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Abstract

Communication networks are important infrastructures in contemporary society.

There are still many challenges that are not fully solved and new solutions are

proposed continuously in this active research area. In recent years, to model the

network topology, graph-based deep learning has achieved the state-of-the-art

performance in a series of problems in communication networks. In this sur-

vey, we review the rapidly growing body of research using different graph-based

deep learning models, e.g. graph convolutional and graph attention networks,

in various problems from different types of communication networks, e.g. wire-

less networks, wired networks, and software defined networks. We also present

a well-organized list of the problem and solution for each study and identify

future research directions. To the best of our knowledge, this paper is the first

survey that focuses on the application of graph-based deep learning methods in

communication networks involving both wired and wireless scenarios. To track

the follow-up research, a public GitHub repository is created, where the relevant

papers will be updated continuously.
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1. Introduction

Communication networks are ubiquitous in contemporary society, from the

widely used Internet and 4G/5G cellular networks to the fast-growing Internet

of Things (IoT) networks. The growing of communication networks has gone

beyond the imagination of their designers. For example, based on Cisco An-

nual Internet Report (2018–2023) White Paper, nearly two-thirds of the global

population will have Internet access by 2023 1. It would be very challenging

to operate and manage such giant networks and new network types keep bring-

ing new problems. For example, the manual configuration becomes infeasible

or inefficient in modern networks. While the research for communication net-

works has a long history, it is still an active area with a steady stream of new

ideas, e.g., Software Defined Networking (SDN) and Space-Air-Ground Inte-

grated Network (SAGIN). The challenges may not only include the traditional

ones, e.g., routing and load balancing, power control and resource allocation,

but also the emerging ones, e.g., virtual network embedding in SDN.

To solve these challenges, various solutions are introduced to the networking

domain, especially deep learning [1]. Represented by deep neural networks,

deep learning has achieved a great success in many problems, especially in image

recognition, natural language processing, and time series problems [2, 3, 4, 5, 6].

Deep learning models are also applied in various communication networks and

are proven extremely useful for a series of problems, e.g., network design, traffic

prediction, resource allocation, etc [7, 8, 9, 10]. However, in these studies,

the network topology structure is not fully utilized because most of the deep

neural networks are designed for Euclidean structure data, e.g., images and

videos. To amend this shortcoming, graph-based deep learning represented by

Graph Neural Networks (GNNs) are proposed for non-Euclidean structure data

in recent years [11, 12, 13, 14, 15, 16]. More recently, GNNs are combined with

1https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/

annual-internet-report/white-paper-c11-741490.html
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deep reinforcement learning for making decisions in a series of problems, e.g.,

GNN is used for processing the graph information and improving the inter-coflow

scheduling ability in distributed computing [17].

GNNs are suitable for problems in communication networks because of their

strong learning ability to capture the spatial information hidden in the network

topology and their generalization ability to be used in unseen topologies when

the networks are dynamic. As to be discussed in this survey, GNN-based so-

lutions are proven effective for a wide range of problems in different network

scenarios and are worthy of being explored deeper in the future.

To the best of the authors’ knowledge, this paper presents the first literature

survey of graph-based deep learning studies for problems in communication

networks, covering a total of 81 papers ranging from 2016 to 2021 and involving

both wired and wireless scenarios. Compared to a recent similar survey [18]

which only covers the applications of GNNs in wireless networks, our survey

has a broader coverage and contains almost all the surveyed studies from [18].

The scope of communication networks used in this survey is broad, thus the

surveyed papers are selected from a wide range of journals and conferences.

Because it is still a very rapidly developing research topic of applying graph-

based deep learning methods, we also include preprints that have not yet gone

through the traditional peer review process (e.g., arXiv papers) to present the

latest progress.

The surveyed papers are classified into three major scenarios, as organized in

Figure 1. Some of the common problems are discussed in two or three scenarios,

e.g., network modeling, routing, traffic prediction. The other problems are only

mentioned in one of these scenarios. This kind of organization is not exclusive,

because the idea of SDN can be applied for both the wireless and wired networks.

Graph-based deep learning is being frequently used in the assumption of future

softwarized networks, without a strict constraint about which type of substrate

network is being used. By taking the SDN scenario as a separate section, the

relevant discussion would be inspiring for both the future work in the wireless

and wired scenarios.
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Wireless Networks
(including Cellular Network, 

Cognitive Radio Network, D2D 

Network, IoT Network, Satellite 

Network, Vehicular Network)

Wired Networks
(including Computer Network, 

Blockchain Platform, Datacenter 

Network, Optical Network)

Software Defined Networking

Problems
• Network Modeling

• Routing

• Service Function Chaining

• Virtual Network Embedding

• Virtual Network Function 

Management

• …

Problems
• Channel Allocation & Estimation

• Intrusion Detection

• Network Modeling

• Network Slicing

• Power Allocation & Control

• Routing

• Traffic Prediction

• Wireless Link Scheduling

• …

Problems
• Botnet Detection

• Delay Prediction

• Intrusion Detection

• Network Modeling

• Routing

• Traffic Classification

• Traffic Prediction

• …

Figure 1: The organization of this survey.

In this survey, the problems to solve, the graph-based solutions and the

specific GNN models used in each study are identified and summarized. We also

attempt to point out the future directions of applying GNNs in communication

networks. Our aim is to provide an up-to-date summary of related work and a

useful starting point for new researchers interested in related topics. In addition

to this paper, we have also created an open GitHub repository 2 to update new

papers continuously.

Our contributions are summarized as follows:

1) Comprehensive Review : We present the up-to-date comprehensive review

of graph-based deep learning solutions for problems in various types of commu-

nication networks, in the past six years (2016-2021).

2) Well-organized Summary : We summarize the problem to solve, the graph-

based solution and the GNNs used in each study in a unified format, which would

be useful as a reference manual.

3) Future Directions: We propose several potential future directions for re-

2https://github.com/jwwthu/GNN-Communication-Networks
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searchers interested in relevant topics.

For reference, the list of the acronyms frequently used in this survey is sum-

marized in Table 1.

Table 1: The list of the acronyms used in this survey.

Acronym Full Name

BGP Border Gateway Protocol

DC-STGCN Dual-Channel based Graph Convolutional Network

DCRNN Diffusion Convolutional Recurrent Neural Network

DL Deep Learning

DQN Deep Q Network

DRL Deep Reinforcement Learning

FDS-MARL Fully Decentralized Soft Multi-Agent Reinforcement Learning

GASTN Graph Attention Spatial-Temporal Network

GAT Graph Attention Network

GCLR GNN based Cross Layer optimization by Routing

GCN Graph Convolutional Network

GE Graph Embedding

GGS-NN Gated Graph Sequence Neural Network

GIN Graph Isomorphism Network

GN Graph Network

GNN Graph Neural Network

HIGNN Heterogeneous Interference Graph Neural Network

HetGAT Heterogeneous Graph Attention Network

IGCNet Interference Graph Convolutional Neural Network

ML Machine Learning

MPGNNs Message Passing Graph Neural Networks

MPLS Multiprotocol Label Switching

MPNN Message Passing Neural Network

Continued on next page
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Table 1 – continued from previous page

Acronym Full Name

MSTNN Multi-scale Spatial-Temporal Graph Neural Network

NFV Network Function Virtualization

REGNNs Random Edge Graph Neural Networks

S-RNN Structural-RNN

SDN Software Defined Networking

SFC Service Function Chaining

SGCRN Spatiotemporal Graph Convolutional Recurrent Network

TCN Temporal Convolutional Network

TGCN Temporal Graph Convolutional Network

UWMMSE Unfolded iterative Weighted Minimum Mean Squared Error

VNE Virtual Network Embedding

VNF Virtual Network Function

The remainder of this paper is organized as follows. In Section 2, we intro-

duce the progress of conducting literature search and selection. In Section 3,

we introduce the GNNs used in the reviewed studies. In Section 4, we summa-

rize the studies in wireless networks. In Section 5, we summarize the studies

in wired networks. In Section 6, we summarize the studies in software defined

networks. In Section 7, we point out future directions. In Section 8, we draw

the conclusion.

2. Survey Methodology

To collect relevant studies, the literature is searched with various combina-

tions of two groups of keywords. The first group is about the graph-based deep

learning techniques, e.g., “Graph”, “Graph Embedding”, “Graph Neural Net-

work”, “Graph Convolutional Network”, “Graph Attention Networks”, “Graph-

SAGE”, “Message Passing Neural Network”, “Graph Isomorphism Network”,
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etc. The second group is about the communication networks as well as specific

problems, e.g., “Wireless Network”, “Cellular Network”, “Computer Network”,

“Software Defined Networking”, “Traffic Prediction”, “Routing”, “Service Func-

tion Chaining”, “Virtual Network Function”, etc. The databases from major

publishers are carefully covered one by one, e.g., ACM, Elsevier, IEEE, Springer,

Wiley, etc. To track the citation relationship among these papers and avoid

missing records from smaller publishers, Google Scholar is also leveraged in the

literature search process.

A total of 81 papers are finally selected and covered in this survey, with the

earliest one published in year 2016, as shown in Figure 2. Most of the surveyed

papers are published in recent three years, i.e., 2019, 2020, and the first five

months of 2021. Compared with 14 papers in 2019, there is a 207% growth of

papers in 2020, with a total of 43 papers. While there are only 20 papers in

the first five months of 2021, it is expected that more relevant studies would

be published or publicized in the remaining months with the growing impact

of graph-based deep learning methods being applied in the networking domain.

We also show the paper statistics for different network types in Figure 3. The

wireless network scenario draws more attention than the other two and this

trend may continue in 2021.

For a full coverage of relevant studies, workshop, conference, and journal

papers as well as preprint papers are covered in this survey, to track the latest

achievements as well as the on-going progress. The journal list (alphabetically)

is shown in Table 2. The conference list (alphabetically) is shown in Table 3.

And the workshop list (alphabetically) is shown in Table 4. All the preprint

papers are from the arXiv platform 3. Since we cover a wide area with various

communication networks, the papers are selected from various publications or

conference proceedings, some of which may focus on telecommunications or

related subjects and the others may be multidisciplinary. As an emerging topic

which has not been widely adopted, graph-based deep learning appears in recent

3https://arxiv.org/
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Figure 2: The paper count of different types annually.
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Figure 3: The paper count of different network types annually.

years for solving networking-related problems, with only one paper selected for

most journals or conferences.
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Table 2: List of source journals and the corresponding studies we cover in this study.

Journal Name Studies

Computer Networks [19, 20]

Electronics [21]

IEEE Access [22, 23]

IEEE Communications Letters [24, 25, 26, 27]

IEEE Internet of Things Journal [28]

IEEE Journal on Selected Areas in Communications [29, 30, 31, 32]

IEEE Systems Journal [33]

IEEE Transactions on Industrial Informatics [34]

IEEE Transactions on Information Forensics and Security [35]

IEEE Transactions on Mobile Computing [36, 37]

IEEE Transactions on Network Science and Engineering [38]

IEEE Transactions on Network and Service Management [39]

IEEE Transactions on Signal Processing [40]

IEEE Transactions on Vehicular Technology [41]

IEEE Transactions on Wireless Communications [42, 43]

International Journal of Network Management [44]

Performance Evaluation [45]

Sensors [46]

Transactions on Emerging Telecommunications Technologies [47]

3. Graph-based Deep Learning Introduction

In this section, we first present some typical examples of the graph structures

used in communication networks. Then we give a short introduction of the

graph-based deep learning models, especially those used in the surveyed papers.

Finally, we discuss the pros and cons of applying graph-based deep learning

models in the networking domain.
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Table 3: List of source conferences and the corresponding studies we cover in this study.

Conference Name Studies

ACM SIGCOMM conference [48]

ACM Symposium on SDN Research (SOSR) [49]

Asia-Pacific Network Operations and Management Symposium (APNOMS) [50, 51]

IEEE Annual Consumer Communications & Networking Conference (CCNC) [52]

IEEE Conference on Computer Communications (INFOCOM) [53]

IEEE Conference on Network Function Virtualization and Software Defined

Networks (NFV-SDN)

[54]

IEEE Global Communications Conference (GLOBECOM) [55, 56]

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP)

[57, 58]

IEEE International Conference on Communications (ICC) [59, 60, 61, 62, 63]

IEEE Symposium on Computers and Communications (ISCC) [64]

IEEE Vehicular Technology Conference (VTC) [65]

IEEE Wireless Communications and Networking Conference (WCNC) [66, 67, 68]

IFIP Networking Conference (IFIP Networking) [69]

International Conference on Information Networking (ICOIN) [70, 71]

International Conference on Information and Communication Technology Con-

vergence (ICTC)

[72]

International Conference on Network and Service Management (CNSM) [73, 74, 75]

International Conference on Real-Time Networks and Systems (RTNS) [76]

International Conference on Wireless Communications and Signal Processing

(WCSP)

[77]

International Conference on emerging Networking EXperiments and Technolo-

gies (CoNEXT)

[78]

International Symposium on Networks, Computers and Communications (IS-

NCC)

[79]

Opto-Electronics and Communications Conference (OECC) [80]
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Table 4: List of source workshops and the corresponding studies we cover in this study.

Workshop Name Studies

AutoML for Networking and Systems Workshop of MLSys Conference [81]

IEEE Globecom Workshops (GC Wkshps) [82]

IEEE International Workshop on Signal Processing Advances in Wireless Com-

munications (SPAWC)

[83, 84]

Workshop on Big Data Analytics and Machine Learning for Data Communica-

tion Networks

[85]

Workshop on Network Meets AI & ML [86, 87]

3.1. Graphs in Communication Networks

From the graph theory, a simple graph is defined as G = (V,E), where V

is the set of nodes and E is the set of edges between nodes. In communication

networks, the edges can be either directed or undirected, depending on the

specific problems. Both nodes and edges can be associated with some attributes

as the features, either static or dynamic.

Two graph examples are given for the wired and wireless scenarios respec-

tively. In Figure 4, the communication graph from the Abilene network is

presented, which consists of 11 nodes and 14 edges. Each node represents the

physical backbone router and the node features include the inflow and out-

flow traffic volumes. Each edge represents the physical transmission link and

the edge features include the transmission metrics, e.g., bandwidth and delay.

Similar communication graphs are built from other network topologies, e.g.,

the Nobel, GÉANT, Germany50, and AT&T backbone networks, can be found

in [47, 59, 33].

In Figure 5, the interference graph for a homogeneous ad-hoc network is

presented, which consists of 3 nodes and 3 edges. Different from Figure 4, the

nodes in Figure 5 are virtual nodes, each of which corresponds to a transceiver

pair (Tx, Rx). The features of node i include the direct channel state informa-

tion (CSI) hii and other environmental information, e.g., the weight ωi of node
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New York
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Chicago

Kansas City

Denver

Los Angeles

Sunnyvale

Seattle

Figure 4: An example of the communication graph from the Abilene network.

i [82]. The undirected edge between node i and node j models the interference

between two transceiver pairs and the edge features are the interference CSIs

hij and hji. The interference graph built for the heterogeneous ad-hoc network

case can be further found in [88].

TxRx

Rx

Rx

Tx

Tx

Direct Channel Interference Channel

11 1( , )h

2 22( , )h3 33( , )h

3113( , )h h

2332( , )h h

2112( , )h h

Figure 5: An example of the interference graph from [82].

An adjacency matrix A is introduced to incorporate the network topology

information into the architecture of neural networks. Let eij represents the edge

12



between node vi and node vj . Then the element of the adjacency matrix A is

defined as follows: Aij = 1 if eij ∈ E, otherwise, Aij = 0. Here the binary

matrix A only captures the connection relationship. If A is symmetric, the

graph is undirected, otherwise, the graph is directed. More complex adjacency

matrices can be defined similarly, e.g., the distance matrix or the interference

matrix.

For defining the GNNs in the next part, more notations are introduced here.

Based on the connection relationship, N (vi) represents the neighbor node set of

vi and each element of the degree matrix D is Dii = ‖N (vi)‖. The Laplacian

matrix of an undirected graph is introduced and defined as L = D−A and the

normalized Laplacian matrix is further defined as L̃ = IN −D−
1
2 AD−

1
2 , where

N is the number of nodes and IN is the identity matrix with size N . The node

feature matrix of a graph is defined as X ∈ RN×d, where d is the dimension of

the node feature vector.

3.2. Graph-based Models in Communication Networks

Since the research for graph-based deep learning is still in a fast pace with

new models appearing continuously, we have no intention of conducting a thor-

ough literature search on the graph-based models. In this section, we would

focus on a short introduction for the GNNs used in the surveyed studies. For

those who are interested in the whole picture of graph neural networks and

a deeper discussion of the technical details, recent surveys [11, 12, 13, 14, 15]

are recommended. The relevant graph-based deep learning models are listed

chronologically in Figure 6. Please note that the listed conferences may be

lagged behind the preprint versions, which could be released one or two years

earlier.

As a pioneering study, GNN is introduced in [89], which extends the applica-

tion of neural networks from Euclidean structure data to non-Euclidean struc-

ture data. GNN is based on the message passing mechanism, in which each node

updates its state by exchanging information with each other until it reaches a

certain stable state. Afterwards, various GNN variants are proposed, e.g., Graph
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Year

GNN (IEEE Trans 

Neural Networks 2008) GNN (arXiv 2015)

GGS-NN (ICLR 2016)

ChebNet (NIPS 2016)

S-RNN (CVPR 2016)

structure2vec (ICML 2016)

GCN (ICLR 2017)

GraphSAGE (NIPS 2017)

MPNN (ICML 2017)

GAT (ICLR 2018)

GN (arXiv 2018)

GE (IEEE Trans Cybern 2019)

GIN (ICLR 2019)

HetGAT (WWW 2019)

Figure 6: The relevant graph-based deep learning models of this survey.

Convolutional Network (GCN) and Graph Attention Networks (GAT).

We first introduce the Graph Embedding (GE) models. In mathematics,

embedding is a mapping function f : X → Y , in which a point in one space

X is mapped to another space Y . Embedding is usually performed from a

high-dimensional abstract space to a low-dimensional space. Generally speak-

ing, the representation mapped to the low-dimensional space is easier for neural

networks to handle with. In the case of graphs, graph embedding is used to

transform nodes, edges, and their features into the vector space, while preserv-

ing properties like graph structure and information as much as possible. For

the studies covered in this survey, several graph embedding models are involved,

including structure2vec [90], GraphSAGE [91], and GE [92]. In a transductive

learning approach, Structure2vec [90] is based on the idea that if the two se-

quences composed of all the neighbors of two nodes are similar, then the two

nodes are similar. GraphSAGE [91] is a representative of inductive learning.

It does not directly learn the representation of each node, but learns the ag-

gregation function instead. For the new node, its embedding representation

is generated directly without the need to learn again. Furthermore, a novel

adversarial regularized framework is proposed for graph embedding in [92].

Then we introduce the GCN models. GCN extends the convolution oper-

ation from traditional data (such as images) to graph data, inspired by the

convolutional neural networks which are extremely successful for image-based

tasks. The core idea is to learn a function mapping, through which a node

14



can aggregate its own features and the features of its neighbors to generate the

new representation. Generally speaking, there are two types of GCN models,

namely, spectral-based and spatial-based.

Based on graph signal processing, spectral-based GCNs define the convolu-

tion operation in the spectral domain, e.g., the Fourier domain. To conduct

the convolution operation, a graph signal is transformed to the spectral do-

main by the graph Fourier transform. Then the result after the convolution

is transformed back by the inverse graph Fourier transform. Several spectral-

based GCNs are used in the surveyed studies, e.g., GNN [93], ChebNet [94], and

GCN [95], which improve the convolution operation with different techniques.

By introducing a parameterization with smooth coefficients, GNN [93] attempts

to make the spectral filters spatially localized. ChebNet [94] learns the diagonal

matrix as an approximation of a truncated expansion in terms of Chebyshev

polynomials up to Kth order.

To avoid overfitting, K = 1 is used in GCN [95]. More specifically, the graph

convolution operation ∗G in GCN is defined as follows:

X∗G = W(IN + D−
1
2 AD−

1
2 )X (1)

where W is a learnable weight matrix, i.e., the model parameters. To alleviate

the potential gradient explosion problem, the graph convolution operation is

further transformed into:

X∗G = W(D̃−
1
2 ÃD̃−

1
2 )X (2)

where Ã = A + IN and D̃ii =
∑

j Ãij .

Several spatial-based GCNs are also used in the surveyed studies, which

defines the convolution operation directly on the graph based on the graph

topology. To unify different spatial-based variants, Message Passing Neural

Network (MPNN) [96] proposes the usage of message passing functions, which

contain a message passing phase and a readout phase. The message passing

phase is defined as follows:

m(t)
vi =

∑
vj∈N (vi)

M(t)(X
(t−1)
i ,X

(t−1)
j , eij) (3)
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where m
(t)
vi is the message aggregated from the neighbors of node vi, M(t)(·) is

the aggregation function in the t-th iteration, X
(t)
i is the hidden state of node

vi in the t-th iteration, and eij is the edge feature vector between node vi and

node vj . The readout phase is further defined as follows:

X
(t)
i = U (t)(X

(t−1)
i ,m(t)

vi
) (4)

where U (t)(·) is the readout function in the t-th iteration.

Graph Network (GN) [97] also unifies many GNN variants, by learning node-

level, edge-level and graph-level representations. Graph Isomorphism Network

(GIN) [98] takes a step further by pointing out that previous MPNN-based

methods are incapable of distinguishing different graph structures based on the

graph embedding they produce and adjusting the weight of the central node

by a learnable parameter to amend this drawback. Attention-based GNN mod-

els can be categorized into the spatial-based type. GAT [99] incorporates the

attention mechanism into the propagation step and further utilizes the multi-

head attention mechanism to stabilize the learning process, which is defined as

follows:

X
(t)
i = ‖kσ(

∑
j∈N (vi)

αk(X
(t−1)
i ,X

(t−1)
j )W(t−1)X

(t−1)
j ) (5)

where ‖ is the concatenation operation, σ is the activation method, αk(·) is the

k-th attention mechanism.

Other than the convolution operation, the recurrent operation can also be

applied in the propagation module of GNNs. The key difference is that the

convolution operations use different weights while the recurrent operations share

the same weights. For example, Gated Graph Sequence Neural Network (GGS-

NN) [100] uses Gated Recurrent Units (GRU) in the propagation step.

In realistic networks, the network topology may change occasionally, e.g.,

with the addition or deletion of routers, which corresponds to the case of dy-

namic graphs, instead of static graphs. Several GNN variants are proposed for

dealing with dynamic graphs. Diffusion Convolutional Recurrent Neural Net-

work (DCRNN) [101] leverages GNNs to collect the spatial information, which

16



is further used in sequence-to-sequence models. By extending the static graph

structure with temporal connections, Structural-RNN (S-RNN) [102] can learn

the spatial and temporal information simultaneously.

The last case to discuss is the heterogeneous graph, in which the nodes and

edges are multi-typed or multi-modal. For this case, meta-path is introduced as

a path scheme which determines the type of node in each position of the path,

then one heterogeneous graph can be reduced to several homogeneous graphs

to perform graph learning algorithms. To generate the final representation of

nodes, graph attention is performed on the meta-path-based neighbors and a

semantic attention is used over output embeddings of nodes under all meta-path

schemes in Heterogeneous Graph Attention Network (HetGAT) [103].

3.3. Pros and Cons of Graph-based Models

Machine learning has emerged as a new paradigm to solve various network-

ing problems and to automate network management [50]. Compared with tra-

ditional methods, ML models provide many benefits for solving the networking

relevant problems. The first advantage is that machine learning models can

automatically learn and improve from experiences without being explicitly pro-

grammed [50]. Even though it takes some efforts to train a machine learning

model, the inference time when applying a trained model is much smaller. These

efforts are also inevitable when applying a traditional method based on vari-

ous optimization techniques which may require a long iteration update process.

The second advantage is that the machine learning models are more effective

in learning wide and dynamically changing data than statistical and heuristic

methods. Based on these advantages, machine learning models, especially the

deep learning models, have been widely applied in the networking domain.

The story does not end here. While machine learning has achieved a great

success in many research fields, e.g., computer vision, natural language pro-

cessing and time series processing. Most of these fields use Euclidean domain

data, for which the feed forward neural networks, CNNs and RNNs are enough.

However, for other fields, e.g., chemistry and biology, these models are inade-
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quate for learning the non-Euclidean graph data, which contain rich relational

information between each pair of neighboring elements. Many kinds of graph

structure data also exist in the communication networks as introduced earlier,

which is beyond the ability of non-GNN machine learning models. Driven by

the graph structure data, GNNs are preferable because GNNs can automatically

learn a condensed representation of each node in the network that incorporates

the information about the node, its neighbors, and their inter-connecting topol-

ogy [74] and support relational reasoning and combinatorial generalization [20].

Besides the ability of handling graph structure, GNNs bring new opportu-

nities for other challenges that have not been fully solved by previous machine

learning models, e.g., the complexity in the network state and nonstationarity in

networking, with a better generalization ability. Communication networks are

complex and dynamic systems, and the overall networking performance may be

affected by many factors, e.g., the latency metric affects networking efficiency by

defeating network protocols [33]. Traditional techniques, e.g., the open shortest

path first protocol (OSPF) for routing, are not capable of coping with these

challenges. When situations such as link failure and congestion happen, these

traditional techniques would not be able to converge quickly with these previ-

ously unseen situations. The non-GNN machine learning models will no longer

apply when the network topology changes, e.g., link disconnection, and new

training data are needed [20]. Since the topology of the network is usually dy-

namically changed, dynamic graphs are used in GNNs for the actual network.

In other words, GNN is able to understand the complex relationship between

topology, routing and traffic in networks, and generalizes trained NN parame-

ters over arbitrary topologies, routing schemes and variable traffic intensity [20].

It is also proven that GNNs have a higher training efficiency than other neural

networks, for example, GNNs converge O(n log n) times faster and their gen-

eralization error is O(n) times lower theoretically, compared with multilayer

perceptrons in a communication networks with n nodes [104].

Even so, GNNs are not the panacea. There are still some concerns about

applying GNNs in the networking domain and not all of them have been fully
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resolved. The first concern is about the collection of training data for GNNs

(and other machine learning models too). Compared with the well-developed

research areas with large-scale open benchmark datasets, e.g., ImageNet for

computer vision, the training datasets are still rare (at least the open ones) for

training the effective GNN models. Even for those already used in the existing

studies, the data size is limited and is far from the need of being applied in the

actual network.

The second concern is about the depth of GNN models. For other neural

networks, e.g., CNNs, it has been proven effective to use a deeper structure,

e.g., ResNet. However, similar benefits are not obvious for GNNs. It has been

found that when using more than two GCN layers, the performance becomes

worse with more GCN layers. This is because GNNs rely on the aggregation

operation on the features of neighbor nodes, the results become too smooth and

lack of differentiation after multiple layers. As the network continues to overlap,

eventually all nodes will learn the same expression and GNNs fail to work. It

is still questionable Whether the graph neural network needs a deep structure,

or whether a deep network structure can be designed to avoid the problem of

over-smoothness in the networking domain.

The third concern is about the stability of GNN models, both under the

stochastic perturbations and adversarial attacks [105, 106, 107]. Stochastic per-

turbations appear in the communication networks in the situations when link

failure and congestion happen. While the adversarial attacks appear when tar-

geted attacks on the underlying networks happen. These problems already exist

for other neural networks and more attack types can be designed by leveraging

the node features or the graph structure. It has been found that the stabil-

ity of GNNs is affected by multiple factors, e.g., the graph filter, nonlinearity,

architecture width and depth, etc [106]. And massive efforts have been put

to design GNNs which are robust to the perturbations or attacks. With the

deeper involvement of GNNs with various networking problems, more poten-

tial vulnerable cases would appear which would require a design of more robust

GNNs.
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The last but not the least concern is about the explainability of GNNs for

networking problems. The study for the explainability and visualization of

deep learning models has a long story and deep learning has been criticized

for its “black-box” property. The graph structure brings new challenges for

the explainability problem. The development of post-processing techniques to

explain the predictions made by GNNs has been made with some progresses,

however, the explainability of GNNs in the networking domain has not yet been

fully addressed [108, 109].

4. Wireless Networks

In this section, we focus on the relevant studies in wireless network scenar-

ios. For wireless networks, we refer to those transmitting information through

wireless data connections without using a cable, including wireless local area

network, cellular network, wireless ad hoc network, cognitive radio network,

device-to-device (D2D) network, satellite network, vehicular network, etc. Some

problems are ubiquitous in different formats of wireless networks, e.g., power

control. We would first talk about these problems in general wireless network

scenarios. Then we discuss the papers focusing on a specific wireless network

scenario.

4.1. General Wireless Network

Compared with other deep learning models, GNNs have the advantage of

handling the topology information, which may not be leveraged in previous stud-

ies with Euclidean deep learning models. In densely deployed wireless local area

networks, the channel resource is limited. To increase the system throughput,

the channels must be allocated efficiently. The features of the channel vectors

with the topology information are extracted in [22], with the GCN model. Then

a deep reinforcement learning is developed for channel allocation, which utilizes

the features extracted by GCN. Topology information is also used in [110] for

wireless network optimization. Combining a GE unit and a deep feed-forward
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network, a two-stage topology-aware framework is proposed and validated for

the network flow optimization problem, which achieves a trade-off between com-

putation time and inference performance.

Compared with the wired communication, wireless transmission may be im-

perfect with more errors. While GNNs may be applied in wireless networks,

the transmission uncertainty would deteriorate the robustness of GNNs. This

challenge is considered in [111], in which decentralized GNN binary classifiers

are used for multiple problems, e.g., power control or wireless link scheduling.

To handle this situation, re-transmission mechanisms are proposed to enhance

the robustness of GNN classifiers, for both uncoded and coded wireless commu-

nication systems.

Power allocation or control is an important topic in the wireless network

scenario, in which the devices connected to the network may be powered by

batteries with a limited energy storage. The transmission in the free space

may also interference with each other if the power is not properly controlled.

To handle this problem, multiple GNN-based solutions are proposed [83, 58,

40, 57, 42, 112, 82, 32, 84]. In a series of studies [83, 58, 40, 112], Random

Edge Graph Neural Networks (REGNNs) are selected as the optimal solution

for the power allocation and control optimization problem, with various sys-

tem constraints. REGNNs outperform baselines with an essential permutation

invariance property, which are desirable in networks of growing size. For the

optimal power allocation in a single-hop ad hoc wireless network, an iterative

weighted minimum mean squared error method named UWMMSE is proposed,

in which GNNs are used to learn the model parameters [57, 42]. UWMMSE

effectively reduces the computational complexity without harming the alloca-

tion performance, over the classic algorithm for power control. For solving the

similar problem in an unsupervised approach, Interference Graph Convolutional

Neural Network (IGCNet) is proposed and validated in [82], which is robust to

imperfect Channel State Information (CSI). Beamforming is further considered

in [32], in which Message Passing Graph Neural Networks (MPGNNs) are pro-

posed to solve both the power control and beamforming problems. Similarly, in
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an unsupervised approach to learn optimal power allocation decisions, a primal-

dual counterfactual optimization approach is proposed in [84], in which GNNs

are used to handle the network topology.

To sum up, the papers in the general wireless network scenario are listed in

Table 5. The target problem, proposed solution and the relevant GNN com-

ponent(s) are also listed. The similar tabular format for the paper summary

applies in the following sections.

Table 5: List of the papers in the wireless network scenario.

Problem Paper Solution GNN

Binary Classification [111] Decentralized GNN GCN [95], GIN [98]

Channel Allocation [22] DRL with GCN ChebNet [94]

Network Flow Opti-

mization

[110] Two-stage Topology-

aware ML Framework

MPNN [96]

Power Allocation [83, 58, 40] REGNN GNN [93]

Power Allocation [57, 42] UWMMSE Method GCN [95]

Power Control [112] REGNN GNN [93]

Power Control [82] IGCNet GIN [98]

Power Control and

Beamforming

[32] MPGNNs GIN [98], GCN [95]

Power Control [84] Unsupervised

Primal-dual Counter-

factual Optimization

GNN [93]

4.2. Cellular Network

Cellular networks are discussed separately in this part, not only because

more than ten papers focus on this specific scenario, but also because the cel-

lular network has a wide application. For example, there were 5.95 billion LTE

subscriptions worldwide by the end of Q4 2020 4. While the growing trend may

4https://gsacom.com/paper/lte-and-5g-subscribers-march-2021-q4/
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be affected by COVID-19, cellular networks are still one of the major approach

for accessing the Internet.

Driven by the huge demand, the research in the cellular network scenario

keeps increasing, including those leveraging graph-based deep learning models

for some traditional communication problems, e.g., resource allocation, power

control and traffic prediction. Driven by the ideas from SDN, some new problems

also appear in the cellular network scenario, e.g., network slicing and virtual

network embedding. Both types of problems have been investigated in the

surveyed papers.

To fully utilize the network resources, multipath TCP is considered for 5G

networks, which transfer packets over multiple paths concurrently. However,

network heterogeneity in 5G networks makes the multipath routing problem be-

come more complex for the existing routing algorithms to handle. A GNN-based

multipath routing model is proposed as the solution in [23]. The experiments

under the SDN framework demonstrate that the GNN-based model can achieve

a significant throughput improvement.

Traffic prediction is also considered in cellular networks, with GNN-based

solutions being proposed in recent years [56, 37, 21, 36]. As a prediction problem,

the temporal dependencies may be modeled by a recurrent neural network, e.g.,

Long Short Term Memory (LSTM) or GRU. Different attention mechanisms

may also be incorporated. As an improvement over baselines, GNN is capable

of modeling the spatial correlation between different nodes, e.g., a cell tower

or an access point. Different structures have been explored in existing studies,

e.g., GAT in [56, 37], GCN in [21], and GraphSAGE in [36].

Energy consumption is another concern for 5G network, which is designed to

enable a denser network with microcells, femtocells and picocells. To better con-

trol the transmission power, GNN-based power control solutions are proposed

in [66, 68]. Heterogeneous GNNs (HetGNNs) with a novel parameter sharing

scheme are proposed for power control in multi-user multi-cell networks [66].

Take a step further, the joint optimization problem of user association and

power control of the downlink is considered in [68], in which an unsupervised
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GNN is used for power allocation and the Spectral Clustering algorithm is used

for user association.

Green network management is proposed to improve the energy efficiency.

A specific problem, the Idle Time Windows (ITWs) prediction, is considered

in [29]. To capture the spatio-temporal features, a novel Temporal Graph Con-

volutional Network (TGCN) is proposed for learning the network representation,

which improves the prediction performance. Also for the denser cell sites, the

Integrated Access and Backhaul (IAB) architecture defined by the 3rd Gener-

ation Partnership Project (3GPP) is used in [26]. The IAB topology design is

formulated as a graph optimization problem and a combination of deep rein-

forcement learning and graph embedding is proposed for solving this problem

efficiently.

The integration of satellite-terrestrial networks is proposed for the future

6G network. In this direction, a High Altitude Platform Station (HAPS) is a

network node that operates in the stratosphere at an altitude around 20 km

and is instrumental for providing communication services [113]. For HAPS,

GAT is firstly utilized for channel estimation in [114, 62], and the proposed

GAT estimator outperforms the traditional least square method in full-duplex

channel estimation and is also robust to hardware imperfections and changes in

small-scale fading characteristics.

As a softwarized concept, network slicing has been proposed for 5G network,

using network virtualization to divide single network connection into multi-

ple distinct virtual connections that provide services with different Quality-of-

Service (QoS) requirements. However, the increasing network complexity is

becoming a huge challenge for deploying network slicing. A scalable Digital

Twin (DT) technology with GNN is developed in [34] for mirroring the network

behavior and predicting the end-to-end latency, which can also be applied in

unseen network situations. Take a step further, GAT is incorporated into Deep

Q Network (DQN) for designing an intelligent resource management strategy

in [67], which is proven effective through simulations.

Virtual Network Embedding (VNE) is also a softwarized concept, which can
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be used for modeling the resource allocation of 5G network slices. Since the

VNE problem is NP-hard, heuristic methods and deep learning models are both

being proposed for this specific problem. Deep Reinforcement Learning (DRL)

and GCN are combined for solving this problem [79, 52], in which the episodic

Markov Decision Process is solved by different GCN models.

To sum up, the papers in the cellular network scenario are listed in Table 6.

Table 6: List of the papers in the cellular network scenario.

Problem Paper Solution GNN

Channel Estimation [114, 62] GAT-based Estimator GAT [99]

Idle Time Windows Pre-

diction

[29] TGCN GCN [95]

Integrated Access and

Backhaul Topology De-

sign

[26] DRL with Graph Em-

bedding

structure2vec [90]

Network Modeling, Net-

work Slicing

[34] GNN-based Digital

Twin

GraphSAGE [91]

Network Slicing [67] DQN with GAT GAT [99]

Power Control [66] Heterogeneous GNNs HetGAT [103]

Routing [23] GCLR MPNN [96]

Traffic Prediction [36] Graph-based TCN GraphSAGE [91]

Traffic Prediction [56, 37] GASTN S-RNN [102]

Traffic Prediction [21] DC-STGCN GCN [95]

User Association, Power

Control

[68] Unsupervised Graph

Model

GraphSAGE [91]

VNE [79, 52] DRL with GCN GCN [95]

4.3. Other Wireless Networks

In this part, we discuss the other formats of wireless networks, with their

own challenges and solutions.
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The first case is the cognitive radio network, which aims to increase the

spectrum utilization by secondary users with an opportunistic use of the free

spectrum that is not used by the primary users. In this scenario, the challenge

is to improve the resource utilization, without degrading the quality of service

(QoS) of primary users. To solve this challenge, a joint channel selection and

power adaptation scheme is proposed in [46], in which GCN is leveraged to

extract the crucial interference features. Based on the estimated CSI, a DRL-

based framework is further used to allocate spectrum resources efficiently.

The second case is the Device-to-Device (D2D) network, which uses the di-

rect communication between two users or devices, without traversing the base

station or router. Without deploying additional infrastructure, D2D network is

promising for provide communication services with an ultra-low latency. How-

ever, there are still many challenges for this objective to happen. To minimize

the content fetching delay in D2D network, the joint optimization of coopera-

tive caching and fetching is considered in [41] and a DRL-based algorithm is

proposed. In the proposed algorithm, GAT is used for cooperative inter-agent

coordination. For power control and beamforming in D2D network, an unsu-

pervised learning-based framework is proposed in [88], in which heterogeneous

graphs and GNNs are used for the characteristics of diversified link features and

interference relations. Wireless link scheduling is also considered in a series of

studies [61, 43, 65]. Graph embedding based method is proposed in [61, 43], in

which the graph embedding process is based on the distances of both communi-

cation and interference links, without requiring the accurate CSI. The proposed

method manages to reduce the computational complexity for the link scheduling

problem significantly.

The third case is the Internet of Things (IoT) network, which is designed

for connecting smart devices, e.g., smart meters, smart light bulbs, connected

valves and pumps, etc. The application of IoT networks covers a wide range,

e.g., smart factory, smart agriculture, smart city, etc. The wide application also

arises a great number of challenges, e.g., resource utilization efficiency, battery

limitation for computation and communication, and security concerns. Some
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of these challenges can be solved with graph-based methods. One example is

the channel estimation problem considered in [114], in which Direct-to-satellite

(DtS) communication is used for globally connected IoT networks and the high

path loss must be considered. GAT is proposed as the solution and further used

for the reconfigurable intelligent surfaces in the considered scenario. Another

example is the network intrusion detection, which is drawing a growing attention

in recent years. GraphSAGE is used in [115] for using the edge features and

classifying the network flows into benign and attack types. The new solution

is proven more effective than the state-of-the-art methods on six benchmark

datasets. SDN concepts are also applied in IoT networks and can be combined

with graph-based solutions. NFV-enabled Service Function Chain (SFC) is

considered in [28], in which the challenge is that SFCs should be dynamically and

adaptively reconfigured in order to achieve a lower resource consumption and a

higher revenue. This problem is formulated as a discrete-time Markov decision

process and a deep Dyna-Q (DDQ) approach is proposed as the solution, in

which GNNs are used for predicting available virtual network functions (VNFs).

The fourth case is the satellite network, in which the communication between

satellites are considered. With the growing Low Earth Orbit (LEO) satellites

launched by commercial companies, e.g., Starlink and OneWeb, satellite net-

works are drawing more attention, with a potential application in both IoT and

future 6G networks. The traffic prediction problem in the satellite network is

considered in [77], in which the spatial dependency of the network topology

is captured by GCN and the temporal dependency is captured by GRU. The

simulation using the satellite network traffic shows the combination with GCN

improves the performance of the single GRU model.

The last case is the vehicular network, which aims to connect the vehicle

nodes. Vehicular network has been proposed for autonomous driving in fu-

ture smart cities, as an important infrastructure. One challenge is to improve

the spectrum allocation efficiency. The vehicle-to-everything (V2X) network

is considered in [55], in which GNN is used to learn the low-dimensional fea-

ture and DRL is used to make spectrum allocation decisions. This kind of
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GNN-DRL combination has already been used in similar problems of other net-

work types. Another challenge is to reduce the communication latency within

vehicular networks, especially in the large-scale and fast-moving scenario. To

model the communication latency between the vehicle and the infrastructure, a

graph-based framework named SMART is proposed in [116], in which GCN is

combined with a deep Q-networks algorithm to capture the spatial and tempo-

ral patterns within a limited observation zone. Then the latency performance

is re-constructed for the whole geographical area.

To sum up, the papers in other wireless network scenarios are listed in Ta-

ble 7.

5. Wired Networks

For wired networks, we mainly refer to the computer networks that are

connected with cables, such as laptop or desktop computers. A typical example

is the Ethernet network. In this section, we first discuss the graph-based studies

in the wired network scenario from five aspects, namely, network modeling,

network configuration, network prediction, network management, and network

security. Then three special cases are further discussed, i.e., blockchain platform,

data center network, and optical network.

GNNs are suitable for network modeling as the computer networks are often

modeled as graphs. With the growing trend of contemporary Internet, it be-

comes more and more challenging to understand the overall network topology,

the architecture and different elements of the networks, and their configura-

tions. To solve this challenge, GNNs are proposed for network modeling. They

are not only used to reconstruct the existing networks, but also used to model

the non-existing networks, in order to provide an estimation of the unseen cases

for network operators to make better network deployment decisions in the fu-

ture. By modeling networks, the estimation of different end-to-end metrics are

concerned in surveyed studies, given the input network topology, routing scheme

and traffic matrices of the network, in a supervised [48, 78, 117, 45] or semi-

28



Table 7: List of the papers specified in other wireless network scenarios.

Scenario Problem Paper Solution GNN

Cognitive Radio

Network

Resource Alloca-

tion

[46] DRL with GCN GCN [95]

D2D Network Cooperative

Caching and

Fetching

[41] FDS-MARL GAT [99]

D2D Network Power Control and

Beamforming

[88] HIGNN GN [97]

D2D Network Wireless Link

Scheduling

[43, 61] Graph Embedding

based Method

structure2vec [90]

D2D Network Wireless Link

Scheduling

[65] Graph Embedding

based Method

structure2vec [90]

IoT Network Intrusion Detection [115] E-GraphSAGE GraphSAGE [91]

IoT Network Service Function

Chain Dynamic

Reconfiguration

[28] Deep Dyna-Q Ap-

proach

GNN [89]

Satellite Network Traffic Prediction [77] GCN-GRU GCN [95]

Vehicular Network Communication

Latency Modeling

[116] SMART Frame-

work

GCN [95]

Vehicular Network Spectrum Alloca-

tion

[55] DQN with GNN GNN [89]

supervised [71] way. Delay and jitter are considered in [48, 78, 117, 71], while

the throughput of TCP flows and the end-to-end latency of UDP flows are con-

sidered in [45]. Different GNNs are used for the network modeling purpose,

including GGS-NN in [45], MPNN in [48, 78], GN and GNN in [117], and GCN

in [71]. GNNs are also used for network calculus analysis in [53, 38, 64].

Based on the modeling ability of GNNs, they are further proposed for net-

work configuration feasibility analysis or decision. Based on the prediction of
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ensemble GNN model, different network configurations are evaluated in [76],

bound to the deadline constraints. Border Gateway Protocol (BGP) configu-

ration synthesis is considered in [86], which is the standard inter-domain rout-

ing protocol to exchange reachability information among Wide Area Networks

(WANs). GNN is adopted to represent the network topology with partial net-

work configuration in a system named DeepBGP, which is further validated for

both Huawei and Cisco devices while fulfilling operator requirements. Another

relevant study is to use GNN for Multiprotocol Label Switching (MPLS) config-

uration analysis. A GNN-based solution named DeepMPLS is proposed in [69]

to speed up the analysis of network properties as well as to suggest configuration

changes in case a network property is not satisfied. The GNN-based solution

manages to achieve low execution times and high accuracies in real-world net-

work topologies.

GNNs can also be used for network prediction, e.g., delay prediction [27] and

traffic prediction [47, 59, 118]. The better prediction is the basis of proactive

management. A case study of delay prediction in queuing networks is conducted

in [27], which uses MPNN for topology representation and network operation.

Several studies are concerned about data-driven traffic prediction, based on the

real-world network traffic data and GNN-based solutions. A framework named

Spatio-temporal Graph Convolutional Recurrent Network (SGCRN) is proposed

in [47], which combines GCN and GRU and is validated on the network traffic

data from four real IP backbone networks. Another framework named Multi-

scale Spatial-temporal Graph Neural Network (MSTNN) is proposed for Origin-

Destination Traffic Prediction (ODTP) and two real-world datasets are used for

evaluation [59]. Inspired by the prediction model DCRNN [101] developed for

road traffic, a nonautoregressive graph-based neural network is used in [118] for

network traffic prediction and evaluated on the U.S. Department of Energy’s

dedicated science network.

Network prediction results can be used further for network operation opti-

mization and management [119], e.g., traffic engineering, load balancing, rout-

ing, etc. For the time point of preparing this survey, routing is considered with
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graph-based deep learning models [85, 87]. Instead of using reinforcement learn-

ing, a novel semi-supervised architecture named Graph-Query Neural Network

is proposed in [85] for shortest path and max-min routing. Another graph-based

framework named NGR is proposed in [87] for shortest-path routing and load

balancing. These graph-based routing solutions are validated with use-cases and

show high accuracies and resilience to packet loss.

Last but not the least, graph-based deep learning solutions are used for net-

work security problems in computer networks [81, 24]. Automatic detection for

Botnets, which is the source of DDoS attacks and spam, is considered in [81].

GNN is used to detect the patterns hidden in the botnet connections and is

proven more effective than non-learning methods. Their dataset is also made

available for future studies. In another study, intrusion detection is consid-

ered [24]. A GCN-based framework named Alert-GCN is proposed to solve the

intrusion alert problem as a node classification task. The alert graph is built

with the alert information from farther neighbors, which is used as the input for

the GCN module. The experiments demonstrate that Alert-GCN outperforms

traditional classification models in correlating alerts.

To sum up, the papers in the wired network scenario are listed in Table 8.

Other than the general computer network case, three specific network cases

are discussed with graph-based methods.

The first case is the blockchain platform, which is well-known by the public

thanks to Bitcoin, the most famous cryptocurrency. Generally speaking, the

blockchain is a chain of blocks that store information with digital signatures

in a decentralized and distributed network, which has a wide range of applica-

tions other than digital cryptocurrencies, e.g., financial and social services, risk

management, healthcare facilities, etc [120]. A specific task of encrypted traffic

classification is considered in [35] for Decentralized Applications (DApps). A

GNN-based DApp fingerprinting method named GraphDApp is proposed for

this task and a novel graph structure named Traffic Interaction Graph (TIG)

is constructed as the representation of encrypted DApp flows as well as the in-

put for GNNs. Real-world traffic datasets from 1,300 DApps with more than
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Table 8: List of the papers in the wired network scenario.

Problem Paper Solution GNN

BGP Configuration

Synthesis

[86] DeepBGP GraphSAGE [91],

GNN [89]

Botnet Detection [81] GNN Approach GCN [95]

Communication Delay

Estimation

[71] GNNs with Semi-

supervised Learning

GCN [95]

Delay Prediction [27] Message-passing

Neural Networks

MPNN [96]

Intrusion Detection [24] Alert-GCN GCN [95]

MPLS Configuration

Analysis

[69] DeepMPLS GNN [89]

Network Calculus

Analysis

[53, 38, 64] DL-assisted Tandem

Matching Analysis

GNN [89]

Network Configuration

Feasibility

[76] Ensemble GNN

Model

GN [97]

Network Modeling [48] RouteNet MPNN [96]

Network Modeling [78] Extended RouteNet MPNN [96]

Network Modeling [117] Graph-based DL GN [97], GNN [89]

Network Modeling [45] DeepComNet GGS-NN [100]

Routing [85] Graph-Query Neural

Network

GNN [89]

Routing and Load Bal-

ancing

[87] DL-based Distributed

Routing

GNN [89]

Traffic Prediction [47] SGCRN GCN [95]

Traffic Prediction [59] MSTNN GAT [99]

Traffic Prediction [118] Nonautoregressive

Graph-based Neural

Network

DCRNN [101]
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169,000 flows are used for experiments, of which the result shows that Graph-

DApp is superior to the other state-of-the-art methods in terms of classification

accuracy.

The second case is the data center network, which connects all data centers

to share data or computation abilities. Nowadays, data centers are heavily used

for cloud services. In such circumstances, traffic engineering is becoming more

and more important for the data center network to avoid traffic congestion and

improve routing efficiency. However, this task is still challenging, especially

when the network topology changes. In a recent study [20], the generalization

ability of GNNs is used for predicting Flow Completion Time (FCT) and a

GNN-based optimizer is further designed for flow routing, flow scheduling and

topology management. The experiments demonstrate both the high inference

accuracy and the FCT reduction ability of GNNs.

The last case is the optical network, which uses light signals, instead of elec-

tronic ones, to send information between two or more points. There are many

unique problems when light signals are used for communication, e.g., wavelength

assignment. The optimal resource allocation in a special network type, i.e., Free

Space Optical (FSO) fronthaul network, is considered in [121] and GNNs are

used for evaluating and choosing the resource allocation policy. The routing

optimization for an Optical Transport Network (OTN) scenario is considered

in [122] and the learning and generalization capabilities of GNNs are combined

with DRL for routing in unseen network typologies. Similar to cellular and

computer networks, traffic prediction is also considered in the optical network

scenario [80], with the solution combined by GCN and GRU.

To sum up, the papers in other wired network scenarios are listed in Table 9.

6. Software Defined Networks

SDN emerges as the most promising solution for bringing a revolution in

how networks are built. Based on the white paper released by the Open Net-
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Table 9: List of the papers specified in other wired network scenarios.

Scenario Problem Paper Solution GNN

Blockchain Plat-

form

Encrypted Traffic

Classification

[35] GNN-based DApps

Fingerprinting

GIN [98]

Data Center Net-

work

Traffic Optimiza-

tion

[20] GNN-based Opti-

mizer

GN [97]

Optical Network Resource Alloca-

tion

[121] GNN GNN [93]

Optical Network Routing [122] DRL with GNN MPNN [96]

Optical Network Traffic Prediction [80] GCN-GRU GCN [95]

working Foundation (ONF), the explosion of mobile devices and content, server

virtualization, and advent of cloud services are among the trends driving the

networking industry to reexamine traditional network architectures 5. While

SDN was proposed back to 1996, its concept has gone through a lot of changes

ever since then. Based on the a widely used definition in [123], in the SDN

architecture, the control and data planes are decoupled, network intelligence

and state are logically centralized, and the underlying network infrastructure is

abstracted from the applications.

The central control ability of SDN becomes the basis of network optimization

in many scenarios and arises several problems which are in the scope of graph-

based deep learning methods. Based on the surveyed studies in this paper, there

is a growing trend of using GNNs with SDN, or the SDN concept in specific

network scenarios. The benefits of this combination are two-folds. For GNNs,

SDN provides the ability of measuring network performance, which is used as

the data for training GNNs. For SDN, GNNs act as the best option of using

the network topology information in modeling and optimizing the networks.

5https://opennetworking.org/sdn-resources/whitepapers/

software-defined-networking-the-new-norm-for-networks/
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In recent years, many graph-based solutions are proposed for various problems

with the SDN concept.

Based on topology, routing, and input traffic, MPNN-based network models

are proven to produce accurate estimates of the per-source/destination per-

packet delay distribution and loss, with a worst Mean Relative Error (MRE) of

15.4%, and the estimation can be further used for efficient routing optimization

and network planning [49, 30]. The decoupling of the control plane and data

plane gives more computing power for routing optimization. Based on this ob-

servation, an intelligent routing strategy based on graph-aware neural networks

is designed in [33], in which a novel graph-aware convolution structure is con-

structed to learn topological information efficiently. In another study for routing

optimization, a GN-based solution is proposed for maximum bandwidth utiliza-

tion, which achieves a satisfactory accuracy and a prediction time 150 times

faster than Genetic Algorithm (GA) [70].

In SDN, network virtualization is a powerful way to efficient utilize the net-

work infrastructure. Virtual Network Functions (VNFs) are virtualized network

services running on physical resources. How to map VNFs into shared substrate

networks has become a challenging problem in SDN, known as Virtual Network

Embedding (VNE) or VNF placement, which is already proven to be NP-hard.

To efficiently solve this problem, a bunch of heuristic algorithms are proposed

in the literature. Recently, graph-based models have also been used for this

problem [75, 39, 73, 44, 74, 50, 25], which can get near-optimal solutions in a

short time. To predict future resource requirements for VNFs, a GNN-based

algorithm using the VNF forwarding graph topology information is proposed

in [75, 39]. Deployed in a virtualized IP multimedia subsystem and tested with

real VoIP traffic traces, the new algorithm achieves an average prediction accu-

racy of 90% and improves the call setup latency by over 29%, compared with the

case without using GNNs. A parallelizable VNE solution based on spatial GNNs

is proposed for accelerating the embedding process in [74], which improves the

revenue-to-cost ratio by about 18%, compared to other simulated algorithms.

Similarly, GNN-based algorithms are proposed for VNF resource prediction and
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management in a series of studies [73, 44, 50]. On another aspect, DRL is often

combined with GNNs for automatic virtual network embedding [54, 31, 60, 19].

Asynchronous DRL enhanced GNN is proposed in [54] for topology-aware VNF

resource prediction in dynamic environments. An efficient algorithm combining

DRL with GCN is proposed in [31], with up to 39.6% and 70.6% improvement

on acceptance ratio and average revenue, compared with the existing state-of-

the-art solutions. A more specific problem, i.e., traffic flow migration among

different network function instances, is considered in [60, 19], in which GNN is

used for migration latency modeling and DRL is used for deploying dynamic

and effective flow migration policies.

Last but not the least, Service Function Chaining (SFC) is considered in

several studies [124, 51, 72, 63]. SFC uses SDN’s programmability to create a

service chain of connected virtual network services, resulting in a service func-

tion path that provides an end-to-end chain and traffic steering through them.

Graph-structured properties of network topology can be extracted by GNNs,

which outperforms DNNs for SFC [51, 72]. However, most of the existing stud-

ies for SFC use a supervised learning approach, which may not be suitable for

dynamic VNF resources, various requests, and changes of topologies. To solve

this problem, DRL is applied for training models on various network topologies

with unlabeled data in [124] and achieves remarkable flexibility in new topolo-

gies without re-designing and re-training, while preserving a similar level of

performance compared to the supervised learning method. DRL is also used for

adaptive SFC placement to maximize the long-term average revenue [63].

To sum up, the papers in the SDN scenario are listed in Table 10.

7. Future Directions

In this section, we discuss some future directions for graph-based deep learn-

ing in communication networks. Even though different network scenarios and

applications are already covered in this survey, there are still many open research

opportunities for this topic.

36



Table 10: List of the papers in the SDN scenario.

Problem Paper Solution GNN

Network Modeling [49, 30] RouteNet MPNN [96]

Routing [33] Revised Graph-aware

Neural Networks

A Novel Graph-

aware Convolution

Structure

Routing Optimization,

Bandwidth Utilization

Maximization

[70] GN-based Model GN [97]

SFC [124] DRL with GNN GNN [89]

SFC [51] GNN-based SFC GCN [95]

SFC Deployment,

Traffic Steering

[72] Knowledge-Defined

Networking System

with GNN

GNN [89]

SFC Placement [63] DRL-SFCP GCN [95]

Traffic Flow Migration

in NFV

[60, 19] DRL with GNN GN [97]

VNE [74] GraphViNE Solution GraphSAGE [91],

GE [92]

VNE [31] DRL with GCN GCN [95]

VNF Deployment Pre-

diction

[73, 44] GNN-based Algo-

rithm

GNN [89]

VNF Management [50] GNN-based Algo-

rithm

GNN [89]

VNF Placement [25] DRL with GNN GN [97]

VNF Resource Predic-

tion

[54] Asynchronous DRL

enhanced GNN

GNN [89]

VNF Resource Predic-

tion

[75, 39] GNN-based Algo-

rithm

GNN [89]
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The first research direction is the combination of GNNs and other artificial

intelligence techniques. Some examples are already seen in this survey, e.g., the

combination of GNN and GRU for traffic prediction [77, 80], the combination

of GNN and DRL for resource allocation [46], routing [122], and VNE [31]. The

advantages of GNNs include its learning ability for topological dependencies and

the generalization capability for unseen network typologies, but GNN is not a

panacea. For example, for some cases which is lack of training data or is too

expensive to collect real data, Generative Adversarial Nets (GANs) [125] is a

possible solution. Even though GANs have been widely used in other fields,

e.g., image and video, the combination of GANs and GNNs [126] has not been

applied for communication networks, at least in the scope of this survey. An-

other example is the Automated Machine Learning (AutoML) technique [127],

which can be used for optimizing the GNN parameters automatically.

Another research direction is to apply graph-based deep learning on larger

networks. In most of the surveyed studies, the network topology is small, e.g.,

less than 100 nodes, compared with contemporary networks. However, the mod-

eling of larger networks would require huge computation requirements. Graph

partitioning and parallel computing infrastructures are two possible solutions

for this problem. A larger network may be decomposed into smaller ones that

is within the computing capacity. However, the optimal divide-and-conquer ap-

proach remains unknown and may vary in different network scenarios. Another

concern is that whether it is worthy of achieving narrow performance margins

in the cost of the increased computation burden caused by graph-based models,

compared with traditional methods.

Finally, we believe this is still an early stage of the research about graph-

based deep learning for communication networks. There are many opportunities

of applying novel GNNs in traditional networking problems in a wider range of

network scenarios, especially those who get little or no attention for now. The

studies covered in this survey are only the beginning of this exciting research

area. And we would keep track of this area and update the progress and new

publications in the public Github repository.
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8. Conclusion

In this paper, a survey is presented for the application of graph-based deep

learning in communication networks. The relevant studies are organized in three

network scenarios, namely, wireless networks, wired networks, and software de-

fined networks. For each study, the problem and GNN-based solution are listed

in this survey. Future directions are further pointed out for the follow-up re-

search. We hope this survey could be the milestone of summarizing the latest

progresses and a reference manual for new-comers in this emerging research

topic.
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