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Abstract

The recent advances in 3D Convolutional Neural Net-
works (3D CNNs) have shown promising performance for
untrimmed video action detection, employing the popular de-
tection framework that heavily relies on the temporal action
proposal generations as the input of the action detector and lo-
calization regressor. In practice the proposals usually contain
strong intra and inter relations among them, mainly stemming
from the temporal and spatial variations in the video actions.
However, most of existing 3D CNNs ignore the relations and
thus suffer from the redundant proposals degenerating the
detection performance and efficiency. To address this prob-
lem, we propose graph attention based proposal 3D ConvNets
(AGCN-P-3DCNNs) for video action detection. Specifically,
our proposed graph attention is composed of intra attention
based GCN and inter attention based GCN. We use intra at-
tention to learn the intra long-range dependencies inside each
action proposal and update node matrix of Intra Attention
based GCN, and use inter attention to learn the inter depen-
dencies between different action proposals as adjacency ma-
trix of Inter Attention based GCN. Afterwards, we fuse intra
and inter attention to model intra long-range dependencies
and inter dependencies simultaneously. Another contribution
is that we propose a simple and effective framewise clas-
sifier, which enhances the feature presentation capabilities
of backbone model. Experiments on two proposal 3D Con-
vNets based models (P-C3D and P-ResNet) and two popular
action detection benchmarks (THUMOS 2014, ActivityNet
v1.3) demonstrate the state-of-the-art performance achieved
by our method. Particularly, P-C3D embedded with our mod-
ule achieves average mAP 3.7% improvement on THUMOS
2014 dataset compared to original model.

Introduction

In recent years, with the tremendous increase of video data,
effective and efficient video analysis is becoming a prob-
lem demanding prompt solutions. Specifically, video action
detection, not only locating the action temporal boundary
but also classifying the action category, is one of the chal-
lenging tasks. Many early studies developed hand-craft fea-
tures to achieve action detection, such as DLSBP (Duchenne
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et al. 2009), ASM (Gaidon, Harchaoui, and Schmid 2011)
and SDPM (Tian, Sukthankar, and Shah 2013). In the past
decade, because of the stronger modeling capabilities of
convolutional neural networks, more studies have focused
on deep features based action detection (Singh et al. 2016;
Gao et al. 2019; Lin et al. 2019; Liu et al. 2019).

Among the deep features based solutions, 3D ConvNet
methods have shown promising performance in modeling
the motion and appearance information, which can alle-
viate expensive optical flow computation, and have been
widely studied recently. Shou, Wang, and Chang exploited
the sliding windows and 3D ConvNets to classify and local-
ize the video activities. Inspired by Faster R-CNN (Ren et
al. 2015), Xu, Das, and Saenko proposed R-C3D for action
detection, which integrated temporal action proposals gener-
ation and proposals classification in one end-to-end network.
Wang and Gupta chose a graph-based reasoning framework
to model human-object and object-object relationships. In
(Long et al. 2019) a set of Gaussian kernels were learnt to
dynamically model temporal scale of each action proposal
in 3D ConvNets.

Despite the successful progress using 3D ConvNets, most
of these methods heavily rely on the temporal action pro-
posal generation as the input of the action detector and lo-
calization regressor, which plays a very important role on
promising the action detection accuracy. In practice, the
proposals usually contain strong inherent relations, mainly
stemming from the temporal and spatial variations in the
video actions. The intra relations inside each proposal are
useful for correcting the wrong action proposal towards the
ground truth label, while the inter relations across differ-
ent proposals can help adjusting the imprecise boundary of
the temporal proposal. Unfortunately, the existing solutions
often ignore such inherent relations and thus largely suffer
from deviated action boundaries and inaccurate detection.

To address this issue, we propose graph attention based
proposal 3D convolutional networks (AGCN-P-3DCNNs)
to simultaneously model the intra and inter dependencies
of temporal action proposals for accurate action detection.
Specifically, an intra and inter attention mechanism are re-
spectively introduced and fused in the graph convolutional
network (GCN) to dynamically represent the proposals and
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capture their dependencies. The intra attention mechanism
enables the 3D CNNs to learn discriminative feature rep-
resentation for proposals, by modeling long-range depen-
dencies of pixels inside single proposal. The inter attention
mechanism learns the adaptive dependencies among the pro-
posals, which tends to adjust the imprecise boundary of the
temporal proposal. The overall architecture with our graph
attention module is depicted in Figure 1.

As we all know, there is a large performance gap for
3D CNNs between different training methods that are train-
ing from scratch and training based pretrained model (Hara,
Kataoka, and Satoh 2017). Inspired by the facts above, we
propose to use a framewise classifier to train the proposal
3D CNNs firstly, and then use these well-trained parameters
to initialize the graph attention based proposal 3D CNNs,
as Figure 1 shows. Properly speaking, we define a frame-
wise classifier to constrain the backbone subnet and train a
more precise 3D ConvNet model with stronger abilities of
feature modeling. Meanwhile, considering that most of the
current proposal based action detection frameworks only fo-
cus on the proposal level optimization and ignore the frame
level optimization, we combine the coarse-grained (proposal
level) action detector and fine-grained (frame level) frame-
wise classifier to optimize the training process.

To our best knowledge, we are the first to study the intra
and inter relations of the action proposals in video action de-
tection, and devise an attention based GCN module for 3DC-
NNs that prominently boosts the video action detection per-
formance. Besides, we use framewise classifier to improve
the performance of backbone subnet, forming our graph at-
tention based proposal 3D CNNs with framewise classifier
constraint (FC-AGCN-P-3DCNNs) for action detection. Our
method serves as a generic module that can be applied in
many 3D CNNs for untrimmed video action detection. Our
proposed FC-AGCN-3DCNNs achieves the state-of-the-art
performance on the THUMOS 2014 and ActivityNet v1.3
datasets for the temporal action detection task.

Related work
Attention Attention is a popular mechanism that has been
applied in many fields. (Bahdanau, Cho, and Bengio 2014)
presented the attention mechanism, a model that is able to
automatically (soft-)search for parts of a source sentence re-
lated to the prediction of a target word, in the domains of
neural machine translation. Later, based on attention mech-
anisms, (Vaswani et al. 2017) introduced Transformer and
dispensed with recurrence and convolutions. As a result of
the surprising performance of attention mechanism, in the
filed of computer vision, (X. et al. 2015) proposed “soft”
and “hard” attention and applied attention in image cap-
tion generation. (Wang et al. 2017) presented residual at-
tention network for image classification. (Wang et al. 2018)
introduced the non-local neural network and applied it in
video classification, static image recognition, object detec-
tion/segmentation and pose estimation. (Wang et al. 2019)
proposed a graph attention convolution with learnable kernel
shapes to dynamically adapt to the structure of the objects.
Graph Convolutional Networks (GCNs) To deal with non
Euclidean structure data, graph based machine learning has
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Figure 1: The architecture of P-3DCNNs embedded with our
attention based GCN and framewise classifier modules. The
model includes backbone subnet, RPN subnet, framewise
classifier subnet and action detector subnet.

been developed. Due to the fact that CNNs can not deal with
non Euclidean structure data, GCNs have been widely used
in recent years. In the early years, (Scarselli et al. 2008) in-
troduced graph neural networks (GNNs), which extended
existing neural network methods for processing the data
represented in graph domains. Different from GNNs, (Kipf
and Welling 2016) introduced a layer-wise propagation rule
for neural network models motivated from a first-order
approximation of spectral graph convolutions. Meanwhile,
since CNNs can not model graph structure data directly,
GCNs have been widely used in recent years (Simonovsky
and Komodakis 2017; Shi et al. 2019; Jiang et al. 2019;
Li et al. 2019). (Simonovsky and Komodakis 2017) were
the first to apply graph convolutions to point cloud classi-
fication. The graph attention networks presented by (Bus-
bridge et al. 2017) are able to specify different weights to
different nodes in a neighborhood. (Jiang et al. 2019) intro-
duced graph learning-convolutional network (GLCN) inte-
grating both graph learning and graph convolution.

Method

In this section, we will first introduce the 3DCNNs based
video action detection framework equipped with the pro-
posed attention based GCN module, and then elaborate the
corresponding technical details.

The Framework

Our proposed temporal action detection framework, called
Framewise Classifier Constraint Graph Attention based Pro-
posal 3D ConvNets (FC-AGCN-P-3DCNNs) mainly con-
sists of four parts (Backbone subnet, RPN subnet, Frame-
wise Classifier subnet and Action Detector subnet). The
overview of our model is visualized as Figure 1 shown. The
input of our FC-AGCN-P-3DCNNs is a long clip of video
frames (e.g., 768 frames) and forward them to a 3D Con-
vNets based backbone. The output of this backbone is the
feature maps Z = {zi ∈ R

C×H×W , i = 1, · · · , L}, where
C, L, H and W denote the number of channels, the length of
the feature maps in temporal dimension, height and width in
spatial dimension respectively. To generate the anchor tem-
poral action proposals, we use Region Proposal Network
(RPN) (Ren et al. 2015; Xu, Das, and Saenko 2017) to pre-
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Figure 2: The architecture of our attention based GCN mod-
ule. This module includes intra attention based GCN and
inter attention based GCN submodules.

dict potential proposal segments with respect to anchor seg-
ments and a binary label indicating whether the predicted
proposal contains an action or not. The NMS selected (we
omit the NMS in Figure 1 for simplicity) output through
RoI Pooling layer to generate the fixed-size proposal fea-

tures X ∈ R
N×C×T×H′

×W ′

for each variable-length vol-
ume proposal, where N is the total number of the temporal
action proposals, C, T , H ′ and W ′ represent the number of
channel, the length in temporal and spatial dimensions for
one temporal action proposal, respectively.

The proposal features X passing through our attention
based GCN module will be enhanced into temporal action

proposal features Y ∈ R
N×C×T×H′

×W ′

. Our attention
based GCN module includes inter attention based GCN and
intra attention based GCN, which build the corresponding
inter and intra dependencies of the temporal action propos-
als respectively. To be more specific, as shown in Figure
1, intra attention learns the long-range dependencies inside
each proposal for node matrix of the graph, while inter at-
tention learns the dependencies between different proposals
to form a adaptive adjacency matrix in the graph. And then
we regress and classify the feature enhanced proposals Y
to corresponding temporal boundary and activity categories,
respectively. As Figure 1 shows, we use loss function Lcls

and Lreg to accomplish the proposal level activity classi-
fication and boundary prediction respectively. Besides, for
feature maps Z, we use framewise classifier to enhance the
backbone feature representation abilities. We will present
more detailed design in later section.

Attention based Graph Convolutional Network

In practice, our attention based graph convolutional network
modules learn the inter and intra dependencies of the tem-
poral action proposals and enhance the action detection ca-
pabilities of the network. As Figure 2 shows, our attention
based graph convolutional network is composed of two sub-
modules, that are, intra attention based GCN and inter atten-

tion based GCN. In the following paragraphs, we first review
the concepts about graph convolutional network. As (Wang
and Gupta 2018) shows, a GCN can be written as

Y = AXW, (1)

where A is the adjacency graph matrix. The node matrix X
represents proposal features, output of the RPN subnet in
Figure 1 (here RoI Pooling is omitted for simplicity), and
W is the learnable weight matrix.

As above Equation 1 shows, A and X are usually the fixed
values for the given graph. Thus, for video action detec-
tion, the fixed A can not express the dynamic dependencies
among these temporal action proposals. Motivated by GAT
(Busbridge et al. 2017), we propose inter attention to learn
the adjacency matrix A adaptively. At the same time, the
pixels inside one temporal action proposal may effect each
others. Inspired by non-local operation (Wang et al. 2018),
we use intra attention to learn the long-range dependencies
in each action proposal and update the node matrix X. In this
paper, we learn inter dependences between different tempo-
ral action proposals (Inter Attention based GCN) and intra
long-range dependences among pixels inside one temporal
action proposal (Intra Attention based GCN).

Then we will elaborate our attention based graph convo-
lutional network module, as shown in Figure 2, which in-
cludes intra attention based GCN and inter attention based
GCN submodules. The inputs and outputs for our graph at-
tention module are the temporal action proposals X and the
enhance proposals Y respectively. To reduce the expensive
computation as well as to learn the dependencies of the tem-
poral action proposals, we use θ1 and feinsum operations to
compute the pairwise similarity or the attention coefficients
between every two proposals for both intra and inter atten-
tion based GCN, as follows:

X̂ = feinsum ◦ θ1(X), (2)

where θ1 is a 1 × 1 × 1 3D convolution. It simplifies the
computation for feinsum by reducing the number of chan-
nels, and adds learnable parameters for every temporal ac-
tion proposals. feinsum is an Einstein summation conven-
tion function for many common multi-dimensional, linear
algebraic array operations, which compute the relationships

between any two parametered action proposals. {X̂|x̂i,j ∈

R
TH′W ′

×TH′W ′

, i, j ∈ {1, 2, 3, ..., N}} is the relation ma-

trix of the temporal action proposals. X̂ is a N ×N matrix
and each of its elements is a TH ′W ′ × TH ′W ′ matrix. x̂i,j

denotes the relationship between ith and jth temporal action
proposal.

Intra Attention based GCN For intra attention, we want
to learn the long-range dependencies among pixels inside
each action proposal for each node of node matrix in graph.

As we have the relation matrix X̂ of temporal action propos-
als, inspired by (Wang et al. 2018), we only need to resize

every diagonal elements x̂i,i in the X̂ to C×T×H ′×W ′ be-
cause the pixels inside each x̂i,i have relation to each others.
To obtain the relations, we use fdiag to pick up the diagonal
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elements, which record the intra relations of every propos-
als. And then we use favg r to calculate the average along
rows or columns for every matrix of these N matrices and
resume the channel dimension via function θ2 (1× 1× 1 3D
convolution), obtaining the response matrix for each tempo-
ral action proposal. To utilize the “shortcut connection” to
update the nodes X, we use non-linear function Sigmoid to
normalize the learned relation matrix as shown in Figure 2.
It can be written as

Xintra = X · (1 + Sigmoid ◦ θ2 ◦ favg r ◦ fdiag(X̂)). (3)

Then, as Figure 2 shows, we can obtain the output Yintra

of our attention based graph convolutional network

Yintra = AIoUXintraWintra, (4)

where Wintra is the learnable parameter matrix for graph
convolutional network, AIoU records the Intersection over
Union (IoU) for every two temporal action proposals.

Inter Attention based GCN For inter attention, we want
to learn the adjacent matrix in the graph, which can reflect
the dynamic dependencies among the proposals. The same

as intra attention based GCN, we still use X̂ as the input.
Inspired by (Busbridge et al. 2017), to obtain the dynamic
adaptive adjacency matrix Ainter, we only need to make ev-

ery elements x̂i,j in X̂ to be a single real valued coefficients.

Thus, we use a parametered matrix W1 ∈ R
1×TH′W ′TH′W ′

to make X̂ to be N × N dimensions matrix with every el-
ements is a real valued coefficient (we omit the matrix re-
shape operation for simplicity). Then non-linear function
LeakyReLU is used to enhance the representation ability.
Next transfer to zero the elements whose corresponding pro-
posals have no intersections with each other using the mask
function fmask. After that, non-linear function Softmax is
used to normalize the adjacency matrix, respectively.

Ainter = Softmax◦fmask(LeakyReLU(W1X̂),AIoU ).

We define the output Yinter of inter attention based graph
convolutional network as follows:

Yinter = AinterXWinter. (5)

Intra and Inter Attention based GCN Fusion As Figure
2 shows, we use favg function to fuse intra attention based
GCN Yintra and inter attention based GCN Yinter as fol-
lows:

Y = favg(Yintra,Yinter) =
1

2
(Yintra +Yinter). (6)

We omit the BN and ReLU operations between Yintra

and favg in Figure 2 and Equation 6 (it is the same with
Yinter and favg), when fusing Yintra and Yinter to form
our attention based graph convolutional network. Besides,
as we have Ainter and Xintra, there is another naive fusion
method

Y = AinterXintraWother, (7)

where Ainter, Xintra and Wother are the learned adjacency
matrix, the node matrix and the learnable parameter matrix,
respectively. We will discuss the naive fusion method in the
experiments section.

Framewise Classifier

In this section, we will narrate our framewise classifier and
describe the design of loss function. The goal of our frame-
wise classifier is to constrain the feature maps Z at frame
level and perform frame level classification. Therefore, we
need to resume the length of Z in temporal dimension be-
cause the 3D convolutional and 3D pooling layers in back-
bone subnet have down sampled the size of the feature maps
of the input video clip. In general, we can use deconvolu-
tional layers to resume the temporal length. However, up
sampling via deconvolution will bring lots of uncertained er-
rors, so it is very difficult to train the up sampling network.
As a result of the above considerations, we simply classify
feature maps Z along the temporal axis of Z, rather than the
original temporal of the input video clip. In other words, our
proposed framewise classifier is aimed at feature maps. The
designed framewise classifier is simply and effective.

As Figure 1 shows, our framewise classifier consists of
three FC layers. The inputs of the framewise classifier are
the feature maps Z. Our framewise classifier classifies the
feature maps Z along temporal dimension. As the tem-
poral length of Z is L, the batch size of the classifier is
L. The first FC layer reduces the feature dimension from
n = C ×H ×W into a middle level dimension n′, and then
the second FC enhances the feature learning. The input and
the output number of the second FC are the same, and n′ is
unchanged. Afterwards, we use the third FC to transfer the
feature dimension of Z from n into the specified class num-
ber n′′, where n′′ is the number of activity categories of the
corresponding dataset. Next, we use cross entropy loss to op-
timize the framewise classifier training. Specifically speak-
ing, for feature maps Z, we define the loss function for the
framewise classifier as

Lfc =
1

Nfc

Nfc∑

i=1

lcls(ai, a
∗

i ), (8)

where lcls(ai, a
∗

i ) is a softmax loss function for feature zi
classification in feature maps Z. ai is the predicted proba-
bility vector of the feature zi for each category, and a∗i is the
ground truth label. Nfc stands for the number of the feature
zi in Z, equal to L in this paper.

Formulation

Similar to (Xu, Das, and Saenko 2017; Ren et al. 2015), we
define the proposals classification and regression loss as fol-
lows (since both the classification loss and regression loss of
RPN subnet are very similar to those defined below, we omit
RPN loss in this paper, however, we reserve the correspond-
ing RPN loss while conducting experiments.)

Lcls =
1

Ncls

Ncls∑

i=1

lcls(pi, p
∗

i ), (9)

Lreg =
1

Nreg

Nreg∑

i=1

I(p∗i > 0)lreg(ti, t
∗

i ), (10)

where pi is the predicted probability vector of the ith tem-
poral action proposal for each category, and p∗i is the ground
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truth label, p∗i ∈ {0, 1, 2, ...,K}, K is the number of the
categories. I(·) is the indicator function which takes 1 if the
condition holds, or 0 otherwise (here we let the background
label be 0 for convenience). lreg is the smooth L1 loss func-
tion for temporal action proposals regression task. Ncls and
Nreg are the batch size and the number of the temporal ac-

tion proposals. ti = (tci , t
l
i) represents predicted relative off-

set to temporal action proposal, while t∗i = (t̂ci , t̂
l
i) repre-

sents the ground truth action region relative offset to tem-
poral action proposal. For the ith temporal action proposal
regression, we adopt the parameterizations of the 2 coordi-
nates as follows:

tci = (ci − cai )/li, tli = log(li/l
a
i ),

t̂ci = (c∗i − cai )/l
∗

i , t̂
l
i = log(l∗i /l

a
i ),

(11)

where ci, c
a
i and c∗i are for the predicted action region center

location, action proposal region center location and ground
truth action region center location respectively. li, l

a
i and l∗i

are the predicted action region length, action proposal region
length and the ground truth action region length respectively.

Thus, the total loss can be written as (we omit RPN subnet
classification and regression loss for simplicity.)

Loss = λ1Lfc + λ2Lcls + λ3Lreg, (12)

where λi is used to balance the weights of different modules.
We simply set all λi to be 1 in our experiment, treating all
modules as the same weight in training.

In practice, we first train our framewise classifier mod-
ule based proposal 3D CNNs without the AGCN module to
get the well-trained model parameters. Afterwards, we train
the proposal 3D convolutional networks equipped with both
AGCN and framewise classifier modules.

Experiments

In this section, we evaluate our proposed FC-AGCN-P-
3DCNN model on two popular public datasets (THUMOS
2014, ActivityNet v1.3). Specifically, we use two kinds of
proposal 3D ConvNets (C3D or ResNet34 as backbone) to
demonstrate the effectiveness of our proposed modules.

THUMOS 2014 (Jiang et al. 2014) It includes two tasks,
action recognition and temporal action detection. The tem-
poral action detection task contains 20 activity classes. It in-
cludes 2765 trimmed videos of these 20 actions in UCF101
for training, 200 and 213 untrimmed videos with temporal
annotations for the validation and the test sets respectively.
Most of the videos consist of more than one action instance.

ActivityNet v1.3 (Fabian Caba Heilbron and Niebles
2015) ActivityNet includes two versions (v1.2 and v1.3).
In our experiments, we use the latest release 1.3 of Activi-
tyNet, which contains 200 activity categories samples from
203 activity classes and 19994 videos in total. It includes
untrimmed video classification and activity detection. It is
divided into training, validation and test sets with ratio 2:1:1.
It has 10024, 4926 and 5044 videos for training, validation
and test sets. However, actually, we have download 9193,
4499 and 4616 videos for training, validation and test sets in
that some youtube URLs are now unavailable.

Implementation Details

For both models and datasets, we decompress the videos into
frames at 25 frames per second (fps), and create a buffer of
768 frames. The input for the network is the 30.7s video clip.

Backbone with C3D We implement our graph atten-
tion module with framewise constraint mainly on R-C3D1

model, which is written in pytorch. For THUMOS 2014, the
learning rate is kept fixed at 10−4 for first 3 epochs and is de-
creased to 10−5 for the last 2 epochs. We choose 10 anchor
segments with specific scale values [2, 4, 5, 6, 8, 9, 10, 12,
14, 16]. We use Sports-1M pretrained model to initialize the
training. For ActivityNet v1.3, the learning rate is still kept
fixed at 10−4 for first 6 epochs and is decreased to 10−5 for
the last 2 epochs on ActivityNet v1.3. We choose 37 anchor
segments with specific scale values [1, 1.25, 1.5, 1.75, 2,
2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20,
22, 24, 28, 32, 36, 40, 44, 52, 60, 68, 76, 84, 92, 100]. We
use ActivityNet pretrained model to initialize the training.
The learning rate of our module is 10 times larger than basic
model for both datasets. The output volume features of RoI
Pooling layer with the size 512× 4× 2× 2

Backbone with ResNet34 We also choose 10 anchor seg-
ments for THUMOS 2014, which is the same as C3D back-
bone. For THUMOS 2014, the learning rate is kept fixed at
10−4 for first 4 epochs and is decreased to 10−5 for the last
2 epochs. We use UCF-101 pretrained model to initialize
the training. Specificially, our AGCN module inserts after
layer4 and the input volume features of AGCN module with
the size 512× 6× 2× 2.

Comparison with State-of-the-art Methods

To begin with, we show the comparison results on THU-
MOS 2014 dataset. We compare FC-AGCN-P-C3D model
with state-of-the-art methods, as shown in Table 1, our pro-
posed methods achieve almost superior action detection re-
sults and outperforms previous work when IoU larger than
0.2 on the test set of THUMOS 2014. The “Average” col-
umn denotes the average value of first 7 columns. Our FC-
AGCN-P-C3D model, compared against original R-C3D
model, has a 3.7% improvement on average. Simultane-
ously, our AGCN-P-C3D obtains 2.6% relative improve-
ment, especially better performance improvement for high
IoU thresholds. Moreover, we compare with state-of-the-art
methods on ActivityNet v1.3 dataset. As Table 2 shows, our
FC-AGCN-P-C3D can obtain the best performance.

To further analyze the effectiveness of our AGCN module,
we show the every category accuracy at IoU threshold with
0.5 on THUMOS 2014 dataset. From Figure 3, we can see
R-C3D equipped with AGCN module obtain better detection
accuracy on most categories of THUMOS 2014 dataset, es-
pecially, for “Pole Vault”, we get 14.1% improvement com-
pared against original R-C3D model.

We also test our proposed module with another back-
bone (ResNet34) on THUMOS 2014. As Table 3 shows, our
proposed model (FC-AGCN-P-ResNet34) obtains improved
performance on THUMOS 2014 for all IoU thresholds.

1https://github.com/sunnyxiaohu/R-C3D.pytorch
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Table 1: mAP comparison of state-of-the-art action detection methods on THUMOS 2014.

Methods
IOU

0.1 0.2 0.3 0.4 0.5 0.6 0.7 Average

(Karaman, Seidenari, and D. Bimbo 2014) 4.6 3.4 2.4 1.4 0.9 - - -
(Wang, Qiao, and Tang 2014) 18.2 17.0 14.0 11.7 8.3 - - -

(Richard and Gall 2016) 39.7 35.7 30.0 23.2 15.2 - - -
S-CNN (Shou, Wang, and Chang 2016) 47.7 43.5 36.3 28.7 19.0 - - -

(Yeung et al. 2016) 48.9 44.0 36.0 26.4 17.1 - - -
(Yuan et al. 2017) 51.0 45.2 36.5 27.8 17.8 - - -

(Hou, Sukthankar, and Shah 2017) 51.3 - 43.7 - 22.0 - - -
TURN (Gao et al. 2017) 54.0 50.9 44.1 34.9 25.6 - - -

R-C3D (Xu, Das, and Saenko 2017) 55.2 55.1 52.8 45.9 34.8 27.3 15.4 40.9
(Alwassel, Caba Heilbron, and Ghanem 2018) - - 51.8 42.4 30.8 20.2 11.1 -

TPC (Yang et al. 2018) - - 44.1 37.1 28.2 20.6 12.7 -
BSN (Lin et al. 2018) - - 53.5 45.0 36.9 28.4 20.0 -
(Gleason et al. 2019) 52.1 51.4 49.7 46.1 37.4 26.2 15.2 39.7

DBS (Gao et al. 2019) 56.7 54.7 50.6 43.1 34.3 24.4 14.7 39.8
MGG+SCNN-cls (Liu et al. 2019) - - 44.9 37.8 29.9 23.6 15.8 -
BMN+SCNN-cls (Lin et al. 2019) - - 45.7 40.2 32.2 24.5 17.0 -
GTAN(C3D) (Long et al. 2019) 67.2 61.1 56.9 46.5 37.9 - - -

AGCN-P-C3D 57.2 57.8 54.4 49.0 38.4 29.7 17.7 43.5
FC-AGCN-P-C3D 59.3 59.6 57.1 51.6 38.6 28.9 17.0 44.6

Table 2: mAP@0.5 performance comparison of state-of-the-
art methods on ActivityNet v1.3 dataset.

Method validation test

UPC (Montes et al. 2016) 22.5 22.3
MSB-RNN (Singh et al. 2016) 26.0 17.7

(Li et al. 2017) 19.6 -
R-C3D (Xu, Das, and Saenko 2017) 29.3 29.7

STPN (Nguyen et al. 2018) 29.3 20.1

FC-AGCN-P-C3D 30.4 30.4

Figure 3: Per-category results for the FC-AGCN-P-C3D
model and the R-C3D model with mAP@0.5 on the test set
of THUMOS 2014 dataset.

Ablation Study

To demonstrate the reasonableness of our designed module,
we analyze the effect of every submodule and some function
operations in this subsection.

Inter-attention, Intra-attention, Naive attention fusion
based GCN We analyze the performance of only with one
submodule (inter-attention based GCN (Inter-AGCN), intra-
attention based GCN (Intra-AGCN)) and naive fusion based
GCN (Naive-AGCN) on THUMOS 2014 dataset. Based on
the Figure 4, we see Intra-AGCN-P-C3D model can ob-
tain improvement performance, compared with original R-
C3D module. Naive-AGCN-P-C3D only gets better perfor-
mance when IoU threshold is larger than 0.3. Although
the performance of Inter-AGCN-P-C3D model is worse
than original model, fuse inter and intra attention based
GCN (AGCN-P-C3D) can get better performance compared
against Inter-AGCN-P-C3D, Intra-AGCN-P-C3D and orig-
inal R-C3D models. At the same time, we study the frame-
wise classifier module embedded in R-C3D model, we can
see that FC-P-C3D model can effectively improve the per-
formance, especially at the lower IoU thresholds. At last, we
also show results of combining framewise classifier mod-
ule and our AGCN module (FC-AGCN-P-C3D model). As
Figure 4 shows, FC-AGCN-P-C3D model can get the best
performance for all the value of IoU threshold.

GCN with and without Attention Mechanism We also
compare the performance for regular GCN with and without
attention mechanism. As Table 4 shows, the performance
of the 1layer-GCN-P-C3D model without attention mech-
anism only obtains almost the same accuracies with orig-
inal R-C3D (Xu, Das, and Saenko 2017) model. Inspired
by (Wang and Gupta 2018), we also show the 3-layer GCN
without attention mechanism (3layers-GCN-P-C3D) model.
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Figure 4: mAP at different overlap IoU thresholds per-
formance comparison of FC (framewise classifier), Inter-
AGCN, Intra-AGCN, Naive-AGCN and AGCN modules on
THUMOS 2014.

Table 3: mAP comparison of original and our proposed
model with ResNet-34 as backbone on THUMOS 2014.

Methods
IOU

0.1 0.2 0.3 0.4 0.5

P-ResNet34 54.2 53.1 49.5 43.8 36.9
FC-AGCN-P-ResNet34 56.7 55.4 51.9 46.7 38.2

Table 4: mAP comparison between GCN with and without
attention mechanism on THUMOS 2014.

Methods
IOU

0.1 0.2 0.3 0.4 0.5

R-C3D 55.2 55.1 52.8 45.9 34.8

1layer-GCN-P-C3D 55.3 54.8 52.0 46.4 34.7
3layers-GCN-P-C3D 57.8 57.6 54.2 47.4 34.8

GAT-P-C3D 55.1 54.8 52.0 46.2 34.4

AGCN-P-C3D 57.2 57.8 54.4 49.0 38.4

By contrast, the model (AGCN-P-C3D, 1 layer) with atten-
tion mechanism can get almost the best performance. We
also show the performance of GAT-P-C3D (Busbridge et al.
2017), which is similar to our inter attention based GCN, but
our model achieves less computational complexity.

Choosing Learnable Parameter Matrix or favg r Func-
tion for Intra Attention based GCN We also compare
the results of using learnable parameter matrix with those
of using favg r function in intra attention based GCN. As
Table 5 shows, using learnable parameter matrix (AGCN-
P-C3D (lpm)) has the worse temporal action detection ac-
curacy. Thus, simply using average along rows not only re-
duces the computation complex but also improves perfor-
mance.

Using fmask or not We also analysis whether using fmask

function or not for inter attention based GCN. As Table 6
shows, without fmask function, AGCN-P-C3D (w/o) model

Table 5: mAP comparison between using learnable
parameter matrix (lpm) and favg r function for intra atten-
tion based GCN on THUMOS 2014.

Methods
IOU

0.1 0.2 0.3 0.4 0.5

AGCN-P-C3D (lpm) 53.0 53.2 50.2 44.1 33.9

AGCN-P-C3D 57.2 57.8 54.4 49.0 38.4

Table 6: mAP comparison between using fmask function or
not for intra attention based GCN on THUMOS 2014.

Methods
IOU

0.1 0.2 0.3 0.4 0.5

AGCN-P-C3D (w/o) 58.7 57.2 53.7 46.9 35.8

AGCN-P-C3D 57.2 57.8 54.4 49.0 38.4

obtains worse performance almost in all overlap IoU thresh-
olds except 0.1. Furthermore, with fmask, the improved per-
formance compared against that without fmask will be larger
at the higher value of the overlap IoU threshold. This is be-
cause that the temporal action proposals which do not inter-
sect almost have no affects with each other. If we still use
vision similarity to create the connected relation for adja-
cency matrix of GCN, the performance will be worse.

Conclusion

This paper proposes an attention based GCN for action de-
tection in video, solving the problem that the proposal 3D
CNNs based video action detection can not utilize the re-
lations of temporal action proposals. Moreover, our AGCN
can learn the intra long-range dependencies for every node
in graph node matrix and learn the inter dependencies among
proposals for adjacency matrix in the graph. Besides, to
improve the whole network temporal action detection per-
formance, we introduce the simple and effective framewise
classifier module to enhance the backbone presentation ca-
pabilities. Compare with state-of-the-art methods, our pro-
posed method can get the best performance.
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