
J. Chem. Phys. 144, 234101 (2016); https://doi.org/10.1063/1.4952650 144, 234101

© 2016 Author(s).

Graph-based linear scaling electronic
structure theory
Cite as: J. Chem. Phys. 144, 234101 (2016); https://doi.org/10.1063/1.4952650
Submitted: 24 March 2016 • Accepted: 05 May 2016 • Published Online: 15 June 2016

 Anders M. N. Niklasson, Susan M. Mniszewski, Christian F. A. Negre, et al.

ARTICLES YOU MAY BE INTERESTED IN

CP2K: An electronic structure and molecular dynamics software package - Quickstep:
Efficient and accurate electronic structure calculations
The Journal of Chemical Physics 152, 194103 (2020); https://doi.org/10.1063/5.0007045

DFTB+, a software package for efficient approximate density functional theory based
atomistic simulations
The Journal of Chemical Physics 152, 124101 (2020); https://doi.org/10.1063/1.5143190

A consistent and accurate ab initio parametrization of density functional dispersion
correction (DFT-D) for the 94 elements H-Pu
The Journal of Chemical Physics 132, 154104 (2010); https://doi.org/10.1063/1.3382344

https://images.scitation.org/redirect.spark?MID=176720&plid=1857434&setID=378408&channelID=0&CID=683627&banID=520741325&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=56129c2c6549691b74cdb6aedd7be016bc03f88d&location=
https://doi.org/10.1063/1.4952650
https://doi.org/10.1063/1.4952650
http://orcid.org/0000-0003-1856-4982
https://aip.scitation.org/author/Niklasson%2C+Anders+M+N
https://aip.scitation.org/author/Mniszewski%2C+Susan+M
https://aip.scitation.org/author/Negre%2C+Christian+F+A
https://doi.org/10.1063/1.4952650
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4952650
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.4952650&domain=aip.scitation.org&date_stamp=2016-06-15
https://aip.scitation.org/doi/10.1063/5.0007045
https://aip.scitation.org/doi/10.1063/5.0007045
https://doi.org/10.1063/5.0007045
https://aip.scitation.org/doi/10.1063/1.5143190
https://aip.scitation.org/doi/10.1063/1.5143190
https://doi.org/10.1063/1.5143190
https://aip.scitation.org/doi/10.1063/1.3382344
https://aip.scitation.org/doi/10.1063/1.3382344
https://doi.org/10.1063/1.3382344

THE JOURNAL OF CHEMICAL PHYSICS 144, 234101 (2016)

Graph-based linear scaling electronic structure theory

Anders M. N. Niklasson,1,a) Susan M. Mniszewski,2 Christian F. A. Negre,1

Marc J. Cawkwell,1 Pieter J. Swart,1 Jamal Mohd-Yusof,2 Timothy C. Germann,1

Michael E. Wall,2 Nicolas Bock,1 Emanuel H. Rubensson,3 and Hristo Djidjev2

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos,
New Mexico 87545, USA
3Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337,
SE-751 05 Uppsala, Sweden

(Received 24 March 2016; accepted 5 May 2016; published online 15 June 2016)

We show how graph theory can be combined with quantum theory to calculate the elec-

tronic structure of large complex systems. The graph formalism is general and applicable

to a broad range of electronic structure methods and materials, including challenging sys-

tems such as biomolecules. The methodology combines well-controlled accuracy, low compu-

tational cost, and natural low-communication parallelism. This combination addresses substan-

tial shortcomings of linear scaling electronic structure theory, in particular with respect to

quantum-based molecular dynamics simulations. C 2016 Author(s). All article content, except

where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4952650]

I. INTRODUCTION

The importance of electronic structure theory in materials

science, chemistry, and molecular biology relies on the

development of theoretical methods that provide sufficient

accuracy at a reasonable computational cost. Currently, the

field is dominated by Kohn-Sham density functional theory,1–4

which often combines good theoretical fidelity with a modest

computational workload that is constrained mainly by the

diagonalization of the Kohn-Sham Hamiltonian—an operation

that scales cubically with the system size. However, for

systems beyond a few hundred atoms, the diagonalization be-

comes prohibitively expensive. This bottleneck was removed

with the development of linear scaling electronic structure

theory,5,6 which allows calculations of systems with millions

of atoms.7,8 Unfortunately, the immense promise of linear

scaling electronic structure theory has never been fully realized

because of some significant shortcomings, in particular, (a)

the accuracy is reduced to a level that is often difficult, if not

impossible, to control; (b) the computational pre-factor is high

and the linear scaling benefit occurs only for very large systems

that in practice often are beyond acceptable time limits or

available computer resources; and (c) the parallel performance

is generally challenged by a significant overhead and the wall-

clock time remains high even with massive parallelism. In

quantum-based molecular dynamics simulations,9 all these

problems coalesce and we are constrained either to small

system sizes or short simulation times.

In this paper we propose to overcome these shortcomings

by introducing a formalism based on graph theory10,11

that allows practical and easily parallelizable electronic

structure calculations of large complex systems with well-

a)amn@lanl.gov

controlled accuracy. The graph-based electronic structure

theory combines the natural parallelism of a divide and

conquer approach12–17 with the automatically adaptive and

tunable accuracy of a thresholded sparse matrix algebra,18–31

which can be combined with fast, low pre-factor, recursive

Fermi operator expansion methods32–41 and can be applied

to modern formulations of Born-Oppenheimer molecular

dynamics.42–50

The article is outlined as follows: first we introduce the

graph-based formalism for general sparse matrix polynomials

expanded over separate subgraphs, thereafter we apply the

methodology to the Fermi-operator expansion in electronic

structure theory with demonstrations for a protein-like

structure of polyalanine solvated in water, before analyzing

applications in molecular dynamics simulations. At the end

we give our conclusions.

II. GRAPH-BASED ELECTRONIC
STRUCTURE THEORY

A. Expansions of thresholded sparse
matrix polynomials

Our graph-based electronic structure theory relies on the

equivalence between the calculation of thresholded sparse

matrix polynomials and a graph partitioning approach. Let

P(X) be a Mth-order polynomial of a N × N symmetric

square matrix X that is given as a linear combination of some

basis polynomials T (n)(X),

P(X) =

M

n=0

cnT
(n)(X). (1)

We define an approximation Pτ(X) of P(X) using a globally

thresholded sparse matrix algebra, where matrix elements

0021-9606/2016/144(23)/234101/8 144, 234101-1 © Author(s) 2016.

http://dx.doi.org/10.1063/1.4952650
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
mailto:amn@lanl.gov
mailto:amn@lanl.gov
mailto:amn@lanl.gov
mailto:amn@lanl.gov
mailto:amn@lanl.gov
mailto:amn@lanl.gov
mailto:amn@lanl.gov
mailto:amn@lanl.gov
mailto:amn@lanl.gov
mailto:amn@lanl.gov
mailto:amn@lanl.gov
mailto:amn@lanl.gov
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4952650&domain=pdf&date_stamp=2016-06-15

234101-2 Niklasson et al. J. Chem. Phys. 144, 234101 (2016)

with a magnitude below a numerical threshold τ in all terms,

T (n)(X), are ignored. The pattern of the remaining matrix

entries, which at any point of the expansion have been (or

are expected to be) greater than τ, can be described by a

data dependency graph Sτ that represents all possible data

dependencies between the matrix elements in the polynomial

expansion. Formally, we define the graph Sτ with a vertex for

each row of X and an edge (i, j) between vertices i and j if

{T (n)(X)}i, j ≥ τ for any n ≤ M. (2)

For a matrix A, we denote by ⌊A⌋Sτ the thresholded version

of A, where

�
⌊A⌋Sτ

	
i, j
=

Ai, j if (i, j) is an edge of Sτ

0 otherwise
. (3)

The thresholded polynomial Pτ(X) of P(X) with respect to Sτ
is given by

Pτ(X) =

M

n=0

cnT
(n)

Sτ
(X), (4)

where the thresholded T
(n)

Sτ
(X) can be calculated from a linear

recurrence

T
(n)

Sτ
(X) = αn⌊XT

(n−1)

Sτ
(X)⌋

Sτ
+

n−1

m=0

αmT
(m)

Sτ
(X), (5)

with T
(0)

Sτ
(X) = I. A key observation of this paper is that the

calculation of Pτ(X) in Eqs. (4) and (5) is equivalent to

a partitioned subgraph expansion on Sτ. This approach is

illustrated in Fig. 1. For any vertex i of Sτ, let siτ be the

subgraph of Sτ induced by the core (meaning belonging to a

single subgraph) vertex i and all halo (shared) vertices that

are directly connected to i in Sτ. Then the ith matrix column

of Pτ(X) is given by the thresholded expansion determined by

siτ only, i.e.,

FIG. 1. The data dependency graph Sτ and the subgraphs (si
τ

or sk
τ

), one for

each core vertex (i or k) including all directly connected halo vertices in Sτ.

The full matrix polynomial Pτ(X) is given by an assembly from P(x[si
τ
]) of

the separate dense subgraph contractions x[si
τ
].

{Pτ(X)}:, i =
�
P(x[siτ])

	
:, j
. (6)

Here j is the column (or row) of the polynomial for the

subgraph siτ containing all edges from the core vertex i that

corresponds to column i of the complete matrix polynomial on

the left-hand side. x[siτ] is the small dense principal submatrix

that contains only the entries of X corresponding to siτ. The full

matrix Pτ(X) can then be assembled, column by column, from

the set of smaller dense matrix polynomials P(x[siτ]) for each

vertex i. The calculation of a numerically thresholded matrix

polynomial Pτ(X) thus can be replaced by a sequence of

fully independent small dense matrix polynomial expansions

determined by a graph partitioning.

Equation (6) represents an exact relation between a

globally thresholded sparse matrix algebra and a graph

partitioning approach, which is valid for a general matrix

polynomial P(X), including all terms to any order. An

explicit code example illustrating the equivalence is given

in the supplementary material76 and a more rigorous graph-

theoretical proof will be published elsewhere.61 Several

observations can be made about this equivalence: (i) Pτ(X) is

not symmetric and with the order of the matrix product for

the threshold in Eq. (5) we collect Pτ(X) column by column

in Eq. (6) as illustrated by the directed graph at the bottom

of Fig. 1; (ii) the accuracy of the matrix polynomial increases

(decreases) as the threshold τ is reduced (increased) and the

number of edges of Sτ increases (decreases); (iii) we may thus

include additional edges inSτ without loss of accuracy; (iv) the

polynomial Pτ(X) is zero at all entries outside of Sτ; (v) apart

from spurious cancellations, the non-zero pattern of Pτ(X) is

therefore the same as Sτ and we can expect a numerically

thresholded exact matrix polynomial, ⌊P(X)⌋τ, to have a

non-zero structure similar to Sτ; (vi) the graph partitioning

can be generalized such that each vertex corresponds to a

combined set of vertices, i.e., a community, without loss

of accuracy; (vii) we may reduce the computational cost

by identifying such communities using highly efficient off-

the-shelf graph partitioning schemes that can be tailored

for optimal platform-dependent performance; (viii) the exact

relation given by Eqs. (4)–(6) holds for any structure of Sτ
and is not limited to the threshold in Eq. (2); (ix) the particular

sequence of matrix operations in the calculation of Pτ(X) is of

importance because of the thresholding in Eq. (5), whereas the

order (or grouping) of the matrix multiplications is arbitrary

for the contracted matrix polynomials P(x[siτ]) in Eq. (6);

and (x) the computational cost of each polynomial expansion

is dominated by separate sequences of dense matrix-matrix

multiplication that can be performed independently and in

parallel.

B. Graph-based Fermi-operator expansion

A main point of this paper is that the equivalence between

the calculation of the thresholded sparse matrix polynomial

and the graph partitioned expansion in Eq. (6) provides a

natural framework for a graph-based formulation of linear

scaling electronic structure theory. In Kohn-Sham density

functional theory, the matrix polynomial in Eq. (1) is replaced

by the Fermi-operator expansion3,51,52 where

234101-3 Niklasson et al. J. Chem. Phys. 144, 234101 (2016)

P(H) = D =

eβ(H−µ) + 1

−1
≈

M

n=0

cnT
(n)(H). (7)

Here D is the density matrix, H the Hamiltonian, µ the

chemical potential, and β the inverse temperature. The matrix

functions, T (n)(X), are typically Chebyshev polynomials

constructed by a recurrence equation as in Eq. (5). With a

local basis set, H and P(H) have sparse matrix representations

above some numerical threshold for sufficiently large non-

metallic systems.5,6 The graph-based construction of sparse

matrix polynomials in Eq. (6) can then be applied to the

calculation of the density matrix with the data dependency

graph Sτ estimated from an approximate prior density matrix

that is available in an iterative self-consistent field (SCF)

optimization or from previous time steps in a molecular

dynamics simulation. The computation can be accelerated

with a recursive Fermi-operator expansion.32–37,39–41 In the

zero temperature limit the Fermi function equals the Heaviside

step function θ and a recursive expansion is then given

by D = θ(µI − H) = limn→∞ fn(fn−1(. . . f0(H) . . .)), which

reaches a high expansion order much more rapidly compared

to the serial form in Eq. (1). With fn(X) being 2nd-order

polynomials35 we reach an expansion order of over a billion in

only 30 iterations. The ability to use a fast recursive expansion

is motivated from (ix) above, and since any recursive

expansion also can be written in the general form of Eq. (1).

Once the density matrix D is known, the expectation value of

any operator A is given by ⟨A⟩ = Tr[DA]. Generalizations to

quantum perturbation theory are straightforward.53,54

The Fermi-operator expansion in Eq. (7) is based on an

orthogonal representation of H and P(H). A generalization

for a non-orthogonal expansion, D′ = P′(H ′), where the

prime indicates a non-orthogonal basis set representation,

is in principle straightforward. If Z is the inverse factor

of the basis-set overlap matrix S such that ZTSZ = I, then

D′ = ZP(ZTH Z)ZT . In our numerical test and analysis below,

only orthogonal formulations are considered.

III. NUMERICAL TESTS AND ANALYSIS

A. Macromolecular test system

Figure 2 shows the error per atom in the density matrix of

the band energy, Eband = Tr[DH], calculated with the graph-

based formulation above for a 19 945-atom macromolecular

system of polyalanine solvated in water, Fig. 3 (see

Appendix B). The calculations were performed using self-

consistent charge density functional tight-binding theory55–57

as implemented in the electronic structure program LATTE58

in combination with the recursive second-order spectral

projection (SP2) zero-temperature Fermi-operator expansion

scheme.35 The data dependency graphs, Sτ, were estimated

by thresholding an “exact” density matrix with varying

thresholds, τ. Different numbers of subgraph communities

(512, 1024, or 2048) were chosen and optimized with the

METIS heuristic multilevel graph partitioning package59 for

the different data dependency graphs (one for each threshold)

using the multilevel recursive bisection method. The errors

were determined in comparison to the “exact” density matrix,

FIG. 2. The error in the calculated density matrix (DM) for polyalanine (2593

atoms) in water with a total of 19 945 atoms (in Fig. 3) as measured by the

Frobenius norm (normalized per atom) for partitions with 512, 1024, and

2048 separate communities based on graphs, Sτ, from varying numerical

thresholds τ. The connected symbols (lower part) show the error in band

energy, Eband=Tr[HD], in units of eV per atom.

which was calculated using regular sparse matrix algebra with

a tight threshold of 10−12. The error is fairly insensitive to

the number of graph partitions and is instead controlled by

the value of the threshold that is used to estimate the data

dependency graphs. In contrast, the computational cost varies

significantly with the size of the graph partitions. The cost in

the limit of only one large community, containing the whole

system, or in the opposite limit, with one partition for each

orbital, scales as O(N3) or O(Nm3), respectively, where m

is the average number of edges per vertex in Sτ and N × N

is the size of H . A straightforward graph partitioning may

thus lead to a significant overhead compared to a Fermi-

operator expansion using thresholded sparse matrix algebra,5

which scales as O(Nm2). However, with an optimized graph

partitioning the total cost can be reduced to scale as O(Nm2)

(see Appendix A). A similar optimization can be performed

for divide and conquer methods, but may not be applicable to

FIG. 3. Polyalanine (2593 atoms) solvated in water with a total of 19 945

atoms.

234101-4 Niklasson et al. J. Chem. Phys. 144, 234101 (2016)

inhomogeneous systems.17 Figure 4 shows the timing (12 s, red

dashed line) for a thresholded sparse matrix algebra (SpM Alg)

Fermi-operator expansion with Intel’s MKL sparse matrix

library30 running in parallel on a dual eight-core CPU. With the

graph-based approach (filled circles) using the METIS graph

partitioning (Graph Part.) program for varying numbers of

communities, it is possible to significantly reduce the run time

on the same platform (23 s) compared to, for example, a single

atom-based decomposition. The graph-based formalism also

has the additional advantage of an almost trivial and highly

scalable parallelism as is demonstrated by the run times on 1,

16, or 32 graphics processing units (GPUs) on separate nodes

(open symbols).60 The parallel performance is close to ideal,

reaching a performance of about 25 µs/atom and a subsecond

wall-clock time (0.5 s) on the 32 node GPU platform.

As is demonstrated here, the off-the-shelf graph partition-

ing scheme works very well and drastically reduces the over-

head compared to a straightforward implementation. However,

by adjusting the graph partitioning to the particular require-

ments of the electronic structure calculation as well as the

computational platform, further optimizations are possible.61

B. Molecular dynamics simulation

Linear scaling divide and conquer methods12–17 rely

on an estimated finite range of direct electron interaction,

which can be motivated by the localized character of the

Wannier functions.62–64 This allows a system to be partitioned

into smaller overlapping regions that are solved separately

(apart from long-range electrostatic interactions), within pre-

determined local interaction zones, and then reassembled.

Divide and conquer schemes are naturally parallel and in spirit

similar to our graph-based approach. However, their numerical

accuracy can be difficult to control without careful prior testing

and convergence analysis.6,65,66 An automatic, adjustable error

control is particularly challenging in molecular dynamics

simulations of inhomogeneous materials, where reacting

FIG. 4. The time to calculate the density matrix using the SP2 expansion

(with threshold τ = 10−5) partitioned over different sets of subgraphs for the

solvated polyalanine system (19 945 atoms). The time to calculate the graph

partitioning (about 0.4 s in a serial single node calculation with METIS) is

not included in the run time. In a molecular dynamics simulation the com-

putational overhead from the graph partitioning can be reduced significantly

since, in practice, only in-frequent partial updates are needed.

or floppy molecules and atoms can move across pre-

determined local interaction zones and where transitions

between localized and itinerant electronic states may occur.

Molecular dynamics simulations of inhomogeneous molecular

systems with significant changes in the electronic overlap

are therefore of particular interest when we evaluate our

framework. Furthermore, the precision can be gauged very

sensitively by the accuracy and long-term stability of the total

energy, which is affected by the accuracy in the calculation

of the potential energy surface in each time step and by the

accumulated and integrated error in the forces.

The data dependency graph Sτ(t) can be estimated

from the numerically thresholded density matrix in the

previous molecular dynamics time step, ⌊D(t − δt)⌋τ, and

new Hamiltonian matrix elements, H(t), as the atoms move,

for example, from

Sτ(t)← ⌊(⌊D(t − δt)⌋τ + H(t))2⌋ϵ. (8)

In our molecular dynamics simulation below, we use the

symbolic representation of Sτ(t) in Eq. (8), which is given

from the non-zero pattern of the thresholded density matrix

(with τ = 10−4) combined with the non-zero pattern of

H(t), and instead of the matrix square we use paths of

length two, corresponding to the symbolic operation (ϵ = 0).

This approach that adapts Sτ(t) to each new molecular

dynamics time step by including additional redundant edges

works surprisingly well (see Appendix C), though with the

estimate above, Sτ(t) cannot increase by more than paths of

length two between two molecular dynamics steps. However,

generalizations including longer paths are straightforward and

the similar estimates can also be applied in the iterative SCF

optimization.

Figure 5 shows the fluctuations of the total energy during

a microcanonical molecular dynamics simulation of liquid

water that was performed using LATTE58 and the extended

Lagrangian formulation of Born-Oppenheimer molecular

dynamics.50,67–70 The density matrix was calculated from

a partitioning over separate subgraphs of Sτ(t), with one

water molecule per core. For the Fermi-operator expansion

(at zero temperature) we used the recursive SP2 algorithm.35

In each time step the complete SP2 sequence (the same for

each subgraph expansion) for the correct total occupation is

pre-determined from the HOMO-LUMO gap that is estimated

from the previous time step as in Ref. 41. In this way each full

expansion can be performed independently, without exchange

of information during or between each matrix multiplication

as otherwise would be required.8,28 Communication is reduced

to a minimum and no additional adjustments of the electronic

occupation, as in divide and conquer calculations,14 is

required. The inset of Fig. 5 shows the number of water

molecules of a single subgraph (core + halo) along the

trajectory of an individual molecule, which oscillates as Sτ(t)

adaptively follows the fluctuations in the electronic overlap.

Despite the large oscillations, including between 1 and 25

molecules, the total energy is both accurate and stable. The

“exact” calculation with fully converged density matrices (≥4

SCFs per step) using dense matrix algebra based on full

O(N3) diagonalization, is virtually indistinguishable for the

first 0.5 ps (or 1000 time steps).

234101-5 Niklasson et al. J. Chem. Phys. 144, 234101 (2016)

FIG. 5. The total energy fluctuations in a microcanonical Born-Oppenheimer

molecular dynamics (BOMD) simulation of liquid water (100 molecules,

T ∼ 300 K, δt = 0.5 fs), using graph partitioning and one density matrix (DM)

construction per step vs. SCF optimized BOMD with diagonalization (Diag.).

The inset shows the number of water molecules associated with the subgraph

of an individual molecule. Energy drift is less than ∼0.2 µeV/atom per ps.

Linear scaling molecular dynamics simulations using

divide and conquer or radial truncation approaches often show

systematic energy drifts71–73 that are significantly higher than

regular O(N3) methods9,42,43 and multiple orders of magnitude

larger than the graph-based molecular dynamics simulation

in Fig. 5. Such problems may occur because of difficulties

controlling the error in the force evaluations6,74 as atoms

move across the local zone boundaries and as the electronic

FIG. 6. The convergence of the density matrix error for a snapshot during a

molecular dynamics simulation of the water system in Fig. 5 (100 molecules,

T ∼ 300 K, δt = 0.5 fs) as a function of the computational cost for various

numerical thresholds (τ = 10−1,10−2, . . .,10−6) in the symbolic estimate of

the data-dependency graph in Eq. (8) for the graph-based method, and for

different sizes of the cutoff radius, Rcut, in a divide and conquer approach.

To capture a hypothetical electronic overlap within the red dashed border in

the inset (associated with the data-dependency graph Sτ for the large red

molecule at the center), the cutoff radius needs to be large, which leads to

a significant overhead for the divide and conquer approach. The efficiency

would be similar only for a homogeneous system. The computational cost was

estimated from the sum of the number arithmetic operations (a.o.) required

to calculate the density matrices (∼m3 a.o.) from all the separate subgraph

partitions or divide and conquer regions (given by m×m matrices)—one for

each water molecule.

overlap fluctuates, or because of incomplete SCF optimization

causing a broken time-reversal symmetry.42,75 The problem is

illustrated in Fig. 6, which shows a comparison between a

divide and conquer approach and our graph-based calculation

of the density matrix for a snapshot from a molecular

dynamics simulation of the water system in Fig. 5. Without

the adaptivity of the graph-based method, the divide and

conquer approach needs a large cutoff radius, Rcut, to reach

sufficient convergence in the calculation of the density matrix

for the water system, which leads to a significant overhead.

With the graph-based framework as demonstrated here in

combination with a modern formulation of Born-Oppenheimer

molecular dynamics,42–50 these problems can be avoided.

IV. CONCLUSIONS

In this article we have shown how graph theory can be

combined with quantum theory to calculate the electronic

structure of large complex systems with well-controlled

accuracy. The graph formalism is general and applicable to a

broad range of electronic structure methods and materials, for

which sparse matrix representations can be used, including

molecular dynamics simulations, overcoming significant gaps

in linear scaling electronic structure theory.

ACKNOWLEDGMENTS

We acknowledge support from the Department of

Energy Offices of Basic Energy Sciences (Grant No.

LANL2014E8AN) and the Laboratory Directed Research and

Development program of Los Alamos National Laboratory

(LANL). Generous support and discussions with T. Peery at

the T-division International Java Group are acknowledged.

The research used resources provided by the LANL

Institutional Computing Program. LANL, an affirmative

action/equal opportunity employer, is operated by Los Alamos

National Security, LLC, for the National Nuclear Security

Administration of the U.S. DOE under Contract No. DE-

AC52-06NA25396.

APPENDIX A: O(Nm2) SCALING ESTIMATE
WITH AN OPTIMIZED GRAPH PARTITIONING
FOR THE FERMI-OPERATOR EXPANSION

Figure 7 shows the set of the vertices associated with one

part of the data dependency graph that forms each contracted

dense submatrix in the graph-based Fermi operator expansion.

The inner set of this subgraph belongs to the core part and

the outer set, called halo, contains the vertices not in the core,

but adjacent to at least one core vertex. Each vertex from the

core belongs to exactly one part whereas the halo will overlap

with other subgraphs. We assume a uniform data dependency

graph with m edges connected to each vertex. The total cost

(CGr) of the graph-based Fermi operator expansion of a full

Hamiltonian matrix of dimension N × N , i.e., with a data

dependency graph with a total of N vertices, as measured by

the number of arithmetic operations (one arithmetic operation

= 1 multiplication + 1 addition), can then be estimated by

234101-6 Niklasson et al. J. Chem. Phys. 144, 234101 (2016)

FIG. 7. Illustration of the geometry of a single graph partition. For simplicity,

each part is assumed to have the same parameters p, q, r , and k , where p is

the number of vertices in the core, q is the number of vertices in the halo, r

is the radius of the core, and r +k is the radius of the whole part.

CGr = M
N

p
(p + q)3, (A1)

where M is the number of matrix-matrix multiplications in

the Fermi operator expansion (typically between 20 and 40

multiplications are required). In dimension d (1, 2, or 3) the

relation between the total number of vertices p + q included

within the radius r + k, assuming a uniform distribution of

nodes, is given by

p − 1 + q = cd(r + k)d, (A2)

for some dimensional dependent constant cd, and for the inner

halo we have that

p − 1 = cdrd. (A3)

The 1 is subtracted assuming that a single vertex has no

extension alone with a radius r = 0. In the limit r → 0 the

number of vertices q in the halo is equal to the number of

edges m of each vertex, i.e.,

m = cdkd. (A4)

This means that r = c
−1/d

d
(p − 1)1/d and k = c

−1/d

d
m1/d and

CGr = M
N

p

�
cd(r + k)d

�3

= M
N

p

(

cd(c
−1/d

d
(p − 1)1/d + c

−1/d

d
m1/d)d

)3

= M
N

p

(

c
1/d

d
(c
−1/d

d
(p − 1)1/d + c

−1/d

d
m1/d)

)3d

= M
N

p

�
(p − 1)1/d + m1/d

�3d
. (A5)

We can now determine the optimal size of the core

partitioning from the minima of the arithmetic cost, i.e.,

when dCGr/dp = 0. This leads to the equation

(2p + 1)(p − 1)1/d−1 = m1/d, (A6)

from which we get

m =
(2p + 1)d

(p − 1)d−1
= (2p + 1)

(

2p + 1

p − 1

)d−1

= (2p + 1)

(

2 +
3

p − 1

)d−1

= (2p + 1)

(

2d−1 +
3(d − 1)2d−2

p − 1
+O

(

1

(p − 1)2

))

= 2dp + 2d−1 + 3(d − 1)2d−1 p

p − 1
+O(p−1). (A7)

Hence, for m ≫ 1, the cost is minimized for p

= 2−dm − (3d − 2)/2 +O(m−1), or, approximately, p ≈ 2−dm.

Inserting this approximate value of p we find that

CGr ≈ 2dM
N

m

(

1

2
m1/d + m1/d

)3d

= 2dM
N

m

(

3

2
m1/d

)3d

= 2dM Nm2

(

3

2

)3d

= M Nm2

(

27

4

)d

. (A8)

This optimized cost should be compared to the cost of

using sparse matrix-matrix multiplication (SpM) in the Fermi

operator expansion, which has the estimated cost in terms of

arithmetic operations

CSpM = M Nm2. (A9)

The ratio between these two costs is thus given by

CGr

CSpM

≈

(

27

4

)d

. (A10)

The computational overhead of the graph-based expansion in

terms of the number of arithmetic operations with respect

to a Fermi operator expansion using sparse matrix-matrix

multiplications is thus a factor of about 7, 46, and 308

(d = 1,2,3). The overhead is system size independent and is

governed by the dimensionality of the data dependency graph

as given by Eqs. (A2) and (A3) and the figure. Our estimate

is based on a number of idealized assumptions but illustrates

that the general O(Nm2) scaling behavior of a thresholded

sparse matrix algebra is achievable also with the graph-

based approach. It also highlights an improved efficiency for

quasi low-dimensional problems such as molecular liquids,

polymers, and protein structures. In addition, the ability to

reach close to peak performance using the dense matrix

algebra for the subgraph partitions, combined with an almost

trivial parallelism requiring only a minimal amount of data

transfer, provides a significant advantage and simplification

compared to a sparse matrix algebra techniques.

APPENDIX B: CONSTRUCTION OF POLYALANINE
IN WATER

The test system we used for the analysis is based on a

19 945 atoms system of polyalanine (2593 atoms) in liquid

water as illustrated in Fig. 3. We have chosen alanine because

it is possibly the simplest chiral amino acid which allows for

234101-7 Niklasson et al. J. Chem. Phys. 144, 234101 (2016)

the formation of stable secondary structures. In consequence,

with this simple peptide, we can build models which will

include linear, α-helix, and β-sheet polyalanine secondary

structures introducing extra complexity to the system which

is ultimately desired for testing the graph-based electronic

structure framework. The construction of the model is done

following four systematic steps: (1) Construction of a linear

helix chain; (2) application of an artificial compression along

the principal axis (z axis); (3) an NPT equilibration of 100 ps

in vacuum followed by solvation with water molecules; and

(4) a geometry optimization of the full system. In the first

two steps we used GROMACS version 5.0.4 with the OPLS

force field and in the last two steps we used the self-consistent

charge density functional based tight-binding code LATTE.

The density of the final globular structure is around 0.7 g/ml,

which is a reasonable value for globular proteins.

APPENDIX C: ADAPTIVE ESTIMATE OF THE DATA
CONNECTIVITY GRAPH

The adaptivity of the estimate for the data connectivity

graph in Eq. (8) can be understood from the illustration in

Fig. 8 as two separate subsystems, Da(t − δt) and Db(t − δt),

move closer together and get connected through a Hamiltonian

overlap term, Hab(t). The estimated data dependency graph,

Sab(t), includes paths of length two, i.e., the “double jumps”

indicated by the dashed lines. The connectivity graph, Sab(t),

can then be partitioned into a subgraph from which we can

collect a new density matrix, D(t), which after a numerical

threshold, ⌊D(r)⌋τ, gives a new starting point for the next time

step. This process allows new connections to form and vanish

as the system evolves, which is illustrated by the hypothetical

electronic overlap of ⌊D(r)⌋τ at the bottom of the figure, with

two new connections and one removed.

APPENDIX D: EXPERIMENT
AND ARCHITECTURE DETAILS

All the runs shown in Figs. 2 and 4 used the Moonlight

cluster at LANL (with each node comprised of 2 eight-core

Intel Xeon E5-2670 CPUs running at 2.6 GHz) and 2 Nvidia

FIG. 8. Illustration of the adaptive evolution of the data dependency graph,

Sab(t), between two time steps in a molecular dynamics simulation.

Tesla M2090 GPUs per node. Only 1 GPU per node was

used for the distributed runs shown in Fig. 3 in the main

paper. The software environment included the GNU 4.8.2 C

compiler with OpenMP, the MKL 11.2 matrix algebra library,

and OpenMPI 1.6.5 (for distributed runs). 16 OpenMP threads

were used in all cases. CUDA and the CuBLAS matrix algebra

library were used for the GPU SP2 implementation.

The experimental setup for Fig. 2 was as follows.

Initially, the sparse matrix recursive SP2 Fermi expansion

was run on the polyalanine in water system using threshold,

τ = 10−12. The resulting density matrix was thresholded with

τ = 10−3, 10−4, 10−5, 10−6, 10−7, and 10−8. Those thresholded

graphs were used to generate the METIS graph partitionings

for 512, 1024, and 2048 partitions using the multilevel

recursive bisection scheme (gpmetis-ptype = rb). Runs were

made for each partitioning (512, 1024, 2048) at each threshold

level (10−3 to 10−8). The resulting density matrix in each case

was compared to the density matrix from the SP2 run with

threshold, τ = 10−12. The error in the new calculated density

matrices was measured by the Frobenius norm (normalized

per atom), as well as the error in band energy, Eband = Tr[HD],

per atom. These runs were made on a single node of the

Moonlight cluster.

The experimental setup for Fig. 4 was as follows. Initially,

SP2 Fermi-operator expansion was run on the polyalanine in

water system using threshold, τ = 10−5 using sparse matrix

algebra. The resulting density matrix was used as an estimate

of the data dependency graph Sτ for the generation of METIS

graph partitionings of size 64, 128, 256, 512, 1024, 2048,

and 4096. Graph-based SP2 runs were performed for each

partitioning with dense matrix algebra, i.e. with threshold,

τ = 0. The distributed graph-based runs took advantage of

hybrid parallelism combining the use of MPI, OpenMP, and

GPU parallelism on 1, 16, and 32 CPU-GPU nodes. The

SP2 algorithm using the threshold τ = 10−5 and the MKL

compressed sparse row (CSR) format run on a single node of

the Moonlight cluster is shown for comparison.

The wall-clock time required to calculate the density

matrix using regular sparse matrix algebra with an optimized

shared memory parallelism running on a single CPU node

is reduced by a factor of 133 with the optimized graph

partitioning approach on the 32 node GPU platform. The

(strong-scaling) ability to reach subsecond wall-clock times

in the calculation of the density matrix is critical for many

molecular dynamics simulations that often require hundreds

of thousands of time steps.

1P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
2W. Kohn and L. J. Sham, Phys. Rev. B 140, A1133 (1965).
3R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules

(Oxford University Press, Oxford, 1989).
4R. Dreizler and K. Gross, Density-Functional Theory (Springer Verlag,

Berlin Heidelberg, 1990).
5S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999).
6D. R. Bowler and T. Miyazaki, Rep. Prog. Phys. 75, 036503 (2012).
7D. R. Bowler and T. Miyazaki, J. Phys.: Condens. Matter 22, 074207 (2010).
8J. VandeVondele, U. Borstnik, and J. Hutter, J. Chem. Theory Comput. 8,

3565 (2012).
9D. Marx and J. Hutter, in Modern Methods and Algorithms of Quantum

Chemistry, 2nd ed., edited by J. Grotendorst (John von Neumann Institute

for Computing, Jülich, Germany, 2000).

http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/RevModPhys.71.1085
http://dx.doi.org/10.1088/0034-4885/75/3/036503
http://dx.doi.org/10.1088/0953-8984/22/7/074207
http://dx.doi.org/10.1021/ct200897x

234101-8 Niklasson et al. J. Chem. Phys. 144, 234101 (2016)

10G. Chartrand, Introductory Graph Theory (Dover Publications, New York,

1985).
11J. A. Bondy, Graph Theory (Springer-Verlag, London, 2008).
12W. Yang, Phys. Rev. Lett. 66, 1438 (1991).
13P. D. Walker and P. G. Mezey, J. Am. Chem. Soc. 115, 12423 (1993).
14W. T. Yang and T. S. Lee, J. Chem. Phys. 103, 5674 (1995).
15I. A. Abrikosov, A. M. N. Niklasson, S. I. Simak, B. Johansson, A. V. Ruban,

and H. L. Skriver, Phys. Rev. Lett. 76, 4203 (1996).
16K. Kitaura, E. Ikeo, T. Nakano, and M. Uebayasi, Chem. Phys. Lett. 313,

701 (1999).
17T. Ozaki, Phys. Rev. B 74, 245101 (2006).
18F. G. Gustavson, ACM Trans. Math. Software 4, 250 (1978).
19S. Pissanetzky, Sparse Matrix Technology (Academic Press, London, 1984).
20W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical

Recipies in FORTRAN (Cambridge University Press, Port Chester, NY,

1992).
21Y. Saad, Iterative Methods for Sparse Linear Systems (PWS Publishing,

Boston, 1996).
22M. Challacombe, Comput. Phys. Commun. 128, 93 (2000).
23E. H. Rubensson, E. Rudberg, and P. Salek, J. Comput. Chem. 28, 2531

(2007).
24E. H. Rubensson, E. Rudberg, and P. Salek, J. Chem. Phys. 128, 74109

(2008).
25A. Buluc and J. R. Gilbert, SIAM J. Sci. Comput. 34, 170 (2012).
26U. Borstnik, J. VandeVondele, V. Weber, and J. Hutter, Parallel Comput. 40,

47 (2014).
27N. Bock, M. Challacombe, and L. V. Kale, SIAM J. Sci. Comput. 38,

C1–C21 (2016).
28V. Weber, T. Latino, A. Pozdeev, I. Feduova, and A. Curioni, J. Chem. Theory

Comput. 11, 3145 (2015).
29S. M. Mniszewski, M. J. Cawkwell, M. E. Wall, J. Mohd-Yusof, N. Bock, T.

C. Germann, and A. M. N. Niklasson, J. Chem. Theory Comput. 11, 4644

(2015).
30Intel MKL, Intel Math Kernel Library, 2015, https://software.intel.com/en-

us/intel-mkl.
31NVIDIA cuSPARSE, 2014, https://developer.nvidia.com/cusparse.
32R. McWeeny, Proc. R. Soc. London, Ser. A 235, 496 (1956).
33A. H. R. Palser and D. E. Manolopoulos, Phys. Rev. B 58, 12704 (1998).
34A. Holas, Chem. Phys. Lett. 340, 552 (2001).
35A. M. N. Niklasson, Phys. Rev. B 66, 155115 (2002).
36A. M. N. Niklasson, Phys. Rev. B 68, 233104 (2003).
37W. Z. Liang, C. Saravanan, Y. Shao, R. Baer, A. T. Bell, and M. Head-

Gordon, J. Chem. Phys. 119, 4117 (2003).
38E. Rudberg and E. H. Rubensson, J. Phys.: Condens. Matter 23, 075502

(2011).
39E. H. Rubensson, J. Chem. Theory Comput. 7, 1233 (2011).
40P. Suryanarayana, Chem. Phys. Lett. 555, 291 (2013).
41E. H. Rubensson and A. M. N. Niklasson, SIAM J. Sci. Comput. 36, 148

(2014).
42P. Pulay and G. Fogarasi, Chem. Phys. Lett. 386, 272 (2004).
43J. Herbert and M. Head-Gordon, Phys. Chem. Chem. Phys. 7, 3269 (2005).
44A. M. N. Niklasson, C. J. Tymczak, and M. Challacombe, Phys. Rev. Lett.

97, 123001 (2006).

45T. D. Kühne, M. Krack, F. R. Mohamed, and M. Parrinello, Phys. Rev. Lett.

98, 066401 (2007).
46G. Zheng, A. M. N. Niklasson, and M. Karplus, J. Chem. Phys. 135, 044122

(2011).
47J. Hutter, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 604 (2012).
48L. Lin, J. Lu, and S. Shao, Entropy 16, 110 (2014).
49M. Arita, D. R. Bowler, and T. Miyazaki, J. Chem. Theory Comput. 10, 5419

(2014).
50A. M. N. Niklasson and M. Cawkwell, J. Chem. Phys. 141, 164123

(2014).
51S. Goedecker and L. Colombo, Phys. Rev. Lett. 73, 122 (1994).
52R. N. Silver and H. Roder, Int. J. Mod. Phys. C 5, 735 (1994).
53A. M. N. Niklasson and M. Challacombe, Phys. Rev. Lett. 92, 193001

(2004).
54V. Weber, A. M. N. Niklasson, and M. Challacombe, Phys. Rev. Lett. 92,

193002 (2004).
55M. Elstner, D. Poresag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim,

S. Suhai, and G. Seifert, Phys. Rev. B 58, 7260 (1998).
56M. W. Finnis, A. T. Paxton, M. Methfessel, and M. van Schilfgarde, Phys.

Rev. Lett. 81, 5149 (1998).
57T. Frauenheim, G. Seifert, M. E. Z. Hajnal, G. Jungnickel, D. Poresag, S.

Suhai, and R. Scholz, Phys. Status Solidi 217, 41 (2000).
58M. J. Cawkwell and A. M. N. Niklasson, J. Chem. Phys. 137, 134105

(2012).
59G. Karypis and V. Kumar, SIAM J. Sci. Comput. 20, 359 (1999).
60NVIDIA cuBLAS, 2014, https://developer.nvidia.com/cuBLAS.
61H. N. Djidjev, G. Hahn, S. M. N. Mniszewski, C. F. A. Negre, A. M. N.

Niklasson, and V. B. Sardeshmukh, “Graph partitioning methods for fast

parallel quantum molecular dynamics,” e-print arXiv:1605.01118 [quant-

ph] (2016).
62W. Kohn, Phys. Rev. Lett. 76, 3168 (1996).
63W. Kohn, Phys. Rev. A 133, A171 (1964).
64N. F. Mott, Philos. Mag. 6, 278 (1961).
65T. S. Lee, D. M. York, and W. Yang, J. Chem. Phys. 105, 2744 (1996).
66D. M. York, T. S. Lee, and W. Yang, Phys. Rev. Lett. 80, 5011 (1998).
67A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008).
68P. Steneteg, I. A. Abrikosov, V. Weber, and A. M. N. Niklasson, Phys.

Rev. B 82, 075110 (2010).
69P. Souvatzis and A. M. N. Niklasson, J. Chem. Phys. 140, 044117 (2014).
70B. Aradi, A. M. N. Niklasson, and T. Frauenheim, J. Chem. Theory Comput.

11, 3357 (2015).
71F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashista, Phys. Rev. B 77, 085103

(2008).
72E. Tsuchida, J. Phys.: Condens. Matter 20, 294212 (2008).
73F. Shimojo, S. Hattori, R. K. Kalia, M. Kusaneth, W. W. Mou, A. Nakano,

K. Nomura, S. Ohmura, P. Rajak, K. Shimamura, and P. Vashista, J. Chem.

Phys. 140, 18529 (2014).
74M. Kobayashi, T. Kunisada, T. Akama, D. Sakura, and H. Nakai, J. Chem.

Phys. 134, 034105 (2011).
75D. K. Remler and P. A. Madden, Mol. Phys. 70, 921 (1990).
76See supplementary material at http://dx.doi.org/10.1063/1.4952650 for

pseudo code that demonstrates the exact relation between a globally

thresholded sparse matrix algebra and a graph partitioning approach.

http://dx.doi.org/10.1103/PhysRevLett.66.1438
http://dx.doi.org/10.1021/ja00079a025
http://dx.doi.org/10.1063/1.470549
http://dx.doi.org/10.1103/PhysRevLett.76.4203
http://dx.doi.org/10.1016/S0009-2614(99)00874-X
http://dx.doi.org/10.1103/PhysRevB.74.245101
http://dx.doi.org/10.1145/355791.355796
http://dx.doi.org/10.1016/S0010-4655(00)00074-6
http://dx.doi.org/10.1002/jcc.20691
http://dx.doi.org/10.1063/1.2840354
http://dx.doi.org/10.1137/110848244
http://dx.doi.org/10.1016/j.parco.2014.03.012
http://dx.doi.org/10.1137/140974602
http://dx.doi.org/10.1021/acs.jctc.5b00382
http://dx.doi.org/10.1021/acs.jctc.5b00382
http://dx.doi.org/10.1021/acs.jctc.5b00552
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
http://dx.doi.org/10.1098/rspa.1956.0100
http://dx.doi.org/10.1103/PhysRevB.58.12704
http://dx.doi.org/10.1016/S0009-2614(01)00409-2
http://dx.doi.org/10.1103/PhysRevB.66.155115
http://dx.doi.org/10.1103/PhysRevB.68.233104
http://dx.doi.org/10.1063/1.1590632
http://dx.doi.org/10.1088/0953-8984/23/7/075502
http://dx.doi.org/10.1021/ct2001705
http://dx.doi.org/10.1016/j.cplett.2012.10.090
http://dx.doi.org/10.1137/130911585
http://dx.doi.org/10.1016/j.cplett.2004.01.069
http://dx.doi.org/10.1039/b509494a
http://dx.doi.org/10.1103/PhysRevLett.97.123001
http://dx.doi.org/10.1103/PhysRevLett.98.066401
http://dx.doi.org/10.1063/1.3605303
http://dx.doi.org/10.1002/wcms.90
http://dx.doi.org/10.3390/e16010110
http://dx.doi.org/10.1021/ct500847y
http://dx.doi.org/10.1063/1.4898803
http://dx.doi.org/10.1103/PhysRevLett.73.122
http://dx.doi.org/10.1142/S0129183194000842
http://dx.doi.org/10.1103/PhysRevLett.92.193001
http://dx.doi.org/10.1103/PhysRevLett.92.193002
http://dx.doi.org/10.1103/PhysRevB.58.7260
http://dx.doi.org/10.1103/PhysRevLett.81.5149
http://dx.doi.org/10.1103/PhysRevLett.81.5149
http://dx.doi.org/10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO;2-V
http://dx.doi.org/10.1063/1.4755991
http://dx.doi.org/10.1137/S1064827595287997
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
http://arxiv.org/abs/1605.01118
http://arxiv.org/abs/1605.01118
http://arxiv.org/abs/1605.01118
http://arxiv.org/abs/1605.01118
http://arxiv.org/abs/1605.01118
http://arxiv.org/abs/1605.01118
http://arxiv.org/abs/1605.01118
http://arxiv.org/abs/1605.01118
http://arxiv.org/abs/1605.01118
http://arxiv.org/abs/1605.01118
http://arxiv.org/abs/1605.01118
http://arxiv.org/abs/1605.01118
http://arxiv.org/abs/1605.01118
http://arxiv.org/abs/1605.01118
http://arxiv.org/abs/1605.01118
http://arxiv.org/abs/1605.01118
http://dx.doi.org/10.1103/PhysRevLett.76.3168
http://dx.doi.org/10.1103/PhysRev.133.A171
http://dx.doi.org/10.1080/14786436108243318
http://dx.doi.org/10.1063/1.472136
http://dx.doi.org/10.1103/PhysRevLett.80.5011
http://dx.doi.org/10.1103/PhysRevLett.100.123004
http://dx.doi.org/10.1103/PhysRevB.82.075110
http://dx.doi.org/10.1103/PhysRevB.82.075110
http://dx.doi.org/10.1063/1.4862907
http://dx.doi.org/10.1021/acs.jctc.5b00324
http://dx.doi.org/10.1103/PhysRevB.77.085103
http://dx.doi.org/10.1088/0953-8984/20/29/294212
http://dx.doi.org/10.1063/1.4869342
http://dx.doi.org/10.1063/1.4869342
http://dx.doi.org/10.1063/1.3524337
http://dx.doi.org/10.1063/1.3524337
http://dx.doi.org/10.1080/00268979000101451
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650
http://dx.doi.org/10.1063/1.4952650

