
Graph-Based Algorithms for Text Summarization

Khushboo S. Thakkar
Department of Computer Science &

Engineering
G. H. Raisoni College of Engineering,

Nagpur, India
e-mail:khushboo.thakkar86@gmail.com

Dr. R. V. Dharaskar
Professor & Head, Dept. of Computer

Science & Engineering
G. H. Raisoni College of Engineering,

Nagpur, India
e-mail: rajiv.dharaskar@gmail.com

M. B. Chandak
 HOD, Dept. of Computer Science &

Engineering
Shri Ramdeobaba Kamla Nehru

Engineering College,
Nagpur, India

e-mail: chandakmb@gmail.com

Abstract-Summarization is a brief and accurate representation

of input text such that the output covers the most important

concepts of the source in a condensed manner. Text

Summarization is an emerging technique for understanding
the main purpose of any kind of documents. To visualize a

large text document within a short duration and small visible
area like PDA screen, summarization provides a greater

flexibility and convenience. This paper presents innovative
unsupervised methods for automatic sentence extraction using
graph-based ranking algorithms and shortest path algorithm.

Keywords- Text Summarization,ranking algorithm, HITS,

PageRank.

I. INTRODUCTION

 Due to the rapid growth of the World Wide Web,

information is much easier to disseminate and acquire than

before. Finding useful and favored documents from the

huge text repository creates significant challenges for users.

Typical approaches to resolve such a problem are to employ

information retrieval techniques. Information retrieval relies

on the use of keywords to search for the desired information.

Nevertheless, the amount of information obtained via

information retrieval is still far greater than that a user can

handle and manage. This in turn requires the user to analyze

the searched results one by one until satisfied information is

acquired, which is time-consuming and inefficient. It is

therefore essential to develop tools to efficiently assist users

in identifying desired documents.

One possible means is to utilize automatic text

summarization. Automatic text summarization is a text-

mining task that extracts essential sentences to cover almost

all the concepts of a document. It is to reduce users’

consuming time in document reading without losing the

general issues for users’ comprehension. With document

summary available, users can easily decide its relevancy to

their interests and acquire desired documents with much

less mental loads involved.

II. GRAPH-BASED ALGORITHMS

A. Graph-based Ranking Algorithm

Graph-based ranking algorithms are essentially a way of

deciding the importance of a vertex within a graph, based

on information drawn from the graph structure. In this

section, two graph-based ranking algorithms – previously

found to be successful on a range of ranking problems are

presented. These algorithms can be adapted to undirected or

weighted graphs, which are particularly useful in the

context of text-based ranking applications.

HITS

Hyperlink-Induced Topic Search (HITS) (also known as

Hubs and authorities) is a link analysis algorithm that rates

Web pages, developed by Jon Kleinberg. It determines two

values for a page: its authority, which estimates the value of

the content of the page, and its hub value, which estimates

the value of its links to other pages.

In the HITS algorithm, the first step is to retrieve the set

of results to the search query. The computation is

performed only on this result set, not across all Web pages.

Authority and hub values are defined in terms of one

another in a mutual recursion. An authority value is

computed as the sum of the scaled hub values that point to

that page. A hub value is the sum of the scaled authority

values of the pages it points to. Some implementations also

consider the relevance of the linked pages.

The Hub score and Authority score for a node is

calculated with the following algorithm:

• Start with each node having a hub score and

authority score of 1.

• Run the Authority Update Rule.

• Run the Hub Update Rule.

• Normalize the values by dividing each Hub

score by the sum of the squares of all Hub

scores, and dividing each Authority score by the

sum of the squares of all Authority scores.

• Repeat from the second step as necessary.

HITS produces two sets of scores – an “authority” score,

and a “hub” score:

HITSA (Vi) = ∑ HITSH (Vj) (1)

Vj ЄIn(Vi)

HITSH(Vi) = ∑ HITSA(Vj) (2)

Vj ЄOut(Vi)

PageRank

PageRank is a link analysis algorithm, named after Larry

Page, used by the Google Internet search engine that

assigns a numerical weighting to each element of a

hyperlinked set of documents, such as the World Wide Web,

Third International Conference on Emerging Trends in Engineering and Technology

978-0-7695-4246-1/10 $26.00 © 2010 IEEE

DOI 10.1109/ICETET.2010.104

516

Third International Conference on Emerging Trends in Engineering and Technology

978-0-7695-4246-1/10 $26.00 © 2010 IEEE

DOI 10.1109/ICETET.2010.104

516

Third International Conference on Emerging Trends in Engineering and Technology

978-0-7695-4246-1/10 $26.00 © 2010 IEEE

DOI 10.1109/ICETET.2010.104

516

Third International Conference on Emerging Trends in Engineering and Technology

978-0-7695-4246-1/10 $26.00 © 2010 IEEE

DOI 10.1109/ICETET.2010.104

516

with the purpose of "measuring" its relative importance

within the set. The algorithm may be applied to any

collection of entities with reciprocal quotations and

references. The numerical weight that it assigns to any

given element E is also called the PageRank of E and

denoted by PR(E).

The name "PageRank" is a trademark of Google, and the

PageRank process has been patented (U.S. Patent

6,285,999). However, the patent is assigned to Stanford

University and not to Google. Google has exclusive license

rights on the patent from Stanford University. The

university received 1.8 million shares of Google in

exchange for use of the patent; the shares were sold in 2005

for $336 million

Google describes PageRank:

“PageRank relies on the uniquely democratic nature

of the web by using its vast link structure as an indicator

of an individual page's value. In essence, Google

interprets a link from page A to page B as a vote, by

page A, for page B. But, Google looks at more than the

sheer volume of votes, or links a page receives; it also

analyzes the page that casts the vote. Votes cast by

pages that are themselves "important" weigh more

heavily and help to make other pages "important".”

In other words, a PageRank results from a "ballot" among

all the other pages on the World Wide Web about how

important a page is. A hyperlink to a page counts as a vote

of support. The PageRank of a page is defined recursively

and depends on the number and PageRank metric of all

pages that link to it ("incoming links"). A page that is linked

to by many pages with high PageRank receives a high rank

itself. If there are no links to a web page there is no support

for that page.

PageRank is a probability distribution used to represent

the likelihood that a person randomly clicking on links will

arrive at any particular page. PageRank can be calculated

for collections of documents of any size. It is assumed in

several research papers that the distribution is evenly

divided between all documents in the collection at the

beginning of the computational process. The PageRank

computations require several passes, called "iterations",

through the collection to adjust approximate PageRank

values to more closely reflect the theoretical true value.

In the general case, the PageRank value for any page u

can be expressed as:

PR(υ) = ∑ PR(ν) (3)

 νЄBu
L(ν)

i.e. the PageRank value for a page u is dependent on the

PageRank values for each page v out of the set Bu (this set

contains all pages linking to page u), divided by the number

L(v) of links from page v.

The PageRank theory holds that even an imaginary surfer

who is randomly clicking on links will eventually stop

clicking. The probabilities, at any step, that the person will

continue is a damping factor d. Various studies have tested

different damping factors, but it is generally assumed that

the damping factor will be set around 0.85.

The damping factor is subtracted from 1 (and in some

variations of the algorithm, the result is divided by the

number of documents in the collection) and this term is then

added to the product of the damping factor and the sum of

the incoming PageRank scores.

That is,

PR(A) = 1 – d + d . PR(B) + PR(C) + PR(D) + … (4)

 L(B) L(C) L(D)

For each of these algorithms, starting from arbitrary

values assigned to each node in the graph, the computation

iterates until convergence below a given threshold is

achieved. After running the algorithm, a score is associated

with each vertex, which represents the “importance” or

“power” of that vertex within the graph. Notice that the

final values are not affected by the choice of the initial

value, only the number of iterations to convergence may be

different.

Text As Graph

To enable the application of graph-based ranking

algorithms to natural language texts, we have to build a

graph that represents the text, and interconnects words or

other text entities with meaningful relations. Depending on

the application at hand, text units of various sizes and

characteristics can be added as vertices in the graph, e.g.

words, collocations, entire sentences, or others. Similarly, it

is the application that dictates the type of relations that are

used to draw connections between any two such vertices,

e.g. lexical or semantic relations, contextual overlap, etc.

Regardless of the type and characteristics of the elements

added to the graph, the application of graph-based ranking

algorithms to natural language texts consists of the

following main steps:

1. Identify text units that best define the task at hand,

and add them as vertices in the graph.

2. Identify relations that connect such text units, and

use these relations to draw edges between vertices

in the graph. Edges can be directed or undirected,

weighted or unweighted.

3. Iterate the graph-based ranking algorithm until

convergence.

4. Sort vertices based on their final score. Use the values

attached to each vertex for ranking/selection decisions

Sentence Extraction

To apply TextRank, we first need to build a graph

associated with the text, where the graph vertices are

representative for the units to be ranked. For the task of

sentence extraction, the goal is to rank entire sentences, and

therefore a vertex is added to the graph for each sentence in

the text.

Formally, given two sentences Si and Sj, with a sentence

being represented by the set of Ni words that appear in the

sentence: Si = Wi
1, W

i
2, … ,Wi

Ni , the similarity of Si and Sj

is defined as:

517517517517

Similarity(Si, Sj) =|Wk|WkЄSi&WkЄSj| (5)
 log(|Si|) + log(|Sj|)

Other sentence similarity measures, such as string
kernels, cosine similarity, longest common subsequence,
etc. are also possible, and we are currently evaluating their
impact on the summarization performance.

Figure 1. Sample graph build for sentence extraction

The resulting graph is highly connected, with a weight

associated with each edge, indicating the strength of the

connections established between various sentence pairs in

the text. The text is therefore represented as a weighted

graph.

After the ranking algorithm is run on the graph, sentences

are sorted in reversed order of their score, and the top

ranked sentences are selected for inclusion in the summary.

Fig 1 shows a text sample [6], and the associated

weighted graph constructed for this text. The figure also

shows sample weights attached to the edges connected to

vertex 9, and the final TextRank score computed for each

sentence. The sentences with the highest rank are selected

for inclusion in the abstract. For this sample article, the

sentences with id-s 9, 15, 16, 18 are extracted, resulting in a

summary of about 100 words, which according to automatic

evaluation measures, is ranked the second among

summaries produced by 15 other systems.

B. Shortest-path Algorithm

Extraction based summarization normally produces

summaries that are somewhat unappealing to read. There is

a lack of flow in the text, since the extracted parts, usually

sentences, are taken from different parts of the original text.

This can for instance lead to very sudden topic shifts. The

idea behind the presented method of extracting sentences

that form a path where each sentence is similar to the

previous one is that the resulting summaries hopefully have

better flow. This quality is however quite hard to evaluate.

Since the summaries are still extracts, high quality

summaries should still not be expected [3].

Building the graph

When a text is to be summarized, it is first split into

sentences and words. The sentences become the nodes of

the graph. Sentences that are similar to each other have an

edge between them. Here, similarity simply means word

overlap, though other measures could also be used. Thus, if

two sentences have at least one word in common, there will

be an edge between them. Of course, many words are

ambiguous, and having a matching word does not guarantee

any kind of similarity. Since all sentences come from the

same document, and words tend to be less ambiguous in a

single text, this problem is somewhat mitigated.

All sentences also have an edge to the following

sentence. Edges are given costs (or weights). The more

similar two sentences are, the less the cost of the edge. The

further apart the sentences are in the original text, the higher

the cost of the edge. To favor inclusion of “interesting”

sentences, all sentences that are deemed relevant to the

document according to classical summarization methods

have the costs of all the edges leading to them lowered.

The cost of an edge from the node representing sentence

number i in the text, Si, to the node for Sj is calculated as:

cost i, j = (i − j) 2 (6)

 overlap i,j · weight j

and the weight of a sentence is calculated as:

518518518518

weight j = (1 + overlaptitle, j)

 .

 . early (j). √ (1 + | edgej |) (7)

Since similarity is based on the number of words in

common between two sentences, long sentences have a

greater chance of being similar to other sentences. Favoring

long sentences is often good from a smoothness

perspective. Summaries with many short sentences have a

larger chance for abrupt changes, since there are more

sentence breaks.

Constructing the summary

 When the graph has been constructed, the summary is

created by taking the shortest path that starts with the first

sentence of the original text and ends with the last sentence.

Since the original text also starts and ends in these

positions, this will hopefully give a smooth but shorter set

of sentences between these two points.

The N shortest paths are found by simply starting at the

start node and adding all paths of length one to a priority

queue, where the priority value is the total cost of a path.

The currently cheapest path is then examined and if it does

not end at the end node, all paths starting with this path and

containing one more edge are also added to the priority

queue. Paths with loops are discarded. Whenever the

currently shortest path ends in the end node, another

shortest path has been found, and the search is continued

until the N shortest paths have been found.

III. COMPARISON

TextRank works well because it does not only rely on the

local context of a text unit (vertex), but rather it takes into

account information recursively drawn from the entire text

(graph). Through the graphs it builds on texts, TextRank

identifies connections between various entities in a text, and

implements the concept of recommendation. A text unit

recommends other related text units, and the strength of the

recommendation is recursively computed based on the

importance of the units making the recommendation. In the

process of identifying important sentences in a text, a

sentence recommends another sentence that addresses

similar concepts as being useful for the overall

understanding of the text. Sentences that are highly

recommended by other sentences are likely to be more

informative for the given text, and will be therefore given a

higher score.

An important aspect of TextRank is that it does not

require deep linguistic knowledge, nor domain or language

specific annotated corpora, which makes it highly portable

to other domains, genres, or languages.

The Shortest-path algorithm is easy to implement and

should be relatively language independent, though it was

only evaluated on English texts. The generated summaries,

they are often somewhat “smooth” to read. This smoothness

is hard to quantify objectively, though, and the extracts are

by no means as smooth as a manually written summary.

When it comes to including the important facts from the

original text, the weighting of sentences using traditional

extraction weighting methods seems to be the most

important part. Taking a path from the first to the last

sentence does give a spread to the summary, making it more

likely that most parts of the original text that are important

will be included and making it unlikely that too much

information is included from only one part of the original

text.

IV. CONCLUSION

 Automatic text summarization is now used

synonymously that aim to generate summaries of texts. This

area of NLP research is becoming more common in the web

and digital library environment. In simple summarization

systems, parts of text – sentences or paragraphs – are

selected automatically based on some linguistic and/or

statistical criteria to produce the abstract or summary.
Shortest-path algorithm is better because it generates

smooth summaries as compared to ranking algorithms.

Taking a path from the first to the last sentence does give a

spread to the summary, making it more likely that most

parts of the original text that are important will be included.

V. REFERENCES

[1] Satyajeet Raje, Sanket Tulangekar, Rajshekhar Waghe, Rohit Pathak,
Parikshit Mahalle, “Extraction of Key Phrases from Document using
Statistical and Linguistic analysis”, 2009.

[2] Md. Nizam Uddin, Shakil Akter Khan, “A Study on Text
Summarization Techniques and Implement Few of Them for Bangla
Language”, 1-4244-1551-9/07IEEE, 2007.

[3] Jonas Sj¨obergh, Kenji Araki, “Extraction based summarization using
a shortest path algorithm”, Proceedings of the Annual Meeting of the
Association for Natural Language Processing, 2006.

[4] Massih R. Amini, Nicolas Usunier, and Patrick Gallinari, “Automatic
Text Summarization Based onWord-Clusters and Ranking
Algorithms”, D.E. Losada and J.M. Fern´andez-Luna (Eds.): ECIR
2005, LNCS 3408, pp. 142–156, 2005.

[5] Rada Mihalcea, “Graph-based Ranking Algorithms for Sentence
Extraction, Applied to Text Summarization”. The Companion
Volume to the Proceedings of 42st Annual Meeting of the
Association for Computational Linguistics, pages 170–173,
Barcelona, Spain, 2004.

[6] R. Mihalcea and P. Tarau, “TextRank – bringing order into texts”,
2004.

[7] R. Mihalcea, P. Tarau, and E. Figa, “PageRank on semantic networks,
with application to word sense disambiguation”. In Proceedings of
the 20st International Conference on Computational Linguistics,
Geneva, Switzerland, August 2004.

[8] C.Y. Lin and E.H. Hovy, “The potential and limitations of sentence
extraction for summarization”. In Proceedings of the HLT/NAACL
Workshop on Automatic Summarization, Edmonton, Canada, May
2003.

[9] Chin-Yew Lin and Eduard Hovy, “Automatic Evaluation of
Summaries Using N-gram Cooccurrence Statistics”. In Udo Hahn
and Donna Harman, editors, Proceedings of the 2003 Human
Language Technology Conference

[10] P.J. Herings, G. van der Laan, and D. Talman, “Measuring the power
of nodes in digraphs”. Technical report, Tinbergen Institute, 2001.

[11] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web
search engine”. Computer Networks and ISDN Systems 1998.

 (∑wЄtext tf(w))

 (1 + ∑ wЄSj tf(w))

519519519519

