
1

Graph-based compression of dynamic

3D point cloud sequences
Dorina Thanou, Philip A. Chou, and Pascal Frossard

Abstract—This paper addresses the problem of compression
of 3D point cloud sequences that are characterized by moving
3D positions and color attributes. As temporally successive point
cloud frames share some similarities, motion estimation is key
to effective compression of these sequences. It however remains
a challenging problem as the point cloud frames have varying
numbers of points without explicit correspondence information.
We represent the time-varying geometry of these sequences with
a set of graphs, and consider 3D positions and color attributes
of the points clouds as signals on the vertices of the graphs.
We then cast motion estimation as a feature matching problem
between successive graphs. The motion is estimated on a sparse
set of representative vertices using new spectral graph wavelet
descriptors. A dense motion field is eventually interpolated by
solving a graph-based regularization problem. The estimated
motion is finally used for removing the temporal redundancy
in the predictive coding of the 3D positions and the color
characteristics of the point cloud sequences. Experimental results
demonstrate that our method is able to accurately estimate the
motion between consecutive frames. Moreover, motion estimation
is shown to bring significant improvement in terms of the
overall compression performance of the sequence. To the best
of our knowledge, this is the first paper that exploits both the
spatial correlation inside each frame (through the graph) and
the temporal correlation between the frames (through the motion
estimation) to compress the color and the geometry of 3D point
cloud sequences in an efficient way.

Index Terms—3D sequences, voxels, graph-based features,
spectral graph wavelets, motion compensation

I. INTRODUCTION

Dynamic 3D scenes such as humans in motion can now

be captured by arrays of color plus depth (or ‘RGBD’) video

cameras [1], and such data is getting very popular in emerging

applications such as animation, gaming, virtual reality, and

immersive communications. The geometry captured by RGBD

camera arrays, unlike computer-generated geometry, has little

explicit spatio-temporal structure, and is often represented by

sequences of colored point clouds. Frames, which are the point

clouds captured at a given time instant as shown in Fig. 1,

may have different numbers of points, and there is no explicit

association between points over time. Performing motion

estimation, motion compensation, and effective compression

of such data is therefore a challenging task.

D. Thanou and P. Frossard are with Ecole Polytechnique Fédérale de
Lausanne (EPFL), Signal Processing Laboratory-LTS4, Lausanne, Switzer-
land. P. A. Chou is with Microsoft Research, Redmond, WA, USA. (e-
mail:{dorina.thanou, pascal.frossard}@epfl.ch, pachou@microsoft.com).

Part of this work has been presented in the International Conference on
Image Processing (ICIP), Quebec, Canada, September 2015.

Fig. 1. Sequence of point cloud frames captured at different time instances
in the ‘man’ sequence.

In this paper, we focus on the compression of the 3D geom-

etry and color attributes and propose a novel motion estimation

and compensation scheme that exploits temporal correlation in

sequences of point clouds. To deal with the large size of these

sequences, we consider that the point clouds are voxelized,

that is, their 3D positions are quantized to a regular, axis-

aligned, 3D grid having a given stepsize. This quantization of

the space is commonly achieved by modeling the 3D point

cloud sequences as a series of octree data structures [1], [2],

[3]. In contrast to polygonal mesh representations, the octree

structure exploits the spatial organization of the 3D points,

which results in easy manipulations and permits real-time

processing of the point cloud data. In more details, an octree

is a tree structure with a predefined depth, where every branch

node represents a certain cube volume in the 3D space, which

is called a voxel. A voxel containing a point is said to be

occupied. Although the overall voxel set lies in a regular grid,

the set of occupied voxels are non-uniformly distributed in

space. To uncover the irregular structure of the occupied voxels

inside each frame, we consider voxels as vertices in a graph G,

with edges between nearby vertices. Attributes of each voxel

n, including 3D position p(n) = [x, y, z](n) and color compo-

nents c(n) = [r, g, b](n), are treated as signals residing on the

vertices of the graph. Such an example is illustrated in Fig. 2.

As frames in the 3D point cloud sequences are correlated, the

graph signals at consecutive time instants are also correlated.

Hence, removing temporal correlation implies comparing the

signals residing on the vertices of consecutive graphs. The

estimation of the correlation is however a challenging task

as the graphs usually have different numbers of nodes and

no explicit correspondence information between the nodes is

available in the sequence.

2

Fig. 2. Example of a point cloud of the ‘yellow dress’ sequence (a). The
geometry is captured by a graph (b) and the r component of the color is
considered as a signal on the graph (c). The size and the color of each disc
indicate the value of the signal at the corresponding vertex.

We build on our previous work [4], and propose a novel

algorithm for motion estimation and compensation in 3D

point cloud sequences. We cast motion estimation as a fea-

ture matching problem on dynamic graphs. In particular, we

compute new local features at different scales with spectral

graph wavelets (SGW) [5] for each node of the graph. Our

feature descriptors, which consist of the wavelet coefficients

of each of the signals placed in the corresponding vertex, are

then used to compute point-to-point correspondences between

graphs of different frames. We match our SGW features

in different graphs with a criterion that is based on the

Mahalanobis distance and trained from the data. To avoid

inaccurate matches, we first compute the motion on a sparse

set of matching nodes that satisfy the matching criterion. We

then interpolate the motion of the other nodes of the graph by

solving a new graph-based quadratic regularization problem,

which promotes smoothness of the motion vectors on the graph

in order to build a consistent motion field.

Then, we design a compression system for 3D point cloud

sequences, where we exploit the estimated motion information

in the predictive coding of the geometry and color information.

The basic blocks of our compression architecture are shown

in Fig. 3. We code the motion field in the graph Fourier

domain by exploiting its smoothness on the graph. Temporal

redundancy in consecutive 3D positions is removed by coding

the structural difference between the target frame and the

motion compensated reference frame. The structural difference

is efficiently described in a binary stream format as described

in [6]. Finally, we predict the color of the target frame by

interpolating it from the color of the motion compensated

reference frame. Only the difference between the actual color

information and the result of the motion compensation is actu-

ally coded with a state-of-the-art encoder for static octree data

[7]. Experimental results illustrate that our motion estimation

scheme effectively captures the correlation between consec-

utive frames. Moreover, introducing motion compensation in

compression of 3D point cloud sequences results in significant

improvement in terms of rate-distortion performance of the

overall system, and in particular in the compression of the

Fig. 3. Schematic overview of the encoding architecture of a point cloud
sequence. Motion estimation is used to reduce the temporal redundancy for
efficient compression of the 3D geometry and the color attributes.

color attributes where we achieve a gain of up to 10 dB in

comparison to state-of-the-art encoders.

The contribution of the paper is summarized as follows. The

proposed encoder is the first one to exploit motion estimation

in efficient coding of point cloud sequences, without going

first through the expensive conversion of the data into a

temporally consistent polygonal mesh. Second, we represent

the point cloud sequences as a set of graphs and we solve the

motion estimation problem as a new feature matching problem

in dynamic graphs. Third, we propose a differential coding

scheme for geometry and color compression that provides

significant overall gain in terms of rate-distortion performance.

The rest of the paper is organized as follows. First, in

Section II, we review the existing work in the literature that

studies the problem of compression of 3D point clouds. Next,

in Section III, we describe the representation of 3D point

clouds by performing an octree decomposition of the 3D space

and we introduce graphs to capture the irregular structure of

this representation. The motion estimation scheme is presented

in Section IV. The estimated motion is then applied to the

predictive coding of the geometry and the color in Section V.

Finally, experimental results are given in Section VI.

II. RELATED WORK

The direct compression of 3D point cloud sequences has

been largely overlooked so far in the literature. A few works

have been proposed to compress static 3D point clouds. Some

examples include the 2D wavelet transform based scheme of

[8], and the subdivision of the point cloud space in different

resolution layers using a kd-tree structure [9]. An efficient

binary description of the spatial point cloud distribution is

performed through a decomposition of the 3D space using

octree data structures. The octree decomposition, in contrast to

the mesh construction, is quite simple to obtain. It is the basic

idea behind the geometry compression algorithms of [3], [2].

The octree structure is also adopted in [7], to compress point

cloud attributes. The authors construct a graph for each branch

of leaves at certain levels of the octree. The graph transform,

which is equivalent to the Karhunen-Loève transform, is then

applied to decorrelate the color attributes that are treated

as signals on the graph. The proposed algorithm has been

shown to remove the spatial redundancy for compression of

the 3D point cloud attributes, with significant improvement

over traditional methods. Sparse representations in a trained

dictionary have further been used in [10] to compress the

3

geometry of 3D point clouds surfaces. Recently, the authors

in [11], proposed a novel geometry compression algorithm

for large-scale 3D point clouds obtained by terrestrial laser

scanners. In their work, the point clouds are converted into

a range image and the radial distance in the range image is

encoded in an adaptive way. However, all the above methods

are designed mainly for static point clouds. In order to apply

them to point cloud sequences, we need to consider each frame

of the sequence independently, which is clearly suboptimal.

Temporal and spatial redundancy of point cloud sequences

has been recently exploited in [6]. The authors compress the

geometry by comparing the octree data structure of consecu-

tive point clouds and encoding their structural difference. The

proposed compression framework can handle general point

cloud streams of arbitrary and varying size, with unknown

correspondences. It enables detection and differential encoding

of spatial changes within temporarily adjacent octree structures

by modifying the octree data structure without computing

the exact motion of the voxels. Motion estimation in point

cloud sequences can be quite challenging due to the fact that

point-to-point correspondences between consecutive frames

are not known. While there exists a huge amount of works

in the literature that study the problem of motion estimation

in video compression, these methods cannot be extended easily

to graph settings. In classical video coding schemes, motion

in 3-D space is mainly considered as a set of displacements

in the regular image plane. Pixel-based methods [12], such

as block matching algorithms, or optical and scene flow

algorithms, are designed for regular grids. Their generalization

to the irregular graph domain is however not straightforward.

Feature-based methods [13], such as interest point detection,

have also been widely used for motion estimation in video

compression. These features usually correspond to key points

of images such as corners or sharp edges [14]–[16]. With an

appropriate definition of features on graphs, these methods

can be extended to graphs. To the best of our knowledge

though, they have not been adapted so far to estimate the

motion on graphs, nor on point clouds. Someone could also

apply classical 3D descriptors such as [17]–[22] to define 3D

features. However, these types of descriptors assume that the

point cloud represents a surface, which is not well adapted to

the case of graphs. An overview of classical 3D descriptors

can be found in [23].

For the sake of completeness, we should mention that

3D point clouds are often converted into polygonal meshes,

which can be compressed with a large body of existing

methods. In particular, there exists literature for compressing

dynamic 3D meshes with either fixed connectivity and known

correspondences (e.g., [24]–[28]) or varying connectivity (e.g.,

[29]–[31]). A different type of approach consists of the video

based methods. The irregular 3D structure of the meshes is

parametrized into a rectangular 2D domain, obtaining the so

called geometry images [32] in the case of a single mesh and

geometry videos [33] in the case of 3D mesh sequences. The

mapping of the 3D mesh surface onto a 2D array, which can be

done either by using only the 3D geometry information or both

the geometry and the texture information [34], allows conven-

tional video compression to be applied to the projected 2D

videos. Within the same line of work, emphasis has been given

to extending these types of algorithms to handling sequences

of meshes with different numbers of vertices and exploiting

temporal correlation between them. An example is the recent

work in [35], which proposes a framework for compressing 3D

human motion oriented geometry videos by constructing key

frames that are able to reconstruct the whole motion sequence.

Comparing to the mesh-based compression algorithms, the

advantage is that the mesh connectivity information (i.e.,

vertices and faces) does not need to be sent to the decoder,

and the complexity is reduced by performing the operations

from the 3D to the 2D space. All the above mentioned works

however require the conversion process of the point cloud into

a mesh in the encoder and the inverse at rendering, which

might be computationally expensive. Finally, marching cubes

algorithm [36] can be used to extract a polygonal mesh in a

fast way, but it requires a “filled” volume.

Thus, we believe that octree representations are efficient

for modeling temporally changing unorganized point clouds,

where input 3D points correspond to sampling of surfaces. In

what follows, we use such representations to design a frame-

work for compressing effectively 3D point cloud sequences.

III. STRUCTURAL REPRESENTATION OF 3D POINT CLOUDS

3D point clouds usually have little explicit spatial structure.

Someone can however organize the 3D space by converting

the point cloud into an octree data structure [1], [2], [3]. In

what follows, we recall the octree construction process, and

introduce graphs as a tool for capturing the structure of the

leaf nodes of the octree.

A. Octree representation of 3D point clouds

An octree is a tree structure with a predefined depth, where

every branch node represents a certain cube volume in the 3D

space, which is called a voxel. A voxel containing at least

one sample from the 3D point cloud is said to be occupied.

Initially, the 3D space is hierarchically partitioned into voxels

whose total number depends on the number of 3D volume

subdivisions, i.e., the depth of the resulting tree structure. For

a given depth, an octree is constructed by traversing the tree

structure in depth-first order. Starting from the root, each node

can generate eight children voxels. At the maximum depth of

the tree, all the points are mapped to leaf voxels. An example

of the voxelization of a 3D model for different depth levels,

or equivalently for different quantization stepsizes, is shown

in Fig. 4.

In contrast to temporally consistent polygonal mesh repre-

sentations, the octree structures are appropriate for modeling

3D point cloud sequences as they are easy to obtain. Thanks

to the different depths of the tree, they permit a multireso-

lution representation of the data that leads to efficient data

processing in many applications. In particular, this multires-

olution representation permits a progressive compression of

the 3D positions of the data, which is lossless within each

representation level [6].

4

−
4
0
0

−
2
0
0

0

2
0
0

0
1
0
0

2
0
0

3
0
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

(a) Original point cloud

−
4
0
0

−
2
0
0

0

2
0
0

0
1
0
0

2
0
0

3
0
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

(b) Depth 1

−
4
0
0

−
2
0
0

0

2
0
0

0
1
0
0

2
0
0

3
0
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

(c) Depth 2

Fig. 4. Octree decomposition of a 3D model for two different depth levels. The points belonging to each voxel are represented by the same color.

B. Graph-based representation of 3D point clouds

Although the overall voxel set lies on a regular grid, the set

of occupied voxels is non-uniformly distributed in space, as

most of the leaf voxels are unoccupied. In order to represent

the irregular structure formed by the occupied voxels, we use

a graph-based representation. Graph-based representations are

flexible and well adapted to data that live on an irregular

domain [37]. In particular, we represent the set of occupied

voxels of the octree using a weighted and undirected graph

G = (V, E ,W), where V and E represent the vertex and edge

sets of G. Each of the N nodes in V corresponds to an occupied

voxel, while each edge in E connects neighboring occupied

voxels. We define the connectivity of the graph based on the

K- nearest neighbors (K-NN graph), which is widely used in

the literature. We usually set K to 26 as it corresponds to the

maximum number of neighbors for a node that has a maximum

distance of one step along any axis of the 3D space. However,

since in general not all 26 voxels are occupied, we extend

our construction to the general K-NN graph. Two vertices are

thus connected if they are among the 26 nearest neighbors

in the voxel grid, which results in a connected graph. This

property is useful in the interpolation of the motion vectors,

as we see in the following section. The matrix W is a matrix

of positive edge weights, with W (i, j) denoting the weight of

an edge connecting vertices i and j. This weight captures the

connectivity pattern of nearby occupied voxels and is chosen

to be inversely proportional to the 3D distance between voxels.

After the graph G = (V, E ,W) is constructed, we consider

the attributes of the 3D point cloud — the 3D coordinates

p = [x, y, z]T ∈ R
3×N and the color components c =

[r, g, b]T ∈ R
3×N — as signals that reside on the vertices of

the graph G. A spectral representation of these signals can be

obtained with the help of the Graph Fourier Transform (GFT).

The GFT is defined through the eigenvectors of the graph

Laplacian operator L = D − W , where D is the diagonal

degree matrix whose ith diagonal element is equal to the

sum of the weights of all the edges incident to vertex i [38].

The graph Laplacian is a real symmetric matrix that has a

complete set of orthonormal eigenvectors with corresponding

nonnegative eigenvalues. We here denote its eigenvectors by

χ = [χ0, χ1, ..., χN−1], and the spectrum of eigenvalues by

Λ :=
{
0 = λ0 ≤ λ1 ≤ λ2 ≤ ... ≤ λ(N−1)

}
, where N is the

number of vertices of the graph. The GFT of any graph signal

f ∈ R
N is then defined as

Ff (λℓ) :=< f, χℓ >=

N∑

n=1

f(n)χ∗
ℓ (n),

where the inner product is conjugate-linear in the first argu-

ment. Then, the inverse graph Fourier transform (IGFT) is

given by

f(n) =

N−1∑

ℓ=0

Ff (λℓ)χℓ(n).

The GFT provides a useful spectral representation of the

data. Furthermore, it has been shown to be optimum for

decorrelating a signal following the Gaussian Markov Random

Field model with precision matrix L [39]. The GFT will be

used later to define spectral features and to code effectively

data on the graph.

IV. MOTION ESTIMATION IN 3D POINT CLOUD SEQUENCES

As the frames have irregular structures, we use a feature-

based matching approach to find correspondences in tempo-

rally successive point clouds. We use the graph information

and the signals residing on its vertices to define feature

descriptors on each vertex. We first define simple octant

indicator functions to capture the signal values in different

orientations. We then characterize the local topological context

of each of the point cloud signals in each of these orientations,

by using spectral graph wavelets (SGW) computed on the

color and geometry signals at different resolutions [5]. Our

feature descriptors, which consist of the wavelet coefficients

of these signals are then used to compute point-to-point

correspondences between graphs of different frames. We select

a subset of best matching nodes to define a sparse set of motion

vectors that describe the temporal correlation in the sequence.

A dense motion field is eventually interpolated from the sparse

set of motion vectors to obtain a complete mapping between

two frames. The overall procedure is detailed below.

A. Multi-resolution features on graphs

We define features in each node by computing the variation

of the signal values, i.e., geometry and color components, in

different parts of its neighborhood. For each node i belonging

to the vertex set V of a graph G, i.e., i ∈ V , we first define

the octant indicator function ok,i ∈ R
N , ∀ k = [1, 2, ..., 8], for

5

the eight octants around the node i. For example, for the first

octant it is given as follows

o1,i(j) = 1{x(j)≥x(i),y(j)≥y(i),z(j)≥z(i)}(j),

where 1{·}(j) is the indicator function on j ∈ V , evaluated

in a set {·} of voxels given by specific 3D coordinates.

The first octant indicator function is thus nonzero only in

the entries corresponding to the voxels whose 3D position

coordinates are bigger than the ones of node i. We consider

all possible combinations of coordinates, which results in a

total of 23 indicator functions for the eight octants around i.
These functions provide a notion of orientation of each node

in the 3D space with respect to i, which is given by the octree

decomposition.

We then compute graph spectral features based on both

geometry and color information, by treating their values in-

dependently in each orientation. In particular, for each node

i ∈ V and each geometry and color component f ∈ R
N , where

f ∈ {x, y, z, r, g, b}, we compute the spectral graph wavelet

coefficients by considering independently the values of f in

each orientation k with respect to node i such that

φi,s,ok,i,f =< f · ok,i, ψs,i >, (1)

where k ∈ {1, 2, ..., 8}, s ∈ S = {s1, ..., smax}, is a set

of discrete scales, and · denotes the pointwise product. The

function ψs,i represents the spectral graph wavelet of scale s
placed at that particular node i. We recall that the spectral

graph wavelets [5] are operator-valued functions of the graph

Laplacian defined as

ψs,i = T s
g δi =

N−1∑

ℓ=0

g(sλℓ)χ
∗
ℓ (i)χℓ.

The graph wavelets are determined by the choice of a gen-

erating kernel g, which acts as a band-pass filter in the

spectral domain, and a scaling kernel h that acts as a lowpass

filter and captures the low frequency content. The scaling is

defined in the spectral domain, i.e., the wavelet operator at

scale s is given by T s
g = g(sL). Spectral graph wavelets

are finally realized through localizing these operators via the

impulse δ on a single vertex i. The application of these

wavelets to signals living on the graph results in a multi-

scale descriptor for each node. We finally define the feature

vector φiφiφi at node i as the concatenation of the coefficients

computed in (1) with wavelets at different scales, including

the features obtained from the wavelet scaling function, i.e.,

φiφiφi = [φi,s,ok,i,f , φi,h,ok,i,f] ∈ R
8×6×(|S|+1), where

φi,h,ok,i,f =< f · ok,i, h(L)δi > .

Finally, we note that spectral features have recently started

to gain attention in the computer vision and shape analy-

sis community. The heat kernel signatures [40], their scale-

invariant version [41], the wave kernel signatures [42], the

optimized spectral descriptors of [43], have already been used

in 3D shape processing with applications in graph matching

[44] or in mesh segmentation and surface alignment problems

[45]. These features have been shown to be stable under small

perturbations of the edge nodes of the graph. In all these

works though, the descriptors are defined based only on the

graph structure, and the information about attributes of the

nodes such as color and 3D positions, if any, is assumed to

be introduced in the weights of the graph. The performance

of these descriptors depends on the quality of the defined

graph. In contrast to this line of works, we define features

by considering attributes as signals that reside on the vertices

of a graph and characterize each vertex by computing the local

evolution of these signals at different scales. Furthermore, this

approach gives us the flexility to consider the signal values

in different orientations as discussed above, and makes the

descriptor of each node more informative.

B. Finding correspondences on dynamic graphs

We translate the problem of finding correspondences in two

consecutive point clouds or frames of the sequence into finding

correspondences between the vertices of their representative

graphs. For the rest of this paper, we denote the sequence

of frames as I = {I1, I2, ..., Imax} and the set of graphs

corresponding to each frame as G = {G1, G2, ..., Gmax}. For

two consecutive frames of the sequence, It, It+1, called also

reference and target frame respectively, our goal is to find

correspondences between the vertices of their representative

graphs Gt and Gt+1. The number of vertices in the respective

vertex sets Vt, Vt+1 can differ between the graphs and is

denoted as Nt and Nt+1 respectively.

We use the features defined in the previous subsection

to measure the similarity between vertices. We compute the

matching score between two nodes m ∈ Vt, n ∈ Vt+1 as

the Mahalanobis distance between the corresponding feature

vectors, i.e.,

σ(m,n) = (φmφmφm −φnφnφn)
T
P (φmφmφm −φnφnφn), ∀m ∈ Vt, n ∈ Vt+1, (2)

where P is a matrix that characterizes the relationships be-

tween the geometry and the color feature components (mea-

sured in different units), as well as the contribution of each of

the wavelet scales in the matching performance. As a result,

if m ∈ Vt corresponds to n ∈ Vt+1, φmφmφm is a Gaussian random

vector with mean φnφnφn and covariance P−1, while if m does

not correspond to n, φmφmφm comes from a very flat (essentially

uniform) distribution. Hence the matching score σ(m,n) can

be considered a log likelihood ratio for testing the hypothesis

that m corresponds to n. We learn the positive definite matrix

P by estimating the sample inverse covariance matrix from a

set of training features that are known to be in correspondence.

More precisely, we consider two frames Iα, Iβ , for which the

correspondences are known. For each m ∈ Vα corresponding

to n ∈ Vβ , we compute the error obtained from their feature

difference, i.e., ǫm,n = φmφmφm − φnφnφn. The error vectors defined

by all the corresponding nodes are then used to estimated

the sample covariance matrix of the feature differences and

sequentially the inverse sample covariance matrix P .

For each node in Gt+1, we then use the matching score of

Eq. (2) to define the best matching node in Gt. In particular,

for each n ∈ Vt+1, we define as its best match in Vt, the node

mn with the minimum Mahalanobis distance, i.e.,

mn = argmin
m∈Vt

σ(m,n). (3)

6

From the global set of correspondences computed for all the

nodes of Vt+1, we select a sparse set of significant matches,

namely correspondences with best scores. The objective of

this selection is to take into consideration only accurate

matches and ignore others since inaccurate correspondences

are possible in the case of large displacements. We also want

to avoid matching points in It+1 that do not have any true

correspondence in the preceding frame It. In order to ensure

that we keep correspondences in all areas of the 3D space,

we cluster the vertices of Gt+1 into different regions and we

keep only one correspondence, i.e., one representative vertex,

per region. Clustering is performed by applying K-means in

the 3D coordinates of the nodes of the target frame, where K
is usually set to be equal to the target number of significant

matches. In order to avoid inaccurate matches, a representative

vertex per cluster is included in the sparse set only if its best

matching distance given by Eq. (3) is smaller than a predefined

threshold. This procedure results in detecting a sparse set of

vertices n in Vt+1, denoted VS
t+1 ⊂ Vt+1, and the set of their

correspondences mn in Vt, V
S
t ⊂ Vt. Moreover, our sparse set

of matching points tend to represent accurate correspondences

that are well distributed spatially.

C. Computation of the motion vectors

We now describe how we generate a dense motion field from

the sparse set of matching nodes (mn, n) ∈ VS
t × VS

t+1. Our

implicit assumption is that vertices that are close in terms of

3D positions, namely close neighbors in the underlying graph,

undergo a similar motion. We thus use the structure of the

graph in order to interpolate the motion field, which is assumed

to be smooth on the graph.

In more detail, our goal is to estimate the dense motion

field vt = [vt(m)], for all m ∈ Gt, using the correspondences

(mn, n) ∈ VS
t ×VS

t+1. To determine vt(m) for m = mn ∈ VS
t ,

we use the vector between the pair of matching points (mn, n),

vt(mn|n)
∆
= pt+1(n)− pt(mn). (4)

Here we recall that pt and pt+1 are the 3D positions of the

vertices of Gt and Gt+1, respectively. To determine vt(m) for

m 6∈ VS
t , we consider the motion field vt to be a vector-

valued signal that lives on the vertices of Gt. Then we smoothly

interpolate the sparse set of motion vectors (4). The interpola-

tion is performed by treating each component independently.

Given the motion values on some of the vertices, we cast the

motion interpolation as a regularization problem that estimates

the motion values on the rest of the vertices by requiring

the motion signal to vary smoothly across vertices that are

connected by an edge in the graph. Moreover, we allow some

smoothing on the known entries. The reason for that is that

the proposed matching scheme does not necessarily guarantee

that the sparse set of correspondences, and the estimated

motion vectors associated with them, are correct. To limit the

effect of motion estimation inaccuracies, for each matching

pair (mn, n) ∈ VS
t × VS

t+1, we model the matching score in

the local neighborhood of mn ∈ VS
t with a smooth signal

approximation. Specifically, for each n ∈ VS
t+1, we extend the

definition (4) to all m ∈ Vt, i.e.,

vt(m|n) = pt+1(n)− pt(m).

Then, for each node that belongs to the two-hop neighborhood

of mn i.e., m ∈ N 2
mn

, we express σ(m,n) as a function of

the geometric distance of pt(m) from pt(mn), using a second-

order Taylor series expansion around pt(m). That is,

σ(m,n) ≈ σ(mn, n)

+ (pt(m)− pt(mn))
TM−1

n (pt(m)− pt(mn))

= σ(mn, n)

+ (vt(m|n)− vt(mn|n))
TM−1

n (vt(m|n)− vt(mn|n)). (5)

For each n ∈ VS
t+1, we take σ(m,n) to be a discrete sampled

version of a continuous function σ(v, n) where the second

order Taylor approximation is

σ(v, n) ≈ σ(mn, n)+(v−vt(mn|n))
TM−1

n (v−vt(mn|n))).

Thus for each n ∈ VS
t+1, we assume that the matching score

with respect to nodes that are in the neighborhood of its

best match mn ∈ VS
t can be well modeled by a quadratic

approximation function. We estimate Mn of this quadratic

approximation as the normalized covariance matrix of the 3D

offsets,

Mn =
1

|N 2
mn

|

∑

m∈N 2
mn

(pt(m)− pt(mn))(pt(m)− pt(mn))
T

σ(m,n)− σ(mn, n)
.

This is motivated by the fact that if σ(m,n) − σ(mn, n) =
(vt(m)− vt(mn|n))

TM−1
n (vt(m)− vt(mn|n)), then

u =
vt(m)− vt(mn|n)√
σ(m,n)− σ(mn, n)

satisfies 1 = uTM−1
n u. Hence, u lies in an ellipsoid whose

second moment is proportional to Mn. Although there are

other ways for computing Mn in (5), this moment-matching

method is fast and guarantees that Mn is positive semi-definite.

Next, we use the covariance matrices of the 3D offsets to

define a diagonal matrix Q ∈ R
3Nt×3Nt , such that

Q =




M−1
1 · · · 03×3

...
. . .

...

03×3 · · · M−1
Nt


 ,

where Mm = Mn if m = mn for some n ∈ VS
t+1,

and Mm = 03×3 otherwise. The matrix Q captures the

second order Taylor approximation of the total matching score

as a function of the motion vectors and the 3D geometry

coordinates in the neighborhoods of the nodes in VS
t and is

used to regularize the motion vectors of the known entries in

vt as shown next.

Finally, we interpolate the dense set of motion vectors vt
∗

by taking into account the covariance of the motion vectors in

the neighborhoods around the points that belong to the sparse

set VS
t and imposing smoothness of the dense motion vectors

on the graph

vt
∗ = argmin

v∈R3Nt

(v−v0)
TQ(v−v0)+µ

3∑

i=1

(Siv)
TLt(Siv), (6)

7

where {Si}i=1,2,3 is a selection matrix for each of the 3D

components respectively, and Lt is the Laplacian matrix of the

graph Gt. The motion filed v0 = [vt(1), vt(2), · · · , vt(Nt)]
T ∈

R
3Nt is the concatenation of the initial motion vectors, with

vt(m) = 03×1, if m /∈ VS
t . We note that the optimization

problem consists of a fitting term that penalizes the excess

matching score on the sparse set of matching nodes, and of

a regularization term that imposes smoothness of the motion

vectors in each of the position components independently. The

tradeoff between the two terms is defined by the constant µ.

A small µ promotes a solution that is closed to v0, while a big

µ favors a solution that is very smooth. Similar regularization

techniques, which are based on the notion of smoothness of the

graph Laplacian, have been widely used in the semi-supervised

learning literature [46], [47]. The corresponding optimization

problem is convex and it has a closed form solution given by

v∗t =
(
Q+ µ

3∑

i=1

ST
i LtSi

)−1
Qv0, (7)

which can be computed iteratively using MINRES-QLP [48]

in large systems. With a slight abuse of notation, we will

from now on denote as v∗t the reshaped motion vectors of

dimensionality 3×Nt, where each row represents the motion

in one of the three coordinates. Finally, v∗t (m) ∈ R
3 denotes

the 3D motion vector of node m ∈ Vt.

D. Implementation details

The proposed spectral features can be efficiently computed

by approximating the spectral graph wavelets with Chebyshev

polynomials of degree M , as described in [5]. Given this

approximation, the wavelet coefficients at each scale can

then be computed as a polynomial of L applied to a graph

signal f . The latter can be performed in a way that accesses

L only through iterative matrix-vector multiplications. The

polynomial approximation can be particularly efficient when

the graph is sparse, which is indeed the case of our K-NN

graph. Using a sparse matrix representation, the computation

cost of applying L to a vector is proportional to the number

|E| of nonzero edges in the graph. The overall computational

complexity is O(M |E|+N(M+1)(|S|+1)) [5], where |S| are

the number of scales. Moreover, this approximation avoids the

need to compute the complete spectrum of the graph Laplacian

matrix. Thus, the computational cost of the features can be

substantially reduced.

Regarding the computation of correspondences, we note

that the motion between consecutive frames is expected to be

relatively smooth. We can avoid computing pairwise distances

with all the vertices of the reference frame, by only comparing

with vertices whose distance in geometry is smaller than a

predefined threshold. Moreover, although in our experiments

we have used K-means clustering, dividing the space into

small blocks could be enough for our purposes. An example is

the procedure followed in [7], where for efficiency the octree

is divided into smaller blocks containing k × k × k voxels,

where k is relatively small. Thus, in the case when the number

of vertices is big and K-means may not be appropriate for

Fig. 5. Schematic overview of the motion vector coding scheme. The motion
vectors v

∗

t between two consecutive frames of the sequence are transformed
in the graph Fourier domain, quantized uniformly, and sent to the decoder.

The decoder performs the reverse procedure to obtain v̂
∗

t .

grouping them, the procedure that we describe above can be

very efficient and possibly applied in real time.

V. COMPRESSION OF 3D POINT CLOUD SEQUENCES

We describe now how the above motion estimation can be

used to reduce temporal redundancy in the compression of 3D

point cloud sequences, as shown in Fig. 3. The first frame

of the sequence is always encoded using intra-frame coding.

For the rest of the frames, we code the motion vectors by

transforming them to the graph Fourier domain. We assume

that the reference frame has already been sent and is known to

the decoder. Coding of the 3D positions is then performed by

comparing the structural difference between the target frame

(It+1) and the motion compensated reference frame (It,mc).

Temporal redundancy in color compression is finally exploited

by encoding the difference between the target frame and the

color prediction obtained with motion compensation.

A. Coding of motion vectors

We recall that, for each pair of two consecutive frames

It, It+1, the sparse set of motion vectors is initially smoothed

at the encoder side. The estimated dense motion field is then

transmitted to the decoder. We exploit the fact that the graph

Fourier transform is suitable for compressing smooth signals

[49], [39], by coding the motion vectors in the graph Fourier

domain. In particular, since the motion v∗t is estimated in

each of the nodes of the graph Gt, we use the eigenvectors

χt = [χt,0, χt,1, ..., χt,Nt−1] of the graph Laplacian operator

corresponding to the graph Gt of the reference frame, to

transform the motion in each of the 3D directions separately

such as

Fv∗

t
(λℓ) =< v∗t , χt,ℓ >, ∀ℓ = 0, 1, ..., Nt − 1.

The transformed coefficients are uniformly quantized as

round(
Fv∗

t

∆), where ∆ is the quantization stepsize that is

constant across all the coefficients, and round refers to

the rounding operation. The quantized coefficients are then

entropy coded independently with the adaptive run-length

/ golomb-rice (RLGR) entropy coder [50] and sent to the

decoder. The decoder performs the reverse operations to obtain

the decoded motion vectors v̂∗t . Note that given that the

decoder already knows the 3D positions of the reference frame,

it can recover the K-NN graph. Thus, the connectivity of

the graph does not have to be sent. A block diagram of the

encoder and the decoder is shown in Fig. 5. Since entropy

8

(a) Differential encoding of consecutive frames (b) Schematic overview of the compression architecture

Fig. 6. Illustration of the geometry compression of the target frame (TF) based on the motion compensated reference frame (RF). (a) Differential encoding
of the consecutive frames where structural changes within octree occupied voxels are extracted during the binary serialization process and encoded using the
XOR operator. The bit stream of the XOR operator is sent to the decoder. The figure is inspired by [6]. (b) Schematic overview of the overall 3D geometry
coding scheme.

coding is a lossless step, for simplicity we show only one

block (entropy coding) that contains both the encoding and

the decoding operations.

B. Motion compensated coding of 3D geometry

From the reference frame It and its quantized motion

vectors v̂∗t , both of which are signals on Gt, it is possible

to predict the 3D positions of the points in the target frame

It+1, which is a signal on Gt+1. Since the two graphs are of

different size, a vector space prediction of It+1 from It is not

possible. One can however warp It to It+1 in order to obtain

a warped frame It,mc that is close to It+1. Given that the

3D positions pt and the decoded motion vectors v̂∗t of It are

known to both the encoder and the decoder, the position of

node m in the warped frame It,mc can be estimated on both

sides as

pt,mc(m) = pt(m) + v̂∗t (m), ∀m ∈ Vt. (8)

Note that the 3D coordinates of the warped frame It,mc remain

signals on the graph Gt.

Given the warped frame It,mc, we use the real-time com-

pression algorithm proposed in [6] to code the structural differ-

ence between the 3D positions of It+1 and It,mc. Specifically,

we assume that the point clouds corresponding to It,mc and

It+1 have already been spatially decomposed into octree data

structures at a predefined depth. By knowing the occupied

voxels of the reference frame It and the motion vectors v̂∗t ,

both the encoder and decoder are able to compute the occupied

voxels of the motion compensated reference frame It,mc and

the representative bit indicator function. The encoding of the

occupied voxels of the target frame It+1 is performed by

computing the exclusive-OR (XOR) between the indicator

functions for the occupied voxels in frames It,mc and It+1.

This can be implemented by an octree decomposition of the

set of voxels that are occupied in It,mc but not in It+1, or vice

versa, as illustrated in Fig. 6(a). Thus, motion compensation

is expected to reduce the set difference and hence the number

of bits used by the octree decomposition. The decoder can

eventually use the motion compensated reference frame and

the bits from the octree decomposition to recover exactly the

set of occupied voxels (and hence the graph and 3D positions)

of the target frame It+1. We note that the first frame of the

sequence is coded based on a static octree coding scheme. A

schematic overview of the encoding and decoding architecture

is shown in Fig. 6(b). A detailed description of the algorithm

can be found in the original paper [6].

C. Motion compensated coding of color attributes

After coding the 3D positions and the motion vectors,

motion compensation is used to predict the color of the target

frame from the motion compensated reference frame. While

the 3D positions pt,mc of the points in the warped frame It,mc

are based on the 3D positions of the reference frame It and

the motion field on the graph Gt according to (8), the colors

ct,mc of the warped frame It,mc can be transferred directly

from It according to

ct,mc(m) = ct(m), ∀m ∈ Vt.

Unfortunately, the graphs Gt and Gt+1 have different sizes

and there is no direct correspondence between their nodes.

However, since It,mc is obtained by warping It to It+1, we

can use the colors of the points in It,mc to predict the colors

of nearby points in It+1. To be specific, for each n ∈ Vt+1,

we compute a predicted color value c̃t+1(n) by averaging the

color values of the nearest neighbors NNn in terms of the

Euclidean distance of the 3D positions pt+1(n) and pt,mc,

i.e.,

c̃t+1(n) =
1

|NNn|

∑

m∈NNn

ct,mc(m),

where the number of nearest neighbors |NNn| is usually set

to 3.

Overall, the color coding is implemented as follows. We

code the first frame using the coding algorithm of [7]. For the

rest of the frames, temporal redundancy in the color informa-

tion is removed by coding with the graph-based compression

algorithm in [7] only the residual of the target frame with

respect to the color prediction obtained with the above method,

i.e., ∆ct+1 = ct+1 − c̃t+1. The algorithm in [7] is designed

for compressing the 3D color attributes in static frames and it

essentially removes the spatial correlation within each frame

by coding each color component in the graph Fourier domain.

The algorithm divides each octree in small blocks containing

k × k × k voxels. In each of these blocks, it constructs a

graph and computes the graph Fourier transform. We adapt

the algorithm to point cloud sequences by applying the graph

Fourier transform to the color residual ∆ct+1. The residuals

9

Fig. 7. Schematic overview of the predictive color coding scheme. The color
residual in each block of the octree is projected in the graph Fourier domain.
The graph Fourier coefficients are uniformly quantized and entropy coded
based on the scheme of [7]. The bit stream is sent to the decoder where the
inverse operations are performed to decode the color of the target frame.

in each of the three color components are encoded separately.

The graph Fourier coefficients are quantized uniformly with a

stepsize ∆, as round(
χT
t+1∆ct+1

∆), where round denotes the

rounding operator and χt+1 are the eigenvectors of the graph

Laplacian matrix of the corresponding block. The quantized

coefficients are then entropy coded, where the structure of

the graph is exploited for better efficiency. More details about

the color coding scheme are given in [7] and a schematic

overview is given in Fig. 7. Finally, we recall that, while the

algorithm was originally used for coding static frames, in this

paper we use it for coding the residual of the target frame

from the motion compensated reference frame. The algorithm

however remains a valid choice as the statistical distributions

are carefully adapted to the actual signal characteristics.

VI. EXPERIMENTAL RESULTS

We illustrate in this section the matching performance

of our motion estimation scheme and the performance of

the proposed compression scheme. We use three different

sequences that capture human bodies in motion, i.e., the yellow

dress (see Fig. 2) and the man (see Fig. 1) sequences, which

have been voxelized to resemble data collected by the real-time

high resolution sparse voxelization algorithm [1], and a human

upper body sequence (see Fig. 8). The first sequence consists

of 64 frames, the second one of 30 frames, and the third one

of 63. The latter sequence, illustrated in Fig. 8, is more noisy

and incomplete. We voxelize the point cloud of each frame in

these sequences to an octree with a depth of seven. The depth

of the octree acts as a sort of quantization of the 3D space.

However, our motion estimation and compression scheme can

be applied to any other octree level, with similar performance.

Fig. 8. Illustrative frames of the upper body sequence

A. Motion estimation

We first illustrate the performance of our motion estimation

algorithm by studying its effect in motion compensation exper-

iments. We select two consecutive frames for each sequence,

namely the reference (It) and the target frame (It+1). The

graph for each frame is constructed as described in Section

III. We define spectral graph wavelets of 4 scales on these

graphs, and for computational efficiency, we approximate them

with Chebyshev polynomials of degree 30 [5]. We select the

number of representative feature points to be around 500,

which corresponds to fewer than 10% of the total occupied

voxels, and we compute the sparse motion vectors on the

corresponding nodes by spectral matching. We estimate the

motion on the rest of the nodes by smoothing the motion

vectors on the graph according to (6).

In Figs. 9(a), 9(d), 9(g) we superimpose the reference and

the target frames for the yellow dress, the man, and the upper

body sequences accordingly in order to illustrate the motion

involved between two consecutive frames. The key points used

for spectral matching in each of the two frames are shown in

Figs. 9(b), 9(e), 9(h), and they are represented in red for the

target and in green for the reference frame. For the sake of

clarity, we highlight only some of the correspondences used

for computing the motion vectors. We observe that the sparse

set of matching vertices are accurate and well-distributed in

space for both sequences. Finally, in Figs. 9(c), 9(f), 9(i) we

superimpose the target frame and the voxel representation

of the motion compensated reference frame. By comparing

visually these three figures to 9(a), 9(d), 9(g) respectively, we

observe that in all the cases the motion compensated reference

frame is much closer to the target frame than the reference

frame. The result is actually true also for the quite noisy frames

of the upper body sequence. The obtained results confirm that

our algorithm is able to estimate accurately the motion even

in pretty adverse conditions.

B. 3D geometry compression

We now study the benefits of motion estimation in the

compression of geometry in 3D point cloud sequences. The

compressed geometry information includes motion vectors, the

3D positions of the reference frame, and the geometry differ-

ence between the target frame and the motion compensated

reference frame captured by the XOR encoded information.

We note that the compression is performed on the whole se-

quence. The frames of the sequences are coded sequentially in

the following way. Only the first frame is coded independently

using a classical octree compression scheme based on children

pattern sequence [51], while all the other frames are coded by

using as a reference frame the previously coded frame. We first

code the motion vectors with the proposed coding scheme of

Sec. V-A. The motion signal in each of the 3D directions is

coded separately.

In Fig. 10 we first show the advantage of transforming the

motion vectors in the graph Fourier domain, in comparison to

coding directly in the signal domain, for the man sequence.

Different stepsizes for uniform quantization are used to obtain

different coding rates, hence different accuracies of the motion

10

(a) It + It+1 (b) Correspondence between It and It+1 (c) It,mc + It+1

(d) It + It+1 (e) Correspondence between It and It+1 (f) It,mc + It+1

(g) It + It+1 (h) Correspondence between It and It+1 (i) It,mc + It+1

Fig. 9. Example of motion estimation and compensation in the yellow dress, man and upper body motion sequences. The superimposition of the reference
(It) and target frame (It+1) is shown in (a), (d), and (g) while in (b), (e), (h) we show the correspondences between the target (red) and the reference
frame (green). The superposition of the motion compensated reference frame (It,mc) and the target frame (It) is shown in (c), (f), and (i). Each small cube
corresponds to a voxel in the motion compensated frame.

vectors. The performance is measured in terms of the signal-to-

quantization noise ratio (SQNR) for a fixed number of bits per

vertex. The SQNR is computed on pairs of frames. Each point

in the rate distortion curve corresponds to the average over 64

frame pairs. The results confirm that coding the motion vectors

in the graph Fourier domain results in an efficient spatial

decorrelation of the motion signals, which brings significant

gain in terms of coding rate. Similar results hold for the other

two sequences, but we omit them due to space constraints.

We study next the effect of motion compensation in the

coding rate of the 3D positions. We recall that for a particular

depth of the tree, the coding of the geometry is lossless.

There exists however a tradeoff between the overall coding

rate of the geometry and the coding rate of the motion

vectors as we illustrate next. In particular, we compare the

motion compensated dual octree scheme as described in Sec.

V-B, to the dual octree scheme of [6], and the static octree

compression algorithm [51]. In Fig. 11, we illustrate the

coding rate of the geometry with respect to the coding rate of

the motion vectors, measured in terms of the average number

of bits per vertex (bpv) over all the frames, for each of the

three competitive schemes. The coding rate of the geometry

includes the coding rate of the motion vectors. In Fig. 11(a),

11

0 0.2 0.4 0.6 0.8 1 1.2 1.4
3.2

3.4

3.6

3.8

4

4.2

4.4

Coding rate of motion vectors (bpv)

C
o

d
in

g
 r

a
te

 o
f

g
e

o
m

e
tr

y
 (

b
p

v
)

MC dual octree

Dual octree

Static octree

(a) Man sequence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1.9

2

2.1

2.2

2.3

2.4

2.5

Coding rate of motion vectors (bpv)

C
o

d
in

g
 r

a
te

 o
f

g
e

o
m

e
tr

y
 (

b
p

v
)

MC dual octree

Dual octree

Static octree

(b) Upper body sequence

0 0.2 0.4 0.6 0.8 1
2

2.2

2.4

2.6

2.8

3

3.2

3.4

Coding rate of motion vectors (bpv)

C
o

d
in

g
 r

a
te

 o
f

g
e

o
m

e
tr

y
 (

b
p

v
)

MC dual octree

Dual octree

Static octree

MC dual octree (10 frames)

Dual octree (10 frames)

Static octree (10 frames)

(c) Yellow dress sequence

Fig. 11. Effect of the coding rate of the motion vectors on the overall coding rate of the geometry for the motion compensated dual octree algorithm. By
sending the motion vectors at low bit rate (≈ 0.1 bpv), the motion compensated dual octree scheme performs slightly better than the static octree and the
dual octree compression algorithm.

0 2 4 6 8 10
12

14

16

18

20

22

24

26

A
v

e
ra

g
e

 S
Q

N
R

Average bits per vertex

Graph Fourier domain

Signal domain

Fig. 10. Performance comparison of the average signal-to-quantization noise
ratio (SQNR) versus bits per vertex (bpv) for coding the motion vectors in
the graph Fourier domain and in the signal domain.

the smallest coding rate of the geometry (3.3 bpv) for the man

sequence is achieved for a coding rate of the motion vectors

of only 0.1 bpv. The latter indicates that coarse quantization

of the motion vectors is enough for an efficient geometry

compression. A smaller number of bits per vertex however

tends to penalize the effect of motion compensation, giving an

overall coding rate that approaches the one of the dual octree

compression scheme. Of course, a finer coding of the motion

vectors increases the overhead in the total coding rate of the

geometry. The corresponding numbers for the static octree and

the dual octree compression scheme are approximately 3.42

and 3.5 respectively. These results indicate that the temporal

structure captured by the dual octree compression scheme is

not sufficient to improve the coding rate with respect to the

static octree compression algorithm. Motion compensation is

thus needed to remove the temporal correlation. However, the

overall gain that we obtain is small and corresponds to 3.5%
bpv and 5.7% bpv with respect to the static octree and the dual

octree compression algorithm respectively. Moreover, motion

compensation does not seem to bring a significant gain in the

coding of the geometry of the upper body sequence in Fig.

11(b). As we already mentioned before this sequence contains

frames that are quite noisy. As a result, the performance of

motion compensation seems to deteriorate, especially in the

case of consecutive frames with appearing or disappearing

nodes.

In order to study the effect of the motion in the compression

performance, we perform two different tests in the yellow

dress sequence. In the first test, we compress the entire

yellow dress sequence, which is a low motion sequence. In

the second test, we sample the sequence by keeping only

10 frames that are characterized by higher motion between

consecutive frames. We then compress the geometry for this

new smaller sequence. In Fig. 11(c), we observe that when the

motion is low, the motion compensated dual octree and the

dual octree compression algorithms are much more efficient

in coding the geometry in comparison to the static octree

compression algorithm. Moreover, the motion compensated

dual octree scheme requires a slightly smaller number of

bits per vertex (2.2 bpv), for a coding rate of the motion

vectors of 0.1 bpv. The coding rate for the dual octree and

the static octree compression algorithm are respectively 2.24

and 2.6 bpv. On the other hand, the static octree compression

scheme outperforms the dual octree compression algorithm in

the higher motion sequence of 10 frames, with coding rates

of 3 and 2.8 bpv respectively. The motion compensated dual

octree compression algorithm can close the gap between these

two methods by achieving a coding rate of 2.8 bpv. We note

that this performance is achieved for an overhead of 0.15

bpv for coding the motion vectors. Due to this overhead, the

performance of the static octree and the motion compensated

dual octree compression algorithm are relatively close.

C. Color compression

In the next set of experiments, we use motion compensation

for color prediction, as described in Section V-C. That is, using

the smoothed motion field, we warp the reference frame It to

the target frame It+1, and predict the color of each point in

It+1 as the average of the three nearest points in the warped

frame It,mc. We fix the coding rate of the motion vectors

to 0.1 bpv and, for the sake of comparison, we compute the

signal-to-noise ratio (SNR) after predicting the color in the

following three different ways: (i) the colors of points in the

target frame are predicted from their nearest neighbors in the

12

0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

28

30

32

34

36

38

Bits per vertex

P
S

N
R

 (
d

B
)

Independent coding − man

Differential coding − man

Independent coding − yellow dress

Differential coding − yellow dress

Independent coding − Upper body

Differential coding − Upper body

Fig. 12. Color compression performance (dB) vr. bits per vertex for
independent and differential coding on the three datasets for a quantization
stepsize of ∆ = [32, 64, 256, 512, 1024].

warped frame It,mc, (SNRmc) (ii) the colors of points in

the target frame are predicted from their nearest neighbors

in It (SNRprevious), and (iii) the colors of points in the

target frame are predicted as the average color of all the

points in It (SNRavg). The SNR for frame It+1 is defined as

SNR = 20 log10
‖ct+1‖

‖ct+1−c̃t+1‖
, where we recall that ct+1 and

c̃t+1 are the actual color and the color prediction respectively.

The prediction error is measured by taking pairs of frames in

the sequence and computing the average over all the pairs. The

obtained values are shown in Table I. We notice that for three

sequences motion compensation can significantly reduce the

prediction error, by obtaining an average gain in the color

prediction of 2.5 dB and 8-10 dB with respect to simple

prediction based on the color of the nearest neighbors in the

reference frame, and the average color of the reference frame

respectively.

TABLE I
COLOR PREDICTION ERROR (SNR IN dB)

Sequence SNRmc SNRprevious SNRavg

Yellow dress 17 15 6.5
Man 13 10.5 4

Upper body 9.8 7.5 1.2

We finally use the prediction obtained from our motion

estimation and compensation scheme to build a full scheme

for color compression, that is based on a prediction path of a

series of frames. Compression of color attributes is obtained

by coding the residual of the target frame with respect to the

color prediction obtained with the scheme described in Section

V-C. In our experiments, we code the color in small blocks of

16×16×16 voxels. We measure the PSNR obtained for differ-

ent levels of the quantization stepsize in the coding of the color

information, hence different coding rates, for both independent

[7] and differential coding. The results for the three datasets

are shown in Fig. 12. Each point on the curve corresponds to

the average PSNR of the RGB components across the first ten

frames of each sequence, obtained for a quantization stepsize

(a) (b) (c)

Fig. 13. Rendering results of a point cloud frame from the yellow dress
sequence compressed at a quantization stepsize of ∆ = 1024, and ∆ = 32;
(a) original point cloud, (b) voxalized and decoded frame for ∆ = 1024, and
(c) voxalized and decoded frame for ∆ = 32.

of ∆ = [32, 64, 256, 512, 1024] respectively. We observe that

at low bit rate (∆ = 1024), differential coding provides a gain

with respect to independent coding of approximately 10 dB for

all the three sequences. On the other hand, at high bit rate, the

difference between independent and differential coding tends

to become smaller, as both methods can code the color quite

accurately. Examples of the decoded frames of the yellow

dress sequence for ∆ = 32, 1024 are shown in Fig. 13. Finally,

we note that the gain in the coding performance is highly

dependent on the length of the prediction path. As the number

of predicted frames increases, the accumulated quantization

error from the previously coded frames is expected to lead to

a gradual PSNR degradation that is more significant at low bit

rate. This can be mitigated by periodic insertion of reference

frames, and by optimizing the number of predicted frames

between consecutive reference frames.

D. Discussion

Our experimental results have shown that motion compen-

sation is beneficial overall in the compression of 3D point

cloud sequences. The main benefit though is observed in

the coding of the color attributes, providing a gain of up

to 10 dB with respect to coding each frame independently.

The gain in the compression of the 3D geometry is only

marginal due to the overhead for coding the motion vectors.

Moreover, from the experimental validation in our datasets,

we observe that the proposed motion compensated geometry

compression framework that is based on the differential coding

of consecutive octree graph structures is the most expensive

part of the overall compression system. Only a very coarse

quantization of the motion vectors is sufficient to achieve an

overall good compression rate. We expect however the bit rate

to increase with the level of the motion. Empirically, for each

vertex in the man sequence, we need 0.1-0.2 bits to code the

motion vectors, 0.1-0.3 bits for the color residual, and 3.3 bits

for the geometry compression. Similar observations hold for

the other datasets.

13

VII. CONCLUSIONS

In this paper, we have proposed a novel compression frame-

work for 3D point cloud sequences that is based on exploiting

temporal correlation between consecutive point clouds. We

have first proposed an algorithm for motion estimation and

compensation. The algorithm is based on the assumption that

3D models are representable by a sequence of weighted and

undirected graphs where the geometry and the color of each

model can be considered as graph signals. Correspondence

between a sparse set of nodes in each graph is first determined

by matching descriptors based on spectral features that are

localized on the graph. The motion on the rest of the nodes

is interpolated by exploiting the smoothness of the motion

vectors on the graph. Motion compensation is then used to

perform geometry and color prediction. Finally, these predic-

tions are used to differentially encode both the geometry and

the color attributes. Experimental results have shown that the

proposed method is efficient in estimating the motion and it

eventually provides significant gain in the overall compression

performance of the system.

There are a few directions that can be explored in the future.

First, it has been shown in our experimental section that a

significant part of the bit budget is spent for the compression

of the 3D geometry, which given a particular depth of the

octree, is lossless. A lossy compression scheme that permits

some errors in the reconstruction of the geometry could bring

non-negligible benefits in terms of the overall rate-distortion

performance. Second, the optimal bit allocation between ge-

ometry, color and motion vector data stays an interesting and

open research problem, due mainly to the lack of a suitable

metric that balances geometry and color visual quality. Third,

the estimation of the motion is done by computing features

based on the spectral graph wavelet transform. Features based

on data-driven dictionaries, such as the ones proposed in

[52], are expected to increase significantly the matching, and

consequently the compression performance.

ACKNOWLEDGEMENTS

The authors would like to thank Cha Zhang and Dinei

Florêncio for providing the code for the color encoder and

help in the color compression experiments, and Ricardo L. de

Queiroz for providing the upper body sequence.

REFERENCES

[1] C. Loop, C. Zhang, and Z. Zhang, “Real-time high-resolution sparse
voxelization with application to image-based modeling,” in High-

Performance Graphics Conf., 2013, pp. 73–79.
[2] Y. Huang, J. Peng, C. C. J. Kuo, and M. Gopi, “A generic scheme for

progressive point cloud coding,” IEEE Trans. Vis. Comput. Graph., vol.
14, no. 2, pp. 440–453, 2008.

[3] R. Schnabel and R. Klein, “Octree-based point-cloud compression,” in
Symposium on Point-Based Graphics, Jul. 2006.

[4] D. Thanou, P. A. Chou, and P. Frossard, “Graph-based motion estimation
and compensation for dynamic 3D point cloud compression,” in IEEE

Int. Conf. on Image Process., Sep. 2015.
[5] D. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs

via spectral graph theory,” Appl. Comput. Harmon. Anal., vol. 30, no.
2, pp. 129–150, Mar. 2010.

[6] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and
E. Steinbach, “Real-time compression of point cloud streams,” in IEEE

Int. Conf. on Robotics and Automation, May 2012.

[7] C. Zhang, D. Florêncio, and C. Loop, “Point cloud attribute compression
with graph transform,” in IEEE Int. Conf. on Image Process., Sep. 2014,
pp. 2066 – 2070.

[8] T. Ochotta and D. Saupe, “Compression of point-based 3D models by
shape-adaptive wavelet coding of multi-height fields,” in Eurographics

Conf. on Point-Based Graphics, 2004, pp. 103–112.

[9] O. Devillers and P-M. Gandoin, “Geometric compression for interactive
transmission,” in IEEE Visualization, 2000, pp. 319–326.

[10] J. Digne, R. Chaine, and S. Valette, “Self-similarity for accurate
compression of point sampled surfaces,” Comput. Graph. Forum, vol.
33, no. 2, pp. 155–164, 2014.

[11] J. Ahn, K. Lee, J. Sim, and C. Kim, “Large-scale 3d point cloud com-
pression using adaptive radial distance prediction in hybrid coordinate
domains,” IEEE Journal Selec. Topics Signal Process., vol. 9, no. 3, pp.
422–434, 2015.

[12] M. Irani and P. Anandan, “About direct methods,” in Inter. Workshop

on Vision Algorithms: Theory and Practice, 2000, pp. 267–277.

[13] P. H. S. Torr and A. Zisserman, “Feature based methods for structure and
motion estimation,” in Inter. Workshop on Vision Algorithms: Theory

and Practice, 2000, pp. 278–294.

[14] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
Inter. Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004.

[15] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in European Conf. on Computer Vision, 2006, pp. 404–417.

[16] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline
stereo from maximally stable extremal regions,” in British Machine

Vision Conf., 2002, pp. 384–393.

[17] P. Scovanner, S. Ali, and M. Shah, “A 3-dimensional sift descriptor
and its application to action recognition,” in Inter. Conf. on Multimedia,
2007, pp. 357–360.

[18] F. Tombari, S. Salti, and L. di Stefano, “Unique signatures of histograms
for local surface description,” in European Conf. on Computer Vision,
Sept. 2010, pp. 356–369.

[19] A. Zaharescu, E. Boyer, K. Varanasi, and R. Horaud, “Surface feature
detection and description with applications to mesh matching,” in IEEE

Conf. on Comp. Vision and Pattern Recogn., Jun. 2009, pp. 373–380.

[20] F. Tombari, S. Salti, and L. di Stefano, “A combined texture-shape
descriptor for enhanced 3D feature matching,” in IEEE Int. Conf. on

Image Process., 2011, pp. 809–812.

[21] H. Chen and B. Bhanu, “3D free-form object recognition in range
images using local surface patches,” Pattern Recogn. Lett., vol. 28, no.
10, pp. 1252–1262, Jul. 2007.

[22] I. Sipiran and B. Bustos, “A robust 3D interest points detector based on
harris operator,” in Eurographics Conf. on 3D Object Retrieval, 2010,
pp. 7–14.

[23] L. A. Alexandre, “3D descriptors for object and category recognition: a
comparative evaluation,” in IEEE/RSJ Inter. Conf. on Intelligent Robots

and Systems, 2012.

[24] J. Peng, Chang-Su Kim, and C. C. Jay Kuo, “Technologies for 3D mesh
compression: A survey,” Journal of Vis. Comun. and Image Represent.,
vol. 16, no. 6, pp. 688–733, Dec. 2005.

[25] J. Rossignac, “Edgebreaker: Connectivity compression for triangle
meshes,” IEEE Trans. on Visualization and Computer Graphics, vol.
5, no. 1, pp. 47–61, Jan. 1999.

[26] M. Alexa and W. Müller, “Representing animations by principal
components,” Comput. Graph. Forum, vol. 19, no. 3, pp. 411–418,
Sep. 2000.

[27] L. Váša and V. Skala, “Geometry driven local neighborhood based
predictors for dynamic mesh compression,” Comput. Graph. Forum,
vol. 29, no. 6, pp. 1921–1933, 2010.

[28] H. Q. Nguyen, P. A. Chou, and Y. Chen, “Compression of human body
sequences using graph wavelet filter banks,” in IEEE Int. Conf. Acoustic,

Speech, and Signal Process., May 2014, pp. 6152–6156.

[29] S.-R. Han, T. Yamasaki, and K. Aizawa, “Time-varying mesh compres-
sion using an extended block matching algorithm,” IEEE Trans. Circuits

Syst. Video Techn., vol. 17, no. 11, pp. 1506–1518, Nov. 2007.

[30] S. Gupta, K. Sengupta, and A. A. Kassim, “Registration and partitioning-
based compression of 3D dynamic data,” IEEE Trans. Circuits Syst.

Video Techn., vol. 13, no. 11, pp. 1144–1155, Nov. 2003.

[31] A. Doumanoglou, D. S. Alexiadis, D. Zarpalas, and P. Daras, “Toward
real-time and efficient compression of human time-varying meshes,”
IEEE Trans. Circuits Syst. Video Techn., vol. 24, no. 12, pp. 2099–2116,
2014.

[32] X. Gu, S. J. Gortler., and H. Hoppe, “Geometry images,” in Annual Conf.

on Computer Graphics and Interactive Techniques, 2002, pp. 355–361.

14

[33] H. M. Briceno, P. V. Sander, L. McMillan, S. Gortler, and H. Hoppe,
“Geometry Videos: A New Representation for 3D Animations ,” in ACM

Symposium on Computer Animation, 2003, pp. 136–146.
[34] H. Habe, Y. Katsura, and T. Matsuyama, “Skin-off: Representation and

compression scheme for 3D video,” in Picture Coding Symp., 2004, pp.
301–306.

[35] J. Hou, L. Chau, N. Magnenat-Thalmann, and Y. He, “Compressing
3D human motions via keyframe-based geometry videos,” IEEE Trans.

Circuits Syst. Video Techn., vol. 25, no. 1, pp. 51–62, 2015.
[36] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution

3D surface construction algorithm,” in 14th Annual Conf. on Comp.

Graphics and Interactive Techniques, 1987, pp. 163–169.
[37] D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,

“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,”
IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, May 2013.

[38] F. Chung, Spectral Graph Theory, American Mathematical Society,
1997.

[39] C. Zhang and D. Florêncio, “Analyzing the optimality of predictive
transform coding using graph-based models,” IEEE Signal Process.

Lett., vol. 20, no. 1, pp. 106–109, 2013.
[40] J. Sun, M. Ovsjanikov, and L. Guibas, “A concise and provably

informative multi-scale signature based on heat diffusion,” in Symposium

on Geometry Process., 2009, pp. 1383–1392.
[41] M. M. Bronstein and I. Kokkinos, “Scale-invariant heat kernel signatures

for non-rigid shape recognition,” in IEEE Conf. on Comp. Vision and

Pattern Recogn., 2010, pp. 1704–1711.
[42] M. Aubry, U. Schlickewei, and D. Cremers, “The wave kernel signature:

A quantum mechanical approach to shape analysis,” in IEEE Int. Conf.

Comp. Vision, 2011, pp. 1626–1633.
[43] R. Litman and A. M. Bronstein, “Learning spectral descriptors for

deformable shape correspondence,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 36, no. 1, pp. 171–180, 2014.
[44] N. Hu, R. M. Rustamov, and L. Guibas, “Stable and informative spectral

signatures for graph matching,” in IEEE Conf. on Comp. Vision and

Pattern Recogn., Jun. 2014.
[45] W. H. Kim, M. K. Chung, and V. Singh, “Multi-resolution shape

analysis via non-euclidean wavelets: Applications to mesh segmentation
and surface alignment problems,” in IEEE Conf. on Comp. Vision and

Pattern Recogn., 2013, pp. 2139–2146.
[46] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning

using gaussian fields and harmonic functions,” in Inter. Conf. on Machine

Learning, 2003, vol. 13, pp. 912–919.
[47] D. Zhou, O. Bousquet, T .N. Lal, J. Weston, and B. Scholkopf, “Learning

with local and global consistency,” in Advances in Neural Information

Process. Systems, 2004, vol. 16, pp. 321–328.
[48] S.-C. T. Choi and M. A. Saunders, “MINRES-QLP for symmetric and

hermitian linear equations and least-squares problems,” ACM Trans.

Math. Softw., vol. 40, no. 2, 2014.
[49] X. Zhu and M. Rabbat, “Approximating signals supported on graphs,”

in IEEE Int. Conf. Acoustic, Speech, and Signal Process., Jul. 2012, pp.
3921–3924.

[50] H. S. Malvar, “Adaptive run-length / golomb-rice encoding of quan-
tized generalized gaussian sources with unknown statistics,” in Data

Compression Conf., Mar. 2006.
[51] J. Katajainen and E. Mäkinen, “Tree compression and optimization

with applications,” Int. Journ. Found. Comput. Science, vol. 1, no. 4,
pp. 425–448, 1990.

[52] D. Thanou, D. I Shuman, and P. Frossard, “Learning parametric
dictionaries for signals on graphs,” IEEE Trans. Signal Process., vol.
62, no. 15, pp. 3849–3862, Aug. 2014.

