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Abstract

Detecting which tweets describe a spe-
cific event and clustering them is one
of the main challenging tasks related to
Social Media currently addressed in the
NLP community. Existing approaches
have mainly focused on detecting spikes
in clusters around specific keywords or
Named Entities (NE). However, one of
the main drawbacks of such approaches is
the difficulty in understanding when the
same keywords describe different events.
In this paper, we propose a novel approach
that exploits NE mentions in tweets and
their entity context to create a temporal
event graph. Then, using simple graph the-
ory techniques and a PageRank-like algo-
rithm, we process the event graphs to de-
tect clusters of tweets describing the same
events. Experiments on two gold standard
datasets show that our approach achieves
state-of-the-art results both in terms of
evaluation performances and the quality of
the detected events.

1 Introduction

Twitter has become a valuable source of timely
information covering topics from every corner of
the world. For this reason, NLP researchers have
shown growing interest in mining knowledge from
Twitter data. As a result, several approaches have
been proposed to build applications over tweets,
e.g. to extract structured representations/summary
of newsworthy events (McMinn and Jose, 2015;
Katragadda et al., 2017), or to carry out sentiment
analysis to study users reactions (Agarwal et al.,
2011; Kouloumpis et al., 2011). However, pro-

cessing tweets is challenging task, since informa-
tion in Twitter stream is continuously changing in
real-time, while at the same time there might be
a high volume of redundant messages referring to
the same issue or event.

In this work, we focus on event extraction from
Twitter, consisting in the automated clustering of
tweets related to the same event based on rele-
vant information such as time and participants. Al-
though there is no consensus in the NLP commu-
nity on what an event is (Sprugnoli and Tonelli,
2017), our approach relies on the event definition
by Dou et al. (2012), i.e. “an occurrence causing
change in the volume of text data that discusses
the associated topic at a specific time. This oc-
currence is characterized by topic and time, and
often associated with entities such as people and
location”.

Existing approaches to the task create clusters
of tweets around event-related keywords (Parikh
and Karlapalem, 2013), or NEs (McMinn and
Jose, 2015). However, such approaches fail i) to
capture events that do not generate spikes in the
volume of tweets; and ii) to distinguish between
events that involve the same NEs and keywords.
Other approaches model the relationships between
terms contained in the tweets relying on a graph
representation (Katragadda et al., 2016), and re-
tain the nodes with the highest number of edges as
event candidates. However, the main drawbacks
of these approaches are that i) they generate highly
dense graphs, and ii) trending terms not related to
events may be considered as event candidates.

To address such limitations, in this work we
propose an unsupervised approach to detect open-
domain events on Twitter, where the stream
of tweets is represented through temporal event
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graphs, modeling the relations between NEs and
the terms that surround their mentions in the
tweets.

2 Related Work

Existing approaches to extract events from tweets
can be divided into two main categories, namely
closed-domain and open-domain event detection
systems (Atefeh and Khreich, 2015). In the
closed-domain, approaches are mainly focused on
extracting a particular type of event, as for instance
natural disasters (Panem et al., 2014). Works in
the closed-domain scenario are usually cast as su-
pervised classification tasks that rely on keywords
to extract event-related messages from Twitter
(Wang et al., 2012), to recognize event patterns
(Popescu et al., 2011) or to define labels for train-
ing a classifier (Anantharam et al., 2015; Sakaki
et al., 2010).

The open-domain scenario is more challenging,
since it is not limited to a specific type of event and
usually relies on unsupervised models. Among the
works applying an unsupervised approach to event
detection on Twitter, (McMinn and Jose, 2015)
create event clusters from tweets using NE men-
tions as central terms driving the clusters. Thus,
tweets mentioning the same entities are grouped
together in a single cluster. Experiments on a pub-
lic dataset of tweets show that this strategy outper-
forms other approaches such as Latent Sensitive
Hashing (Petrović et al., 2010). Similarly, (Hasan
et al., 2016) create clusters based on cosine simi-
larity among tweets. Both works do not consider
the temporal aspect of events and fail to capture
terms or entities involved in different events at dif-
ferent time periods.

Very recently, Zhou et al. (2017) use a non-
parametric Bayesian Mixture Model leveraged
with word embeddings to create event clusters
from tweets. In this approach, events are mod-
eled as a 4-tuple 〈y, l, k, d〉modeling non-location
NEs, location NEs, event keywords and date. The
work was focused on detecting events given a
set of event-related tweets, which is however not
applicable to a real scenario, where the stream
of tweets can also contain messages that are not
event-related. This scenario is simulated in the
second experiment presented in this paper.

3 Approach description

In this section, we describe our approach for
detecting open-domain events on tweets. The
pipeline consists of the following components:
Tweet pre-processing, Named Entity recognition
and linking, graph creation, graph partitioning,
event detection and event merging. Each step is
described in the following subsections.

3.1 Tweet Preprocessing

The workflow starts by collecting tweets published
during a fixed time window, which can be set as in-
put parameter (e.g. 1 hour). Then, we apply com-
mon text preprocessing routines to clean the in-
put tweets. We use TweetMotifs (O’Connor et al.,
2010), a specific tokenizer for tweets, which treats
hashtags, user mentions and emoticons as single
tokens. Then, we remove the retweets, URLs, non
ASCII characters and emoticons. It is worth men-
tioning that at this stage we do not perform stop
word removal since stop words can be part of NEs
(e.g. United States of America). As for hash-
tags, we define a set of hand-crafted rules to seg-
ment them into terms, is possible. We also try to
correct misspelled terms using SymSpell1, which
matches misspelled tokens with Wordnet synsets
(Fellbaum, 1998).

3.2 Named Entity Recognition and Linking

We use NERD-ML (Van Erp et al., 2013), a Twit-
ter specific Named Entity Recognizer (NER) tool,
to extract NE mentions in the tweets, since Der-
czynski et al. (2015) showed that it is one of the
best performing tools for NER on Twitter data.
Besides, NERD-ML not only recognizes the most
common entity types (i.e. Person, Organization
and Location), but tries also to link any term listed
in external knowledge bases such as DBpedia2 or
Wikipedia. These are then associated with seman-
tic classes in the NERD ontology.

3.3 Graph Generation

Previous works using graph-based methods to
model relations between terms in text considered
all terms in the input document as nodes and used
their position in text to set edges (Andersen et al.,
2006; Xu et al., 2013). Such approaches may gen-
erate a dense graph, which generally requires high
computational costs to be processed.

1https://github.com/wolfgarbe/symspell
2http://dbpedia.com/
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In this work, we assume that the terms sur-
rounding the mention of a NE in a tweet define
its context (Nugroho et al., 2015). Thus, we rely
on the NE context to create event graphs, built as
follows:

Nodes: We consider NE and k terms that pre-
cede and follow their mention in a tweet as nodes,
where k > 1 is the number of terms surrounding a
NE to consider while building the NE context.

Edges: Nodes in the graph are connected by an
edge if they co-occur in the context of a NE.

Weight: The weight of the edges is the number
of co-occurrences between terms in the NE con-
text. In addition, each edge maintains as a prop-
erty the list of tweets from which the relationship
is observed

Formally, let G(V, E) be a directed graph (or di-
graph) with a set of vertices V and edges E , such
that E ⊂ V V . For any Vi ∈ V , let In(Vi) be the
set of vertices that point to Vi (i.e. predecessors),
and Out(Vi) be the set of vertices that Vi points to
(i.e. successors).

Let Ei = (Vj ,Vk) be an edge that connects node
Vj to Vk, we define ωij as the weight of Ei, which
is represented by the number of times relationships
between Vj and Vk is observed in tweets published
during a time window. An example of the graph
created on 2011-07-07 with tweets related to the
famine in Somalia and space shuttle to Mars is
shown in Figure 1.

3.4 Graph Partitioning

At this stage, an event graph is generated to model
relationships between terms in the NE contexts.
We apply graph theory to partition the graph into
sub-graphs, which will be considered as event can-
didates. Tweets related to the same events usu-
ally share a few common keywords (McMinn and
Jose, 2015). In the event graphs, this phenomenon
is expressed by stronger links between nodes re-
lated to the same event. In other words, the weight
of edges that connect terms from tweets related
to similar events are higher than edges between
nodes that connect terms from tweets related to
different events. The graph partitioning purpose is
to identify such edges that, if removed, will split
the large graph G into sub-graphs.

Let E = {(V1,W1), (V2,W2), ..., (Vn,Wn)}
be a set of pair of vertices in a strongly connected
graph G. We define λ as the least number of edges
whose deletion from G would split G into con-

nected sub-graphs. Similarly, we define the edge-
connectivity λ(G) of G of an edge set S ⊂ E
as the least cardinality |S| such that G − S is no
longer strongly connected. For instance, given the
graph in Figure 1 as input, the deletion of edges
“mark/somalia” and “year/famine” will create two
strongly connected sub-graphs, where the first one
contains keywords related to “famine in Somalia”
and other contains keywords related to “The space
shuttle to Mars”.

3.5 Event Detection

We assume that events from different sub-graphs
are not related to each other. Thus, in the event de-
tection sub-module, each sub-graph is processed
separately. In a study on local partitioning, An-
dersen et al. (2006) show that a good partition
of a graph can be obtained by separating high-
ranked vertices from low-ranked ones, if the nodes
in the graph have distinguishable values. We use a
PageRank-like algorithm (Brin and Page, 1998) to
rank vertices in the event-graph as follows :

S(Vi) = ((1− d) + d
∑

vj∈In(Vi)

wji∑
vk∈Out(Vk)

ωjk
S(Vj))εi

(1)

where ωij is the weight of edge connecting Vi to
Vj , d a dumping factor usually set to 0.85 (Brin
and Page, 1998) and εi a penalization parameter
for node i. In previous approaches (Mihalcea and
Tarau, 2004), the penalization parameter is consid-
ered as a uniform distribution; instead, we define
the penalization parameter of a node according to
its tf-idf score. Due to redundant information in
tweets, the score of the nodes can be biased by the
trending terms in different time windows. Thus,
we use the tf-idf score to reduce the impact of
trending terms in the collection of tweets. Before
computing the score with equation 1, we assign an
initial value τ = 1/n to each vertex in the graph,
where n is the total number of nodes in the graph.
Then, for each node, the computation iterates until
the desired degree of convergence is reached. The
degree of convergence of a node can be obtained
by computing the difference between the score at
the current iteration and at the previous iteration,
which we set to 0.0001 (Brin and Page, 1998).

As shown in Algorithm 1, we start by splitting
the vertex set into high-ranked and low-ranked
vertices based on a gauged parameter α (Line 3).
Next, we process the vertices in the high-ranked
subset starting from the highest ones, and for each
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Figure 1: Graph generated on day “2011-07-07” from a sample of tweets related to the events about the
famine in Somalia and the space shuttle to Mars.

candidate we select the highest weighted prede-
cessors and successors as keywords for event can-
didates (Lines 4-9). After removing the edges be-
tween the keywords from the graph, if it becomes
disconnected, we also consider the disconnected
nodes as keywords for the event candidate (Lines
10-13). Based on the semantic class provided by
the NER tool (see Section 3.2), we divide the key-
words related to an event in the following subsets:
what (i.e., the type of the event), where (i.e., the lo-
cation in which the event happens), who (i.e., the
person or organization involved). As for the date,
we select the oldest tweets that report the event.

In the second stage of Algorithm 1, we further
process the event candidates. First, we merge du-
plicate event candidates (Lines 22-35), i.e. those
sharing common terms and having the same loca-
tion or participants in the considered time window.
A new event is thus built from the combination of
terms and entities of the two event candidates. An
event is considered as valid if at least a NE is in-
volved, and if it occurs in a minimum number of
tweets provided as input parameter.

3.6 Event Merging

We consider events in different time-windows as
duplicate if they contain the same keywords, enti-
ties (e.g. person, organization, location) in an in-
terval of k days, where k is an input parameter.
When a new event is found as duplicate, we merge
it with the previous detected event.

4 Experiments

Given a set of tweets, our goal is to cluster such
tweets so that each cluster corresponds to a fine-
grained event such as “Death of Amy Winehouse”
or “Presidential debate between Obama and Rom-
ney during the US presidential election”. We first
describe the datasets, then we present the experi-
mental setting. This section ends with a compari-
son of the obtained experimental results with state-
of-the-art approaches.

4.1 Dataset

We test our approach on two gold standard cor-
pora: the First Story Detection (FSD) corpus
(Petrović et al., 2012) and the EVENT2012 cor-
pus (McMinn et al., 2013).

FSD The corpus was collected from the Twit-
ter streaming API3 between 7th July and 12th
September 2011. Human annotators annotated
3,035 tweets as related to 27 major events oc-
curred in that period.After removing tweets that
are no more available, we are left with 2,342
tweets related to one out of the 27 events. To re-
produce the same dataset used by other state-of-
the-art approaches, we consider only those events
mentioned in more than 15 tweets. Thus, the final
dataset contains 2,295 tweets describing 20 events.

EVENT2012 A corpus of 120 million tweets
collected from October to November 2012 from

3dev.twitter.com/streaming/overview
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Algorithm 1 Algorithm to process a given event-
graph to retrieve important sub-events.
1: function GRAPH PROCESSING(G,α)
2: E = ∅
3: H = {vi ∈ vertex(G)ifscore(vi) >= α} .

Equation 1
4: while H 6= ∅ do
5: G′ = G.copy()
6: vi = H.pop()
7: p = max(Wj ∈ In(vi)
8: s = max(Wj ∈ Out(vi)
9: keywords = set(p, vi, s)

10: G′.removeedges((p, vi), (vi, s))
11: if notG′.connected() then
12: append(keywords, disc vertices(G′))
13: end if
14: who = person||organization ∈ keywords
15: where = location ∈ keywords
16: what = keywords− who− where
17: tweets = tweet from(keywords)
18: when = oldest(tweets, date)
19: event =< what, who,where, when >
20: append(E, event)
21: end while
22: for e ∈ E do
23: for e′inE do
24: if what(e) ∩ what(e′) then
25: if who(e) ∩ who(e′) then
26: merge(e, e′)
27: end if
28: if where(e) ∩ where(e′) then
29: merge(e, e′)
30: end if
31: end if
32: end for
33: if notwho(e)ornotwhere(e) then
34: discard(E, e)
35: end if
36: end for

return E
37: end function

the Twitter streaming API, of which 159,952
tweets were labeled as event-related. 506 event
types were gathered from the Wikipedia Current
Event Portal, and Amazon Mechanical Turk was
used to annotate each tweet with one of such event
types. After removing tweets that are no longer
available, our final dataset contains ∼43 million
tweets from which 152,758 are related to events.

4.2 Experimental Setting

For each dataset, we compare our approach with
state-of-the-art approaches. For the FSD dataset,
we compare with LEM Bayesian model (Zhou
et al., 2011) and DPEMM Bayesian model en-
riched with word embeddings (Zhou et al., 2017).
For the EVENT2012 dataset, we compare our re-
sults with Named Entity-Based Event Detection
approach (NEED) (McMinn and Jose, 2015) and
Event Detection Onset (EDO) (Katragadda et al.,

2016).
In order to simulate a real scenario where tweets

are continuously added to a stream, we simulate
the Twitter stream with a client-server architecture
which pushes tweets according to their creation
date. We evaluate our approach in two different
scenarios: in the first scenario, we consider tweets
from the FSD dataset that are related to events
and we classify them into fine-grained event clus-
ters. In the second scenario, we adopt a more real-
istic approach in that we consider all the tweets
from the EVENT2012 dataset (i.e event-related
and not event-related ones), and we classify them
into event clusters, discarding those that are not
related to events.

Our approach requires a few parameters to be
provided as input. In the experiments reported in
this paper, we process the input stream with fixed
time-window w = 1 hour. The minimum num-
ber of tweets for event candidates is set to n = 5.
Finally, we empirically choose t = 3 days as the
interval of validity for the detected events.

4.3 Results

Performance is evaluated both in terms of P/R/F1
and cluster purity.

Results on the FSD dataset: In this scenario,
we consider an event as correctly classified if all
the tweets in that cluster belong to the same event
in the gold standard, otherwise the event is con-
sidered as misclassified. Due to the low number
of tweets, we set the gauged parameter α = 0.5
as the minimum score for nodes in the graph to
be considered as useful for events. Table 1 shows
the experimental results yielded by our approach
in comparison to state-of-the-art approaches. Our
approach outperforms the others, improving the F-
score by 0.07 points w.r.t. DPEMM and by 0.13
w.r.t. LEM.

Approach Precision Recall F-measure
LEM 0.792 0.850 0.820

DPEMM 0.862 0.900 0.880
Our Approach 0.950 0.950 0.950

Table 1: Evaluation results on the FSD dataset.

Furthermore, we evaluate the quality of the
events, i.e. the clusters, in terms of purity, where
the purity of an event is based on the number of
tweets correctly classified in the cluster and the
number of misclassified tweets. More specifically,
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Figure 2: Purity of the events detected by our ap-
proach, LEM and DPEMM on the FSD dataset.
The y-axis denotes the percentage of events and
the x-axis the purity of the events.

purity is computed as: Pe = ne
n , where ne is the

number of tweets correctly classified and n the to-
tal number of tweets classified in that cluster. Fig-
ure 2 reports the purity of our approach compared
to LEM and DPEMM, where each point (x, y) de-
notes the percentage of events having purity less
than x. It can be observed that 5% of the events
detected as well as DPEMM have purity less than
0.65 compared to 25% for LEM, while 95% of the
events detected have purity higher than 0.95 com-
pared to 75% for DPEMM and 55% for LEM.

Results on the EVENT2012 dataset: We also
evaluate our approach on the EVENT2012 dataset
using a more realistic scenario in which all the
tweets (i.e. events related and non-event related
tweets) are considered. Compared to the FSD
dataset, the EVENT2012 dataset has more events
and tweets and thus a larger vocabulary. We set the
cutting parameter α = 0.75 as the minimum score
of nodes in the graph to be considered as impor-
tant for events. We further detail the importance
of the parameters α in Section 4.4. Also, since we
include both event-related and not event-related
tweets, we consider an event as correct if 80% of
the tweets belong to the same event in the ground
truth. Table 2 reports on the experimental results
compared to the NEED and EDO approaches. In
general, our approach improves the f-score by 0.07
points w.r.t. EDO and 0.23 points w.r.t. NEED.
After a manual check of the output, we noticed
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Figure 3: Purity of the events detected by our ap-
proach on the event 2012 dataset. The y-axis de-
notes the percentage of events and the x-axis the
purity of the events.

that some issues with precision may depend on the
quality of the dataset, since some tweets related to
events were not annotated as such in the gold stan-
dard. For example, we found that 9,010 tweets
related to “BET hip hop award” were not anno-
tated. The same was found for tweets concerning
large events such as “the Presidential debate be-
tween Obama and Romney” or the “shooting of
Malala Yousafzai, the 14-year old activist for hu-
man rights in Pakistan”.

We also evaluate the purity of the events de-
tected by our approach (Figure 3). We can observe
that the quality of the detected events is lower than
for the events detected on the FSD dataset. For in-
stance, more than 20% of the detected events have
purity lower than 0.7. As expected, event purity
is mainly affected by the inclusion in the clusters
of non event-related tweets.

Approach Precision Recall F-measure
NEED 0.636 0.383 0.478
EDO 0.754 0.512 0.638

Our Approach 0,750 0.668 0.710

Table 2: Evaluation results on the EVENT2012
dataset.

4.4 Effect of the Cutting Parameter

We further experiment on the impact of the dan-
gling parameter on the output of our model. The
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Figure 4: Effect of the cutting parameter (α) on the performance of our approach.

dangling parameter α is used to separate the nodes
of the event graph into high-ranked and low-
ranked nodes, where the high-ranked nodes are
used to extract keywords related to event candi-
dates. We experiment different values for “α” and
we evaluate their impact on the performance of our
approach on both datasets.

In Figure 4a we show the performance of our
model for 0 < α ≤ 4 on the FSD dataset. We
observe that higher value of α gives higher preci-
sion while lowering the recall. More specifically,
for α ≥ 3 we obtain 100% precision and recall
lower than 50%. On the other hand, the best per-
formance is obtained for α ≤ 0.5. Since the FSD
dataset contains ∼ 6, 000 unique words, at each
time window the generated graph is strongly con-
nected, thus the average minimum score of the
nodes is higher than 0.5. For values higher than
0.5, important terms referring to events are ig-
nored, mainly when they are related to events that
do not generate a high volume of tweets. In our
experiments, we also observe that higher values of
α mostly affect the recognition of events with low
number of tweets.

Figure 4b shows the performance of our model
for different values of α on the EVENT2012
dataset. We observe that for different values of
α, both precision and recall are affected. More
specifically, the recall of the model tends to de-
crease for lower values of α. Without edge cut-
ting (i.e. α = 0), the recall of our model is simi-
lar to EDO. Overall, the impact of α is bigger on
the EVENT2012 dataset than on FSD dataset. The
variation of precision and recall curves is smaller
for consecutive values of α w.r.t. to FSD. There

are two main reasons for that: i) the EVENT2012
dataset has a richer vocabulary, and ii) many
events in the EVENT2012 dataset are similar to
each other.

5 Conclusions and Future Works

In this paper, we described a model for detecting
open-domain events from tweets by modeling re-
lationships between NE mentions and terms in a
directed graph. The proposed approach is unsu-
pervised and can automatically detect fine-grained
events without prior knowledge of the number or
type of events. Our experiments on two gold-
standard datasets show that the approach yields
state-of-the-art results. In the future, we plan to in-
vestigate whether linking terms to ontologies (e.g.
DBpedia, YAGO) can help in detecting different
mentions of the same entity, for instance “German
chancellor” and “Angela Merkel”, as preliminarily
shown in (Edouard et al., 2016). This can be used
to reduce the density of the event graph. Another
possible improvement would be to enrich the con-
tent of the tweets with information from external
web pages resolving the URLs in the tweets.
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