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Anthracnose, brown spot, mites, black rot, downy mildew, and leaf blight are six common

grape leaf pests and diseases, which cause severe economic losses to the grape industry.

Timely diagnosis and accurate identification of grape leaf diseases are decisive for

controlling the spread of disease and ensuring the healthy development of the grape

industry. This paper proposes a novel recognition approach that is based on improved

convolutional neural networks for the diagnoses of grape leaf diseases. First, based on

4,023 images collected in the field and 3,646 images collected from public data sets, a

data set of 107,366 grape leaf images is generated via image enhancement techniques.

Afterward, Inception structure is applied for strengthening the performance of multi-

dimensional feature extraction. In addition, a dense connectivity strategy is introduced to

encourage feature reuse and strengthen feature propagation. Ultimately, a novel CNN-

based model, namely, DICNN, is built and trained from scratch. It realizes an overall

accuracy of 97.22% under the hold-out test set. Compared to GoogLeNet and ResNet-

34, the recognition accuracy increases by 2.97% and 2.55%, respectively. The

experimental results demonstrate that the proposed model can efficiently recognize

grape leaf diseases. Meanwhile, this study explores a new approach for the rapid and

accurate diagnosis of plant diseases that establishes a theoretical foundation for the

application of deep learning in the field of agricultural information.

Keywords: grape leaf diseases, convolutional neural networks, deep learning, image augmentation,

disease identification

INTRODUCTION

The grape industry is one of the major fruit industries in China, and the total output of grapes

reached 13.083 million tons in 2017. However, diseases in grape leaves have hindered the

development of the grape industry and caused significant economic losses. Hence, the

identification and diagnosis of grape leaf diseases have received extensive attention from orchard
workers and experts on disease and pest control.
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The current approaches for disease detection are based

mainly on visual recognition. However, it not only is visual

recognition a time-consuming and laborious task, but the

recognition accuracy does not satisfy the requirement (Dutot

et al., 2013). The resulting erroneous diagnosis will lead to the

abuse of pesticides, which will destroy the growth environment
of the grapes and damage the quality of the fruit. Hence, various

spectroscopy techniques have been widely applied in plant

disease diagnosis and monitoring. However, the requirement of

bulky sensors and precise instruments leads to low efficiency and

high cost (Mahlein et al., 2013; Lin et al., 2014). With the

development of computer vision technique, researchers have
proposed some plant disease recognition algorithms based on

machine learning methods (Waghmare et al., 2016; Ali et al.,

2017; Hamuda et al., 2017; Akbarzadeh et al., 2018; Griffel et al.,

2018; Sharif et al., 2018; Kaur et al., 2019; Khan et al., 2019; Kour

and Arora, 2019; Liu et al., 2019; Wang et al., 2019; Zhu et al.,

2019; Mohammadpoor et al., 2020). However, the classification
features in these approaches are selected based on human

experience, which limits the generalizability of the models and the

accuracies of these models are still not satisfy the recognition

requirement. In contrast, convolutional neural network (CNN)

can effectively avoid complex image pre-processing and employ

shared weights to reduce memory consumption. CNN is still

considered to be one of the optimal algorithms for pattern
recognition tasks. Thus, using CNNs to identify early plant

diseases has become a research focus of agricultural

informatization. In (Mohanty et al., 2016; Zhang and Wang,

2016; Lu J. et al., 2017; Lu Y. et al., 2017; Khan et al., 2018; Liu

et al., 2018; Geetharamani and Pandian, 2019; Ji et al., 2019; Jiang

et al., 2019; Liang et al., 2019; Oppenheim et al., 2019; Pu et al., 2019;
Ramcharan et al., 2019; Wagh et al., 2019; Zhang et al., 2019a;

Zhang et al., 2019b; ), CNNs are extensively studied and applied to

the diagnosis of plant diseases. According to these studies, CNNs

can learn advanced robust features of diseases directly from original

images rather than selecting or extracting features manually, which

outperform the traditional feature extraction approaches.

In this paper, an innovative recognition approach for grape
leaf diseases based on CNNs is presented. This approach aims at

overcoming two main challenges: First, CNN models require a

large amount of data for training. However, each grape leaf

disease appears in different time period, and the time for

collecting disease images is limited. Thus, there are not

sufficient diseased grape leaf images for the model’s training.
Second, the task offine-grained image classification for grape leaf

diseases is challenging, and models that are trained via transfer

learning have difficultly realizing satisfactory performance.

Therefore, the design of the optimal CNN structure for

recognition grape leaf diseases is a daunting task.

The innovation of the paper lies in the application of the

improved CNN algorithm for grape leaf disease recognition and
the main contributions and innovations of this paper are

summarized as follows:

• A grape leaf disease data set is established and lays an essential

foundation for the generalization of the model. First, to

enhance the robustness of the model, images of diseased

grape leaves with complex and uniform backgrounds are

collected. In addition, to alleviate the overfitting phenomenon

of the model, the original diseased grape leaf images are

processed via data augmentation technology to generate

enough training images. Moreover, the digital image

processing technology is used to simulate the images of grape
leaf diseases in various environments, thereby greatly

improving the generalization performance of the model.

• An improved CNN model is proposed for diagnosing grape

leaf diseases. By analyzing the features of grape leaf diseased

images, a novel deep convolutional neural network model,

namely, the dense Inception convolutional neural network
(DICNN), is proposed. Deep separable convolution is first

used by DICNN to build the first two convolutional layers to

reduce the number of parameters and prevent the overfitting

problem of the model. Then, Inception structure is used to

enhance the extraction performance for multiscale disease

spots. Finally, the dense connection strategy is applied to the
four cascade Inception structures for alleviating the vanishing-

gradient problem, encouraging feature propagation and reuse.

According to the experimental results, the accuracy of the

DICNN model reaches 97.22%, which is better than other classic

models. In addition, after data augmentation, using a data set of

107,366 diseased images of grape leaves, the accuracy increases
by 14.42%, thereby exhibiting stronger robustness and better

recognition performance.

The remainder of the paper is organized as follows: Related

Work introduces and summarizes related work. In Generating

the Grape Leaf Disease Data Set, based on the image acquisition

of natural grape leaves, abundant grape leaf images are generated

with image processing technology. Identification Model for Grape
Leaf Diseases introduces the DICNN model. Experimental

Results and Discussion presents the experiments for evaluating

the performance of the model and analyses the results of

experiments. The last section presents the conclusions of

the paper.

RELATED WORK

To reduce the damage of diseases, many researchers have made

tremendous efforts to identify plant diseases. With the
continuous development of machine learning algorithms, they

have been widely utilized to identify plant pests and diseases.

In (Hamuda et al., 2017), Hamuda et al. proposed an

automatic crop detection algorithm. The algorithm was used to

detect cauliflowers from video streams in natural light under

different weather conditions, and the detection results were

compared with ground-truth data that were obtained via
manual annotation. This algorithm realized a sensitivity of

98.91% and a precision of 99.04%. In (Akbarzadeh et al.,

2018), Akbarzadeh et al. proposed an approach for classifying

plants that was based on support vector machine. The data set

was composed of spectral reflectance characteristics of corn and

silver beets at 635, 685, and 785 nm, with a rate of 7.2 km/h. The
experimental results demonstrated that the proposed algorithm
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effectively classified the plants with an accuracy of 97%. In

(Wang et al., 2019), Zhang et al. proposed a cucumber

powdery mildew recognition approach that was based on

visual spectra. Through the classification and recognition of

spectral features, the 450- to 780-nm visible light band was

selected as the research range. Then, the SVM algorithm was
utilized to build the classification model, and the radial basis

kernel function was applied to optimize the model. The

experiments results demonstrated that this model realized

accuracies of 100% and 96.25% for cucumber healthy leaves

and powdery mildew leaves, respectively, and the total accuracy

was 98.13%. In (Waghmare et al., 2016), Waghmare et al.
proposed a technique for identification of grape disease

through the leaf texture analysis and pattern recognition. The

system took a single leaf of a plant as an input and segmentation

was performed after background removal. The segmented leaf

image was then analyzed through high pass filter to detect the

diseased part of the leaf. Finally, the extracted texture pattern was
fed to a multiclass SVM. In (Mohammadpoor et al., 2020),

Mohammadpoor et al. proposed an intelligent technique for

grape fanleaf virus detection. Based on Fuzzy C-mean algorithm,

the area of diseased parts of each leaf was highlighted, and then it

was classified using SVM. In addition, K-fold cross validation

method with k = 3 and k = 5 was applied to increase the

diagnostic reliability of the system. Experimental results
showed that the average accuracy of the system was around

98.6%. However, machine learning algorithms require

cumbersome image preprocessing and feature extraction

(Kulin et al., 2017; Zhang et al., 2018). In contrast, CNN can

automatically distinguish and extract the discriminative features

for image identification.
In recent years, CNNs have made major breakthroughs in

computer vision. Therefore, using CNN to identify plant diseases

has become a research hotspot in agricultural information

technology. In (Khan et al., 2018), Khan et al. isolated the

regions of infection from the background and utilized VGG and

AlexNet to extract the features of infection regions. Experiments

were conducted on a Plant Village and CASC-IFW, and a
classification accuracy of 98.60% was realized. The experimental

results demonstrated that the proposed model outperformed the

available approaches with high-precision and high-recognition

accuracy. In (Zhang et al., 2019), Zhang et al. proposed a

cucumber disease identification algorithm that was based on

AlexNet, namely, GPDCNN. The approach fused the contextual
information effectively by combining global pooling layers via

dilated convolution, which could optimize the convergence and

increase the recognition rate. The GPDCNNmodel was trained on

six common cucumber leaf diseases and a recognition accuracy of

94.65% was realized. In (Liang et al., 2019), Liang et al. proposed a

rice blast diagnosis system that was based on CNNs. The model

was trained on a data set of 5,808 diseased images, which included
2,906 positive samples, and realized satisfactory performances in

terms of the recognition accuracy, AUC, and ROC. The

experimental results demonstrated that the proposed model

could extract more discriminative and effective high-level

features than the traditional approaches of LBPH and Haar-WT.

In (Zhang et al., 2019), Zhang et al. trained a three-channel CNN

model for the recognition of tomato and cucumber leaf diseases.

The approach utilized the three channels of RGB separately to

use the color information and realized the automatic extraction of

diseased features through color information. On the data set of

tomato and cucumber leaf diseases, the proposed model
outperformed the traditional approaches in terms of the

classification accuracy. In (Wagh et al., 2019), Wagh et al.

proposed an automatic identification system of grape diseases

for the recognition of five diseases including powdery mildew,

downy mildew, rust, bacterial spots, and anthracnose. Feature

extraction and model training of the leaf images were performed
using pre-defined AlexNet architecture. And experimental results

showed that the model was able to accurately classify grape diseases.

In (Ji et al., 2019), Ji et al. proposed a united convolutional neural

networks architecture based on an integrated method. The

proposed CNNs architecture, namely, UnitedModel was designed

to classify common grape leaf diseases. UnitedModel was able to
extract complementary discriminative features owing to the

combination of multiple CNNs. And the experimental results had

shown that UnitedModel realized the best performance on various

evaluation metrics and achieved an average test accuracy of 98.57%.

According to these studies, CNNs have obtained satisfactory

results in plant disease recognition. However, CNNs is rarely

used in the field of grape leaf disease identification. In addition,
most application-oriented image identification algorithms are

based on popular transfer learning techniques, and few

improvements have been made to the algorithms. Hence, an

image identification model that is based on CNNs for grape leaf

diseases is proposed in this paper.

GENERATING THE GRAPE LEAF DISEASE
DATA SET

Data Acquisition
Since no suitable data set is available for the identification of
grape leaf diseases, a large amount of time is dedicated to

collecting images of diseased grape leaves. A total of 7,669

images of grape leaves are collected with a digital camera and

belong to seven categories: anthracnose, brown spot, mites, black

rot, downy mildew, leaf blight, and healthy leaves. The classes of

anthracnose, mites, downymildew, and healthy leaves are collected in
fine weather from the grape planting experiment station of

Northwest A&F University, Shaanxi Province, China. And this part

of the data set includes a total of 4,023 images. The class of brown

spot, black rot, and leaf blight are collected from publicly available

data sets, and this part of the data set includes a total of 3,646 images.
Table 1 illustrates the detail of original grape leaf disease data set.

Seven representative images of the data set are shown in
Figure 1, where the differences among the seven types of images

are clearly observed. The surface of a healthy grape leaf is green

and has no spots. An anthracnose spot is nearly round. The

central part of the spot is white, and the edge is dark purple. For

the brown spot category, irregular brown spots are present on the
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surface of the grape leaves. The middle of each spot is dark

brown, and the edges are brown. Mites cause many irregular

white patches on the backs of the leaves, and the surface of the

leaves are blistered. The spots of black rot are nearly round with a

dark brown middle and brown edges. The yellow-green disease
spots gradually appear on the fronts of the grape leaves with

downy mildew, and white frosty mildew appears on the backs of

the leaves. Leaf blight produces dark brown patches on the

surface of grape leaves. The differences among these disease

spots contribute to the recognition of various grape leaf diseases.

Data Augmentation
The overfitting problem in the training stage of CNNs can be
overcome via data augmentation. When random noise rather

than the underlying relationship is fitted, the overfitting problem

of deep learning models occurs (Heisel et al., 2017). With more

images after expansion via data augmentation techniques, the

model can learn as many irrelevant patterns as possible during

the training process, thereby avoiding overfitting and enhancing
the anti-interference ability under complex conditions.

Several digital image processing technologies are used to

implement data augmentation operations. The effects of

weather factors during shooting are simulated via image

intensity interference, which include interference of brightness,

contrast, and sharpness. Gaussian blur simulates the effects of
hazy weather on image acquisition. The relative positions of the

camera, and the diseased leaves are imitated via rotation

transformations (including 90 degrees, 180 degrees, and 270

degrees) and via horizontal and vertical symmetry operations.

Gaussian noise, interference of contrast, and sharpness are used

to simulate the effects of equipment factors. In addition, PCA

jittering is applied to expand the original data set.
The brightness values of each image are adjusted by randomly

increasing or decreasing the RGB values of the pixels. Assume

that V0 is the original RGB value, V represents the adjusted value,

and d is the brightness transformation factor. The transformation

process of the RGB value is expressed as:

V = V0 + 1 + dð Þ

Based on the median value of the brightness, the contrast

value of the image is adjusted by increasing the larger RGB values
and decreasing the smaller RGB values. The transformation

process of the RGB values is expressed as:

V = i + (V0 − i) 1 + dð Þ

The Laplacian template is applied to the image to adjust the value

of the sharpness. Assume that an RGB image pixel is represented

asc(x, y) = ½R(x, y),G(x, y),B(x, y)�T . The formula is as follows:

∇
2 c x, yð Þ½ � =

∇
2R x, yð Þ

∇
2G x, yð Þ

∇
2B x, yð Þ

2

6

6

4

3

7

7

5

The image is rotated by rotating each pixel by the same angle

around the center. Assume that P(x,y) is an arbitrary point in the

image and that its new coordinate after clockwise rotation by q°
is P2(x,h-y). The calculated coordinates of the two points are
expressed as:

x = r cosa

y = r sina

(

X = r cos a − qð Þ = x cos q + yr sin q

Y = r sin a − qð Þ = −x cos q + yr cos q

(

TABLE 1 | Original grape leaf disease data set.

Anthracnose Brown spot Mites Black rot Downy mildew Leaf blight Healthy leaves

Number of images 1,124 1,383 1,106 1,187 910 1,076 883

FIGURE 1 | Seven common types of grape leaf images. (A) Anthracnose, (B) Brown spot, (C) Mites, (D) Black rot, (E) Downy mildew, (F) Leaf blight, (G) Healthy leaves.
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The vertical symmetry operation uses the horizontal median line

of the image as an axis to perform a symmetrical transformation on

all pixels. Assume that h represents the height and P(x,y) is an

arbitrary point in the image. After vertical symmetry processing, the

coordinates of the new point are P2(x,h–y). The horizontal

symmetry operation is similar to the vertical symmetry operation.
Via these image generation techniques, 13 new images are

derived from each image. Figure 2 presents an example that

illustrates the image generation process.

After the process of image augmentation, a data set of

diseased grape leaf images has been obtained, and it includes

15,736 images from the anthracnose class, 19,362 images from
the brown spot class, 15,484 images from the mite class, 16,618

images from the black rot class, 12,740 images from the downy

mildew class, 15,064 images from the leaf blight class, and 12,362

images from the healthy leaf class. Then, all images in the data set

are resized to 256 × 256. Finally, the data set is divided into three

parts by the ratio of 6:2:2, which are, respectively, used as the
training set, the validation set and the test set. Details on the data

set are presented in Table 2.

IDENTIFICATION MODEL FOR GRAPE
LEAF DISEASES

Inspired by the architectures and performances of four classical
CNNmodels, namely, VGG16 (Simonyan and Zisserman, 2014),

GoogLeNet (Szegedy et al., 2015), ResNet (He et al., 2016), and

DenseNet (Huang et al., 2017), a novel CNN-based model,

namely, DICNN, is proposed for the diagnosis of seven

common grape leaf classes. According to Table 3 and Figure

3, the DICNN model includes three parts: the first part is the

“pre-network module”, and its first deep separable convolutional

layer is filtered with 64 kernels of size 3 × 3. Then, a 3 × 3 max-
pooling layer is added after the first deep separable convolutional

layer. The next deep separable convolutional layer contains 64

convolution kernels of size 3 × 3, which is followed by a 3 × 3

max-pooling layer and a batch normalization layer. Next, there is

an Inception structure, which is followed by another max-

pooling layer. The second module, namely, the “cascade dense
Inception module,” is composed of four Inception structures

with dense connections. The application of the dense

connectivity strategy improves the usage efficiency of feature

maps and promotes the fusion of multi-dimensional features

among the Inception structures, enhancing the diagnostic

performance for grape leaf diseases. The last module is
composed of two max-pooling layers, an Inception layer, a

global average pooling (GAP) layer, and a 7-way Softmax layer.

Deep Separable Convolutional Layer
Limited by the number of images of the grape leaf disease data

set, the model with a large size is prone to overfitting during the

FIGURE 2 | Image augmentation of a grape leaf disease image. (A) The original image, (B) high brightness, (C) low brightness; (D) high contrast; (E) low contrast;

(F) high sharpness; (G) low sharpness; (H) 90 degree rotation; (I) 180 degree rotation; (J) 270 degree rotation; (K) vertical symmetry; (L) horizontal symmetry; (M)

Gaussian noise, and (N) PCA Jittering.

TABLE 2 | Grape leaf disease data set.

Class Training

images

Validation

images

Testing

images

Total

number

Anthracnose 9,442 3,147 3,147 15,736

Brown spot 11,618 3,872 3,872 19,362

Mites 9,290 3,097 3,097 15,484

Black rot 9,970 3,324 3,324 16,618

Downy mildew 7,644 2,548 2,548 12,740

Leaf blight 9,038 3,013 3,013 15,064

Healthy leaves 7,418 2,472 2,472 12,362
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training process. Therefore, reducing the number of parameters

contributes to improve the generalization performance of the

model. Furthermore, a model with fewer parameters has a higher

training speed and consumes fewer computing resources. While,
the deep separable convolution consists of a depthwise

convolution and a pointwise convolution, which has fewer

parameters than a standard convolution (Howard et al., 2017).

In deep separable convolution, the single filter is applied in

depthwise convolution to each input channel. Then, a 1 × 1

convolutional operation is applied by the pointwise convolution

to combine the outputs. This factorization significantly reduces
the model size and the consumption of computing resources,

while the recognition accuracy of the model will not decrease.

Cascade Dense Inception Module
The sizes of the disease spots differ substantially among types of
grape leaves. The performance of the model in the extraction of

features at various scales has a substantial impact on the final

recognition accuracy. For extracting features of various sizes, the

cascade dense Inception module, which is composed of four

Inception structures with dense connections, has been applied to

the model. The convolution kernels with small size extract fine-

grained lesion features, whereas the convolution kernels of large

size focus more on the features of disease spots of large size.

Therefore, the Inception structure in GoogLeNet (Szegedy et al.,

2015) has been applied. Inception structure stacks convolutional
layers with different size on its branches in parallel. Each parallel

branch of the Inception structure concentrates on distinct features.

This not only increases the width of the network but also enhances

the multi-scale feature extraction performance. In addition, based

on asymmetric factorization approach (Szegedy et al., 2016),

asymmetric convolutions are applied to strengthen the feature
extraction performance and to reduce the computational cost. The

Inception structure is illustrated in detail in Figure 4.

Generally, Floating-Point Operations is used to evaluate the

time complexity of the CNN model. For a single convolutional

layer, its time complexity can be expressed as:

Time∼O M2
*K

2
*Cin*Cout

� �

where M represents the side length of the output feature map, K

represents the side length of the convolution kernel, Cin is the

number of channels of the input feature map and Cout is the
number of channels of the output feature map.

The Inception structure contains several convolutional layers

and its time complexity can be expressed by the sum of operation

time of all the convolutional layer:

Time ∼ O o
D

i=1

M2
i *Pi*Qi*C i,inð Þ*C i,outð Þ

� �

where D represents the number of convolutional layers in the

Inception structure, Pi represents the length of the convolution
kernel, Qi represents the width of the convolution kernel (Qi is

not equal to Pi when asymmetric convolution is used).

During the flow of the feature maps, the features of small-

scale grape disease spots are difficult to transfer to the deeper

layers of the model. This loss of features severely affects

TABLE 3 | Composition of the DICCN model.

Type Patch size/stride Output size

Deep separable convolution 3 × 3/1 224 × 224 × 64

Max-pooling 3 × 3/2 112 × 112 × 64

Deep separable convolution 3 × 3/1 112 × 112 × 64

Max-pooling 3 × 3/2 56 × 56 × 64

Batch normalization – 56 × 56 × 64

Inception – 56 × 56 × 576

Max-pooling 3 × 3/2 28 × 28 × 576

Inception – 28 × 28 × 576

Inception – 28 × 28 × 576

Inception – 28 × 28 × 576

Inception – 28 × 28 × 576

Max-pooling 3 × 3/2 14 × 14 × 576

Inception – 14 × 14 × 960

Max-pooling 3 × 3/2 8 × 8 × 960

GAP – 960

Softmax – 7

FIGURE 3 | Structure diagram of the DICNN model.
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the model’s recognition accuracy. In DenseNet, the dense

connectivity strategy was proposed for further improving the
information flow among layers. The l layer obtains the feature

maps from all preceding layers, as expressed in Equation:

x = Hl x0, x1, …, xl−1½ �ð Þ

where [x0,x1, …, xl-1] denotes the concatenation of the maps
from the previous layers.

As illustrated in Figure 5, the dense connectivity strategy is

applied to the cascade dense Inception module. Hence, the

feature maps of all previous layers in this module are applied

as inputs for this layer, and its own feature maps are applied as

inputs for all subsequent layers. The application of the dense

connection strategy is crucial for the improvement of model
performance. First, the gradient that is obtained by each layer is

the sum of the gradients from the previous layers; hence, it

alleviates the vanishing-gradient problem. Furthermore, it

strengthens feature propagation and encourages feature reuse,

which can effectively prevent the overfitting problem. Finally,

compared with the residual strategy, it substantially reduces

parameters and the storage overhead of the proposed model.

Adaptive Connectivity Strategy
A CNN-based model must be trained for the classification of

grape leaf diseases. The choice of the optimization algorithm has

a substantial influence on the training performance.

Adaptive moment estimation (Adam) was applied instead of

Stochastic gradient descent (SGD), a traditional algorithm, as the

optimization algorithm of the model. Adam is an efficient
algorithm for the first-order gradient-based optimization of

stochastic objective functions (Kingma and Ba, 2015). The

algorithm has low memory requirements, and it is simple to

implement; hence, it is suitable for problems with large amounts

of data or many parameters. The updated weights are calculated

based on the previous iteration, and the process of weight

optimization is expressed as:

gt = ∇q ft qt−1ð Þ

mt = b1 �mt−1 + 1 − b1ð Þ � gt

vt = b2 � vt−1 + 1 − b2ð Þ � g2t

m̂ t = mt= 1 − b t
1

� �

v̂ t = vt= 1 − b t
2

� �

qt = qt−1 − a � m̂ t=
ffiffiffiffiffi

v̂ t
p

+ e
� �

where a represents the learning rate, b1 and b2 represent the
exponential decay rates for the moment estimates, qt is the current
updated parameter, qt-1 is the previous updated parameter, f(q)

FIGURE 4 | Inception structure.

FIGURE 5 | Schematic diagram of the dense connectivity strategy.
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represents a stochastic function with parameters q, e is a small

constant (e=10-8 in this paper), mt is the first moment vector, and vt
is the second moment vector.

EXPERIMENTAL RESULTS AND
DISCUSSION

Adaptive Connectivity Strategy
The experiments were conducted on a deep learning server that

contained two Tesla P100 processors (16 GB memory) with an

Ubuntu system. In addition, the TensorFlow and Keras deep

learning frameworks were used to implement the DICNNmodel,

which is convenient for the development of comparative

experiments due to its Python interfaces (Bahrampour et al.,
2015; Abadi et al., 2016a; Abadi et al., 2016b; Tang, 2016).

Additional configuration parameters are listed in Table 4.

Accuracy and Convergence
Speed Comparisons
Based on the test set, an experiment is conducted to compare the

accuracy and convergence speed of the DICNNmodel with other

classical approaches, including the back-propagation (BP) neural
network, support-vector machine (SVM), VGG-16, GoogLeNet,

ResNet-34, and DenseNet-169. Meanwhile, the proposed model is

also compared with the recent model on grape diseases

classification, including AlexNet for grape diseases classification

(AFGDC) (Wagh et al., 2019) and UnitedModel (Ji et al., 2019).

All classification models were trained from scratch with 30

epochs, and the same training strategy was adopted. The Adam
algorithm was used as the optimizer for the model training. And

the learning rate was set to 0.01, which can accelerate the

convergence of the model during the training process.

According to Table 5, the proposed DICNN model had

optimal recognition performance with an accuracy of 97.22%

on the test set. In addition, an accuracy of 94.89% was realized by
DenseNet, which is due to its compelling advantages of

strengthening feature propagation and encouraging feature

reuse. ResNet-34, a residual neural network, realized an overall

accuracy of 94.89%. In addition, GoogLeNet realized an accuracy

of 94.25%, which is due to its multi-dimensional feature

extraction capabilities. VGG-16 obtained an average accuracy

of 88.96%, whereas the SVM model and BP neural network

exhibited poor recognition performances, with the accuracy of

67.82% and 57.93%, respectively. UnitedModel, which was

specially designed for grape disease detection, was able to extract
complementary discriminative features owing to the combination

of multiple CNNs. And it realized an accuracy of 96.58%. Another

grape disease detection model, AFGDC, used pre-defined AlexNet

architecture for feature extraction and achieved 88% accuracy.

The experimental results demonstrated that the CNN-based

approaches outperform the classical machine learning
approaches. The classical machine learning approaches in grape

leaf disease recognition depend on classification features, which

are designed by experts. In contrast, the CNN-based approaches

extract the best classification features automatically. With those

features, CNN-based models realize excellent recognition

performance on grape leaf diseases. Among all CNN models,
DICNN have better performance and can accurately classify grape

disease images. In addition, accuracy curves were used to visually

represent the accuracies and convergence speeds of the models. As

shown in Figure 6, the models have converged after several

epochs rounds of training and ultimately realized their optimal

identification performances. Overall, the training processes of

DenseNet-16, DICNN, GoogLeNet, ResNet-34, UnitedModel,
AFGDC, and VGG-16 are approximately stable after 9 epochs,

and the BP neural network and the SVMmodel showed acceptable

convergence after 17 epochs. In our work, the dense connectivity

strategy and Inception structures were adopted for the proposed

DICNN model. Compared with other models, the proposed

DICNN model realized the fastest convergence rate and tended
to converge at the sixth epoch.

Furthermore, unseen images with different grape farms and

weather conditions are collected and used to test the generalization

performance of the model. Those grape leaf disease images are

collected from the grape planting base of Yuanshi Chateau, which

is Yinchuan City, Ningxia Province, China. According to the final

experimental results, the DICNN model has 96.86% accuracy
when tested with unseen images. Although the accuracy of the

model is slightly lower than before, the model can still accurately

classify grape leaf diseases. Therefore, the experimental results

have proved that the model have excellent generalization

performance in different grape farms and weather conditions.

With its Inception structure, DICNN can extract features
from multiple scales based on the characteristics of grape leaf

lesions. Using deep separable convolution effectively reduces the

parameters of CNN model, thus alleviates the problem of

overfitting. In addition, with the dense connectivity strategy of

DICNN, feature propagation is enhanced, and feature reuse is

encouraged. Hence, the proposed algorithm gives better

performance than popular transfer learning techniques.

TABLE 4 | Software and hardware environment.

Configuration Value

Central processing unit Intel® Xeon CPU E5-2650 v4 @ 20 GHz × 48

Graphics processor unit NVIDIA Tesla P100-PCIE-16 GB × 2

Operation system Ubuntu 16.04.2 LTS (64-bit)

Deep learning framework TensorFlow, Keras

TABLE 5 | Recognition Performance.

Model BP SVM VGG-16 GoogLeNet ResNet-34 DenseNet-169 UnitedModel AFGDC DICNN

Accuracy 65.93% 67.82% 88.96% 94.25% 94.67% 94.89% 96.58% 92.33% 97.22%
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Recognition Performance for Each Class
In this section, based on the confusion matrix, the recognition

performance of each grape leaf disease has been evaluated by

Precision, Recall and F1 Score. Confusion matrix, as a standard

format for expressing accuracy evaluation, is expressed by matrix
form with n rows and n columns. Each column of the confusion

matrix stands for the number of instances in a ground truth class

while each row stands for the number of instances in a predicted

class to see if the system is confusing two classes. Precision,

Recall and F1 Score are derived from the number of false positive

(FP), true positive (TP), false negative (FN), and true negative

(TN) results. These indicators are derived as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 Score =
2� Precision � Recall

Precision + Recall
=

2� TP

2� TP + FN + FP

Table 6 presents the confusion matrix of the final test results

and the Precision, Recall and F1 Score of each type of grape leaves.

The disease spots of leaf diseases are similar in terms of geometrical

features, leading to lower classification performance. Hence, the

classifier may misjudge when faced with fine-grained classification.

However, the proposed deep learning model has yielded a

satisfactory result. The main feature of the mites class is that the

surfaces of the leaves are blistered, which differs significantly from
the spots of the other diseases. Confirmed from the confusion

matrix, the diagnosis of mites is better than others. The color of the

downy mildew spots is yellow-green, so these spots are easy to

distinguish from those of other diseases. Hence, the Recall of downy

mildew reaches 98.04%. However, brown spots, anthracnose, leaf

blight and black rot are similar in terms of their geometric features,
and this similarity leads to their lower recognition rates. The Recall

of the brown spot, anthracnose, leaf blight and black rot classes were

96.54%, 95.84%, 97.05% and 97.29%, respectively. Ultimately,

96.60% of healthy leaves were correctly identified.

Based on the Inception structure, the disease features in the

original image can be extracted from multiple dimensions. Thus,
the accuracy of disease image recognition is significantly

increased. Supported by the above experiments, the proposed

DICNN model realizes superior recognition performance in

identifying grape leaf diseases.

Effect of Data Augmentation on
Identification Performance
In this paper, data augmentation has been utilized to prevent
overfitting. First, the diseased grape leaves were captured under

various weather conditions. By changing the shooting background,

the anti-interference performance against complex conditions of

the proposed model can be enhanced. Afterward, digital image

processing techniques were used to augment the original data set.

In this section, a comparative experiment was designed for
evaluating the influence of data augmentation on the classification

accuracy. Figure 7 shows that the proposed DICNN model had an

extremely unstable training process when training on the original

data set. The model finally realized a recognition rate of 82.80%.

However, the model that was trained on the expanded data set

realized an accuracy of 97.22%. The experimental results

demonstrated that the DICNN model learns more suitable
features on the expanded data set, which enhances the anti-

interference performance under various environments. In

addition, the parameters of the classification model were fully

trained due to the diversity of images in the extended data set,

while the images in the original data set were lacking in diversity,

FIGURE 6 | Convergence of eight recognition models.

TABLE 6 | Confusion matrix of the DICNN model.

Class Predicted Precision Recall F1 Score

Anthracnose Brown spot Mites Black rot Downy mildew Leaf blight Healthy leaves

Ground Truth Anthracnose 3,016 32 15 34 10 26 14 96.57% 95.84% 0.9620

Brown spot 29 3,738 5 35 26 28 11 97.32% 96.54% 0.9693

Mites 3 2 3,078 3 5 2 4 98.81% 99.39% 0.9910

Black rot 28 28 4 3,234 4 16 10 96.28% 97.29% 0.9719

Downy mildew 8 11 3 17 2,498 7 4 96.90% 98.04% 0.9762

Leaf blight 23 18 6 22 9 2,924 11 96.98% 97.05% 0.9739

Healthy leaves 16 12 4 14 26 12 2,388 97.79% 96.60% 0.9751
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which made the network model overly dependent on a subset of the

features, thereby resulting in overfitting. More importantly, the pre-

processing of the image simulated the real environment of the grape

leaves, thereby making the model more robust.

Effect of Dense Connectivity Strategy
This experiment evaluated the influence of the dense connection
strategy on the recognition performance of the CNN-based

model. As shown in Figure 8, under the same training

strategy, the model with the dense connection strategy realized

97.22% recognition accuracy, which was 3.47% higher than that

of the model in which the dense connection strategy was not

applied. The dense connection strategy connects Inception

structures in the convolutional layer to ensure maximum
information transmission among Inception structures in the

network and directly transfers the gradient loss to the shallow

layers. Therefore, the proposed model with this strategy realizes

stronger performance in the identification of grape leaf diseases.

Effect of Deep Separable
Convolutional Layer
Deep separable convolution is used by DICNN to build the first

two convolutional layers to reduce parameters and prevent the

overfitting problem of the model. In order to evaluated the

influence of two deep separable convolutional layer, the model

with traditional convolutional layer has been trained. In the
comparative experiment, the number of parameters of the

convolutional layers and the recognition accuracy are used as

the final evaluation indicators. The final experimental results are

shown in Table 7. On one hand, the parameters of the first

convolutional layer was reduced from 1,792 to 283, and the

parameters of the second convolutional layer was reduced from
36,928 to 4,736, which contributes to reduce the consumption of

computing resources and improve the generalization performance.

On the other hand, the accuracy of the model is improved by 0.13%

compared with models containing traditional convolutional layers.

Optimization Selection
The choice of the optimization algorithm is crucial for the

improvement of model performance. Therefore, the Adam
optimization algorithm was adopted for the proposed DICNN

model. The Adam optimization algorithm and the SGD

optimization algorithm with the same learning rate of 0.01 were

applied to train theDICNNmodel for evaluating the performance of

the algorithm.

Figure 9 shows the training process of the model. The accuracy
of the model with the Adam optimization algorithm is 97.22%,

while the accuracy of the model with the SGD optimization

algorithm is 94.69%. The SGD optimization algorithm updated

the parameters based on the current position and batch, which led

to an extremely unstable direction of updating. According to the

experimental results, the model that is based on the SGD

optimization algorithm encountered a “local minimum”

problem and was unable to reach the optimal state. The Adam

optimizer utilizes gradient descent with momentum to escape

from the local minimum position. In addition, the Adam

optimization algorithm is an adaptive optimization scheme,

which adjusts the learning rate for each parameter. Therefore,

the Adam optimization algorithm was adopted for the proposed
DICNN model.

FIGURE 7 | Effect of data augmentation.

FIGURE 8 | Effect of the dense connectivity strategy.

TABLE 7 | Effect of deep separable convolutional layer.

# Parameters Accuracy

1st

convolution

layer

2nd

convolution

layer

Model with deep separable

convolutional layer

283 4,736 97.22%

Model with traditional

convolutional layer

1,792 36,928 97.09%
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Feature Visualization Process
Due to the weak interpretive performance, the features that are

learned by CNN-based models are difficult to represent in a
human-readable form. Hence, it is challenging to comprehend

the massive number of parameters, the multi-layer hidden

structure, and other factors of these models. However,

visualization techniques are a prominent way to explore how

CNNs learn features for distinguishing among classes. In this

section, the two most commonly used visualization techniques,
namely, visualization of intermediate activation and

visualization of heatmaps of class activation in an image, are

used to analyze the proposed model.

The visualization of intermediate activation refers to the

display of feature maps which are output by all kinds of

convolution and pooling layers in the network for a specified

input. This facilitates understanding of how successive
convolution layers transform their input and of the meaning

of each filter. Figure 10 shows an original image from the

anthracnose class and the visual activation image after the

second convolutional layer of the DICNN model. According to

the visualization results, the disease spot area of the grape leaf is

clearly separated from the background in the image. It is

inferred that the model can identify disease spots in the
image and can characterize the disease spots as one of the

criteria for classification. The experiment of the activation

visualization for grape leaf diseases illustrates the superior

recognition performance of the DICNN model and show how

the proposed DICNN model learns features for distinguishing

between the lesion area and the background.
The visualization of heatmaps of class activation refers to

the production of heatmaps of class activation over input

images (Selvaraju et al., 2017). These visualization techniques

are also known as class activation map (CAM) visualization

techniques, which facilitate understanding of which parts of the

input image lead to the final classification decision of the
convolutional neural network. Figure 11 shows an original

image and the generated heatmaps of class activation. Those

visualized data facilitate understanding of which parts of the

input image lead to the final classification decision of the

model. According to the visualization results, the disease spot

area is strongly activated: this is how the network distinguishes

different grape leaf diseases. Overall, the results of this
experiment demonstrate that the model pays full attention to

the features of the disease spot and realizes superb recognition

performance on grape leaf diseases.

CONCLUSIONS

This paper has proposed a deep learning approach for the

identification of six common grape leaf diseases and healthy

leaves. Based on 7,669 collected grape leaf images, 107,366
images were created via image augmentation. By analyzing

the features of grape leaf diseases, an improved CNN is

proposed for the identification of grape leaf diseases. The

deep separable convolution was applied to the model instead

of the standard convolution to alleviate overfitting and reduce

the number of parameters. In view of the various sizes of
grape leaf disease spots, Inception structures were applied to

the model for enhancing ability of the multi-scale feature

extraction. In addition, the dense connectivity strategy was

introduced for encouraging feature reuse, strengthening

feature propagation.

The proposed CNN-based identification approach for

grape leaf diseases was implemented in the TensorFlow and
Keras frameworks on the Tesla P100 GPU platform. With the

expanded data set, the proposed DICNN model was trained to

classify seven type grape leaves. According to the experimental

results, the proposed algorithm realizes a recognition accuracy

of 97.22%, which gives better performance than other popular

transfer learning techniques. Compared with the standard
ResNet and GoogLeNet architectures, the proposed DICNN

FIGURE 10 | Activation visualization.

FIGURE 9 | Comparison of two optimization algorithms.
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model realizes higher convergence speed during the training

process and higher accuracy. The results of this study
demonstrate that the proposed algorithm realizes end-to-end

classification of grape leaf diseases and provides a solution and

a reference for the application of deep learning approaches in

the classification of crop diseases.
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