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Abstract-Summarization is a brief and accurate representation 

of input text such that the output covers the most important 

concepts of the source in a condensed manner. Text 

Summarization is an emerging technique for understanding 
the main purpose of any kind of documents. To visualize a 

large text document within a short duration and small visible 
area like PDA screen, summarization provides a greater 

flexibility and convenience. This paper presents innovative 
unsupervised methods for automatic sentence extraction using 
graph-based ranking algorithms and shortest path algorithm. 

Keywords- Text Summarization,ranking algorithm, HITS, 

PageRank.  

I. INTRODUCTION 

 Due to the rapid growth of the World Wide Web, 

information is much easier to disseminate and acquire than 

before. Finding useful and favored documents from the 

huge text repository creates significant challenges for users. 

Typical approaches to resolve such a problem are to employ 

information retrieval techniques. Information retrieval relies 

on the use of keywords to search for the desired information. 

Nevertheless, the amount of information obtained via 

information retrieval is still far greater than that a user can 

handle and manage. This in turn requires the user to analyze 

the searched results one by one until satisfied information is 

acquired, which is time-consuming and inefficient. It is 

therefore essential to develop tools to efficiently assist users 

in identifying desired documents. 

One possible means is to utilize automatic text 

summarization. Automatic text summarization is a text-

mining task that extracts essential sentences to cover almost 

all the concepts of a document. It is to reduce users’ 

consuming time in document reading without losing the 

general issues for users’ comprehension. With document 

summary available, users can easily decide its relevancy to 

their interests and acquire desired documents with much 

less mental loads involved. 

II. GRAPH-BASED ALGORITHMS 

A. Graph-based Ranking Algorithm 

Graph-based ranking algorithms are essentially a way of 

deciding the importance of a vertex within a graph, based 

on information drawn from the graph structure. In this 

section,  two graph-based ranking algorithms – previously 

found to be successful on a range of ranking problems are 

presented. These algorithms can be adapted to undirected or 

weighted graphs, which are particularly useful in the 

context of text-based ranking applications. 

HITS 

Hyperlink-Induced Topic Search (HITS) (also known as 

Hubs and authorities) is a link analysis algorithm that rates 

Web pages, developed by Jon Kleinberg. It determines two 

values for a page: its authority, which estimates the value of 

the content of the page, and its hub value, which estimates 

the value of its links to other pages. 

In the HITS algorithm, the first step is to retrieve the set 

of results to the search query. The computation is 

performed only on this result set, not across all Web pages. 

Authority and hub values are defined in terms of one 

another in a mutual recursion. An authority value is 

computed as the sum of the scaled hub values that point to 

that page. A hub value is the sum of the scaled authority 

values of the pages it points to. Some implementations also 

consider the relevance of the linked pages. 

The Hub score and Authority score for a node is 

calculated with the following algorithm: 

• Start with each node having a hub score and 

authority score of 1.  

• Run the Authority Update Rule. 

• Run the Hub Update Rule. 

• Normalize the values by dividing each Hub 

score by the sum of the squares of all Hub 

scores, and dividing each Authority score by the 

sum of the squares of all Authority scores.  

• Repeat from the second step as necessary. 
 
HITS produces two sets of scores – an “authority” score, 

and a “hub” score: 

HITSA (Vi) =   ∑ HITSH (Vj)         (1) 

                      
Vj ЄIn(Vi)  

HITSH(Vi) =   ∑ HITSA(Vj)                                           (2) 

                      
Vj ЄOut(Vi) 

PageRank 

PageRank is a link analysis algorithm, named after Larry 

Page, used by the Google Internet search engine that 

assigns a numerical weighting to each element of a 

hyperlinked set of documents, such as the World Wide Web, 
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with the purpose of "measuring" its relative importance 

within the set. The algorithm may be applied to any 

collection of entities with reciprocal quotations and 

references. The numerical weight that it assigns to any 

given element E is also called the PageRank of E and 

denoted by PR(E). 

The name "PageRank" is a trademark of Google, and the 

PageRank process has been patented (U.S. Patent 

6,285,999). However, the patent is assigned to Stanford 

University and not to Google. Google has exclusive license 

rights on the patent from Stanford University. The 

university received 1.8 million shares of Google in 

exchange for use of the patent; the shares were sold in 2005 

for $336 million 

Google describes PageRank: 

 
“PageRank relies on the uniquely democratic nature 

of the web by using its vast link structure as an indicator 

of an individual page's value. In essence, Google 

interprets a link from page A to page B as a vote, by 

page A, for page B. But, Google looks at more than the 

sheer volume of votes, or links a page receives; it also 

analyzes the page that casts the vote. Votes cast by 

pages that are themselves "important" weigh more 

heavily and help to make other pages "important".” 

In other words, a PageRank results from a "ballot" among 

all the other pages on the World Wide Web about how 

important a page is. A hyperlink to a page counts as a vote 

of support. The PageRank of a page is defined recursively 

and depends on the number and PageRank metric of all 

pages that link to it ("incoming links"). A page that is linked 

to by many pages with high PageRank receives a high rank 

itself. If there are no links to a web page there is no support 

for that page. 

PageRank is a probability distribution used to represent 

the likelihood that a person randomly clicking on links will 

arrive at any particular page. PageRank can be calculated 

for collections of documents of any size. It is assumed in 

several research papers that the distribution is evenly 

divided between all documents in the collection at the 

beginning of the computational process. The PageRank 

computations require several passes, called "iterations", 

through the collection to adjust approximate PageRank 

values to more closely reflect the theoretical true value. 

In the general case, the PageRank value for any page u 

can be expressed as: 

PR(υ) = ∑     PR(ν)                                                     (3) 

                  νЄBu     
L(ν) 

i.e. the PageRank value for a page u is dependent on the 

PageRank values for each page v out of the set Bu (this set 

contains all pages linking to page u), divided by the number 

L(v) of links from page v. 

The PageRank theory holds that even an imaginary surfer 

who is randomly clicking on links will eventually stop 

clicking. The probabilities, at any step, that the person will 

continue is a damping factor d. Various studies have tested 

different damping factors, but it is generally assumed that 

the damping factor will be set around 0.85. 

The damping factor is subtracted from 1 (and in some 

variations of the algorithm, the result is divided by the 

number of documents in the collection) and this term is then 

added to the product of the damping factor and the sum of 

the incoming PageRank scores. 

That is, 

PR(A) = 1 – d + d . PR(B) + PR(C) + PR(D) + …         (4) 

                                  L(B)      L(C)       L(D) 

For each of these algorithms, starting from arbitrary 

values assigned to each node in the graph, the computation 

iterates until convergence below a given threshold is 

achieved. After running the algorithm, a score is associated 

with each vertex, which represents the “importance” or 

“power” of that vertex within the graph. Notice that the 

final values are not affected by the choice of the initial 

value, only the number of iterations to convergence may be 

different. 

Text As Graph 

To enable the application of graph-based ranking 

algorithms to natural language texts, we have to build a 

graph that represents the text, and interconnects words or 

other text entities with meaningful relations. Depending on 

the application at hand, text units of various sizes and 

characteristics can be added as vertices in the graph, e.g. 

words, collocations, entire sentences, or others. Similarly, it 

is the application that dictates the type of relations that are 

used to draw connections between any two such vertices, 

e.g. lexical or semantic relations, contextual overlap, etc. 

Regardless of the type and characteristics of the elements 

added to the graph, the application of graph-based ranking 

algorithms to natural language texts consists of the 

following main steps: 

1. Identify text units that best define the task at hand, 

and add them as vertices in the graph. 

2. Identify relations that connect such text units, and 

use these relations to draw edges between vertices 

in the graph. Edges can be directed or undirected, 

weighted or unweighted. 

3. Iterate the graph-based ranking algorithm until 

convergence. 

4. Sort vertices based on their final score. Use the values 

attached to each vertex for ranking/selection decisions 

Sentence Extraction 

To apply TextRank, we first need to build a graph 

associated with the text, where the graph vertices are 

representative for the units to be ranked. For the task of 

sentence extraction, the goal is to rank entire sentences, and 

therefore a vertex is added to the graph for each sentence in 

the text. 

Formally, given two sentences Si and Sj, with a sentence 

being represented by the set of Ni words that appear in the 

sentence: Si = Wi
1, W

i
2, … ,Wi

Ni , the similarity of Si and Sj 

is defined as: 

517517517517



Similarity(Si, Sj) =|Wk|WkЄSi&WkЄSj|                                (5) 
                                             log(|Si|) + log(|Sj|)                              

Other sentence similarity measures, such as string 
kernels, cosine similarity, longest common subsequence, 
etc. are also possible, and we are currently evaluating their 
impact on the summarization performance.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 1.  Sample graph build for sentence extraction 

The resulting graph is highly connected, with a weight 

associated with each edge, indicating the strength of the 

connections established between various sentence pairs in 

the text. The text is therefore represented as a weighted 

graph. 

After the ranking algorithm is run on the graph, sentences 

are sorted in reversed order of their score, and the top 

ranked sentences are selected for inclusion in the summary. 

Fig 1 shows a text sample [6], and the associated 

weighted graph constructed for this text. The figure also 

shows sample weights attached to the edges connected to 

vertex 9, and the final TextRank score computed for each 

sentence. The sentences with the highest rank are selected 

for inclusion in the abstract. For this sample article, the 

sentences with id-s 9, 15, 16, 18 are extracted, resulting in a 

summary of about 100 words, which according to automatic 

evaluation measures, is ranked the second among 

summaries produced by 15 other systems. 

B. Shortest-path Algorithm 

Extraction based summarization normally produces 

summaries that are somewhat unappealing to read. There is 

a lack of flow in the text, since the extracted parts, usually 

sentences, are taken from different parts of the original text. 

This can for instance lead to very sudden topic shifts. The 

idea behind the presented method of extracting sentences 

that form a path where each sentence is similar to the 

previous one is that the resulting summaries hopefully have 

better flow. This quality is however quite hard to evaluate. 

Since the summaries are still extracts, high quality 

summaries should still not be expected [3]. 

Building the graph 

When a text is to be summarized, it is first split into 

sentences and words. The sentences become the nodes of 

the graph. Sentences that are similar to each other have an 

edge between them. Here, similarity simply means word 

overlap, though other measures could also be used. Thus, if 

two sentences have at least one word in common, there will 

be an edge between them. Of course, many words are 

ambiguous, and having a matching word does not guarantee 

any kind of similarity. Since all sentences come from the 

same document, and words tend to be less ambiguous in a 

single text, this problem is somewhat mitigated. 

All sentences also have an edge to the following 

sentence. Edges are given costs (or weights). The more 

similar two sentences are, the less the cost of the edge. The 

further apart the sentences are in the original text, the higher 

the cost of the edge. To favor inclusion of “interesting” 

sentences, all sentences that are deemed relevant to the 

document according to classical summarization methods 

have the costs of all the edges leading to them lowered. 

The cost of an edge from the node representing sentence 

number i in the text, Si, to the node for Sj is calculated as: 

cost i, j  =          (i − j) 2                                                    (6)    

                  overlap i,j · weight j 

and the weight of a sentence is calculated as: 
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weight j = (1 + overlaptitle, j)                                           

    . 

 

       . early (j). √ (1 + | edgej |)                                            (7) 

Since similarity is based on the number of words in 

common between two sentences, long sentences have a 

greater chance of being similar to other sentences. Favoring 

long sentences is often good from a smoothness 

perspective. Summaries with many short sentences have a 

larger chance for abrupt changes, since there are more 

sentence breaks.  

Constructing the summary 

 When the graph has been constructed, the summary is 

created by taking the shortest path that starts with the first 

sentence of the original text and ends with the last sentence. 

Since the original text also starts and ends in these 

positions, this will hopefully give a smooth but shorter set 

of sentences between these two points. 

The N shortest paths are found by simply starting at the 

start node and adding all paths of length one to a priority 

queue, where the priority value is the total cost of a path. 

The currently cheapest path is then examined and if it does 

not end at the end node, all paths starting with this path and 

containing one more edge are also added to the priority 

queue. Paths with loops are discarded. Whenever the 

currently shortest path ends in the end node, another 

shortest path has been found, and the search is continued 

until the N shortest paths have been found. 

III. COMPARISON  

TextRank works well because it does not only rely on the 

local context of a text unit (vertex), but rather it takes into 

account information recursively drawn from the entire text 

(graph). Through the graphs it builds on texts, TextRank 

identifies connections between various entities in a text, and 

implements the concept of recommendation. A text unit 

recommends other related text units, and the strength of the 

recommendation is recursively computed based on the 

importance of the units making the recommendation. In the 

process of identifying important sentences in a text, a 

sentence recommends another sentence that addresses 

similar concepts as being useful for the overall 

understanding of the text. Sentences that are highly 

recommended by other sentences are likely to be more 

informative for the given text, and will be therefore given a 

higher score. 

An important aspect of TextRank is that it does not 

require deep linguistic knowledge, nor domain or language 

specific annotated corpora, which makes it highly portable 

to other domains, genres, or languages. 

The Shortest-path algorithm is easy to implement and 

should be relatively language independent, though it was 

only evaluated on English texts. The generated summaries, 

they are often somewhat “smooth” to read. This smoothness 

is hard to quantify objectively, though, and the extracts are 

by no means as smooth as a manually written summary. 

When it comes to including the important facts from the 

original text, the weighting of sentences using traditional 

extraction weighting methods seems to be the most 

important part. Taking a path from the first to the last 

sentence does give a spread to the summary, making it more 

likely that most parts of the original text that are important 

will be included and making it unlikely that too much 

information is included from only one part of the original 

text. 

IV. CONCLUSION 

 Automatic text summarization is now used 

synonymously that aim to generate summaries of texts. This 

area of NLP research is becoming more common in the web 

and digital library environment. In simple summarization 

systems, parts of text – sentences or paragraphs – are 

selected automatically based on some linguistic and/or 

statistical criteria to produce the abstract or summary. 
Shortest-path algorithm is better because it generates 

smooth summaries as compared to ranking algorithms. 

Taking a path from the first to the last sentence does give a 

spread to the summary, making it more likely that most 

parts of the original text that are important will be included. 

V. REFERENCES 

[1] Satyajeet Raje, Sanket Tulangekar, Rajshekhar Waghe, Rohit Pathak, 
Parikshit Mahalle, “Extraction of Key Phrases from Document using 
Statistical and Linguistic analysis”, 2009. 

[2] Md. Nizam Uddin, Shakil Akter Khan, “A Study on Text 
Summarization Techniques and Implement Few of Them for Bangla 
Language”, 1-4244-1551-9/07IEEE, 2007. 

[3] Jonas Sj¨obergh, Kenji Araki, “Extraction based summarization using 
a shortest path algorithm”, Proceedings of the Annual Meeting of the 
Association for Natural Language Processing, 2006. 

[4] Massih R. Amini, Nicolas Usunier, and Patrick Gallinari, “Automatic 
Text Summarization Based onWord-Clusters and Ranking 
Algorithms”, D.E. Losada and J.M. Fern´andez-Luna (Eds.): ECIR 
2005, LNCS 3408, pp. 142–156, 2005. 

[5] Rada Mihalcea, “Graph-based Ranking Algorithms for Sentence 
Extraction, Applied to Text Summarization”. The Companion 
Volume to the Proceedings of 42st Annual Meeting of the 
Association for Computational Linguistics, pages 170–173, 
Barcelona, Spain, 2004. 

[6] R. Mihalcea and P. Tarau, “TextRank – bringing order into texts”, 
2004. 

[7] R. Mihalcea, P. Tarau, and E. Figa, “PageRank on semantic networks, 
with application to word sense disambiguation”. In Proceedings of 
the 20st International Conference on Computational Linguistics, 
Geneva, Switzerland, August 2004. 

[8] C.Y. Lin and E.H. Hovy, “The potential and limitations of sentence 
extraction for summarization”. In Proceedings of the HLT/NAACL 
Workshop on Automatic Summarization, Edmonton, Canada, May 
2003. 

[9] Chin-Yew Lin and Eduard Hovy, “Automatic Evaluation of 
Summaries Using N-gram Cooccurrence Statistics”. In Udo Hahn 
and Donna Harman, editors, Proceedings of the 2003 Human 
Language Technology Conference 

[10] P.J. Herings, G. van der Laan, and D. Talman, “Measuring the power 
of nodes in digraphs”. Technical report, Tinbergen Institute, 2001. 

[11] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web 
search engine”. Computer Networks and ISDN Systems 1998. 

  (∑wЄtext tf(w))     

 (1 + ∑ wЄSj tf(w)) 
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