
Journal of Machine Learning Research 2 (2001) 19-43

2001 Istvan Jonyer, Diane J. Cook and Lawrence B. Holder

Submitted 7/01; Published 10/01

Graph-Based Hierarchical Conceptual Clustering

Istvan Jonyer JONYER@CSE.UTA.EDU
Diane J. Cook COOK@CSE.UTA.EDU
Lawrence B. Holder HOLDER@CSE.UTA.EDU
Department of Computer Science and Engineering
University of Texas at Arlington
Arlington, TX 76019, USA

Abstract
Hierarchical conceptual clustering has proven to be a useful, although under-explored, data mining
technique. A graph-based representation of structural information combined with a substructure
discovery technique has been shown to be successful in knowledge discovery. The SUBDUE
substructure discovery system provides one such combination of approaches. This work presents
SUBDUE and the development of its clustering functionalities. Several examples are used to
illustrate the validity of the approach both in structured and unstructured domains, as well as to
compare SUBDUE to the Cobweb clustering algorithm. We also develop a new metric for
comparing structurally-defined clusterings. Results show that SUBDUE successfully discovers
hierarchical clusterings in both structured and unstructured data.
Keywords: Clustering, Cluster Analysis, Concept Formation, Structural Data, Graph Match

1. Introduction

Data mining has become a prominent research area in recent years. One of the major reasons is
the ever-increasing amount of data collected in diverse areas of the industrial and scientific world.
Much of this data contains valuable knowledge that is not easily retrievable. The increasing speed
and capacity of computer technology has made feasible the utilization of various data mining
techniques to automatically extract knowledge from this information. Such knowledge may take
the form of predictive rules, clusters or hierarchies.

Beyond simple attributes of objects, many databases store structural information about
relationships between objects. These structural databases provide a significant source of
information for data mining. A well-publicized example is genome data, which is inherently
structural (e.g., DNA atoms bonded to other atoms) and therefore benefits from a structured
representation. Web data is also commonly represented using structural (hyperlink) as well as
textual information. One of the more common ways of representing structural data in a computer
is using graphs. Substructure discovery is a data mining technique that—unlike many other
algorithms—can process structural data that contains not only descriptions of individual instances
in a database, but also relationships among these instances. The graph-based substructure
discovery approach implemented in the SUBDUE system has been the subject of research for a
number of years and has been shown to be effective for a wide range of applications (Holder and
Cook, 1993). Recent examples include the application of SUBDUE to earthquake activity,
chemical toxicity domains and DNA sequences (Cook et al., 2000; Holder and Cook, 1993;
Chittimoori et al., 1999; Maglothin, 1999). In this project, SUBDUE is applied to hierarchical
clustering.

Cluster analysis—or simply clustering—is a data mining technique often used to identify
various groupings or taxonomies in real-world databases. Most existing methods for clustering

JONYER, COOK AND HOLDER

20

apply only to unstructured data. This research focuses on hierarchical conceptual clustering in
structured, discrete-valued databases. By structured data, we refer to information consisting of
data points and relationships between the data points. This differs from a definition of
unstructured data as containing free text and structured data containing feature vectors. Our
definition of structured data focuses on the inclusion of data and relationships between the data
points.

Section 2 of this paper discusses conceptual clustering in greater depth. Section 3 describes
our approach to structural knowledge discovery and an implementation in the SUBDUE
knowledge discovery system. Section 4 presents the design and implementation of hierarchical
conceptual clustering in SUBDUE and introduces a new measure for evaluating structural
hierarchical clusters. Section 5 summarizes the results of applying SUBDUE to examples from
various domains and evaluates SUBDUE’s success as a clustering tool. Conclusions and future
work are discussed in Section 6.

2. Conceptual Clustering

Conceptual clustering has been used in a wide variety of tasks. Among these are model fitting,
hypothesis generation, hypothesis testing, data exploration, prediction based on groups, data
reduction and finding true topologies (Ball, 1971). Clustering techniques have been applied in as
diverse fields as analytical chemistry, image analysis, geology, biology, zoology and archeology.
Many names have been given to this technique, including cluster analysis, Q-analysis, typology,
grouping, clumping, numerical taxonomy, mode separation and unsupervised pattern recognition,
which further signifies the importance of clustering techniques (Everitt, 1980).

The purpose of applying clustering to a database is to gain a better understanding of the data,
in many cases by highlighting hierarchical topologies. Conceptual clustering not only partitions
the data, but generates resulting clusters that can be summarized by a conceptual description. An
example of a hierarchical clustering is the classification of vehicles into groups such as cars,
trucks, motorcycles, tricycles, and so on, which are then further subdivided into smaller groups
based on observed traits.

Michalski defines conceptual clustering as a machine learning task (Michalski, 1980). A
clustering system takes a set of object descriptions as input and creates a classification scheme
(Fisher, 1987). This classification scheme can consist of a set of disjoint clusters, or a set of
clusters organized into a hierarchy. Each cluster is associated with a generalized conceptual
description of the objects within the cluster. Hierarchical clusterings are often described as
classification trees.

Numerous clustering techniques have been devised, among which are statistical, syntactic,
neural and hierarchical approaches. Clustering is considered an unsupervised learning problem
because it consists of identifying valuable groupings of concepts, or facts, that hopefully reveal
previously unknown information. Most techniques have some intrinsic disadvantages, however.
Statistical and syntactic approaches have trouble expressing structural information, and neural
approaches are greatly limited in representing semantic information (Schalkoff, 1992).

Nevertheless, many relatively successful clustering systems have been constructed. An
example of an incremental approach is Cobweb, which successively considers a set of object
descriptions while constructing a classification tree (Fisher, 1987). This system was created with
real-time data collection in mind, where a useful clustering might be needed at any moment.
Cobweb’s search algorithm is driven by the category utility heuristic, which calculates intra-class
similarity and inter-class dissimilarity using conditional probabilities. Instances are introduced
into the classification tree at the top, and are moved down either by creating a new class or by
merging the instance with an existing class. Other existing classes might also be merged or split
to accommodate better definitions of classes.

GRAPH-BASED HIERARCHICAL CONCEPTUAL CLUSTERING

21

 Labyrinth, an extension to Cobweb, can represent structured objects using a probabilistic
model (Thompson and Langley, 1991). Cobweb creates a knowledge structure based on some
initial set of instances. Labyrinth is applied one step before Cobweb, resulting in a structure
whose formal definition is exactly the same as that produced by Cobweb. When Cobweb is
applied after Labyrinth, the resulting algorithm employs both structures to refine the domain
knowledge. Both Labyrinth and SUBDUE represent structural cluster definitions. In contrast to
the clustering generated by SUBDUE, however, Labyrinth’s hierarchy relates parent and child
based on attribute-value information, not based on structural information. In addition, only a
partial graph match is performed by Labyrinth to determine if an instance is a member of a
cluster.

AutoClass is an example of a Bayesian clustering system, which uses a probabilistic class
assignment scheme to generate clusters (Cheeseman et al., 1988). AutoClass can process real,
discrete or missing values. Another algorithm, called Snob, uses the Minimum Message Length
(MML) principle to perform mixture modeling—a synonym for clustering (Wallace and Boulton,
1968).

Hierarchical approaches also exist that target databases containing data in Euclidean space.
Among these are agglomerative approaches that merge clusters until an optimal separation of
clusters is achieved based on intra- and inter-cluster distances. Divisive approaches are also used
that split existing clusters until an optimal clustering is found. These approaches usually have the
disadvantage of being applicable only to metric data, which excludes discrete-valued and
structured databases. Examples of these are Chameleon (Karypis et al. 1999) and Cure (Guha et
al., 1998).

Examining the major differences among the above-mentioned systems, we can see that
dichotomies exist between continuous and discrete databases and between structured and
unstructured databases. Cobweb can handle discrete, unstructured databases. Labyrinth can
process discrete, structural databases. AutoClass can handle discrete or continuous unstructured
databases. Lastly, Chameleon and Cure work with continuous-valued, unstructured data.

Few existing systems address the problem of clustering in discrete-valued, structural
databases. Labyrinth is one of these systems. SUBDUE’s hierarchical clustering algorithm
represents another approach, centering on discrete-valued, structural databases that are
represented as graphs.

3. Graph-Based Structural Knowledge Discovery

We have developed a method for discovering substructures in databases using the minimum
description length principle introduced by Rissanen (1989) and embodied in the SUBDUE
system. SUBDUE discovers substructures that compress the original data and represent structural
concepts in the data. Once a substructure is discovered, the substructure is used to simplify the
data by replacing instances of the substructure with a pointer to the substructure definition. The
discovered substructures allow abstraction over detailed structures in the original data. Iteration
of the substructure discovery process constructs a hierarchical description of the structural data in
terms of the discovered substructures. This hierarchy provides varying levels of interpretation
that can be accessed based on the specific data analysis goals. The SUBDUE code and sample
databases are available http://cygnus.uta.edu/subdue.

3.1. Graph Representation

SUBDUE accepts as input a database of structured data. This type of data is naturally
represented using a graph. The graph representation includes labeled vertices with vertex id
numbers and labeled directed or undirected edges, where objects and attribute values usually map

JONYER, COOK AND HOLDER

22

to vertices, and attributes and relationships between objects map to edges (see Figure 1 for an
example). A substructure in SUBDUE consists of a subgraph definition and all of the instances of
the subgraph (substructure) that occur in the graph.

Figure 1 shows a geometric example of a structural database. The graph representation of a

substructure discovered in this database is also shown, and one of the four instances of this
substructure is highlighted in the picture.

The input graph need not be connected, as is the case when representing unstructured
databases. For data represented as feature vectors, instances are often represented as a collection
of small, star-like, connected graphs. An example of the representation of an instance from the
animal domain is shown in Figure 2. Intuitively, one might map the identifier or target attribute—
Name in this case—to the center node and all other attributes would be connected to this central
vertex with a single edge. This would follow the semantics of most databases. In our experience,
however, SUBDUE yields better results using a more general representation including a
placeholder node (animal in our example) that serves as the center node in the star, a
representative of the example.

3.2. Search Algorithm

SUBDUE uses a variant of beam search (see Figure 3). The goal of the search is to find the
substructure that best compresses the input graph. A substructure in SUBDUE consists of a
substructure definition and all its occurrences in the graph. The initial state of the search is the set
of substructures representing each uniquely labeled vertex and its instances. The only search
operator is the Extend-Substructure operator. As its name suggests, Extend-Substructure extends
the instances of a substructure in all possible ways by a single edge and a vertex, or by a single

Figure 2: Graph representation of an animal description.

animal

hair

mammal

BodyCover

Fertilization
HeartChamber

BodyTemp internalregulated

Namefour

Figure 1: Example substructure in graph form with textual description. The input file syntax
is v id label for vertices, d id1 id2 label for directed edges, and u id1 id2 label for
undirected edges.

on

triangle

object

square

object

shape

shape

v 1 object
v 2 triangle
v 3 object
v 4 square
d 1 2 shape
d 3 4 shape
d 1 3 on

GRAPH-BASED HIERARCHICAL CONCEPTUAL CLUSTERING

edge if both vertices are already in the substructure. Using the example in Figure 1, a substructure
representing the single vertex labeled “object” could be extended to include the vertex labeled
“triangle” and the edge labeled “shape” between these vertices during the second iteration of the
algorithm. The Minimum Description Length (MDL) principle is used to evaluate the
substructures (see Section 3.3).

The search progresses by applying the Extend-Substructure operator to each substructure in
the current search frontier, which is an ordered list of previously discovered substructures. The
resulting frontier, however, does not contain all the substructures generated by the Extend-
Substructure operator. The substructures are stored on a queue and are ordered based on their
ability to compress the graph. The length of the queue, or beam width (Beam), is specified by the
user. The user chooses how many substructures of different value—in terms of compression—
are to be kept on the queue. Several substructures, however, might have the same ability to
compress the graph; as a result, the actual queue length may vary. The search terminates upon
reaching a user specified limit on the number of substructures extended, or upon exhaustion of the
search space. SUBDUE’s run time is polynomial in length of the queue and the user-specified
limit on the number of considered substructures. An in-depth analysis of SUBDUE’s run time
can be found in the literature (Cook et al., 1996), and empirical data indicating the scalability of
the serial and parallel versions of the algorithm are also reported (Cook et al., 2000).

Once the search terminates and returns the list of best substructures, the graph can be

compres
substruc
and outg
vertex th
how ver
accurate
compres
maintain

The S
be repea
number
that has
Subdue (graph G, int Beam, int Limit)
 queue Q = { v | v has a unique label in G }
 bestSub = first substructure in Q
 repeat
 newQ = {}
 for each S ∈∈∈∈ Q
 newSubs = S extended by an adjacent edge from G
 in all possible ways
 newQ = newQ ∪ newSubs
 Limit = Limit - 1
 evaluate substructures in newQ by compression of G
 Q = first Beam substructures in newQ

in decreasing order of value
 if best substructure in Q better than bestSub
 then bestSub = first substructure in Q
 until Q is empty or Limit ≤ 0
 return bestSub

Figure 3: SUBDUE's discovery algorithm.

23

sed using the best substructure. The compression procedure replaces all instances of the
ture in the input graph by a single vertex, which represents the substructure. Incoming
oing edges to and from the replaced substructure will point to, or originate from, the new
at represents the substructure. In our implementation, we do not maintain information on

tices in each instance were connected to the rest of the graph. This means that we cannot
ly restore the information after compression (this is lossy, rather than lossless,
sion). Since the goal of substructure discovery is interpretation of the database,
ing information to reverse the compression is unnecessary.
UBDUE algorithm can be invoked again on this compressed graph. This procedure can
ted a user-specified number of times, and is referred to as an iteration. The maximum
of iterations that can be performed on a graph cannot be predetermined; however, a graph
been compressed into a single vertex cannot be compressed further.

JONYER, COOK AND HOLDER

24

3.3. Minimum Description Length Principle

SUBDUE’s search is guided by the Minimum Description Length (MDL) principle, originally
developed by Rissanen (1989). According to the MDL heuristic, the best substructure is the one
that minimizes the description length of the graph when compressed by the substructure (Cook
and Holder, 1994). This compression is calculated as

)(
)|()(

GDL
SGDLSDLnCompressio +=

where DL(G) is the description length of the input graph, DL(S) is the description length of the
substructure, and DL(G|S) is the description length of the input graph compressed by the
substructure. The search algorithm attempts to maximize the Value of the substructure, which is
the multiplicative inverse of the Compression. The description length of a graph is calculated
here as the number of bits needed to encode an adjacency matrix representation of the graph.
Additional details of the encoding scheme are reported in the literature (Cook and Holder, 1994).

3.4. Inexact Graph Match

When applying the Extend-Substructure operator, SUBDUE finds all instances of the resulting
substructure in the input graph. A feature in SUBDUE, called inexact graph match, allows these
instances to contain minor differences from the substructure definition. This feature is optional
and the user must enable it as well as specify the degree of maximum allowable dissimilarity.
The command line argument to be specified is –threshold Number, where Number is between 0
and 1 inclusive - 0 meaning no dissimilarities are allowed, and 1 meaning all graphs are
considered the same. A value t between 0 and 1 means that one graph can differ from another by
no more than t times the size (number of vertices plus number of edges) of the larger graph.

The dissimilarity of two graphs is calculated as the number of transformations that are needed
to make one graph isomorphic to the other. The transformations include adding or deleting an
edge, adding or deleting a vertex, changing a label on either an edge or a vertex and reversing the
direction of an edge. All of these transformations are defined to have a cost of 1.

Our inexact graph match is based on work by Bunke and Allerman (1983). The algorithm
constructs an optimal mapping between the two graphs by searching the space of all possible
vertex mappings employing a branch-and-bound search. Although the space requirement is
exponential in the size of the graphs, SUBDUE constrains the run time to be polynomial by
resorting to hill-climbing when the number of search nodes reaches a predefined function of the
size of the substructures. This is a tradeoff between an acceptable running time and an optimal
match cost, but in practice, the mappings found are generally at or near optimal (lowest cost).

3.5. Improving the Search Algorithm

In SUBDUE, a value-based queue is used to retain substructures with the top values (the
number of distinct values is specified by the user) instead of a fixed number of actual
substructures. This approach was adopted in order to prevent arbitrarily pruning substructures
with value equal to those surviving the pruning and thus to permit the exploration of a larger
search space.

The problem with the value-based queue is that the membership in each class, or number of
substructures having one of the greatest substructure values, can increase very quickly. For
instance, substructures from one value class on the queue, after being extended by applying the
Extend-Substructure operator, will result in many new substructures that will be similar, and thus
offer the same compression (yielding the same evaluation measure). After several steps, the

GRAPH-BASED HIERARCHICAL CONCEPTUAL CLUSTERING

25

search queue can grow to a large size. Ironically, most of these subgraphs extend into the same
final substructure.

Fortunately, there is a way to prevent the above phenomenon from happening. An important
observation is that the operator Extend-Substructure is applied to one substructure at a time, and
that substructure is extended by only one edge (or edge and a neighboring vertex) at a time.
These substructures can be stored on a local value-based queue. Substructures with the same
value on this queue may be parents of the same child, because extensions of these substructures
could be isomorphic. In particular, we check if the extension that created one of the substructures
can be applied to the other substructure as well. If so, one of the substructures can be removed
from consideration, because all of its extensions will also be generated by the other substructure.
After all checks and subsequent deletions have been performed to the local queue, the queue is
copied over to the global queue. This one-step look-ahead procedure is referred to as purging,
because it cleans the local queue by removing substructures that would introduce redundancy in
the search process.

An example of purging is demonstrated in Figure 4. Suppose that substructure Sa shown in

Figure 4a occurs in the input graph 20 times. After expanding the substructure representing vertex
A in all possible ways, the substructures shown in Figures 4b, 4c and 4d emerge. For the sake of
argument, suppose that these three substructures occur in the input graph only where substructure
S occurs, and therefore they too have 20 instances. Hence, these three substructures would offer
the same amount of compression, since they have the same size and same number of instances.
The purging algorithm would check if substructure Sb can be extended with vertex C of Sc, and if
substructure Sc can be extended with vertex B of Sb. Since this is the case, substructure Sc would
be eliminated from the queue. Next this check is performed on substructure Sb and substructure
Sd. The result is similar, and Sd is also eliminated from further expansion. This leaves the queue
with one substructure instead of three. Since further extensions of substructure Sb result in
substructures that would result from the extensions of substructures Sc and Sd, the same search
space is explored using fewer substructure candidates. In the case where Sb, Sc and Sd have
different numbers of instances, they will have different values, and therefore will not be
compared with each other during purging.

The value-based queue and purging approaches together enable searching of a wider search
space while examining potentially fewer substructures in comparison with the fixed length queue.
The savings offered by purging has been observed to be substantial since the case described
above arises almost every time a substructure is extended. The actual savings depend on
particular graphs, the main factor being the connectivity of the graph. The more connected the
graph is, the more savings purging offers.

Figure 4: Purging substructures from the queue; (a) best substructure S; (b) substructure of S;
(c) substructure of S; (d) substructure of S.

A

B

C

D
(a)

A

B

(b)

A C

(c)

A

D

(d)

JONYER, COOK AND HOLDER

26

3.6. Additional SUBDUE Features

A number of features are available in SUBDUE that improve the ease of use of the system. Here
we describe some of these improvements.

The –cluster option initiates cluster analysis using SUBDUE. Cluster analysis is described in
detail in Section 4. This option produces a classification lattice in the file “inputFileName.dot”
that can be viewed with the GRAPHVIZ graph visualization package (Koutsofios and North,
1999). The –truelabel option will print the cluster definition into each node of the classification
lattice when viewed with Dotty, part of the GRAPHVIZ package. The –exhaust option will
prevent SUBDUE from terminating after discovering all substructures that can compress the
graph, and instead continue until the input graph is compressed into a single vertex. To help
evaluate the quality of clusterings the –savesub option was introduced. This option saves the
definition and all the instances of the best substructure found in all of the iterations. When
clustering is enabled, it also saves the classification lattice hierarchy that can be used to
reconstruct the discovered substructures. These files may be used with a tool specifically
designed for evaluating clusters. An extra output level was also added to display only the
essential information concerned with clustering during the discovery process.

The –prune2 number option keeps track of local minima with respect to the minimum
description length principle (see Section 3.3). The parameter number specifies how many more
extensions are to be allowed after identifying a local minimum. This option is selected by default
for clustering with the argument 2. Its benefits are described in more detail in Section 4, in the
context of clustering.

SUBDUE also supports biasing the discovery process. Predefined substructures can be
provided to SUBDUE, which will try to find and expand these substructures, this way "jump-
starting" the discovery. The inclusion of background knowledge proved to be of great benefit
(Djoko et al., 1997). SUBDUE also supports supervised learning, where examples from each
class are provided as separate graphs to the system. Substructures are evaluated based on their
ability to cover examples in the positive (or target) graph and to not cover examples in the other
graph(s). New graphs are classified as positive if they contain the discovered substructure, and
negative otherwise (Gonzalez et al., 2001). This method of influencing the discovery process has
proven successful in several experiments including the chemical toxicity domain (Cook and
Holder, 2000; Gonzalez et al., 2001).

4. Hierarchical Conceptual Clustering of Structural Data

The main goal of this research is to provide a method of performing hierarchical clustering of
structural data. This section describes our approach to conceptual clustering of structural data
and its implementation using SUBDUE.

Our cluster analysis technique uses the graph-based substructure discovery algorithm to
discover substructures that represent clusters (Jonyer et al., 2000). These substructures are then
used to build a hierarchy of clusters that describe the input graph. The following subsections
describe the background of our approach and its implementation in the SUBDUE system.

4.1. Identifying Clusters

The SUBDUE algorithm requires one iteration to find a substructure that best compresses the
input graph. This substructure represents a single cluster in our hierarchy. The members of the
cluster consist of all the instances of the substructure in the input graph.

Within a single iteration, SUBDUE has several ways to decide when to stop. SUBDUE
always has a single best substructure at the head of the queue, so in effect it could stop at any

GRAPH-BASED HIERARCHICAL CONCEPTUAL CLUSTERING

27

point. SUBDUE has a limit which specifies the maximum number of substructures to consider in
a single iteration. By default, the limit is set to half the size of the input graph (number of vertices
plus number of edges). This number has been observed to be sufficiently large to allow the
discovery of the best substructure. To minimize wasted effort, SUBDUE would stop the
discovery process right after the best substructure is discovered during each iteration.

 A new feature, prune2, attempts to find the best stopping point. This option keeps track of the
compression afforded by each discovered substructure (see Section 3.3). When a minimum value
is found, SUBDUE will continue only for a limited number of substructure extensions. If a new
minimum is found during this time, the count is reset and SUBDUE continues further. This
strategy assures that each iteration of SUBDUE returns the substructure that is responsible for the
first local minimum. As discussed later, this is just what the clustering algorithm needs. Since
prune2 will stop the discovery, setting a limit is not necessary when prune2 is used. This is the
default setting for our cluster analysis.

4.2. Creating Hierarchies of Clusters

After each iteration, SUBDUE can be instructed to physically replace each occurrence of the best
substructure by a single vertex, this way compressing the graph. The resulting compressed graph
can then be used as the new input graph and be input to SUBDUE to discover a substructure that
best compresses the new graph.

This iterative approach to clustering imposes more and more hierarchy on the database with
each successive iteration. Using the fact that each new substructure discovered in successive
iterations may be defined in terms of previously-discovered substructures, a hierarchy of clusters
can be constructed. When clustering is enabled, the number of iterations is set to indefinite. As a
result, SUBDUE will iterate until the best substructure in the last iteration does not compress the
graph. If the –exhaust option is enabled, SUBDUE iterates until the input graph is compressed
into a single vertex. This default behavior may be overridden by explicitly specifying the number
of iterations to be performed, in essence specifying the number of clusters to be discovered.

Hierarchies are typically viewed as tree structures, and are used this way in many previous
works on hierarchical clustering. We found, however, that in structured domains a strict tree
representation is inadequate. In these cases, a lattice-like structure emerges instead of a tree.
Therefore, newly discovered clusters are used to build a classification lattice. A classification
lattice can be used to perform classification, in a method similar to the classification tree use by
Fisher and others.

The classification lattice is a consequence of the fact that any cluster definition—except for
the very first one—may contain previously-defined clusters. If a cluster definition does not
contain any other clusters, it is inserted as the child of the root. If it is a specialization of another
cluster, it is inserted as the child of that cluster, the number of branches indicating the number of
times the parent cluster is in the definition of the child cluster. If the cluster definition includes
more than one other cluster, then it is inserted as the child for all of those clusters.

 Figure 5: Artificial domain.

JONYER, COOK AND HOLDER

28

To provide an example of the explanation above, the generation of a hierarchical conceptual

clustering for the artificial domain shown in Figure 5 is demonstrated here. In the first iteration,
SUBDUE discovers the substructure that describes the pentagon pattern in the input graph. This
comprises the first cluster Cp. This cluster is inserted as a child of the root node. The resulting
classification lattice is shown in Figure 6a. During iterations 2 and 3, the square shape (cluster
Cs) and the triangle shape (cluster Ct) are discovered, respectively. These are inserted as children
of the root as well, since Cs does not contain Cp in its definition, and Ct does not contain either Cp
or Cs. The resulting lattice is shown in Figure 6b.

All of the basic shapes (pentagon, square and triangle) appear four times in the input graph.
So why are these substructures discovered in the order described above? Since all of them have
the same number of instances in the input graph, the size of the substructure will decide how
much they can compress the input graph. The substructure describing the pentagon contains five
vertices and five edges, the square contains four vertices and four edges, and the triangle contains
three vertices and three edges. Given the same number of instances, the larger substructure will
better compress the input graph.

In the fourth iteration, SUBDUE returns the substructure describing two pentagon shapes

connected by a single edge. There are only two instances of this formation in the graph, not four,
since no overlapping of instances is permitted. This cluster is inserted into the classification
lattice as the child of the cluster describing the pentagon, because that cluster appears in its

Root

(a)

Root

(b)

Figure 6: Clustering of the artificial domain after one iteration (a) and after three iterations (b).

Root

Figure 7: Clustering of the artificial domain after four iterations.

GRAPH-BASED HIERARCHICAL CONCEPTUAL CLUSTERING

29

definition. The resulting classification lattice is shown in Figure 7. There are two links connecting
this new cluster to its parent, because the parent cluster definition appears twice.

During iteration 5, a substructure is discovered that contains a pair of squares connected by an

edge, a pair of triangles connected by an edge, and these two pairs are connected by a single edge.
This substructure has two instances in the input graph. This cluster is inserted as a child of two
clusters in the first level of the lattice, both of which appear in the definition of this new cluster.
The resulting lattice is depicted in Figure 8. Since both parent cluster definitions appear twice in
the new cluster, there are two links from each of these parents to the new node.

4.3. First Minimum Heuristic

SUBDUE searches the hypothesis space of classification lattices. During each iteration of the
search process (while searching for each cluster), numerous local minima are encountered. The
global minimum, however, tends to be one of the first few local minima. For clustering purposes,
the first local minimum is used as the best cluster definition. The reason for this is as follows.
SUBDUE starts with all the single-vertex instances of all unique substructures, and iteratively
expands the best ones by a single edge. The local minimum encountered first is therefore caused
by a smaller substructure with more instances than the next local minimum, which must be larger,
and have fewer instances. A smaller substructure is more general than a larger one, and should
function as a parent node in the classification lattice for any more specific clusters.

Consider the plot of a sample run shown in Figure 9. The horizontal axis of the plot shows the
number of the substructure being evaluated (in order of discovery), and the vertical axis indicates
the compression offered by the substructures (smaller values are better). Figure 9 shows one
global minimum, appearing at substructure number 37. Several local minima occur before this
substructure. Those minima, however, are caused by the dissimilarities in compression among the
substructures on the queue in each search iteration. For instance, if the maximum queue length is
set to be four, then there will be approximately four substructures in the queue after each
extension. These four substructures will offer different amounts of compression, the first in the
queue offering the most, the last in the queue offering the least. This is reflected in Figure 9.

Root

Figure 8: Clustering of the artificial domain after five iterations.

JONYER, COOK AND HOLDER

30

The staircase-like formation, shown from substructures 1 to 20, reflects similar-valued

substructures in the queue (substructures 1 through 4, for example, were in the queue at the same
time and had similar values). As the discovery process continues we can see that the head of the
queue offers more compression than the tail (as seen in substructures 14 through 17), resulting in
local minima. The prune2 feature, however, does not consider fluctuations within each iteration
(pass through the queue), but rather between iterations. In other words, minima are determined by
looking at the best substructure in the queue between successive iterations. The first local
minimum therefore occurs at substructure number 37. This minimum turns out to be the global
minimum as well for this iteration.

As a second example, Figure 10 shows the compression of substructures as discovered by
SUBDUE in a different database. The search depicted in Figure 10 features numerous local
minima, the first one occurring at substructure number 46. This is not the global minimum, but
for clustering purposes this one will be used as the best substructure, according to the described
selection criteria.

0.75

0.8

0.85

0.9

0.95

1

1.05

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

Substructure

C
om

pr
es

si
on

Figure 9: Compression of substructures as considered during one iteration of SUBDUE.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1 25 49 73 97 12
1

14
5

16
9

19
3

21
7

24
1

26
5

28
9

31
3

33
7

36
1

38
5

40
9

43
3

45
7

48
1

50
5

52
9

55
3

Substructure

C
om

pr
es

si
on

Figure 10: Compression of substructures as considered by SUBDUE during one iteration on an
aircraft safety database.

GRAPH-BASED HIERARCHICAL CONCEPTUAL CLUSTERING

31

Even though it is possible to use the global minimum as the best substructure, we found that if
the global minimum is not the first local minimum (and is therefore not discovered in the current
iteration), SUBDUE may generate overlapping clusters. Overlapping clusters are those that
include the same information. For example, in a particular clustering of the vehicles domain, two
clusters may include the information “number of wheels = 4”. In the case of SUBDUE, the
substructure representing the global minimum may be discovered in a later pass through the
database and often will share information with the earlier (local minimum) cluster. This suggests
that perhaps a better clustering could be constructed in which this information resided in a cluster
at a higher level.

4.4. Implementation

This section discusses the implementation details for cluster analysis in SUBDUE. Most of the
clustering functionalities center around building and printing the classification lattice. We will
also describe the Dotty visualization package with emphasis on interpreting the classification
lattice displayed by Dotty.

A classification lattice describes a hierarchical conceptual clustering of a database. Each node
in the lattice represents a cluster. The classification lattice is a tree-like data structure with the
special property that one node may have several parents. Information stored in a node includes
the substructure definition and instances, pointers to children, number of children, number of
parents, the substructure label, a descriptive label and a shape flag.

The substructure label specifies the vertex label (e.g., “Sub1”) assigned to the substructure that
represents the cluster. This label is automatically assigned to the substructure when replacing
each occurrence of the substructure with a single vertex during compression. This information is
useful for identifying the parents of a cluster.

The descriptive label contains information about the cluster definition in an easy-to-read
format. This has significance when displaying the lattice with Dotty. The label is generated
when the –truelabel option is set by reporting all pairs of vertices connected by an edge using the
format sourceVertex edge: targetVertex. For example, if a substructure contains two vertices
labeled car and red, connected by an edge labeled color, the descriptive label would read car
color: red.

The shape flag determines the shape of the cluster when displayed by Dotty. The shape of the
cluster is just another visual aid in interpreting the cluster lattice. By default, all clusters are
displayed with an oval shape. When the –exhaust option is set, however, SUBDUE is instructed
to form clusters out of substructures that do not compress the input graph further, and these
clusters are given a rectangular shape.

4.5. Visualization

The GRAPHVIZ graph visualization package is used to display the cluster results (Koutsofios
and North, 1999). When clustering is enabled, a file with the .dot extension is created. This file
can be used by the program dot to create a PostScript file, or by Dotty to view it interactively.
From Dotty one can directly print the lattice to a printer or a file. Dotty also allows the
rearrangement of clusters, and the changing of cluster parameters.

Consider the portion of a classification lattice shown in Figure 11. The root node contains the
file name of the input graph. Nodes other than the root node contain the sub-label of the
substructure that defines the cluster, the number of instances the substructure has in the input
graph (shown in brackets) and a series of descriptive labels. Each line, except for the first one,
contains a descriptive label. Clusters on the same level are shown using the same color (we

JONYER, COOK AND HOLDER

32

modify the visualization for this paper to use multiple line textures). In some cases the lattice can
become highly interconnected, and the colors are useful in identifying levels of the lattice.

4.6. Cluster Evaluation Metrics

Conventional (non-hierarchical) clusters have been evaluated using the observation that instances
within a cluster should be similar to each other, and instances in separate clusters should be
significantly different. The measure suggested by this observation can be defined as:

erDistanceIntraClust
erDistanceInterClustQualityClustering = ,

where InterClusterDistance is the average dissimilarity between members of different clusters,
and IntraClusterDistance is the average dissimilarity between members of the same cluster. If a
clustering receives a large clustering quality value, the clusters are distinctly defined, yielding a
desirable clustering.

4.6.1. Defining Good Hierarchical Clusterings

When generating hierarchical clusterings, the previous metric cannot be applied. The main
reason for this limitation is that clusters are organized into a hierarchy, and two clusters with an
ancestral relationship are not completely disjoint. Therefore, it does not make sense to compute
the average inter-cluster distance value between all pairs of clusters. Instead, only clusters that
have a common parent may be meaningfully compared. Cobweb’s category utility metric
(Fisher, 1987) and the partition utility function introduced by Markov (2001) cannot be used as a
global measure of an entire hierarchical clustering, because these measures only provide local
determinations as to whether the addition of a particular cluster will increase the value of the
classification tree.

Sub_3 [1]
AI_LAB has: wall
AI_LAB has: wall
AI_LAB has: wall
AI_LAB has: wall

AI_LAB has: ceiling

Sub_6 [1]
Sub_1d of: Joe
Sub_1d of: Joe

Sub 1d proc: K6

AI_LAB_G

Sub_1 [3]
desk near: chair

computer near: desk
monitor on: desk

Sub_2 [2]
Sub_1b proc: PII

Sub_1b brand: GW

Figure 11: Example of a classification lattice produced by SUBDUE and visualized by Dotty.

GRAPH-BASED HIERARCHICAL CONCEPTUAL CLUSTERING

33

Hierarchical conceptual clustering systems have been shown to be useful in practice. At
the same time, there have been extensive discussions on the performance of the algorithms, as
well as their advantages and applicability to certain domains. Most points are demonstrated by
example, because of the lack of an objective evaluation measure. Here we introduce an
evaluation measure for hierarchical clusterings. This clustering evaluation measure should be
distinguished from the Minimum Description Length measure, which is used to evaluate
individual substructures within the discovery algorithm. The performance measure defined here
could be used to select a clustering from among the space of total possible clusterings, but this
approach would be very computationally expensive.

To develop a metric for hierarchical conceptual clusterings, first we need to define what
characteristics such clusterings should have. One of the properties we would like to demonstrate
is the greatest coverage by the smallest possible number of clusters. This would imply that
clusters are general enough to describe the all data while still defining individual concepts. A
hypothesis that uses a smaller number of clusters is a simpler hypothesis, which is desirable
according to the minimum description length principle.

Another desirable property is big cluster descriptions. The more features a cluster includes,
the greater its inferential power (Lebowitz, 1987). Hierarchical conceptual clusterings can be
used to classify new data points. A good example is the taxonomy of the animal kingdom, which
can be used to classify newly discovered species using our current knowledge about animals
already seen. The more traits the new species shares with points in the hierarchy, the easier it is
to classify. Therefore, we would like to see well-defined concepts in the cluster hierarchy.

A third property we would like a clustering to demonstrate is minimal overlap between its
clusters. No overlap indicates disjoint concepts. Clearly defined concepts are of primary
importance in conceptual clustering (Michalski and Stepp, 1983).

These three desirable properties sometimes conflict. The larger the cluster description is,
the more likely it is that two clusters will share common features and thus overlap. Conversely, if
we remove some attributes from the cluster definition to reduce the number of overlaps, we may
lose the inferential power of the cluster. In addition, if we enlarge a cluster description by adding
attributes, we are likely to generate a greater number of clusters. Similarly, disallowing overlap
may result in a large number of clusters. The goal of a clustering system is to balance these
properties to obtain the best possible clustering.

The described features are desirable for both hierarchical and non-hierarchical clusterings
and can be measured for each set of clusters. In a hierarchical clustering, the measure can be
applied recursively to all clusters in the hierarchy. The quality of the root cluster thus represents
the quality of the entire hierarchy. The formulation of a metric to measure cluster quality is
presented next.

4.6.2. A New Metric for Hierarchical Conceptual Clustering

The previous section outlined what we seek in a good clustering. This section develops the
formulation that encompasses those ideas. According to our set of desirable features, the quality
of the cluster lattice L in graph G can be computed by the equation

JONYER, COOK AND HOLDER

34

G

C
GLCoverage

CChildDiversity

CChildCChild

CChildCChild
CChildCChilddistance

CDiversity

GLCoverage
LrootDiversityGLQuality

LC

C

i
i

CnNumchildre

i
i

CDegree

i

CDegree

ij
ji

CDegree

i

CDegree

ij

CChild

k

CChild

l ljki

ljki
i j

Υ Υ
∈ =

=

−

= +=

−

= += = =

=

+

∗
=

=

∑

∑ ∑

∑ ∑ ∑ ∑

1

)(

1

1)(

1

)(

1

1)(

1

)(

1

)(

1

)(

1 ,,

,,

),(

))((

))()((

))(,)(max(
))(),((

)(

),(
))((),(

where C represents an individual cluster, Ci refers to the ith instance of cluster C, |C| represents the
number of instances of cluster C and ||Ci|| represents the size of the graph (number of edges plus
number of vertices). The function Degree(C) returns the number of children of cluster C, and the
distance operation calculates the difference between the two child cluster instances as measured
by the number of transformations required to transform the smaller instance graph into the larger
one. The Childi(C) function returns the ith child of cluster C, and Childi,k(C) returns the kth
instance of the ith child of C.

The computation of the quality of a hierarchical clustering is recursive, as indicated by the
last term of the Diversity function. Because of the recursive nature of the calculation, the quality
of the root node of the classification lattice represents the quality of the entire clustering. This
value is multiplied by the coverage which serves two purposes: it scales the measure so that
clusterings with different coverage may be better compared, and it penalizes clusters that increase
the coverage but fail to provide other benefits. Coverage is calculated as the number of vertices
and edges from the input graph that are covered by at least one of the clusters, divided by the total
number of vertices and edges in the input graph.

To compute the quality of a single cluster, all of its child clusters are pairwise compared
and normalized. A pairwise comparison between child clusters is performed using the inexact
graph match algorithm discussed in Section 3.4. The value returned by the inexact graph match is
an integer signifying the number of operations required to transform one graph into an isomorph
of the other. This value is normalized to a 0..1 range by dividing it by the size of the larger graph.
The dissimilarity between any two graphs is never greater than the size of the larger graph. In
addition, each cluster inherits the quality of its children by adding their quality to its own.

 As suggested by the pairwise comparison of child clusters, this metric measures the
dissimilarity of child clusters. A larger number, or greater dissimilarity, signifies a better quality.
This evaluation heuristic rewards the clusters exhibiting properties discussed in Section 4.6.1.
More specific clusters are rewarded, because two such disjoint clusters need more
transformations to map one cluster onto the other. This dissimilarity is normalized. For example,
two clusters that each contain five vertices and five edges and have a single vertex in common are
90% different, while two clusters that each contain two vertices and one edge and have a single

GRAPH-BASED HIERARCHICAL CONCEPTUAL CLUSTERING

35

vertex in common are only 66% different. Section 5.1 shows that this metric provides
empirically consistent values for clusterings of varying quality.

Disjoint clusters are also rewarded. The less two clusters overlap, the more distant they are
according to the inexact match algorithm. A small number of clusters is rewarded by computing
the average of the comparisons of all the instances, this way offsetting the summing effect, which
would normally reward a large number of clusters. As we can see, this evaluation heuristic
measures all of the desirable properties for a hierarchical clustering.

Consider the clustering of the geometric database shown in Figure 8. The value of this
clustering is calculated as the diversity of the root of the lattice divided by the coverage of the
lattice with respect to the original graph shown in Figure 5. The combined size (or coverage) of
the clusters in the lattice is 48 vertices and 56 edges, or 104. The size of the original graph is 48
vertices and 63 edges, or 111. Thus the Coverage term in the equation is 104 / 111 = 0.9369.

The numerator in the Diversity term is calculated as the pairwise distance between each
child cluster instance, divided in each case by the size of the larger instance. The root node has
three children, each with four instances. The distance between the pentagon and square clusters
divided by the size of the larger cluster (the pentagon), summed over all 16 pairs of instances, is
11.2. Similarly, the sum of the normalized instance distances between the pentagon and triangle
instances is 14.4, and between the square and triangle instances is 12.0. The sum of these terms is
divided by the total number of instance pairs. There are a total of 16 + 16 + 16 = 48 instance
pairs, so the first term in the Diversity function is 0.7833. The second term in this function is 0,
because each of these clusters has only one child and thus there are no pairs of child instances to
compare. The Quality of the lattice with respect to the input graph is thus 0.7833 / 0.9369 =
0.8360.

5. Results

This section presents analyzes clusters generated using SUBDUE. First, the algorithm’s proper
behavior is established using an artificially-generated database as the test domain. Next, the
algorithm is compared to an existing system. Other applications of the algorithm are also
discussed.

5.1. Validation in an Artificial Domain

An artificial domain will serve as an example to demonstrate SUBDUE’s ability to generate valid
clusterings in structural databases. This artificial domain is depicted in its graph form in Figure 5,
where only edges are shown. Vertices in the graph represent the meeting points of the edges.
Smaller, clearly recognizable shapes—triangles, squares and pentagons—are embedded in the
graph. They are organized into rings, and some edges are added between some of the triangles
and squares to somewhat disturb the regularity. The vertices in the graph are labeled as a, b, c,
and so on, for each primitive shape. Edges connecting the primitive objects are labeled as T_link,
S_link, and P_link, for triangle, square, and pentagon, respectively. Edges connecting different
shapes are labeled XY, where X and Y represent the distinct shapes (e.g., TS represents triangle-
square link).

SUBDUE was invoked using the command
Subdue -cluster -truelabel -prune2 1 artif-tsp2.g

where -cluster enables clustering, -truelabel enables the descriptive labels and -prune2 1
overrides the default option for clustering, -prune2 2, which results in increased sensitivity to
local minima. We have observed that in general the larger and more complex the database is, the
more clearly defined is the local minimum.

JONYER, COOK AND HOLDER

36

The classification lattice generated by SUBDUE is shown in Figure 8. For clarity, the
substructures are shown that define the clusters rather than the textual description extracted from
the graph representation. The lattice closely resembles a tree, with the exception that the
rightmost leaf has two parents. As the figure shows, smaller, more commonly occurring
structures are discovered first, and compose the first level of the lattice. These cover most of the
graph; therefore, they are the most general clusters. Subsequently identified clusters are based on
these more general clusters which are either combined with each other, or with other vertices or
edges to form new, more specific clusters. The result of this process can clearly be seen in the
second level of the lattice where two pentagons and a connecting edge comprise a new cluster,
and a pair of triangles and a pair of squares comprise another cluster along with three additional
connecting edges. The second-level nodes in the classification lattice are connected with two
branches from their parents. This means that there are two pentagons used in the bottom-left
cluster, and two triangles and two squares are used in the bottom-right cluster. Both of the
clusters in the second level have two instances.

SUBDUE performs as expected on this artificial domain. It was able to find the most
commonly-embedded structures, and construct the expected classification lattice. To further
support the algorithm’s validity, the following section compares SUBDUE to an existing
hierarchical clustering system.

5.2. Comparison to Cobweb

An experiment devised by Fisher (1987) can serve as a basis for comparison of SUBDUE and
Cobweb. This example will also demonstrate SUBDUE’s performance on unstructured data.

The database used for the experiment is given in Table 1. The animal domain is represented in
SUBDUE as a graph, where attribute names (like Name and BodyCover) are mapped to labeled
edges, and attribute values (like mammal and hair) are mapped to labeled vertices, as shown in
Figure 1.

Table 1: Animal Descriptions.

Name Body Cover Heart Chamber Body Temp. Fertilization
mammal hair Four regulated Internal
bird feathers Four regulated internal
reptile cornified-skin imperfect-four unregulated internal
amphibian moist-skin three unregulated external
fish scales Two unregulated external

Cobweb produces the classification tree shown in Figure 12, as reported by Fisher (Fisher,

1987). In contrast, SUBDUE generates the hierarchical clustering shown in Figure 13.

animals

amphibian/fishmammal/bird reptile

mammal bird fish amphibian

Figure 12: Hierarchical clustering over animal descriptions by Cobweb.

GRAPH-BASED HIERARCHICAL CONCEPTUAL CLUSTERING

37

SUBDUE’s result is similar to that of Cobweb. The “mammal/bird” branch is clearly the same.
Amphibians and fish are grouped in the same cluster based on their external fertilization, which is
grouped the same way by Cobweb. SUBDUE, however, incorporates reptiles with amphibians
and fish, based on their commonality in unregulated body temperature. This clustering of the
animal domain seems better, because SUBDUE eliminated the overlap between the two clusters
(reptile and amphibian/fish) by creating a common parent for them that describes the common
trait. This example also demonstrates that SUBDUE is capable of dealing with unstructured
domains successfully.

5.3. Application to the Web Domain

Here we demonstrate the application of SUBDUE to a graph representing a portion of the World
Wide Web. Researchers have asserted that a graph forms a natural representation for web data,
and hyperlink information is frequently used to enhance web search engines (Chakrabarty et al.
1999, Kleinberg 1998). For this project, we transform web data to a labeled graph for input to
SUBDUE. Data collection is performed using a web robot written in Perl. The web robot follows
links to pages residing on specified servers, generating a graph file representing the visited pages.
The web robot scans each page for URL references contained in that page. A depth-first search
through the space of connected web pages is executed to a predefined depth. The labeled graph
represents each URL as a vertex labeled “page”, with edges labeled “hyperlink” pointing from
parent to child URLs. To enhance the graph representation, the web robot extracts words from
the “title” field of each HTML page, and adds vertices labeled with each word in the title to the
graph. Functions from the WordNet library (Miller et al. 1991) are included to remove non-
contributory words and to replace synonyms and abbreviations with a single representative term.
Figure 14 shows a portion of the graph generated for the site cygnus.uta.edu.

For this experiment, we generated a graph representing 182 departmental web sites from four
universities around the country. Our theory is that departmental web sites have common
structural layouts and can thus be clustered on this basis. Over 32,000 web pages were visited,
and the resulting graph contains 41,782 vertices and 168,421 edges. We let SUBDUE cluster this
graph until no further compression was possible, resulting in 136 substructures. Completing the
first iteration of the algorithm took 34 minutes on a 1GHz Pentium PC with 512MB memory.

Name: reptile
BodyCover: cornified-skin

HeartChamber: imperfect-four
Fertilization: internal

Name: bird
BodyCover: feathers

Animals

BodyTemp: unregulated HeartChamber: four
BodyTemp: regulated
Fertilization: internal

Fertilization: external

Name: mammal
BodyCover: hair

Name: fish
BodyCover: scales
HeartChamber: two

Name: amphibian
BodyCover: moist-skin
HeartChamber: three

Figure 13: Hierarchical clustering over animal descriptions by SUBDUE.

JONYER, COOK AND HOLDER

38

Because the graph is compressed at the end of each iteration, subsequent iterations are faster.
Completing 4 iterations took 48 minutes, and 16 iterations took 68 minutes. The current version
of SUBDUE does not write out the file between iterations but keeps all of the information in
internal memory. As a result, the memory eventually slowed down the performance of the
algorithm, so that completing all 136 iterations took approximately 20 hours. We expect this
performance to improve by writing each iteration result to a file rather than adding the new
information to internal memory.

A portion of the lattice generated by SUBDUE is shown in Figure 15. The first discovered

substructure (node 1 in the figure) is defined as three web pages, the first pointing with hyperlinks
to the other two pages. The next few discovered substructures expanded this theme, discovering
“hub” pages with many links to other pages on the web site. Because the graph contained many
more “page” vertices than “word” vertices, clusters of web pages focused on a particular topic did
not appear until several levels down in the lattice. Substructure 40, for example, represents a
cluster of web pages with pointers to top-level university information pages. Similarly,
substructure 43 represents a cluster of departmental web pages with pointers to faculty home
pages. The discovered clusters do indeed show common structural regularities within
departmental web sites. For the sake of obtaining a timely response, we evaluated the lattice
through the first four levels (the lower nodes typically do not add significant values to the overall
value). The quality of this lattice using our evaluation measure is 10.08.

 page

university texas
projects

subdue

parallel

 page hyperlink
word word

word word

word

Figure 14: Graph representation of a web site.

Figure 15. A portion of the web domain lattice generated by SUBDUE. Starred
edges represent multiple edges between the pair of nodes.

GRAPH-BASED HIERARCHICAL CONCEPTUAL CLUSTERING

39

We clustered the same database using Cobweb. Because Cobweb cannot represent and
process structural information, we represented each page by nine attributes. The first two
attributes identify the number of inlinks and outlinks for the page. The remaining seven attributes
identify the number of occurrences for the six most common words in the database with a
separate attribute for all other words. Cobweb required over 40 hours to complete the clustering.
Nodes within this hierarchy primarily contain pages with a similar number of inlinks or outlinks.
The quality of this hierarchy evaluated through the first four levels using our measure is 6.23.
The main reasons for Cobweb’s lower quality measure are lack of diversity between nodes (this is
more difficult to achieve without structural information) and the fact that the hierarchy is
extremely deep. Lack of structural information makes abstraction of web pages difficult, and thus
the hierarchy decomposed nodes to the point where almost every individual data point resides in a
leaf node somewhere within the hierarchy.

5.4. Evaluation

The previous sections have shown that SUBDUE’s clustering functionality is appealing in many
respects. SUBDUE has performed according to expectations in an artificial structured domain,
has paralleled an existing system in an unstructured domain, and has discovered clusterings in
real-world domains. Here we revisit the artificial domain one more time, in order to provide an
objective evaluation of SUBDUE and comparison with the clustering algorithm Cobweb using
our evaluation measure.

5.4.1. Self-Diagnostic Evaluation

Due to the relatively large number of parameters in SUBDUE, the system can produce varying
results. The evaluation measure can be used to help identify better clusterings generated by
specifying different parameters.

An example of this is found in the clustering of the artificial domain. To create a more
interesting example in Section 4.2, we deviated from the default option –prune2 2 to –prune2 1.
The default parameters produce the clustering shown in Figure 16.

The clustering depicted in Figure 8 has a clustering quality of 0.836, while the one in

Figure 16 has a quality value of 1.105. The difference is that the few number of clusters, larger

Figure 16: Alternative clustering of the artificial domain.

Root

JONYER, COOK AND HOLDER

40

cluster definitions and smaller overlap between the clusters in Figure 16 outweigh the visually
more pleasing structural representation shown in Figure 8.

5.4.2. Metric-Based Comparison to Cobweb

Earlier we compared SUBDUE to Cobweb on the animal descriptions domain. The evaluation of
the system in that section was only anecdotal. In fact, SUBDUE’s superiority over Cobweb was
based entirely on the observer’s opinion. In this section, the performance of both systems will be
objectively evaluated.

The clustering generated by SUBDUE (shown in Figure 13) can be directly evaluated by
the evaluation tool. This clustering has a quality of 2.32. The classification tree generated by
Cobweb, however, needs to be converted into a graph representation that the evaluation tool can
analyze. The tree in Figure 12 was converted to a graph using the representation style indicated in
Figure 2, but only including attributes that define the cluster. The quality of this clustering is
1.48, according to the evaluation tool.

As a result, we can conclude that SUBDUE generated a clustering that has been shown to
be better according to our evaluation metric. The major points of difference between the two
clusterings are that Cobweb created a cluster on its own for the instance reptile, while SUBDUE
incorporated it with amphibians and fish, based on their commonality in unregulated body
temperature. This clustering offers a better coverage of instances, at the same time being more
general. SUBDUE also eliminated the overlap between the clusters reptile and amphibian/fish,
which is preferable as set forth in our evaluation criteria.

5.4.3. Discussion

We have evaluated the SUBDUE clustering tool in several domains. From both observation and
objective analysis, the SUBDUE clustering tool has been shown here to be effective at providing
a hierarchical cluster analysis of structured and unstructured data.

As a result of observations and objective evaluations, we can conclude that the best
clustering is usually the one that has the minimum number of clusters, with minimum overlap
between clusters, such that the entire data set is described. Too many clusters can arise if the
clustering algorithm fails to generalize enough in the upper levels of the hierarchy, in which case
the classification lattice may become shallow with a high branching factor from the root, and a
greater amount of overlap. At the other extreme, if the algorithm fails to account for the most
specific cases, the classification lattice may not describe the data entirely. Experimental results
indicate that SUBDUE finds clusterings that effectively balance these extremes.

6. Discussion and Conclusions

The purpose of this research is to explore the mostly uncharted territory of hierarchical
conceptual clustering in discrete-valued structural databases. There have been numerous attempts
at clustering. Most of these, however, are applicable only in unstructured domains that simply
enlist object descriptions. SUBDUE overcomes this restriction by representing databases using
graphs, which allows for the representation of a large number of relationships between objects.

The technique of cluster analysis is of unquestionable importance. This is demonstrated by the
wide variety of fields in which this technique is used, and the different names by which it has
been referred. Many databases represent unstructured information, such as a listing of animals
and their traits, but many are structured, such as a web data. Cluster analysis is equally applicable
to both types of databases. A modern data mining system must be able to handle these different
types of data, and operate on them successfully. In fact, many unstructured data sets may be

GRAPH-BASED HIERARCHICAL CONCEPTUAL CLUSTERING

41

made structured by a simple preprocessing algorithm. An example of this might be the
establishment of relationships among books with the same author in the domain of book listings,
or the creation of near and far relationships, both spatial and temporal, between events in a log of
earthquakes. In doing so, a data set can be made more valuable for data mining.

SUBDUE has been demonstrated to be a successful multi-purpose data mining tool in many
diverse domains. Since clustering can be applied to any data set that SUBDUE can process,
clustering is a very important addition in functionality to SUBDUE as has been demonstrated
using various examples.

One of the major contributions of this work is the synthesis of the classification lattice.
Previous work in clustering suggested the creation of classification trees, which are inadequate in
structured domains. On the other hand, a classification lattice in unstructured domains reduces to
a tree, which suggests that classification trees are a proper subset of classification lattices.

Another major contribution is the new evaluation metric we define for hierarchical conceptual
clustering. Earlier work in this area has not developed a rigorous evaluation metric. Instead,
performance is typically based on the quality of the performance as perceived by an observer,
giving only anecdotal justification to their success. Our research provides an objective evaluation
metric that reflects the major requirements and tradeoffs of a good quality clustering. We have
demonstrated that SUBDUE’s performance on unstructured datasets competes with one of the
most prominent algorithms so far, perhaps even outperforming it. We also showed SUBDUE’s
applicability to highly structured domains using an artificial and a web domain.

Future work on SUBDUE includes defining hierarchical clusterings of other real-world
domains, and performing comparisons with other clustering systems. Incorporation of the
evaluation metric into SUBDUE would also be useful. In this way, SUBDUE could modify its
own parameter settings and select the parameter values that yield the best overall results. We
would also like to enhance SUBDUE to be able to effectively handle numeric data. Although
some work has been done that learns numeric ranges for discovered substructures, more work can
be done in this area.

Acknowledgements

This research was supported by National Science Foundation grants IRI-9615272 and IIS-
0097517, and the State of Texas Higher Education Coordinating Board Advanced Technology
Program grant 003656-45.

References

G. H. Ball. Classification Analysis. Stanford Research Institute SRI Project 5533, 1971.

A. Baritchi and D. J. Cook. Discovering structural patterns in telecommunications data.

Proceedings of the Florida Artificial Intelligence Research Symposium, pp. 82-85, 2000.

H. Bunke and G. Allerman. Inexact graph matching for structural pattern recognition. Pattern

Recognition Letters 1(4):245-253, 1983.

S. Chakrabarti, B. E. Dom, D. Gibson, J. Kleinberg, R. Kumar, P. Raghavan, S. Rajapolan, and

A. Tompkins. Mining the Link Structure of the World Wide Web, IEEE Computer
32(8):60-67, 1999.

JONYER, COOK AND HOLDER

42

P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman. AutoClass: A Bayesian
classification system. Proceedings of the Fifth International Workshop on Machine
Learning, pp. 54–64, 1988.

D. J. Cook, L. B. Holder, G. Galal, and R. Maglothin. Parallel Approaches to Graph-Based

Knowledge Discovery. Journal of Parallel and Distributed Computing 61(3):427-466,
2001.

D. J. Cook and L. B. Holder. Graph-Based Data Mining. IEEE Intelligent Systems 15(2):32-41,

2000.

D. J. Cook and L. B. Holder. Substructure Discovery Using Minimum Description Length and

Background Knowledge. Journal of Artificial Intelligence Research 1:231-255, 1994.

D. J. Cook, L. B. Holder, and S. Djoko. Scalable Discovery of Informative Structural Concepts

Using Domain Knowledge. IEEE Expert 10:59-68, 1996.

S. Djoko, D. J. Cook, and L. B. Holder. An Empirical Study of Domain Knowledge and Its

Benefits to Substructure Discovery. IEEE Transactions on Knowledge and Data
Engineering, 9(4):575-586, 1997.

B. S. Everitt, B.S. Cluster Analysis. Wiley & Sons, New York, 1980.

D. H. Fisher. Knowledge Acquisition Via Incremental Conceptual Clustering. Machine

Learning 2:139-172, 1987.

J. A. Gonzalez, L. B. Holder, and D. J. Cook. Structural Knowledge Discovery Used to Analyze

Earthquake Activity. Proceedings of the Florida Artificial Intelligence Research
Symposium, pp. 86-90, 2000.

J. A. Gonzalez, L. B. Holder, and D. J. Cook. Application of Graph-Based Concept Learning to

the Predictive Toxicology Domain. To appear in Proceedings of the Predictive
Toxicology Challenge Workshop, 2001.

S. Guha, R. Rastogi, and K. Shim. CURE: An Efficient Clustering Algorithm for Large

Databases. ACM SIGMOD International Conference on Management of Data, pp. 73-84,
1998.

L. B. Holder and D. J. Cook. Discovery of Inexact Concepts from Structural Data. IEEE

Transactions on Knowledge and Data Engineering, 5(6):992-994, 1993.

I. Jonyer, L. B. Holder, and D. J. Cook. Graph-Based Hierarchical Conceptual Clustering.

Proceedings of the Florida Artificial Intelligence Research Symposium, pp. 91-95, 2000.

G. Karypis, E. Han, and V. Kumar. Chameleon: Hierarchical Clustering Using Dynamic

Modeling. IEEE Computer 32:68-75, 1999.

J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environment, Proceedings of the Ninth

ACM-SIAM Symposium on Discrete Algorithms, pp. 668-677, 1998.

GRAPH-BASED HIERARCHICAL CONCEPTUAL CLUSTERING

43

E. Koutsofios and S. C. North. Graphviz - graph drawing software. Available electronically at
http://www.research.att.com/sw/tools/graphviz, 1999.

R. Maglothin. Data Mining In DNA: Using the Subdue knowledge discovery system to find

potential gene regulatory sequences. Masters Thesis, Department of Computer Science
and Engineering, University of Texas at Arlington, 1999.

Z. Markov, A lattice-based approach to hierarchical clustering. Proceedings of the Florida

Artificial Intelligence Research Symposium, pp. 389-393, 2001.

R. S. Michalski and R. E. Stepp. Learning From Observation: Conceptual Clustering. In R.S.

Michalski, J.G. Carbonell, and T.M. Mitchell (Eds.), Machine Learning: An Artificial
Intelligence Approach, Volume 1, Tioga Publishing Company, pp. 331-363, 1983.

R. S. Michalski. Knowledge acquisition through conceptual clustering: A theoretical framework

and algorithm for partitioning data into conjunctive concepts. International Journal of
Policy Analysis and Information Systems 4:219-243, 1980.

G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller. Introduction to WordNet: An

On-line Lexical Database, International Journal of Lexicography 3(4):235-244, 1991.

J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific Company, 1989.

J. R. Quinlan and R. L. Rivest. Inferring decision trees using the minimum description length

principle. Information and Computation 80:227–248, 1980.

R. Schalkoff. Pattern Recognition. Wiley & Sons, New York, 1992.

K. Thompson and P. Langley. Concept formation in structured domains. In D.H. Fisher and M.

Pazzani (Eds.), Concept Formation: Knowledge and Experience in Unsupervised
Learning, Morgan Kaufmann Publishers, Inc., pp. 127-161, 1991.

C. S. Wallace and D. M. Boulton. An Information Measure for Classification. Computer Journal

11(2):185-194, 1968.

	Introduction
	Conceptual Clustering
	Graph-Based Structural Knowledge Discovery
	Graph Representation
	Search Algorithm
	Minimum Description Length Principle
	Inexact Graph Match
	Improving the Search Algorithm
	Additional SUBDUE Features

	Hierarchical Conceptual Clustering of Structural Data
	Identifying Clusters
	Creating Hierarchies of Clusters
	First Minimum Heuristic
	Implementation
	Visualization
	Cluster Evaluation Metrics
	Defining Good Hierarchical Clusterings
	A New Metric for Hierarchical Conceptual Clustering

	Results
	Validation in an Artificial Domain
	Comparison to Cobweb
	Application to the Web Domain
	Evaluation
	Self-Diagnostic Evaluation
	Metric-Based Comparison to Cobweb
	Discussion

	Discussion and Conclusions
	Acknowledgements
	References

