter bank. Monitor-
ing software must be downloadable on the same multi-
processor and serve as virtual instruments. In this way, it
can be avoided that the analog parts, which are often the
least accurate, influence the measurements. O n the
other hand, mixed analog/digital measurements such as
the characterization of the A/D- and D/A-parts, benefit
from a central control by the host. Available instrumenta-
tion packages provide virtual panels and displays for the
host screen. When the application i s programmable such
as the graphic equalizer, also those settings can be con-
trolled through such a panel.

Implementation

Once verified, the algorithm can be targeted to i ts im-
plementation form, a programmable signal processor or
a custom chip. For this example, a customized bit-serial
implementation has been chosen. A silicon compiler,
providing DSP-architecture synthesis on top of general
purpose 1.C.-layout and verification software, has been
used. If the target of the algorithm is a program for a gen-

I
I

1
--- ---

I

eral purpose DSP-processor, a code development tool for
this processor i s necessary.

I I

I I
I I

I +

2. DISCUSSION OF EXISTING DESIGN TOOLS FOR DSP

Many software tools for assisting DSP-designers have
been realized so far. Already in 1979, an important set of
programs has been collected by the DSP-committee of
the ASSP Society and published by IEEE press [Anon21.
Ever since, the list of software systems, programs, sub-
routines and algorithms has been growing fast. It is the
authors’ opinion however, that presently no commer-
cially available integrated CASE tool exists, which covers
the total design flow for DSP. For an assessment of the
state of the art, we will first give an overview of the partial
solutions that are used in the different design phases.
After this summary, we will derive some general trends
for DSP software and suggest a number of desirable
developments.’

Functional Families of DSP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATools

In this section we wil l group the existing software
packages that are used in the different design steps,

Application Control I I
I
I

Instrument Control I I

HOST ‘
I

Program Control

’It i s not the intention of the authors to classify specific tools and
products or to endorse particular houses. The mentioned names of
specific tools are for illustration of the expressed trends only. The
reader i s urged to contact the vendors or research institutions for
up-to-date specifications in this fast moving field. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

35 APRIL 1990 IEEE ASSP MAGAZINE

I - - - _ _ _ _ . _ _ _ _ _ _ I
I I J

1
I

2 ,

conforming to the design flow of the example in sec-
tion 1. Hereby, we wil l emphasize features and evolu-
tions from a user’s viewpoint. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Algorithm specification, analysis and simulation tools

As mentioned in the design example, the tools used
in the algorithm specification, analysis, and simulation
step can be divided in two classes, namely filter de-
sign packages and bit-true simulation tools.

Filter design packages

Tools for digital filter design form perhaps the most
mature group of design tools, as they can rely on a lot
of research results, rooted in systems theory, numeri-
cal analysis, and classical network theory. Software
packages such as from the IEEE [Anon21 for classical
digital filters and FALCON [Gazsll for wave digital fil-
ters are in fact crucial in turning the rather mathemati-
cal digital filter theory into practice for the designers
community. Engineering of these software already re-
sulted in user friendly and integrated synthesis mod-
ules such as in ILS, MatLab [Littl, Mole l l , MATRIX-X
[Shahll, DFDP2, FDAS, and HYPERSIGNAL.

Most of the filter synthesis packages are able to ap-
proximate classical filter structures according to e.g.
butterworth and elliptic characteristics. Approxima-
t ion of more arbitrary frequency responses i s also
possible for magnitude [Steill or for both magnitude
and phase [VdEnll. However, these tools try to ap-
proximate a nominal frequency response. This i s still
reminiscent to analog design practices where design
centering i s desired. Because digital filters are not
subject to aging and wear, filter synthesis tools should
exploit the design margins between upper and lower
l imits i n a tolerance diagram of the frequency re-
sponse. Such techniques are, however, not yet re-
ported to the authors’ knowledge.

Analysis and bit-true simulation tools

A number of software environments exist that allow
for describing DSP algorithms and performing time-
domain simulations, and frequency-domain analysis.
One approach i s block signal oriented. In ILS, for
instance, functions are modeled by separate pro-
grams in sequential languages, such as FORTRAN, op-
erating on blocks of signals. Feedback loops in the
DSP-algorithm must be encapsulated in the programs.
The other approach i s based on a netlist in terms of
DSP primitives such as addition, multiplication, etc. In
this way, arbitrary linear algorithms can be described
wi thout programming (e.g. i n SPW, DSP-DIGEST
[Clael], ODYSSEE [Covi l] , and SILAGE [Hi l f l]) . This
description may contain feedback loops and different
sampling rates (i.e. multirate system).

An environment such as DSP-DIGEST [Clael, Clae21,
which was used in the design example, gives the pos-
sibi l i ty o f op t im iz ing the length o f the f i l te r co-

efficients and determing the min imum number of
nonzero coefficient bits for cheap multiplier-less shift-
and-add operations. In, e.g., DSP-DIGEST and the
SILAGE language for DSP, different word lengths can
be attached to any of the nodes, offering both bit-true
simulation and analysis of quantization noise, over-
flow and limit cycles [Cattl] from the same description.

For nonlinear systems, however, there i s a lack of
direct analysis tools. Therefore, we are restricted
to time-domain verif ication. To get an idea of the
frequency-domain behavior, post-processing al-
go r i t h m s, e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg . F FT, ha r m o n i c d i s t o r t i o n an a1 ys i s
[VPetll and signal statistics, are available.

Traditional plotting tools, which are used to display
the results of the analyses and simulations, are cur-
rently enhanced w i th electronic spreadsheet l ike
mathematical formulae entry (DADiSP, PCI-SNAP). In-
tegration with simulation and analysis tools wil l fur-
ther allow for on-line updates of the displayed curves,
which results in a more interactive operation.

Real-time Emulation Tools

The previous discussion stated that two types of
design tools are desirable for real-time emulation:
a code development system for general-purpose DSP-
processors, and an instrumentation package.

Code development systems for general purpose
DSP-processors

As in the microprocessor world, the manufacturers
of chips and boards make available sets of low-level
development tools: assemblers, simulators and de-
buggers. Time associated with the tedious assembly
language programming can be saved by automatic
generation of assembly code. This i s provided by filter
synthesis programs such as FDAS, HYPERSIGNAL, and
FALCON. This can result in rather efficient code, be-
cause the block diagram i s known in advance. An-
other way to save time, i s the use o f a high-level
language. Recently, C-compilers became available
from several DSP-chip vendors. Compilers for the
SILAGE language are discussed in [Genil l and, for bit-
true compilation, in this paper. The latter i s especially
suited for fast prototyping. A retargetable MoDL com-
piler i s described in [Jacoll.

Programming time can also be saved by automating
services such as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI/O, file-handling, memory allocation
and multi-tasking. A tool as SPOX is intended to mask
those implementation details from the user by creating
a ”virtual DSP” model on both the host and the real-
time hardware, in combination with a mathematical
C-macro library.

Instrumentation packages
During the emulation, interfacing with external in-

struments i s useful for the analysis of real world data
and combined digital and analog measurements

[Small]. Tools such as ASYST and SPW provide inter-
faces with GPIB-based measurement setups. In addi-
tion, virtual front panels and displays can be emulated
on personal computers by packages such as LabView,
TestTeam and PCI. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Implementation level tools

For the implementation of the algorithm, two possi-
bilities exist. First, it can be realized on a general pur-
pose DSP-processor. Hereby, the code development
systems can be used, that were already discussed in
the previous paragraph. Second, the algorithm can
lead to an IC-layout. Therefore, a silicon compiler i s
needed.

Silicon compilers

Provided a sufficiently large market o r stringent
throughput o r size requirements, the DSP-design
will be targeted to a semi-custom or full custom 1.C.-
implementation. Silicon compilers specialized for DSP
that assist in the layout and/or hardware architecture
synthesis have been developed: (i) FIRST [Denyll and
CATHEDRAL-I [Jainl l for hardwired bit-serial imple-
mentation, (i i) LAGER [Popel l and CATHEDRAL-II
[DeMal l for microcoded bit-parallel implementa-
tion and (iii) CATHEDRAL-Ill [Notel l in development
for hardwired bit-paral lel implementat ion. Such
CAD-systems are now gradually being introduced for
production use in the industry [e.g. Dela l l and wil l
soon play a crucial role for the design of time critical
applications.

Because of the overhead in the compiled results of
these early tools, it may be s t i l l a matter o f two to
four years before top-down DSP-compilers for cus-
tomized silicon wil l be used for the majority of high
volume designs which are critical in terms of perfor-
mance or silicon area.

Trends and Requirements

From the previous discussion, we can conclude that
the current DSP design tools are insufficient to offer a
user-friendly design environment:

Filter design packages are lagging behind the devel-
opment of the theory; most of the currently available
one-dimensional filter synthesis packages are shells
around programs with a functionality comparable
with the IEEE programs [Anon21. Meanwhile how-
ever, new one-dimensional filter structures have
been invented such as wave digital filters [Fettl], LDI
filters [Brutl] as well as novel filter banks [Vaydl].
Also, adaptive filters have been extensively studied
and the field of multidimensional filtering i s growing
rapidly as well. In automatic tools, however, little of
this theory i s available.
Simulations nowadays require extremely long simula-
tion times. Times in the order of one week or even
more on supermini computers or engineering work-

~

I .

stations are no exception in industry. This i s espe-
cially true with highly over-sampled systems or
analog interfaces. Also, when listening tests are re-
quired for evaluation of an algorithm, many opera-
tions have to be performed for a few seconds of
audio or video.
Emulation is only possible by the expensive and time
consuming method of bread-boarding the system.
Neither the software nor the hardware for a reusable
emulation set-up are available.
The implementation of the algorithm requires assem-
bly language programming or manual IC design.
The different design-tools are only partial solutions.
No integrated CASE tool that covers the total design
flow for DSP i s available.

Nowadays, however, a number of trends can be observed,
which promise improvements in this situation:

Filter design packages that support the automatic de-
sign of new filter types are emerging, e.g. FALCON
for wave digital filters.
New hardware accelerators that turn slow hosts into
powerful DSP-workstations, are becoming available
as uniprocessor plug-in boards and multi-processors
are being worked out [Engel, Enge2, Kok.11.
Manual coding for DSP-processors is being replaced
by corn pi lat ion from high-level descriptions.
Integrated tools that blend existing and new tools
into larger design tools are becoming available. This
was demonstrated with CATHEDRAL-I [Jainll, which
resulted in an automated path from frequency do-
main filter specifications to silicon layout.

To come to a user-friendly DSP design environment,
however, some future improvements will be necessary:

The designer experience and DSP theory must also
be captured in synthesis and optimization tools. This
must lead to the automatic design of digital filters
from arbitrary specifications expressed in a tolerance
diagram and to the algorithm synthesis for non-linear
functions.
The code-generation tools for general-purpose DSP-
processors must further be improved by optimizing
the code generators and compilers. Hereby, bit-true
compilers need some special attention. Also, parallel
processing support for multi-DSP-processors must be
worked out.
The different tools must be integrated in an exten-
sible CASE system with standard representation,
languages, libraries and interfaces.

In the sequel, an experimental version of an integrated
system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis presented as example: the CASE tool GRAPE for
DSP, in development for a personal computer environ-
ment. While combining as much as possible available
programs, the original developments within GRAPE are
concentrating mainly on hitherto missing topics in DSP
tool systems related with graphical programming, bit-true
emulation and parallel processing support.

APRIL 1990 IEEE ASSP MAGAZINE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA37 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
l ' l -

I . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3. SPECIFICATION OF DSP ALGORITHMS

Specification languages for DSP algorithms may be di-
vided in three sub-classes: sequential languages, func-
tional languages and graphical techniques [Lauwll (see
also the box on 'Languages for DSP multiprocessors').

The use of a conventional sequential language (C, For-
tran, Pascal,. . .) may seem the most obvious approach
due to i t s widespread use, to the availability of compilers
for almost all target processors and to the large libraries
with useful modules that already exist. However, both
the ASIC implementation as well as the emulation on a
DSP multiprocessor allow for the concurrent execution
of multiple tasks. Sequential languages mask the inher-
ent parallelism of the application. A parallelizing com-
piler is thus needed to extract the data dependency
graph out of the sequential program description [Whitl].
The construction of such a compiler i s a very complex
task and, up to now, they are only able to find part of the
implicit parallelism in the program [Colll].

To be able to extract the data dependency graph auto-
matically by a compiler out of a textual representation of
a program, we need a high-level language which forbids
the use of constructs masking or introducing data depen-
dencies not implied by the program itself. In short, we
need a language that textually describes the data depen-
dency graph. Functional languages possess this property
[Agerl, Davill. Silage, for example, i s a functional lan-
guage that has been designed specifically to describe
DSP applications [Hilf l l . One of its distinct features i s that
it allows the user to specify the word length of each sig-
nal. Maybe the only drawback of functional languages is
that they st i l l represent the program as a sequential list of
statements, although the order in which the statements
occur i s irrelevant. Indeed, execution order is completely
determined by the data dependencies.

The third method i s the use of graphical techniques,
where the data dependency graphs are directly drawn by
the system designers. This technique closely resembles
the intuitive way they look at the application and think
about its behavior. This is especially true for DSP applica-
tions where system designers are already used to devel-
oping signal flow graphs or block diagrams [Lee.ll. As a
consequence, some graphical systems for programming
DSP algorithms already exist. Texas Instruments, for in-
stance, offers a graphical environment for programming
their Odyssee system, a multiprocessor built up of sev-
eral digital signal processors of the TMS320xx family
[Covil]. Their graphs represent the z-transform diagrams
of the filter algorithms to be implemented. Another ex-
ample i s an internal experiment at Hewlett-Packard,
where graphical tools for drawing Nassi-Schneidermann
diagrams were offered to various programming pools
[Dea.l]. These systems showed, however, that at the low-
est level of detail, graphical programming becomes
clumsy and dreadful.

From this overview it is clear that a mixed graphical and
textual representation of the algorithm is desirable. On
the highest levels in programming hierarchy the signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
38 iEEE ASSP MAGAZINE APRIL 1990

A first class of languages for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADSP
is formed by the conventional sequ

(Fortran, Pascal, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, . . .) originally deve
Neumann uniprocessors [Goldll. Th
common property that instructions are
same way as they will be executed on
cessor. During execution, a program
through the l i s t of instructions by sim

not execute an instruction of which one
i s not yet computed (e.g.
most common method fo

constructs a data dependency gra
The nodes of a data dependency
structions; the edges indicate t
between an instruction that prod
a consuming instruction which n

on the screen and to use thi
as the programming language
graphical programs i s that th

ism and the other to express the sequ

of these graphical progr
natural conservatism of

flow graphs for representing their al

_-
- 1'1

I . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

flow can be represented graphically. This facilitates the
compilation towards a multi-DSP processor. On the low-
est levels of detail a textual representation avoids clumsy
graphics and enables the reuse of the rich software li-
braries, which are already available for DSP. Therefore,
the specification tools of GRAPE support the three types
of specification languages. On the highest levels of de-
tail, the signal flow graph is graphically represented by
interconnected black boxes. These black boxes may be
gradually refined to obtain a hierarchically constructed
program tree. The lower level black boxes-the leaves of
the program tree-are described in a sequential or func-
tional textual language (Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) . The sequential lan-
guages C and assembly as well as the functional language
Silage are currently supported. Since the point for
switching from graphical to textual programming can be
chosen freely by the user, pure graphical or pure textual
specifications are possible.

To avoid the need to specify the same data more than
once during the top-down design of the application, the
CASE tool has to provide following properties:

Hierarchical top-down design in the graphical repre-
sentation i s supported: clicking with the mouse on
one of the black boxes opens a separate drawing win-
dow for that box in which the signal flow graph can
be refined. All information the editor possesses about
the black box i s automatically inherited by the lower
level representation: number of input and output sig-
nals, their name, data type, word length, data rate, etc.
Extensive cross checking i s provided to maintain con-
sistency between all levels of representation and all
instances of the same DSP task, so that changes made
in one representation are automatically reflected in
the others.
When a (language-sensitive) text editor i s called to fill
in a black box in some textual language, the program
structure and the type declarations for all incoming
and outgoing signals can be generated in the lan-
guage of the users’ choice. Here too, cross-checking
is required to maintain consistency between the tex-
tual and graphical representation of the DSP task.

A few additional tools are necessary to enhance the use-
fulness of the specification tool:

Library toolkit. The break-through of ASIC’s has been
made possible by the so-called ’meet-in-the-middle’

design philosophy where a number of parametrical
standard building blocks, thoroughly tested and care-
fully optimized, are presented to the system de-
signer. This same ’meet-in-the-middle’ philosophy
may be employed beneficially in our programming
environment by providing the programmer with a li-
brary of thoroughly tested and carefully optimized
program segments, which he may include in his pro-
gram as a black box. This black box can contain either
a textual, a graphical representation or a complete hi-
erarchical mixed graphical and textual program.

Code generator. A code generator i s available for
modules that implement a digital filter; after the speci-
fication of some parameters including filter type, pass-
band and stop-band ripple and frequency, the filter
coefficients are computed and assembly language
source code i s generated.
/con editor. Instead of writing the abstract name of
the routine in the box representing the task (Fig-
ure sa), it i s often more meaningful to fill the box
with an icon as depicted in Figure 5b. An icon editor
has been included to assist the user in creating mean-
ingful icons for frequently used DSP tasks.
Property definitions. Properties may be assigned to
any instance of a DSP task in the form of attributes
and to any signal channel. They include data rates,
word lengths, real-time constraints, etc. Special pro-
visions have been made to indicate parameters that
may be changed during execution of the program. It
instructs the compiler to keep track of the memory
addresses where these parameters are stored in the
target machine. During program execution, it becomes
possible to change a parameter (ex. pass-band fre-
quency, amplification, etc.) by just clicking with the
mouse on the high-level representation of the module.

I I

l t - I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI

APRIL 1990 IEEE ASSP MAGAZINE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA39

I .

All together, the utilities of the specification tool make it
possible to describe an application easily and accurately.
The single specification can then be used as an input for
the simulator, the emulator or the silicon compiler, pro-
vided Silage i s used for the textual parts. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. COMPILATION FOR A DSP MULTIPROCESSOR

EMULATION FACILITY

Once the modular specification for a given application
has been completed, GRAPE provides for tools to transform
this DSP algorithm into executable code for the available
DSP multiprocessor architecture.

In a first step, each of the modules specified in a high-
level language is translated into relocatable assembly
code. Currently, GRAPE supports the translation of speci-
fications in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC and SILAGE.

The next step i s of particular importance, whenever real-
time emulation is required. Using estimates of the compu-
tation time for each module (extracted by examining the
assembly language representation of the modules) and of
the inter-module communication requirements, the parti-
tioner assigns the modules to the available hardware
resources in order to minimize the interprocessor com-
munication. Note that the partitioner has specifically
been included in GRAPE to support parallel processing.
The tool can be bypassed when code is generated for a
uniprocessor.

The next step in the transformation provides for appro-
priate scheduling of the tasks assigned to a single pro-
cessing node in the previous step. Besides determining
the order in which the tasks assigned to a node have to
be executed-this i s done by examining the data depen-
dency graph-the scheduler adds communication mod-
ules to control the ADCs and DACs and to establish
interprocessor communication. Scheduling is followed
by a post-optimization step that optimizes the use of the
internal processor registers by analyzing the life-time of
the variables.

Finally, the individual (relocatable) assembly language
modules for each of the processing nodes, are linked to-
gether, resulting in the executable code for each of the
available processors. In the remainder of this section, the
design of a bit-true compiler for the applicative language
SILAGE i s discussed in more detail. Currently, the com-
piler produces code for the Motorola 56001 DSP processor
[Anon31. The description of other optimizing compilers
for general purpose signal processing may be found in
[Genill and [Jacoll.

A straightforward- but time consuming-approach to
the generation of bit-true code would be to provide an
appropriate mask for the result of each computation per-
formed in the generated code. In the compiler described
above, a special technique has been applied based on an
appropriate representation of the numeric data in the
generated program, i.e. by cleverly placing the data in
the internal accumulator of the DSP processor, we can
avoid the extra overhead required for masking the result

of a bit-true computation. Additional instructions ensur-
ing bit-true computation are only incorporated in the
assembler program; at the moment an explicit type-
conversion-i.e., a change in data word length-is per-
formed in the corresponding Silage program.

5. VERIFICATION O F THE DSP ALGORITHM

At this point the algorithm that must be emulated has
been specified and compiled (bit-true or not) for a DSP
multiprocessor. The only task left for GRAPE i s to provide
tools to verify if the algorithm itself i s satisfactory and to
verify, e.g., the minimal word length for each signal in or-
der to reduce the chip area of the ASIC without violating
the distortion specifications.

This verification may cover a number of aspects:

Verification of the correctness of the developed algo-
rithm (algorithmic emulation). Typically, all the corn-
putations in this step are performed using an abundant
word length.
Investigation of the influence of a restricted word
length (bit-true emulation). In this step, all the corn-
putations in the emulated algorithm are performed
with a restricted word length.
Verification of the real-time behavior of the given al-
gorithm (real-time emulation).
Verif icat ion of the hardware implementat ion
(architecture-true emulation).

To accomplish these verification tasks, the user must

apply signals to the emulator and to control their
characteristics;
measure the output signals coming from the emula-
tor, to gather statistics of these signals and to corn-
pare them with the specifications;

be able to

change parameters of the emulated algorithm.

Three special tools are being integrated in the graphi-
cal programming environment GRAPE to accomplish these
verification tasks:

From within GRAPE, wave-form generators and mea-
suring instruments are directly controlled. The set-
tings of these instruments are manipulated via pop-up
front panels and are communicated to them via an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I EEE-488 interface bus.
A software library of virtual instruments such as
wave-form generators, spectrum analyzers, data log-
gers, distortion analyzers, etc. i s available. Indeed,
instead of employing separate measuring instru-
ments, it is possible, depending on the signal data
rate, to program their function in software and im-
plement these measuring modules together with the
applicatilon algorithm on the same multiprocessor
system. Also, for these virtual instruments, pop-up
front panels are used for controlling their parameters.
It i s possible to design pop-up front panels for the
application algorithm that runs on the multiproces-

I .

sor. For example, a front panel may be designed for
a digital amplifier that mimics a linear potentiometer.
Using these front panels, the user can interactively
change the parameters of the algorithm and verify
their effect in real-time. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

CONCLUSION

This article discussed the usefulness of CASE tools for
the design and implementation of stream-oriented real-
time DSP applications. The design process of a typical
DSP ASIC was analyzed and an indication was given of
the development tools that could speed-up the project or
improve i t s quality. A systematic overview of existing de-
velopment tools was presented next. From this overview,
it i s clear that no CASE tool exists which covers the whole
design process starting from specification via analysis,
simulation and real-time emulation up to implementation
on a general purpose programmable DSP multiprocessor
or integration on silicon. The article then presented the
CASE tool GRAPE that aims at filling this gap. This can be
achieved by using state-of-the-art techniques for graphi-
cal programming, for the code generator, the bit-true
compiler, the multiprocessor partitioner, the scheduler,
the virtual instrument controller and the silicon compiler.
In the near future, GRAPE will be enhanced with tools to
enable architecture-true emulation of an ASIC on an ar-
ray of programmable gate arrays.

REFERENCES

[Ackell W. Ackerman, “Data Flow Languages,” Com-
puter, Feb. 1982, pp. 15-25.

[Agerl] Agerwala T., Arvind, ”Data Flow Systems. Guest
Editors’ Introduction,” Computer, Feb. 1982, pp. 10-13.

IAho.11 A. Aho, R. Sethi and J. Ullman, “Compilers: Prin-
ciples, Techniques and Tools,” Addison-Wesley Publ.
Co., 1986.

[Anonll Anonymous, “PGA Data Book,” Advanced Micro
Devices, 1988.

[Anon21 Anonymous, ”Programs for digital signal pro-
cessing,” Digital Signal Processing Committee, /€€€
Press, 1979.

[Anon31 Anonymous, “Motoro la DSP56000, user’s
guide,“ Motorola Inc., 1986.

[Brut] L. T. Bruton, ”Low sensitivity digital ladder filters,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I € € € Transactions on Circuits and Systems, vol. CAS-22,

[Cattl] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. Catthoor, Hugo De Man, and J . Vandewalle,
“Simulated-annealing based optimization of coefficient
and data word lengths in digital filters,” lnternational
lournal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Circuit Theory and Design, vol. 16, 1988.

[Caral] M.G. Carasso, J. B. H. Peek and J. P. Sinjou, ”The
compact disc digital audio system,” Philips Technical
Review, vol. 40, no. 6, pp. 151-155, 1982.

[Clael] L. Claesen, F. Catthoor, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. De Man, J. Vande-
walle, S. Note and K. Mertens, “A CAD environment
for the thorough analysis, simulation and characteriza-
tion of VLSl implementable DSP systems,” Proceedings

pp. 168-176,1986.

O f I€€€-lCCD’86, pp. 72-75, Oct. 1986.
[Clae21 L. Claesen e.a., ”DIGEST: a digital filter evalu-

ation and simulation tool for MOSVLSI filter implemen-
tations,” I € € € Journal of Solid-state Circuits, vol. SC-19,
no. 3, June 1984.

[Coll l l Collesidis R., Dutton T., Fisher J., Metcalf W.,
“ Co n t r o I of m u It i p r o ce s s o r S PS - 1 000 con f i g u rat i o n s
using principles of data flow architecture,” Signal Pro-
cessing Systems Inc., 223 Crescent Street, Waltham,
Massachussetts 02154, USA.

[Covill C. Covington et al., “Multiple digital signal pro-
cessing environment for intelligent signal processing,”
Internal Report of the Speech and Image Understand-
ing Laboratory, Computer Science Centre, Texas In-
struments, 1987.

Davill Davis A., Keller R., “Data flow program graphs,”
Cornputer, Feb. 1982, pp. 26-30.

Dea.11 R. Dea, V. D’Angelo, “P-Pods: A software graphi-
cal design tool,” Hewlett-Packard Journal, March 1986,

[Delall A. Delaruelle, “Design of a syndrome generator
chip using the PIRAMID design system,” Digest of
Techn. Papers, ESSCIRC‘88, Sept. 1988.

[DeMal l H. De Man, J . Rabaey, P. Six, L. Claesen,
“Cathedral-ll: A silicon compiler for digital signal pro-
cessing,” /€€€ Design & Test, Dec. 1986, pp. 13-25.

[Denyl l P.D. Denyer, D. Renshaw, N. Bergmann, “A
silicon compiler for VLSl signal processors,” Digest
o f tech. papers. ESSCIRC’82, (Brussels, Belgium),
pp. 215-218, Sept. 1982.

[Engell M. Engels, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Lauwereins, J. Van Ginderdeuren,
”Concept and implementation of a powerful multipro-
cessor system for digital signal processing,” lnternal
Report KUL-€SAT 7989, Jan. 1989.

[Enge2] M. Engels, R. Lauwereins, J. Peperstraete,
“Analysis of Interconnection networks for a multipro-
cessor DSP simulator,” Int. Symp. on Mini- and Micro-
computers and their Applications, Zurich, Switzerland,
June 26-29,1989.

[Fettl] A. Fettweis, ”Wave digital filters: theory and prac-
tice,” Proc. I € € € , vol. 74, no. 2, pp. 270-327, Feb. 1986.

[Gazsl] L. Gazsi, “Explicit formulae for lattice wave
digital filters,” I € € € Trans. Circuits and Systems, vol.
CAS-32, pp. 68-88, Jan. 1985.

[Gen i l] D . Genin, J . D e Moorte l , D . Desmet and
E. Van de Velde, “System design, optimization and in-
telligent code generation for standard digital signal
processors,“ Proceedings ISCAS‘89, pp. 565-569, May
1989.

[Goldl] H. Goldstine, J. Von Neumann, “On the prin-
ciples of large computing machines,” unpublished pa-
per (7946), included in John von Neumann: Collected
Works, Ed. Taub A., Design of Computers, Theory of
Automata and Numerical Analysis, Pergamon Press,
vol. V, 1963, pp. 1-32.

[Hi l f l] P. Hilfinger, “A high-level language and silicon
compiler for digital signal processing,” Proc. / € € E ClCC
Conf., May 1985, pp. 213-216.

pp. 32-35.

I .

[Ho. .~] Wai H. Ho, Edward A. Lee, David zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. Messer-
schmitt, “High level data flow programming for digital
signal processing,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVLSI Signal Processing 111, IEEE
Press, Nov. 1988, pp. 385-395.

[Howell C. Howe, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. Moxon, “How to program parallel
processors,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/E€€ Spectrum, Sept. 1987, pp. 36-41.

[Jacoll zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. Jacobs, “A microcode generator in MoDL for
the pPD7720 digital signal processor,” Technical Re-
port 87C074, University of Twente, The Netherlands,
1987.

[Jainll R. Jain e.a., ”Custom design of a VLSl PCM-FDM
transmultiplexer from system specifications to circuit
layout using a computer-aided design system,“ / € E €
JSSC, vol. SC-21, Feb. 1986.

iKok.11 W. Kok, A. Yeung, P. Hoang, J . Rabaey, “A
multiprocessor system for DSP behavioral simulation,’,
VLSl Signal Processing 111, IEEE Press, 1988, pp. 295-306.

[Lauwll R. Lauwereins, “Design of an argument f low
parallel computer: f rom program prganization to
multiprocessor architecture,” Ph.D. Diss., KUL-ESAT,
Feb. 1989.

[Lee.ll E. A. Lee, D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. Messerschmitt, ”Pipeline inter-
leaved programmable DSP’s: synchronous data flow
programming,” / E € € Trans. on Acoustics, Speech &
Signal Processing, vol. ASSP-35, no. 9, Sept. 1987,
pp. 1334-1345.

[Littll I . N. Little, “PC-MATLAB, user’s guide,” The Math-
Works, Inc., 158 Woodland SL., Sharborn, MA 01770.

[Mole l l C. Moler, “MATLAB user’s guide,” Dept. of
Computer Science, University of New Mexico, 1980.

[N o t e l l S. Note, J . Van Meerbergen, F. Catthoor,
H. De Man, ”Automated synthesis o f a high speed
CORDIC algorithm with the CATHEDRAL-Ill compila-
tion system,“ Proceedings IEEE lSCAS’88, June 1988.

[Oppell A.V. Oppenheim and R. W. Shafer, “Digital sig-
nal processing,” Prentice Hall Inc., New Jersey, 1975.

[Popell S. Pope, J. Rabaey and R. W. Brodersen, ”Auto-
mated design of signal processors using macrocells,”
VLSl Signal Processing, IEEE Press, pp. 239-251,1984.

[Schell C. Scheers, “User manual for the S2C Silage to C
Compiler,” lnternal Report, IMEC, Leuven, Belgium,
Nov. 1988.

[Scholl K. Schoofs, Ch. Verheirstraeten, ”Design and im-
plementation of a flexible DSP multiprocessor board
using programmable gate arrays,” M.Sc. Diss., KUL-
ESAT Sept. 1989 (in Dutch).

[Shahll S. Shah e.a., ”MATRIXx: A model building, non-
linear simulation and control design program,” in
Computer-Aided Control Systems Engineering (M.
Jamshidi e.a eds.), North-Holland Publishing, pp. 181-
207,1985.

[Small] C. H. Small, ”Virtual instruments,’’ EDN, pp. 121-
128, Sept. 1988.

[Steill K. Steiglitz, “Computer-aided design of recursive
digital filters,” / E € € Trans. Audio Electroacoustics, vol.
AU-18, pp. 123-129, June 1970.

[Trelll P. Treleaven, I. Gouveia Lima, “Fifth generation
computers,‘’ Computer Physics Communications,

North Holland Publishing Company, vol. 26, 1982,

[Vaydl] P. P. Vaidyanathan, “A tutorial on multirate digital
filter banks,” Proceedings ISCAS’88, pp. 2241-2248.

[VGinl] J . Van Ginderdeuren, H. De Man, B. De Loore,
H. Vanden Wijngaert, A. Delaruelle, C . Van Den
Audenaerde, “A High Quality Digital Audio Filter Set
Designed by Silicon Compiler CATHEDRAL-I ,I’ Journal
of Solid-state Circuits, vol. SC-21 , pp. 1062-1075,
Dec. 1986.

[VPetll P. Van Petegem, P. Vandeloo and W. Sansen, “Ef-
ficient least-mean-squares algorithm performs audio
distortion analysis on sampled waveform,” Proceedings
of 75th AES Convention, Paris, March 1984.

[VdEnl] A. W. M. van den Enden and G.A. L. Leenknegt,
“Design of optimal I IR filters with arbitrary amplitude
and phase requirements,“ Philips Research Internal Re-
port zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6090, 1986.

[Whitl] Whitelock P., “A conventional language for data
flow computation,” M.Sc. Diss., Department of Com-
puter Science, University of Manchester, UK, Oct. 1978.

pp. 277-283.

Rudy Lauwereins received the degree in elec-
trical engineering from the Katholieke Univer-
siteit Leuven in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1983 and a Ph.D. in Applied
Sciences in February 1989. He i s currently a
senior research assistant at the ESAT labora-
tory of the Katholieke Universiteit Leuven in
Belgium. His main research interest i s the
large domain of parallel processing, includ-
ing fault-tolerant computations and real-time
signal processing. His work is sponsored by

the Belgian National Fund for Scientific Research.

~

Marc Engels received the electrical engineer-
ing degree from the Katholieke Universiteit
Leuven in Belgium in 1988. He joined the
ESAT laboratory as a research assistant, where
he is currently working towards a Ph.D. de-
gree. His main activity i s the design of recon-
figurable multiprocessor networks; he i s also
involved in the development of a case tool
for these multiprocessors. His work i s spon-
sored by the Belgian Institute for Scientific

Research in Industry and Agriculture.

Jean Peperstraete received the degree in Elec-
trical Engineering, Industrial Engineering and
a Ph.D. from the Katholieke Universiteit Leu-
ven, Belgium, in 1964, 1968 and 1973 respec-
tively. He was a design engineer and group
leader at Philips Industries and is now Profes-
sor of Digital Electronic Systems at the Katho-
lieke Universiteit Leuven. His areas of interest
include Computer Architectures, Transput-
ers, data flow and parallel computers.

I . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Eric Steegmans has been the first assistant at
the Computer Science Department of the
Katholieke Universiteit Leuven since Octo-
ber 1985. His research activities include com-
piler construction, formal specifications and
software engineering techniques. He lec-
tures on software engineering, database
management and artificial intelligence in
postgraduate courses at the Katholieke Uni-
versiteit Leuven and Limburg, U.C. Both his

engineering degrees in Computer Sciences (1978) and his Ph.D. are
from the Katholieke Universiteit Leuven. From 1978 to 1985 he was
engaged in several research projects at the Computer Science De-
partment of the Katholieke Universiteit Leuven.

johan Van Cinderdeuren received the electri-
cal engineering degree from the Katholieke
Universiteit Leuven, Belgium, in 1980. During
the summer of 1980, he was on leave at
Philips Research Laboratories, Eindhoven,
The Netherlands. From autumn 1980 to 1983
he obtained an IWONL grant that allowed
him to work as a research assistant at the
ESAT Laboratory of the Katholieke Uni -
versiteit Leuven. In 1983 he was appointed as

research assistant under the ESPRIT 97 (Advanced Algor.ithms and
Architectures for DSP) project on the CATHEDRAL system at the
Katholieke Universiteit Leuven and the Inter-University Micro Elec-
tronics Center (IMEC), Leuven, respectively. In 1986, he joined
Philips Industrial Activities in Leuven, Belgium. His current interests
are in computer-aided design and 1.C.-implementations strategies
for DSP, which he has applied in several digital audio applications.
He i s also leading a campus-liaison group of PHILIPS stationed at
IMEC.

TRADEMARKS

I LS

MATRl X-X

DFDP2

FDAS

HY PERS IGNAL
s PW

PC I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-S NAP
DADISP

S P O X

ASYST

TESTTEAM
LABVIEW

i s a trademark of Signal Technology,
Inc.
is a trademark of Integrated Systems,
Inc.
is a trademark of Atlanta Signal Pro-
cessors, Inc.
i s a trademark of Momentum Data
Systems
i s a trademark of Hyperception, Inc.
is a trademark of Comdisco Systems,
Inc.
i s a trademark of Siemens
is a trademark of DSP Development
Corporation
i s a trademark of Spectron M ic ro
Systems
is a trademark of Asyst Software Tech-
nologies, Inc.
i s a trademark of Philips-Fluke
is a trademark of National Instruments
Co rporat ion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

NEURAL NETWORKS
1989

8 New Tutorial Videotapes
presented by

IEEE's Educational Activities Board
in Cooperation with the

IEEE Neural Network Committee

ADAPIlVE PA'ITERN RECOGNITION - Lton Cooper
NEUROBIOLOGY REVIEW - 1989 -Walter Freeman
ADAPTIVE SENSORY - MOTOR CONTROL -
Stephen Grossberg
NEURAL NETWORKS: ALGORITHMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND
MICROHARDWARE! -John Hopfield
VLSI TECHNOLOGY AND NEURAL NETWORK
CHIPS - Lawrence Jackel
OPTICAL NEUROCOMPUTERS - 1989 - Demetri Psaltis
SARTING A HI-TECH COMPANY - Peter Wallace
REINFORCEMENT LEARNING - Ronald Williams

For more information, call IEEE,
Educational Activities at (201) 562-5499,
or write IEEE, Educational Activities
445 Hoes Lane, PO Box 1331
Piscataway, NJ 08855-1331.

Introduction to

DIGITAL SPEECH
PROCESSING

Developed by Andrew Sekey I
A smooth transition from the fundamentals of
speech production to modern applications!

IEEE MEMBER PRICE $249.00, List Price zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$695.00

ILP includes study guide, audiotape, textbook, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADigital
Processing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Speech Signals, Lawrence R. Rabiner
and Ronald W. Schafer, Prentice-Hall, 1978, and an
IEEE Press Book, Speech Analysis, ed. Ronald W.
Schafer and John D. Markel, IEEE, 1979.

For more information call: ---
(201) 562-5498, or write

\
. - --
. \ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e- 1, '\ \ ' '
---\ '1 '\ \\
-.\

Theresa M. Kirby \ \ \ '\ i
Educational Activities U' \ 1

I \ ' \ t
P.O. IEEE Box 1331 \ I \ ! !
445 Hoes Lane
Piscataway, NJ 08855-1331

' 1 ; ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
/ I I

APRIL 1990 IEEE ASSP MAGAZINE 43

