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ABSTRACT

Motivation: Consensus clustering, also known as cluster ensemble,

is one of the important techniques for microarray data analysis, and

is particularly useful for class discovery from microarray data.

Compared with traditional clustering algorithms, consensus cluster-

ing approaches have the ability to integrate multiple partitions from

different cluster solutions to improve the robustness, stability,

scalability and parallelization of the clustering algorithms. By

consensus clustering, one can discover the underlying classes of

the samples in gene expression data.

Results: In addition to exploring a graph-based consensus cluster-

ing (GCC) algorithm to estimate the underlying classes of the

samples in microarray data, we also design a new validation index to

determine the number of classes in microarray data. To our

knowledge, this is the first time in which GCC is applied to class

discovery for microarray data. Given a pre specified maximum

number of classes (denoted as Kmax in this article), our algorithm can

discover the true number of classes for the samples in microarray

data according to a new cluster validation index called the Modified

Rand Index. Experiments on gene expression data indicate that our

new algorithm can (i) outperform most of the existing algorithms,

(ii) identify the number of classes correctly in real cancer datasets,

and (iii) discover the classes of samples with biological meaning.

Availability: Matlab source code for the GCC algorithm is available

upon request from Zhiwen Yu.

Contact: yuzhiwen@cs.cityu.edu.hk and cshswong@cityu.edu.hk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Recently, the problem of discovering the underlying classes

from microarray data receives more and more attention due

to its important applications in cancer diagnosis (Golub et al.,

1999), gene expression analysis (Alizadeh et al., 2000) and

related areas (Su et al., 2002). The adoption of microarray

techniques allow the acquisition, through a series of experi-

ments, the expression profile of a genome in a number of

different experiment conditions (Baldi and Hatfield, 2002).

Information acquired through microarray is usually character-

ized through two dimensions: the gene dimension and the

sample dimension. We can either observe and characterize the

expression level distribution of the complete set of genes

included in the array under a particular experimental condition,

or track the variation of the expression level of a single gene or

a selected subset of genes across the different samples. In this

article, we mainly focus on the categorization of the samples

through our newly proposed graph-based consensus clustering

(GCC) approach.
Most of the existing approaches in cancer classification can

be categorized into two types: class discovery and class

prediction. In general, class discovery consists of two steps:

(1) a clustering algorithm is first adopted to partition the

samples into K parts, when given a new set of microarray data

with unknown number of classes, (2) a cluster validity index is

then applied to determine the optimal K value, which

corresponds to the final number of classes. Our new approach

belongs to this category. For the class discovery problem, the

researchers mainly focus on discovering the underlying classes

from the samples. In Golub et al. (1999), two types of human

acute leukemia were discovered with the help of self organizing

feature maps and neighborhood analysis. In Alizadeh et al.

(2000), two subtypes of diffused large B-cell lymphoma that

are distinct at the molecular level are identified with centroid

average hierarchical clustering. In Yeung et al. 2001, the

Gaussian mixture model is applied to discover the underlying

distribution of the data in microarray. Wigle et al. 2002,

identified lung cancer cases are distinguished from the normal

cases through statistical analysis and clustering approaches.

In Dudoit and Fridlyand (2002), a new prediction-based

resampling approach is designed to estimate the number of

clusters in microarray data. In Dudoit and Fridlyand (2003),

two new resampling approaches based on bagging are proposed

to improve the accuracy of the clustering procedure.

The silhouette index is adopted as a cluster validity index

to determine the optimal number of clusters. In Smolkin and

Ghosh (2003), a cluster stability score for gene expression data

is proposed to assess the stability of individual clusters based on

the random subspace techniques, which can be used to identify

the number of clusters by combining with any clustering

algorithm. In Handl et al. (2005), the authors performed a

survey of cluster validity indices when applied to gene

expression data analysis. In particular, they pointed out the

benefits and the problems of computational cluster validation*To whom correspondence should be addressed.
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techniques. In Datta and Datta (2006), the authors designed
two performance measures called biological homogeneity index
(BHI) and biological stability index (BSI). BHI measures the

biological homogeneity of the clusters, while BSI measures
the stability of the clusters. In their work, the main focus is on
the functionality of the genes, not the categories of the samples.

In addition, since some of the genes in their dataset are labeled
using biological tools, their approach belongs to the semi-
supervized learning category. In Bertoni and Valentini (2006),

randomized maps based on the Johnson–Lindenstrauss theory
are designed to project the high-dimensional gene expression
data on to a lower dimensional subspace. Then, a stability

measure based on the projected data is proposed to discover the
underlying structure from microarray data. In Bertoni and
Valentini (2007a), a general framework for the assessment of

clustering solutions is designed based on the random subspace
technique. The true number of clusters is estimated by a
�2-based statistical test, which makes use of the distribution of
the similarity measure between pairs of clusterings.

Recently, researchers are paying more attention to class
discovery based on the consensus clustering approaches.
Consensus clustering approaches consist of two major steps:

generating a cluster ensemble based on a clustering algorithm,
and finding a consensus partition based on this ensemble.
The existing consensus clustering approaches that are applied to

gene expression data can be categorized into five types: (i) using
different clustering algorithms as the basic clustering algorithms
to obtain different solutions (Strehl and Ghosh, 2002). (ii) using

random initializations of a single clustering algorithm
(Grotkjaer et al., 2006), e.g. adopting different initial centers
for K-means or EM. (iii) sub-sampling, re-sampling or adding

noise to the original data (McShane, 2002, Monti et al., 2003,
Valentini, 2007). (iv) using selected subsets of features (Bertoni
and Valentini, 2005, Bertoni and Valentini, 2007a, Bertoni and

Valentini, 2007b, Smolkin and Ghosh, 2003, Topchy et al.,
2005, Valentini, 2006). (v) using different K values to generate
different clustering solutions, where K is the number of clusters.

The current consensus clustering approaches have limita-
tions. Specifically, two aspects of the current consensus
clustering approaches can be improved, namely, the diversity

of the ensemble, and the accuracy of the partitioning results
obtained from the consensus matrix. In this article, we propose
a new consensus clustering approach, known as GCC, to

discover biologically meaningful classes automatically from
gene expression data. Our new approach belongs to category
(iv), in which the cluster ensemble is generated using different

gene subsets. Compared with the previous approaches, in
particular the approaches proposed by Bertoni and Valentini
(2007a) and Smolkin and Ghosh (2003), the main features of

the GCC approach include (1) the adoption of the normalized
cut algorithm (Shi and Malik, 2000) to partition the consensus
matrix, (2) the adoption of the random subspace technique,

combined with the correlation clustering algorithm or K-means,
to enhance the diversity of the cluster ensemble and (3) the
design of a new cluster validity index called the Modified Rand

Index, which measures the degree of agreement between two
consensus matrices based on a penalty term.
The work most related to ours is described in Monti et al.

(2003). They proposed a consensus clustering approach to

identify the underlying types of cancers in a number of datasets.

Unlike previous consensus clustering approaches, their

approach can estimate the number of classes. However,

although the results obtained using six cancer datasets are

acceptable, there is a need to further improve the estimation

performance to allow more accurate diagnosis. Compared with

this approach, our proposed algorithm has two differences:

(1) GCC only considers subsets of genes in the process of

generating the clustering solution. (2) GCC adopts the new

Modified Rand Index, which allows more accurate character-

ization of the class structure. Specifically, GCC first generates a

set of clustering solutions in the gene subspace. Then, it creates

a consensus matrix that integrates the partitions coming from

the different clustering solutions. Finally, a new validation

index, called the Modified Rand Index, is designed to estimate

the number of classes automatically from gene expression data.

Our experiments show that GCC successfully identifies the

number of classes in real cancer datasets.

2 METHODS

We formulate the GCC problem for cancer classification as follows:

Given a set of samples S ¼ fS1;S2; . . .;Sns g where ns is the number

of samples, the GCC constructor first randomly selects a subset of genes

and obtains a clustering solution Iu by partitioning the samples into K

disjoint classes (Iu ¼ fCu
1;C

u
2; . . . ;C

u
Kg, [kC

u
k ¼ S, k 2 f1; . . . ;Kg) based

on the sampled subset of genes G [G ¼ fgi1 ; gi2 ; . . . ; gings g (where gih
(1 � h � ngs)] represents the hth sampled gene from the original set

of genes, and ngs is the total number of sampled genes]. Then,

the above process is repeated B times to create a cluster ensemble

I which consists of B clustering solutions Iu (Iu 2 I ¼ fI1; I2; . . . ; IBg).

Finally, a consensus function � is applied to obtain the final clustering

solution I final based on the cluster ensemble I and the pre specified

parameter K.

Figure 1 provides an overview of the framework for GCC algorithm.

Specifically, GCC first selects a subset of genes from the gene space.

Then, the clustering algorithm is applied to partition the samples into K

disjoint classes. GCC repeats the first two steps B times to obtain B

clustering solutions. In the third step, it constructs a consensus matrix,

partitions the consensus matrix by the normalized cut algorithm (Shi

and Malik 2000) and obtains the final results. Finally, GCC estimates

a suitable K value by a new cluster validation index.

2.1 Subspace generation

In the first step, GCC selects a subset of genes G by random sampling.

Specifically, a constant ngs (nmin � ngs � nmax), which represents the

number of genes in the subspace, is randomly generated by the

following equation:

ngs ¼ nmin þ b�ðnmax � nminÞc ð1Þ

where �(� 2 ½0; 1�) is a uniform random variable. nmin and nmax, which

are pre specified parameters by the user, controls the number of

dimensions of the subspace. The default settings for nmin and nmax are

0:75ng and 0:85ng respectively, where nmax � ng. We have followed the

settings of nmin ¼ 0:75ng and nmax ¼ 0:85ng in Smolkin and Ghosh

(2003).

Then, it selects the gene one by one until ngs genes are obtained. The

index of each randomly selected gene is determined as follows:

h ¼ b1þ �0ngc ð2Þ
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where h denotes the hth gene in microarray data, ng is the total number

of the genes and �0 is a uniform random variable. Finally, the randomly

selected ngs genes are used to construct a subspace.

2.2 Subspace clustering

GCC performs clustering in the selected subspace by two approaches:

correlation clustering and K-means. The characteristics of the two

approaches are summarized as follows:

Correlation clustering combines correlation analysis and graph

partition. We first calculate the correlation matrix (CM) whose entries

rij (i; j 2 f1; . . . ; nsg, ns is the number of samples) are determined as

follows:

rij ¼
ngs

P
h si;hsj;h �

P
h si;h

P
h sj;hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ngs
P

h s
2
i;h � ð

P
h si;hÞ

2
q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ngs

P
h s

2
j;h � ð

P
h sj;hÞ

2
q ð3Þ

where si and sj denotes the ith and jth samples, respectively.

Then, the normalized cut algorithm (Shi and Malik, 2000) is applied

to partition the samples into K classes based on the CM. We can

construct a graph (G ¼ ðS;CMÞ) whose vertices correspond to the

samples, and whose edges denote the correlation between the samples.

The normalized cut approach is applied to partition the graph

recursively until K classes are obtained. We assume that the normalized

cut first partitions the vertex set S of the graph G into two subsets P

and Q. The cost function NcutðP;QÞ, which represents a disassociation

measure between P and Q, is defined as:

NcutðP;QÞ ¼
cutðP;QÞ

assocðP;SÞ
þ

cutðP;QÞ

assocðQ;SÞ
ð4Þ

cutðP;QÞ ¼
X

si2P;sj2Q

rij ð5Þ

assocðP;SÞ ¼
X

si2P;sl2S

ril ð6Þ

where rij denotes the weight of the edge between the vertices si and sj,

which is the value of the entry in the CM. An alternative representation

for the above cost measure is as follows:

NcutðP;QÞ ¼

P
ðvi40;vj50Þ �rijvivjP

vi40 ’i

þ

P
ðvi50;vj40Þ �rijvivjP

vi50 ’i

ð7Þ

where v ¼ ½v1; . . . ; vns �
T is an ns-dimensional indicator vector (ns ¼ jSj,

jSj is the cardinality of the sample set), and ’i ¼
P

j rij is the sum of the

weights from the vertex si to all other vertices. In this way, the

normalized cut problem can be formulated as an optimization problem,

in which NcutðvÞ is minimized as follows:

minvNcutðvÞ ¼ min�
�TðD� CMÞ�

�TD�
ð8Þ

� ¼ ð1þ vÞ � �ð1� vÞ ð9Þ

� ¼

P
vi40 ’iP
vi50 ’i

ð10Þ

with the constraints:

�i 2 f��; 1g; �TDI ¼ 0 ð11Þ

where D is an ns � ns diagonal matrix with ’i (i 2 f1; . . . ; nsg) on its

diagonal, CM is an ns � ns symmetric matrix with the elements rij,

I denotes the identity matrix and � i is the ith component of �.

Although finding the normalized cut is an NP-complete problem, an

approximate discrete solution can be found efficiently by extending the

domain of the variables from discrete to continuous. Based on this

constraint relaxation, the above optimization problem can be solved

using the following generalized eigenvalue system:

ðD� CMÞ� ¼ �D� ð12Þ

where � denotes the eigenvalue. If � can take real values, the second

smallest eigenvector of the generalized eigenvalue system is the solution

to the normalized cut problem (Shi and Malik, 2000).

K-means is a popular clustering algorithm which partitions the

samples into K classes by maximizing an objective function  ðZ;CÞ.

 ðZ;CÞ ¼
XK
k¼1

Xns
i¼1

zi;k � �ðsi; ckÞ ð13Þ

subject to

XK
k¼1

zi;k ¼ 1 ð14Þ

where Z is an ns � K partition matrix, and zi, k is an indicator variable:

If zi; k ¼ 1, the sample si belongs to the kth cluster. C is a set of cluster

centers (C ¼ fc1; . . . ; cKg), and �ðsi; ckÞ denotes the cosine distance

between the sample si and the center ck of the kth cluster, which is

defined as:

�ðsi; ckÞ ¼
5si; ck4
jsij � jckj

¼

Pngs
j¼1 si; j � ck; jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPngs

j¼1 s
2
i; j

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPngs
j¼1 c

2
k; j

q ð15Þ

where ngs is the number of selected genes in the subspace. We adopt

the cosine distance as the distance metric since the cosine distance can

eliminate the effect of different magnitudes among the genes.

Through subspace clustering, GCC obtains the predicted labels

of the samples. The adjacency matrix M is constructed by the

predicted labels (Dudoit and Fridlyand 2003), whose elements mij are

defined as:

mij ¼
1 if yi ¼ yj;

0 if yi 6¼ yj;

�
ð16Þ

Microarray data

Subspace generation

Repeat
B timesSubspace clustering:

Correlation clustering

or K-means 

Partition of consensus 

matrix using the 

normalized cut algorithm

Cluster discovery:

New cluster validation index

2 K   Kmax

Fig. 1. The framework for GCC.
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where yi and yj denote the predicted labels of the samples si and sj,

respectively.

2.3 Cluster ensemble

Given the number of classes K, GCC repeats the above two steps

(subspace generation and subspace clustering) B times and obtains

B clustering solutions (I1K; I
2
K; :::; I

B
K) with B adjacency matrices

(M1
K;M

2
K; :::;M

B
K). Then, GCC constructs an ns � ns consensus matrix

(MK) by merging the adjacency matrix Mu
K (u 2 f1; . . . ;Bg) as follows:

MK ¼
1

B

XB
u¼1

Mu
K ð17Þ

where B is the number of adjacency matrices, and the element mij in

the consensus matrix MK denotes the frequencies that the ith sample

si and the jth sample sj appear in the same class.

Afterwards, GCC constructs a graph (GK ¼ ðS;MKÞ) whose vertices

correspond to the samples in S, and whose edges represent the

probability that two samples appear in the same class, which is denoted

as mK;ij in the consensus matrix MK. Then, the normalized cut

algorithm is used to partition the samples into K classes based on MK

by minimizing the following cost function:

minvNcutðvÞ ¼ min�
�TðD�MKÞ�

�TD�
ð18Þ

where the definitions of the parameters are the same as the above

subsection, except that the consensus matrix MK replaces the CM.

2.4 Cluster discovery

We further define an aggregated consensus matrix R as follows:

R ¼
1

ðKmax � 1Þ � B

XKmax

K¼2

XB
u¼1

Mu
K ð19Þ

where Mu
K denotes the adjacency matrix obtained by the uth clustering

solution corresponding to a particular K value. Each entry in the

aggregated consensus matrix denotes the probability of two samples

appearing in the same class.

GCC further converts the aggregated consensus matrix to a binary

matrix Rb:

rbij ¼
1 if rij � 0:5;

0 if rij50:5;

�
ð20Þ

where rij and rbij denotes the entry in the ith-row and the jth

column of R and Rb, respectively. By the same way, GCC converts

the consensus matrix MK to a binary matrix Mb
K with entries

mb
K; ij 2 f0; 1g.

We propose a new cluster validity index �ðMb
K;R

bÞ, known as the

Modified Rand Index, as follows:

�ðMb
K;R

bÞ ¼

P
i5j 1fm

b
K;ij ¼ rbijg

nsðns � 1Þ
þ

1

K2
ð21Þ

where mb
K;ij and rbij are the entries of Mb

K and Rb, respectively, and ns
is the number of samples. This index balances the degree of agreement

between the two matrices Mb
K and Rb against the term 1

K2, which

penalizes a large set of clusters.

The optimal number of classes K� is selected as follows:

K� ¼ argmaxK2f2;...;Kmaxg
�ðMb

K;R
bÞ ð22Þ

In general, cluster validity indices can be categorized into three types:

internal indices, external indices and information-theory-based criteria

(Sergios and Konstantinos, 2006). The Modified Rand Index can be

considered a modified form of the external index. Unlike conventional

external indices, the Modified Rand Index does not measure the

discrepancy between the ground-truth partition and the partition

obtained by the clustering algorithm, but the average of the

discrepancies between the partition obtained by the consensus cluster-

ing approach and the partitions obtained by the clustering algorithm

in a cluster ensemble. It also belongs to the category of indices for

optimizing the predictive power/stability of the resulting solution

(Handl et al., 05). With the help of the random subspace technique and

the consensus clustering approach, the Modified Rand Index can be

used to estimate the number of clusters.

3 RESULTS

3.1 Experiment setting

In the experiment, we compare GCC with the consensus

clustering (CC) approach described in Monti et al. (2003).

Based on the adoption of different feature spaces, sampling

approaches, clustering algorithms and consensus functions,

we consider the following four combinations: GCCcorr (sub-

spaceþ non-resamplingþ correlation clusteringþ normalized

cut), GCCK�means (subspaceþ non-resamplingþK-meansþ

normalized cut), CCHC [complete spaceþ resamplingþ

hierarchical clustering with average linkage (HC)þHC] and

CCSOM [complete spaceþ resamplingþ self organizing map

(SOM)þ SOM]. The experiment settings for the CC

approaches are the same as those in Monti et al. (2003). The

experiment settings for the GCC approaches are shown in

Table 1.
To evaluate the performance of these different approaches,

we adopt the Adjusted Rand Index (ARI) (Milligan and

Cooper, 1986) to measure the degree of agreement between

different partitions with different numbers of clusters. If the

partitions are identical, the value of the ARI is 1. If the

partitions are drawn independently from one another, the index

takes on an expected value of 0. Let (1) LT with KT classes be

the true partition of the samples S, and LP with KP classes

be the predicted partition of the same set of samples S. (2) nTk be

the number of samples in the k-th class in the partition LT,

nPl be the number of samples in the l-th class in the partition LP

and nTPkl be the number of samples in both class k in LT and

class l in LP. (3) ns be the number of samples. ARI is computed

as follows:

ARI ¼

PKT

k¼1

PKP

l¼1

nTPkl
2

� �
� �

1
2 ð	þ #Þ � �

ð23Þ

Table 1. The experiment setting for the GCC approaches (ngs denotes

the number of genes of the subspace and B denotes the number of

clustering solutions)

Parameter Value

ngs ngs 2 fb0:75ngc; . . . ; b0:85ngcg
B 500

Graph-based consensus clustering for class discovery
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	 ¼
XKT

k¼1

nTk
2

� �
; # ¼

XKP

l¼1

nPl
2

� �
; � ¼

2	#

nsðns � 1Þ
ð24Þ

Table 2 provides a summary of the datasets used in our

experiments. We generate three synthetic data sets in the space

½0; 1�d (d is the number of features) using a set of Gaussian

distributions with randomly selected centers, and with the

covariance matrices of all distributions set to 0:25I (I denotes

the identity matrix). The points in Synthetic1, Synthetic2 and

Synthetic3 originate from 3, 4, 7 Gaussian clusters, respectively.

Synthetic1 is a 1000-gene by 75-sample dataset, in which each

class contains 25 samples. Synthetic2 is a 1000-gene by

100-sample dataset, which is used to simulate microarray data

with noisy genes. Specifically, 200 noisy genes are included

among the 1000 genes. Similar to Synthetic1, each class consists

of 25 samples. Synthetic3 is 1000-gene by 100-sample dataset,

which is used to simulate microarray data with unequal-size

clusters and noisy genes. In addition to including the noisy

genes, we vary the number of samples in each class to include 8,

12, 16, 20, 24, 28, 32 samples in the seven classes, respectively.

For the real datasets, the data preprocessing procedure is the

same as that described in Monti et al. (2003). In Table 2, the

abbreviation SRBCT stands for small round blue cell tumors,

while CNS tumors refers to embryonal tumors of the central

nervous system. In the Leukemia dataset, bone marrow samples

are obtained from acute leukemia patients at the time of

diagnosis, while diagnostic bone marrow samples in the St.Jude

dataset are from pediatric patients with acute leukemia.

The ranges of K for Synthetic3 and the St.Jude leukemia

dataset are both set to f2; . . . ; 15g, while the ranges of K for the

other datasets are set to f2; . . . ; 9g.
In the experiments, we first explore the relationship between

z (the Modified Rand Index) and ARI. Then, the optimal

K value is selected based on z. Finally, we compare the

performances of the different approaches.

3.2 Relationship between ARI and f

We observe an interesting relationship between ARI and z, by
which we can estimate the optimal K value. Figure 2 illustrates

the change of ARI with respect to K in the different datasets,

while Figure 3 shows the change of the Modified Rand Index z
corresponding to the different K values in the various datasets.

An interesting observation is that the trend of the curve for

ARI and that of the curve for z are very similar. We perform

correlation analysis on the curve of ARI and the corresponding

curve of z in the same dataset. Table 3 lists the results of the

correlation analysis between ARI and z in all datasets

corresponding to the different approaches. All the correlation

values in Table 3 are greater than 0.65. This implies that the

degree of dependence between ARI and z is high.
To estimate the true K value of a dataset, we further study

the relationship between z, ARI and the K values. If the

predicted number of classes is the same as the true number of

classes, the value of ARI attains its maximum as shown in

Figure 2, since the value of ARI is directly related to the true

number of clusters in the dataset. It can also be seen that the

peak of the ARI curve in Figure 2 corresponds to that of z in

the same dataset as shown in Figure 3. In other words, the

maximum value of z also corresponds to the optimal K value.

Given a new set of microarray data with unknown clusters,

ARI cannot be calculated, while z can be computed when Kmax

is given. As a result, z can be considered as an alternative

measure to discover the underlying clusters.

3.3 Experiment results

In general, the GCC approaches GCCcorr and GCCK�means

outperform the consensus clustering approaches CCHC and

CCSOM when applied to the gene expression data as shown

in Table 4.

GCCcorr outperforms CCHC and CCSOM and correctly

discovers the true number of clusters in the three synthetic

datasets and the following five real datasets: Breast (BRCA1-

mutation-positive samples, BRCA2-mutation-positive samples,

Sporadic samples), CNS tumors (medulloblastomas, primitive

neuroectodermal tumors, atypical teratoid/rhabdoid tumors,

malignant gliomas and normal cerebellum), leukemia (acute

myeloid leukemia samples, T-lineage acute lymphoblastic

leukemia samples and B-lineage ALL samples), Lung cancer

(adenocarcinomas, squamous cell carcinomas, carcinoids and

normal lung) and SRBCT [neuroblastoma (NB), nonHodgkin

lymphoma (in this case Burkitt’s lymphoma (BL)), rhabdo-

myosarcoma (RMS) and Ewing’s family of tumors (EWS)].

In the St.Jude dataset, the estimated number of GCCcorr is 5,

while the true K value is 6. In fact, the values of z corresponding
to K¼ 5 and K¼ 6 are nearly the same. When K¼ 5, GCCcorr

identifies four important leukemia sub-types in the St.Jude

dataset: T-lineage ALL, E2A-PBX1, TELAML1 and MLL

rearrangements, while the two sub-types BCR-ABL and

‘hyperdiploid450’ chromosomes are merged into a single

class by GCCcorr.
The performance of GCCK�means is also better than those of

CCHC and CCSOM, and is comparable with that of GCCcorr,

since GCCK�means successfully discovers the underlying classes

in three synthetic datasets and the following five real datasets:

Breast cancer, CNS tumors, leukemia, Lung cancer and the

St. Jude leukemia dataset (T-lineage ALL, E2A-PBX1, BCR-

ABL, TELAML1, MLL rearrangements and ‘hyperdiploid450’

chromosomes, where ALL denotes acute lymphoblastic leuke-

mia). GCCK�means correctly discovers three classes in the

SRBCT dataset: NB, nonHodgkin lymphoma (in this case

Table 2. Summary of the datasets

Dataset Source No. of

classes

No. of

samples

No. of

genes

Synthetic1 by the authors 3 75 1000

Synthetic2 by the authors 4 100 1000

Synthetic3 by the authors 7 140 1000

Breast Hedenfalk et al. (2001) 3 22 351

CNS tumors Pomeroy et al. (2002) 5 48 1000

Leukemia Golub et al. (1999) 3 38 999

Lung cancer Bhattacharjee et al. (2001) 4 197 1000

SRBCT Khan et al. (2001) 4 63 227

St.Jude Yeoh et al. (2002) 6 248 985
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BL) and RMS, while subdividing the class called EWS into two

subtypes.
CCHC estimates the correct K value for the following

datasets: Synthetic1, Synthetic2, Breast, CNS tumor and

SRBCT, while CCSOM discovers the true underlying classes in

Synthetic1, Synthetic2, Synthetic3, Breast and CNS tumor.

In general, to address the problems associated with the high-

dimensional and small sample nature of gene expression data,

together with their high noise levels and large biological

variabilities, the GCC approaches adopt the random subspace

technique, together with the correlation clustering algorithm or

K-means, to generate a more diverse set of clustering solutions

when compared with existing CC approaches, such that a more

accurate solution can be obtained. In addition, the new

consensus function in GCC performs better than those in

existing CC methods due to the adoption of the normalized cut

algorithm, which results in a more accurate partition of the

consensus matrix.

Table 5 lists the corresponding values of ARI with respect

to the estimated K value in Table 4. The GCC approaches

clearly outperform the CC approaches, especially in the

Leukemia dataset and the Lung cancer dataset. To provide a

further comparison of the results in Table 5, we design a

statistical table as shown in Table 6. If the ARI value obtained

by the first approach is significantly better/worse [the level of

significance is set at a difference of 0.05 in the ARI value, as

adopted in Kuncheva and Vetrov (2006)] than that obtained by

the second approach in one of the datasets, the win/lose count

of the first approach is incremented once. If the difference

between the ARI values based on the two approaches is smaller

than the level of significance, the tie count is incremented

instead. As shown in Table 6, GCC approaches GCCcorr and

GCCK�means clearly outperform the other approaches and

achieve good results in most of the datasets.
In the following experiments, we adopt GCCcorr to illus-

trate the properties of our proposed consensus clustering

approaches, since (1) GCCcorr achieves good performance in

most of the datasets, and (2) there is a higher correlation

betweeen ARI and z in the case of GCCcorr for most of the

datasets, as shown in Table 3. To further explore the

robustness and the stability of our approach against different

numbers of noisy components, we generate three more

synthetic datasets (Synthetic4, Synthetic5 and Synthetic6) by

varying the number of noisy genes in Synthetic2. The numbers

of noisy genes in Synthetic4, Synthetic5 and Synthetic6 are

250, 300 and 350, respectively. The performance of GCC when

applied to the three new datasets is illustrated in Figure 4. It can

be seen that GCC is robust and stable against the changes in the
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Fig. 2. The change of ARI with respect to different K values.
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Fig. 3. The change of z (named zeta, which is the Modified Rand Index) with respect to different K values.

Table 3. The correlation analysis between ARI and z in all datasets

Dataset GCCcorr GCCK-means

Synthetic1 0.8362 0.9566

Synthetic2 0.7496 0.7958

Synthetic3 0.9623 0.9424

Breast 0.8723 0.9262

CNS tumors 0.7744 0.6542

Leukemia 0.9598 0.9411

Lung cancer 0.7536 0.6824

SRBCT 0.9532 0.7274

St.Jude 0.9783 0.9150

Table 4. Estimated optimal K value by different approaches

Dataset GCCcorr GCCK-means CCHC CCSOM Ktrue

Synthetic1 3 3 3 3 3

Synthetic2 4 4 4 4 4

Synthetic3 7 7 6 7 7

Breast 3 3 3 3 3

CNS tumors 5 5 5 5 5

Leukemia 3 3 5 4 3

Lung cancer 4 4 5 5 4

SRBCT 4 5 4 5 4

St.Jude 5 6 5 5 6

Table 5. The corresponding values of ARI w.r.t the estimated K-values

Dataset GCCcorr GCCK-means CCHC CCSOM

Synthetic1 1 1 1 1

Synthetic2 1 1 1 1

Synthetic3 1 1 0.968 0.976

Breast 0.866 0.867 0.756 0.854

CNS tumors 0.658 0.718 0.549 0.429

Leukemia 0.831 0.831 0.648 0.721

Lung cancer 0.544 0.562 0.310 0.233

SRBCT 0.858 0.819 0.864 0.772

St.Jude 0.873 0.860 0.948 0.825

Table 6. Statistical results by comparing different approaches

GCCcorr GCCK-means CCHC CCSOM

GCCcorr – 0/8/1 4/4/1 4/5/0

GCCK-means 1/8/0 – 4/4/1 4/5/0

CCHC 1/4/4 1/4/4 – 4/3/2

CCSOM 0/5/4 0/5/4 2/3/4 –

The entry eij in the table denotes the count for Win/Tie/Lose. If the approach

corresponding to row i is significantly better (at a level of significance 0.05) than

the approach corresponding to column j, the first approach wins, and vice versa.

Otherwise, the two approaches tie with each other.
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number of noisy components, and can successfully estimate the

four clusters in the datasets.

We further investigate the effect of the maximum K value

(Kmax) on the Modified Rand Index, and the relationship

between Kmax and the sparseness of the discretized aggregated

consensus matrix Rb. The GCC algorithm GCCcorr is applied to

the Synthetic2 dataset and the Leukemia dataset using different

Kmax values. It is observed that when Kmax increases, GCCcorr

still correctly estimates the number of clusters in the Synthetic2

dataset and the Leukemia dataset, as indicated in Tables 7

and 8. In addition, we observe that the ARI associated with

GCCcorr is not affected by Kmax, while the value of the peak z
decreases slightly when Kmax increases. In general, when Kmax is

large, the number of entries in Rb whose values exceed the

threshold in Equation (20) are small, which leads to sparseness

of the binary matrix. We further observe that this sparseness

causes a slight decrease of the peak z value for both datasets.

However, this does not affect the capability of z to identify

the correct number of clusters, since the set of z values

corresponding to the different K values change in such a way

that the position of the maximum point on the z versus K curve

is maintained, as indicated in Figures 5 and 6. Although the

peaks of the curves in Figures 5 and 6 become less prominent as

Kmax increases, our proposed approach still correctly estimates

the optimal K value from each dataset.

4 CONCLUSION

In this article, we investigate the problem of class discovery in

gene expression data. The major contribution of this article is

in the design of a new framework, known as GCC, to discover

the underlying classes of the samples in gene expression data.
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Fig. 5. The relationship between z and Kmax (Synthetic2 dataset).

Table 7. The effect of Kmax on the Synthetic2 dataset

Kmax 6 7 8 9 10 11

Estimated

K-value

4 4 4 4 4 4

z 1.0635 1.063 1.0623 1.0615 1.0589 1.0577

ARI 1 1 1 1 1 1

Table 8. The effect of Kmax on the Leukemia dataset

Kmax 6 7 8 9 10 11

Estimated K-value 3 3 3 3 3 3

z 1.061 1.04 1.036 1.01 0.973 0.962

ARI 0.831 0.831 0.831 0.831 0.831 0.831
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Our new approach can successfully estimate the true number of

classes for the datasets in our experiments. In addition, based
on our experiment results, we also observe that our new
approach outperforms the consensus clustering approaches
proposed in Monti et al. (2003) when applied to the

characterization of gene expression data.

Conflict of Interest: none declared.
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Fig. 6. The relationship between z and Kmax (Leukemia dataset).
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