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ABSTRACT The understanding of circuit diagram is very important for the study of electrical engineering.

Existing circuit diagram simulation tools are mostly based on GUI interface and rely on users to click

or drag icons with mouse, which requires them to be familiar with the software and distracts a great

deal of their attention from the circuit diagram itself. Although a lot of previous works have devoted to

designing algorithmic solution to recognize hand-drawn circuit diagrams automatically, there still exists

strict constraints on users’ drawing habits and stroke orders. In order to address these inconveniences,

this paper proposes a novel sketch recognition algorithm named LS4D. It uses graph to model the input

strokes and their relationships, and leverages cycles by local strokes to detect some circuit components.

Theoretical derivations have demonstrated that LS4D can efficiently recognize diagrams with different

drawing styles and arbitrary stroke orders. To furthermore illustrate the practical value of the proposed

approach, we construct a prototype of pen-based circuit diagram system based on LS4D, which enables

users to draw circuit diagrams directly on the digital screen without any other restriction. An experiment

of 158 samples collected from 17 users is conducted on the designed platform. Our approach has achieved

93.04% recognition accuracy and overall 4.53 from a 5-scale user satisfaction rating, which outperforms

previous state-of-the-art methods numerically. It is shown that the same approach can also be generalized

to many other sketch recognition applications with minor modifications. To facilitate future researches

and applications, we publish our source code, model, and training data at https://github.com/Huage001/

Graph-Based-Circuit-Painter.

INDEX TERMS Pen Interaction, Graph, Circuit Sketch Recognition

I. INTRODUCTION

Circuit diagram is the basis and difficulty of electricity in

physics and engineering. With modern technologies, circuit

diagrams can be simulated on screens with users operating

positions and relationships of a series of components. Users

especially students can get the visualized results from such

simulators and understand electrical rules and laws gradually

with the assistance of interactive programs, which also bene-

fits teaching in education. A circuit simulation system should

be user-friendly, i.e., users can input to the system conve-

niently, and understandable enough for users to learn the

internal electrical principles. At present, most existing public

circuit simulation systems require users to drag components

to proper positions with mouse, e.g., [1]. This approach is

easy to design yet relatively complex and tedious for users

since these operations can distract user’s attention from the

circuit diagram itself significantly and fail to provide an

immersive drawing and learning environment. Therefore, this

paper designs a pen-interaction circuit diagram recognition

and analysis prototype system. It allows users to draw circuit

diagrams on a tablet and is as convenient as drawing on paper.

In circuit sketch recognition task, a core issue is to conduct

stroke grouping or segmentation, i.e., to tell which strokes

belong to a specific circuit component. Due to the lack of

visual nervous system like human brain, it is not as easy

as it sounds for computers. There are a number of works

focusing on this direction. However, all these methods have

strict restrictions on stroke orders. For example, Gennari

et al. [2] proposed to enumerate different stroke combina-

tions with some heuristic pruning strategies. Nevertheless,

to ensure the time complexity over the number of strokes

is not exponential, they had to make a constraint that all

the circuit components must be drawn one by one without

interspersing (e.g., drawing a stroke for one component, then

turning to another component, and finally going back to

finish the previous component). Methods like [3], [4] and
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[5] achieve stroke segmentation by training and inference

schema with dynamic Bayes networks, i.e., learning from

prior knowledge about how a specific component was drawn.

On one hand, it is inconvenient to build a proper database for

stroke segmentation training. On the other hand, it is hard to

ensure that the model works for all possible stroke orders,

especially when it comes across a case that it has never seen

in training stage. Some recent deep learning methods like

[6], [7], [8], and [9], which perform well on image object

detection and semantic segmentation tasks, are not suitable

for this scenario since they need even larger labeled datasets

to train a reliable deep neural network and it is hard to

guarantee that the model can deal with people’s different

drawing habits.

This work aims at handling sketches drawn with all pos-

sible stroke orders. Focusing on spacial information of in-

put strokes, we use graph models to represent users’ input

sketches. And then local cycles in graphs are utilized to

detect and localize circuit components as well as analyze

their connection relationships. Since temporal orders or time

information of strokes is not taken into consideration, it is

shown that our algorithm is not sensitive to stroke orders or

drawing habits. Meanwhile, a pen-interaction circuit recogni-

tion and analysis system is developed based on the proposed

model and algorithm. Theoretical guarantee and experiments

have shown that our algorithm and system are efficient as

well as stable.

This paper has mainly three contributions:

1 proposes an efficient representation model and algo-

rithm for circuit recognition task supporting arbitrary

stroke orders;

2 designs a complete, stable, and satisfying prototype sys-

tem to validate the superiority of the algorithm, which

can be applied to circuit diagram teaching and learning;

3 makes up for the deficiencies of open-source code and

datasets in the areas of sketch recognition and circuit

component classification.

The following parts will be organized as follows: section

II introduces some related works about this paper; section

III elaborates core models and methods proposed for circuit

sketch recognition task; section IV gives theoretical analysis

to the correctness and time complexity to our main algorithm;

system architecture, implementing details, and our experi-

mental study, which are used to verify the efficiency of our

algorithms in practice, are shown in section V; and section

VI concludes this paper and introduces some future works.

II. RELATED WORKS

Circuit sketch recognition is not a new research topic since

decades ago. Nevertheless, each previous approach has its

own limitations.

Firstly, there are some arts operating sketch image directly

and using pixel information to analyze connection relation-

ships between components. For instance, Edwards et al. [10]

took advantage of the concept of ink density (density of

painted pixels) to identify the occurence of components and

connecting points. When the ink density is larger than a

pre-defined threshold, it is assumed that there is a circuit

component or connecting structure in this area. Similar ideas

were also adopted in [11], [12], and [5]. One major concern

of these methods is that they require a completed sketch

image and is weak to recognize the circuit online. Besides,

since the diversity of sketch drawing habits, such ink density

strategy is not robust enough to handle irregularly drawn

sketches, e.g., with some mistakenly touching noises. In

addition to ink diversity, Gennari L et al. [2] also combined

the geometric features of the image and domain knowledge

to explain circuit sketches. However, their approach fails to

make full use of spacial features of sketch, but relies on enu-

merating all possible time-continuous stroke combinations as

first-hand candidates inflexibly. De Silva et al. [13] used this

approach to build a circuit educational system that enables

students to write circuit equations and compare the answers

with those given from the system analysis results. Their work

also remains the same concerns mentioned above.

There are also works dealing with online sketches. For

this representation, a key issue is to sort input strokes into

their belonged components or specify which component each

stroke belongs to. In early stage, this classification was con-

trolled by users manually. For example, Fonseca et al. [14]

divided strokes by pause, i.e., if the user pauses for a certain

time interval before drawing next stroke, the previous strokes

would belong to a component and next strokes would belong

to another. Liwicki et al. [15] extracted independent circuit

components by switching modes. These methods can cer-

tainly work yet not flexible and user-friendly enough, since

they highly rely on cooperation of users.

Many studies have proposed automated solutions to this

inconvenience. Valois et al. [16] completed the identifica-

tion and beautification of hand-drawn circuit diagrams by

extracting the structure and topological relationship of the

images. Their approach views the stroke group that has the

highest recognition (classification) confidence value as a true

grouping or segmentation result, which high relies on the

performance of circuit symbol classifier, and is hard to deal

with the inaccuracy of sketches [17], since some minor shifts

can result in fluctuation of the confidence value. Dreijer

et al. [18] proposed a novel normalization process to make it

easier to recognize components; Alvarado et al. [3] utilized

Bayes nets to infer the relationships between each strokes

according to stroke temporal information. However, in these

methods, users are not allowed to draw other parts of a circuit

diagram before finishing the current component, which is not

always the case actually. Besides, they require developers to

collect and label a number of training samples before the

system is ready to work. Latter on, Sezgin et al. [4] extended

the probability graph model [3] to support interspersed

drawings. Nevertheless, similar to [5], it is still influenced

by stroke order to a large extend, since it is a learning-based

approach and it is difficult to get a stroke order that never

appears in the training set right.

Feng et al. [17] used two-dimensional dynamic program-
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Works
Main Model
or Algorithm

Information
Relied on

Supervised
Training1 Online

Edwards
et al. [10]

Ink Density Ink Density No No

Gennari L
et al. [2]

Enumerate
with Pruning

Temporal and
Spacial Order

No No

Fonseca
et al. [14]

Pause-Based
Segmentation

Temporal
Order

No Yes

Liwicki
et al. [15]

Mode-Based
Segmentation

Temporal
Order

No Yes

Valois
et al. [16]

Highest
Confidence

Value

Temporal and
Spacial Order

No Yes

Alvarado
et al. [3]

Dynamic
Bayes

Network

Temporal
Order

Yes Yes

Sezgin
et al. [4]

Dynamic
Bayes

Network

Temporal
Order

Yes Yes

Altun
et al. [5]

Dynamic
Bayes

Network

Temporal
Order

Yes Yes

Feng
et al. [17]

2-D Dynamic
Programming

Spacial Order No Yes

Ours Graph Model Spacial Order No Yes

TABLE 1. Summary of related works.

ming to store the information of each state of each stage

of the user’s drawing of the circuit diagram to identify the

circuit diagram and took spacial information into considera-

tion. This method relaxes stroke order restriction for users by

considering temporal and spacial information of input strokes

at the same time. However, to reduce search space, they have

to set a upper bound that controls the maximal number of

interspersed strokes, i.e., when there are more strokes than

this threshold between two strokes that belong to a same

component, the algorithm would discard it and result in a

recognition failure. In addition, in terms of running time, it

takes nearly one minute to process a regular circuit diagram.

There is a intuitive summary of these previous works as

well as this work in Tab.1. Different from previous works,

this paper proposes an O(n) algorithm, where n is the total

number of strokes. It can support arbitrary stroke order as

well as accurately detect and extract sketch circuit compo-

nents with a novel graph model. Furthermore, we also build

a prototype system that benefits teaching and learning for

electrical knowledge. It is shown that our method can be

applied to other fields with minor changes.

III. METHODS

This section presents the core model and algorithm used in

circuit sketch recognition task in this paper. We use graph to

model users’ input strokes and it runs in an online scenario.

Each stroke is represented as a vertex in the graph. There

would be an edge between two vertices if and only if their

corresponding strokes come into contact with each other, i.e.,
there is a common pixel on one of strokes’ endpoint on the

screen. One advantage of using such graph model is that it

1Here the supervised training refers to whether it uses a training-and-
inference manner for stroke segmentation or grouping, instead of circuit
component classification.
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FIGURE 1. We model users’ input strokes with graph. Left: user’s

sketch. Right: the corresponding graph model.

Component Sketch Component Sketch

Light Bulb Ammeter

Motor Voltmeter

Resistor Diode

Buzzer Transistor

Power Supply Capacitor

TABLE 2. Circuit component samples used in this paper.

is an abstract representation and immune to users’ different

sketch habits geometrically. As shown in Fig.1, every stroke

in the left part corresponds to its own unique vertex in the

right part, which is similar to the concept of dual graph.

It is worth noting that edge set of our graph model should

be a multi-set since there can be more than one contacting

point between two strokes, as shown in strokes 6 and 7 in

Fig.1. In addition, we allow a stroke contacts with itself

to form a selfloop in graph. As stroke 4 in Fig.1, the user

sketches the border of the ammeter with only one stroke,

with adjacent start point and end point forming a selfloop.

Therefore, simple graph is not powerful enough to model our

problem, so we use a more general graph with multiple edges

and selfloops allowed.

With this graph model, we propose our main algo-

rithm: Locality-Sensitive Special Sketch Symbol Detection

(LS4D). Our algorithm is designed based on following ob-

servations: most of circuit component symbols are equipped

with a closed border, as shown in Tab.2 and [19], which are

represented by cycles in graph models. Besides, strokes that

form circuit components usually have closed connections in

local spacial areas, which means that it is sufficient to only

take strokes in the same local area into consideration. Ac-

cording to these two characteristics, we develop an algorithm

that is good at detecting symbols with closed borders and

name it Locality-Sensitive Special Sketch Symbol Detection

(LS4D). The main algorithm is shown in Algorithm 1, where

s is new input stroke, G denotes the graph model mentioned

in previous sections, V and E denote vertex and edge set

of G respectively, S denotes previous stroke set, C denotes

the set of cycles formed previously, mark means the kind

of component a stroke belongs to, and deg means degree of

a vertex. We firstly introduce the general LS4D algorithm,
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Algorithm 1 General LS4D

Require: New stroke s; Graph model G < V,E >;

Previous stroke set S; Previous cycle set C.

1: Segment s into sub-strokes sn+1,sn+2,...,sn+m;

2: for p = 1 to m do

3: mark(sn+p) = −1;

4: Update S and G with above modeling methods;

5: if ∃c ∈ C, satisfies sn+p ⊑ c then

6: c = c ∪ {sn+p};

7: else

8: SL , {si|di,n+p ≤ loc};

9: SL = SL − {si|marked(si) 6= −1};

10: VL = {i|si ∈ SL};

11: GL = G[VL];
12: c = {si|∃j ∈ VL, ei,j /∈ cut[GL]};

13: if c 6= ∅ then

14: c = c ∪ {si|si ⊑ c};

15: C = C ∪ {c};

16: end if

17: end if

18: r , classifier(c’s corresponding image);

19: mark(si) = r, ∀si ∈ c;
20: end for

which works for all sketch symbols (e.g., symbols in circuit

or flow chart sketch) with a closed border. Then to illustrate

the effectiveness of LS4D, we adopt circuit sketch recogni-

tion task as an example and apply the general algorithm with

some minor adjustments.

A. GENERAL LS
4
D

Firstly, we adopt a stroke segmentation step to process the

new stroke in line 1 of Algorithm 1. In this step, we use both

degree of the new stroke’s corresponding vertex and cycle

borders as indicators to divide the stroke. To be specific, as

soon as user paints the first pixel, a new vertex would be

allocated for this new stroke. Then we keep tracking user’s

nib. If it bumps into a stroke on a closed border, we would

do segmentation here and start a new sub-stroke with a new

vertex. It is worth noting that when a stroke collides to strokes

other than this type, the algorithm would ignore it except that

it happens on an endpoint of the new stroke or an existing

stroke, to handle some crossing but non-joined wires. This

kind of strategy makes crossing but not connected wires

possible. In the segmentation process, when degree of the

new stroke goes up to 2, the algorithm would also start a new

sub-stroke, i.e., the degree of vertex corresponding to a new

sub-stroke is at most 2. It makes sure that the algorithm would

not miss any required cycle, which is helpful to extract and

analyze all the cycles one by one. Afterwards, we will focus

on each sub-stroke, whose mark is −1 initially.

Based on the common feature of our target symbols, i.e.,
a closed border, a natural idea is to divide the algorithm into

two main branches to deal with the two cases respectively:

the new stroke falls in a previously detected cycle and it is

not in any cycle, corresponding to the condition statement

in line 5 of Algorithm 1. We use notation ⊑ to indicate

that a stroke falls in a closed border. Obviously, if a new

stroke is in a cycle, it needs to send all strokes in this cycle

(including the cycle itself) into the classifier module. Even

though some of the strokes have already been classified, we

have to send some marked strokes into classifier again to

ensure correctness of final classification results, since the

content in it has changed. See line 6 of Algorithm 1.

On the other hand, if the new stroke is not in any cycle, the

algorithm would find its nearby strokes, whose correspond-

ing vertices have a relatively short distance to the new vertex

in the graph model, as shown in line 8 of Algorithm 1. Here

we introduce a hyper parameter loc to indicate the locality

sensitivity of the algorithm. Only vertices with a distance

no more than loc to the new one are taken into account.

Therefore, a higher loc means a weaker locality sensitivity.

If there is a need to consider those strokes that are relatively

far from the new one, loc should be higher. At the same time,

the algorithm will consider less local information and more

global information.

Since this branch satisfies the condition that the new

stroke does not in any existing cycle, those marked strokes

should not influence the segmentation and analysis of fol-

lowing strokes. Therefore, we do not take marked strokes

into consideration and delete them from SL in line 9 of

Algorithm 1. We then extract the induced subgraph GL for

SL’s corresponding vertex set VL in the current graph model

G. After this step, the algorithm would detect the target

symbols only in this subgraph GL instead of the global

graph, which reflects the local sensitivity of our algorithm.

Subsequently, taking advantage of the closed border, we only

need to examine whether there is a cycle in GL. When a cycle

is found, the algorithm can separate out the border strokes of

target sketch symbols, and thus complete the detection tasks.

In line 12 of Algorithm 1, the algorithm would find the cut-

edge of GL, which is equal to finding a cycle as shown by the

following theorem [20].

Theorem 1. An edge is a cut-edge if and only if it is not

contained in any cycle.

Considering that some users may draw the inner-frame

content of a symbol at first and the border afterwards, in line

14 of Algorithm 1, we also add strokes which are enclosed

in the extracted border, i.e., the corresponding strokes of the

cycle.

Finally, we send the final settled stroke set c’s correspond-

ing image into the classifier and mark these strokes with the

classification result. Note that if the confidence level made by

the classifier is not high enough, the system would view it as

a negative sample. In this case, the classifier would return −1
as result. This mechanism prevents some meaningless circles

and noise strokes to a large extend. At this time, the algorithm

would process next sub-stroke. Upon all the sub-strokes are

finished, the system would get ready to receive next input

stroke.
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FIGURE 2. Effect of the rectangular closure.

Our algorithm has solid theoretical guarantees. Firstly,

LS4D can detect all the cycles meeting the requirements

without omission, i.e., the recall rate is 100%, as given in

the following theorem:

Theorem 2. LS4D can detect all the cycles with length no

more than 2× loc+ 1.

Secondly, LS4D can detect all the expected symbols with-

out any error report, i.e., the precision is 100%. Detailed

proof of above theorem and conclusion can be found in the

next section.

B. FINE-TUNED LS
4
D FOR CIRCUIT SKETCH

Under the scenario of circuit sketch, according to our ob-

servation and user study, users tend to use relatively less

strokes to finish drawing a symbol since borders of circuit

symbols are relatively simple. From this point of view, we

adjust the local sensitivity of the algorithm to the maximum,

i.e., set loc = 1. In other words, we only take those strokes

that directly adjacent to the new stroke into consideration.

Then the time complexity of the key operation of LS4D for

each sub-stroke is O(1) and total time complexity is O(|S|),
which outperforms previous state-of-the-art techniques [2]

[3] [4] [17]. Detailed analysis of time complexity can be

found in the appendix section. Since the degree of a new

input sub-stroke’s corresponding vertex is at most 2, the

algorithm can only find cycles with length no more than 3.

Unfortunately, through our survey, some users still prefer to

draw a resistor with 4 strokes, corresponding to the left, up,

right, and bottom borders respectively. In this case, the basic

LS4D algorithm would fail to detect this kind of resistor,

as shown in Fig.2(a). Therefore, we introduce the concept of

rectangular closure and utilize it to fine-tune the basic LS4D
algorithm to solve this problem. To calculate the rectangular

closure of a set of strokes, firstly, we need to find the smallest

rectangle which can enclose all the strokes in the set, i.e.,
the boundary coordinates of the rectangle is the maximum

and minimum values of the strokes in the set on axes x and

y (xmax, xmin, ymax, and ymin). Subsequently, we find all

the strokes that are in the rectangle calculated in the last

step. The set of these strokes is the rectangular closure of the

original stroke set. In other words, we expand the original SL

through a rectangular rule and use expanded SL instead of the

original one for the following steps. Formally, the following

two rectangular closure calculation steps are inserted after

line 8 of Algorithm 1 to obtain fine-tuned LS4D:

R , min{Rect|∀si ∈ SL, si ⊑ Rect}, (1)

SL = {si|si ∈ R}. (2)

As shown in Fig.2(b), the problem can be solved efficiently

after we use the rectangular closure.

C. DISCUSSION

LS4D is the core algorithm utilized to detect all the circuit

symbols with a closed border in this paper. It does not

need any labeled training data to perform the detection task.

From this perspective, it is an unsupervised sketch object

detection algorithm based on spacial information. Therefore,

it can also be generalized to other detection and recognition

scenarios concerning with sketches. For example, LS4D can

be applied to recognition of other type of sketches, such

as flow charts and UML diagrams, with little modification.

More generally, it is functional in a lot of computer-aid

design (CAD) topics like sketch coloring based information

extracted by the algorithm.

IV. THEORETICAL ANALYSIS

In this section, we supplement some materials to demon-

strate the correctness of our main algorithm, i.e., Graph-

based LS4D, from a theoretical point of view. And then, we

analyze the time complexity of key steps for the algorithm.

Thus, it is shown that our algorithm can complete the tasks

efficiently with correctness.

A. PROOF OF ALGORITHM CORRECTNESS

1) Proof of Theorem 2 :

Proof. We use mathematical induction to prove that there is

not any cycle with length no more than 2 × loc + 1 at any

time step.

Initially, it is obvious that when there is only one stroke or

one vertex, the theorem is true. Assume that the conclusion

is true for all n > 1, where n denotes the size of vertex set

of graph G < V,E >, i.e., |V |. Suppose the algorithm is

currently ready to process n+1th sub-stroke s (here we only

consider stroke that does not in any existing cycle) and the

corresponding vertex is v.

Since we only consider those strokes with mark = −1, we

can temporarily delete those vertices whose corresponding

strokes do not satisfy this property and get the induced

subgraph G′. Determined by the operation of LS4D, we

send strokes whose corresponding vertexes are on a cycle to

classifier. According to the inductive hypothesis, there is no

cycle with length no more than 2 × loc + 1 in G. As G′ is a

sub-graph of G, this hypothesis also applies to G′. Therefore,

all the edges are either cutting edges, or on one or more cycles

with length more than 2× loc+ 1 in graph G′.

Besides, due to our stroke segmentation method and pre-

treatment operation on the stroke, the degree of a new sub-

stroke’s corresponding vertex is at most 2, i.e., deg(v) ≤ 2.
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Obviously when deg(v) = 1 or deg(v) = 0, the new vertex is

certainly not on any cycle so the inductive hypothesis is still

true in these two cases. Therefore, if there are cycles with

length no more than 2× loc+1 in graph G′+ v, these cycles

must contain vertex v at the same time and deg(v) = 2. The

algorithm would consider vertices whose distance to the new

vertex is at most loc so as long as the length of a cycle is no

more than 2×loc+1, it would be sent to the classifier and get

marked. In this way, the new vertex must be marked and there

are less vertices that remain unmarked. Then the induced

graph derived by these unmarked graph G′′ is a subgraph of

G′.

Since there is no cycle with length no more than 2×loc+1
in G′, the same thing is also applied to G′′. Hence, it is correct

that there is not any cycle with length no more than 2×loc+1
at any time step for n+1th sub-stroke and then the algorithm

would detect and mark all the cycles with length no more than

2× loc+ 1, i.e., the recall rate is 100%.

2) Proof of Precision Rate :

Proof. Decided by the algorithm itself, our algorithm never

sends a set of non-cycle strokes into the classifier. In other

words, when we send a found cycle of the graph model into

classifier, it is also a loop from the perspective of strokes,

which can form the closed border of a symbol. Thus, the

detection report of our algorithm is reliable.

In summary, LS4D will detect all the required cycles

accurately without omission. Since the target objects of the

algorithm is symbols with closed borders, it can detect all the

satisfied symbols correspondingly.

B. ANALYSIS OF TIME COMPLEXITY

Due to the uncertainty of the number of sub-strokes, we take

a single sub-stroke, instead of a whole input stroke as the

unit for our time complexity analysis. According to the above

analysis, the degree of a new vertex is at most 2. And if we

set loc = 1, the algorithm can detect cycles whose length is

at most 3, i.e., the new vertex and its two adjacent vertices.

Therefore, the computational cost of the key step, which is

finding cycles, is constant level O(1).
However, when we set loc > 1, in the worst case, the al-

gorithm has to consider all the vertices of unmarked strokes,

since there is always a way of constructing the graph to push

all the vertices in the graph have the distance at most 2 to the

new vertex. A typical example is a star graph. In this case,

the time complexity is O(|V |+ |E|). Since there is no cycle

in the previous graph, and the degree of the new vertex is at

most 2, we have O(|V |) ∼ O(|E|). Thus the time complexity

in the worst case is O(|V |), which is no worse than the state-

of-the-art method [17].

Fortunately, the worst case mentioned above is an extreme

case. In application, users’ input strokes usually have high

spatial locality and this bad event happens rarely according to

our user study. In conclusion, our algorithm has only constant

time complexity level O(1) when we set the highest local-

sensitivity. And the time complexity would raise if we set a

LS4D Module
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Module

Circuit Component 
Classifier

Circuit State and 
Attribute 

Calculation Module
User

Input Strokes

Start Analysis 
Command

Component 
Detection Results

Global Connection 
Relationships

Component 
Classification 

Results

Strokes in a Local Cycle

Calculation Results

FIGURE 3. System modules and their relationships.

higher loc value. It would be O(|V |) in the worst case and it

is decided by the local sensitivity, i.e., loc, in normal cases.

The results about time complexity in application can be found

in the experiment part.

V. EXPERIMENTS AND USER STUDY

A. PLATFORM DESIGN

In order to show the efficiency of our circuit sketch symbol

detection algorithm (LS4D), we design a pen-based inter-

active circuit recognition and analysis system, on which we

perform all the following experiments and comparisons. It

consists of five modules: UI module, sketch analysis module,

circuit state and attribute calculation module, and circuit

component classifier. UI module interacts with users directly

and takes users’ input strokes. These strokes are processed

by LS4D module using the algorithm mentioned above to

detect and localize sketch components. It relies on circuit

component classifier, which is a convolutional neural net-

work (CNN), to mark strokes with their belonging compo-

nents. After finishing all strokes, user need to send a start-

analysis command to notify the sketch analysis module. It

utilizes detection results from LS4D module to analyze the

connection relationship between each components. Circuit

state and attribute calculation module takes advantage of the

results in sketch analysis module to make a list of equations

about unknown attributes and solves it to get the results. The

dependency relations of these modules are shown in Fig.3.

1) Interface Design

As shown in Fig.4, the sketch interface of our system is sim-

ple. There is no need for users to learn to use it, but just draw

on it directly. The system would detect circuit components,

and draw a rectangular box with a specific color around it.

Different kinds of components are assigned different colors.

The type of current drawn component is also shown in the

left-top corner. When system detects a circuit component, a

small button would appear near this component and there

would be an input box if the user clicks on the button,

which is used to input some attributes for it, e.g., current,

voltage, resistance values, etc. The input information would

be shown in green. After user finishes sketch of the entire

diagram, click on Start Analysis button to start calculating the

remaining attributes and states of the diagram and calculated

results would be shown near each component in red.
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FIGURE 4. Interface and running example of our prototype.

2) LS
4
D Module

LS4D module is based on the main algorithm mentioned

in Section III. Some low-level implementing details are pro-

vided here.

The sketch interface in our system is an electronic hand-

writing screen with 1920 × 1080 resolution. Similar to a

down-sample process, we view the screen as a 640 × 360
checkerboard, where each cell is a 3 × 3 pixel area. And

a 640 × 360 map is used to denote each cell is occupied

by which stroke. Initially all the entries of this map are

empty and an entry would be set as current stroke number

if user’s nib touches on a pixel belonging to this cell. This

map is convenient for stroke collision detection, which is

useful for updating our graph model and the down-sample

process makes sure that this map does not consume too much

memory.

On the other hand, in real cases, since sketch is inaccu-

rate, stroke might not connected exactly with the endpoints

being connected. In other words, there may be a subtle gap

between two semantically connected points. Based on this

observation, we relax the criterion of detecting inter-stroke

collisions. As long as the distance between two endpoints is

less than 5 cells, i.e., 15 pixels, these two endpoints would be

viewed as joint. This value is set based on most users’ sketch

habits in order to minimize the error rate from this aspect.

In addition, we employ the stroke segmentation approach

in [21] besides our original segmentation method to relieve

this problem, to handle cases that users draw multiple com-

ponents with one stroke. At last, there are only the following

restrictions or concerns to users’ input:

- the hyper-parameter loc is set to 1 as default to reduce

computational cost and users need to finish a component

with a closed border in at most 4 strokes (a higher

loc can relax this restriction and when loc = inf this

restriction would not exist);

- a distance less than 5 cells, i.e., 15 pixels would be

viewed as being connected. Users need to control the

distance to make it equal to a value more than that when

they want a pair of disconnected endpoints and less than

that when they want a connected pair;

- a detail should be noted that when two wires cross

with each other, the system would not view them being

connected and users can divide one wire into two or put

a dot on the crossing point to achieve connecting, which

is consistent with common drawing standards.

Compared with previous arts like [2] [3] [4] [17], the methods

and system in this work do not require users to present their

strokes as a specific order, or maintain the whole screen clean

at any time as shown in following user study.

3) Sketch Analysis Module

Detection for Other Symbols The LS4D algorithm can

detect those sketch symbols with closed border efficiently.

However, in the scene of circuit sketch recognition, symbols

of power supply and capacitor are not equipped with this

characteristic. Thus, LS4D fails to detect sketch of these

symbols and we need some other mechanisms to tackle this

problem. In this paper, we continue using our graph model to

find these symbols.

As shown in Tab.2, symbols of power supply and capacitor

consists of two unconnected strokes. In addition, strokes

belonging to these components usually have only one wire

connected. This is unlike those strokes belonging to the

wires, since both ends of wires are connects by components

in a normal circuit graph. In other words, while detecting

these symbols, we can pay attention to vertices with degree

1, and verify their distances between each other as well as

stroke lengths to decide whether they belong to power supply,

capacitor, or just noise.

Connection Relationship Analysis With fine-tuned

LS4D algorithm and a simple mechanism to locate power

supplies and capacitors, we can detect and locate all the

circuit components as well as divide all the strokes according

to the components they belong to. Now we can take advan-

tage of these previous results to analyze their relationships

between each other and convert user’s input strokes into

format needed by future calculation on the circuit diagram

to implement our sketch analysis module. Firstly, all strokes

remaining a −1 mark would be viewed as wires in circuit

diagrams. Due to the flexibility of wires in the circuit graph,

it is equivalent to directly use a stroke’s corresponding vertex

in our dual graph model to represent a node in the actual

circuit graph. Therefore, edges between marked strokes and

strokes with a −1 mark describe relationships between circuit

components and wires perfectly.

4) Circuit State and Attribute Calculation Module

This part introduces the circuit state and attribute calculation

module of our system. After extracting the connect relation-

ships between all the wires and components, the last step is to

calculate the state and attribute of the circuit graph. The basic

idea is to construct a set of equations according to electrical
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Component Type Total # of
Samples

Test
Accuracy

Light Bulb 174 90.9%

Resistor 205 98.0%

Ammeter 184 92.9%

Voltmeter 181 92.3%

Diode 228 94.6%

Transistor 242 91.4%

Motor 236 92.2%

Buzzer 235 95.2%

TABLE 3. Details of our data set and test results

laws like Kirchhoff’s circuit laws [22] and Ohm’s law [23].

Specifically, we can use nodes converted from strokes with

−1 (wire) mark to build equations for electric current with

Kirchhoff’s current law, use cycles from positive pole of

power supply to negative pole to build equations for voltage

with Kirchhoff’s voltage law, and use detected circuit com-

ponents to build equations with Ohm’s law. Due to the forms

of these equations, the set of equations constructed above can

be converted into a linear system of equation. Therefore, we

can consider using Gauss elimination method [24] to solve it.

As long as conditions are sufficient, the rank of the matrix is

no less than the number of unknown quantities and the solver

can find the solution. The details of the solving process is not

the core aspects of this paper.

5) Circuit Component Classifier

Sample Source : The training and test samples are collected

from 11 users, including on-the-job and retired teachers,

college students, and middle and high school students, so that

the final model is oriented to people with different sketching

habits, and overall classification accuracy can be as high

as possible. Altogether, we collect about 200 hand-drawn

samples for each type of circuit component with a closed

border, and the total number of samples is over 1600. The

details of our data set are shown in Tab.3. We randomly

divide all samples of each type of component into a training

set, a cross-validation set, and a test set according to the

7 : 2 : 1 ratio.

Data Preprocessing : In order to consider a variety of

different sketch styles as well as the equivalence of horizontal

and vertical drawing of some components, we perform data

augmentation on the training samples [25], as follows:

- for diodes, transistors, light bulbs, resistors, and

buzzers, carry out the horizontal and vertical symmetry

transformations on the images, as well as 90, 180, and

270 degrees rotation transformations;

- for diodes, buzzers, and resistors, carry out 1.2, 1.5, and

1.8 times compression transformations horizontally and

vertically;

- for motors, ammeters and voltmeters, carry out the

horizontal symmetry transformation.

The final training set consists of all original images and

transformed images, with over 6500 samples in total.

Training and Testing Details : We use LeNet-5 [26]

as our basic network architectures. Different from the orig-

inal network, we use dropout with a probability of 0.5

Correct
Small loc Exception
Connected Exception
Misclassification

FIGURE 5. Results in user test for recognition accuracy.

for the first two fully connected layers to avoid overfit-

ting [27] and replace original ReLU activation functions with

LeakyReLU [28]. We adopt Adam [29] (α = 10−3,β1 =
0.9,β2 = 0.99) as optimizer, with a batch normalization strat-

egy (batch size is 2). After each epoch, the model is tested

on the cross-validation set. In the end, our model achieves

a 99.9% accuracy rate on the training set, a 99.7% accuracy

rate on the cross-validation set, and an overall accuracy rate

of 93.7% on the test set after the entire training. The accuracy

rates of each type of component are shown in Tab.3.

B. USER STUDY

1) Recognition Accuracy Test

We convey user study on 17 users to test our algorithms and

system. Each user draws 6 circuit diagrams provided by us

from official tests for high school students (part of users also

drew some other samples designed by themselves). The result

is shown in Fig.5. A hand-drawn diagram is viewed as a

successfully analyzed sample only if no error or exception

occurs in all the modules. There are altogether 158 samples

collected by us, with 147 successful analyses and 11 anoma-

lous ones. Therefore, the overall analysis accuracy is 93.04%

and all the exceptions fall in the range of drawing restrictions

mentioned above. Note that users were not informed about

these restrictions before the test. Among these 158 samples,

we observe that 27 cases containing interspersed drawn sym-

bols, which cannot be handled by approaches like [3], [2],

[15], etc. Numerically, the average accuracy is also higher

than previous state-of-the-art approaches in [3], [17] and [4].

For specific instances, it turns out that our algorithm and

system can not only face regular circuit examples from

physics text books, but also handle messy input with some

noises and complex problems, as shown in Fig.6 and Fig.7.

Here we hide the input interface to make a clean panel.

There are three types of exceptions. The first one is due

to default loc value. When loc = 1, theoretically LS4D
can only find cycles with length at most 3 if the rectangular

closure is not introduced and if users draw a component

with strokes more than that number, there could be a small

loc exception. Fortunately, this can be solved by using a

higher loc value and sacrifice some running efficiency. The

second is about the setting of connecting pixel error tolerance
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FIGURE 6. The system is robust enough to handle messy and irregular
sketch with mistakenly touching noises.

FIGURE 7. The algorithm can work on complex and sophisticated
problems efficiently.

mentioned above. We set a 15-pixel threshold to decide

whether two strokes are connected. In these exception cases,

users represented disconnecting cases with a distance smaller

than 15 pixels or represented connecting ones with a distance

higher than that value. Setting this value more reasonably is

a meaningful research topic that is beyond the scope of this

paper. And the last type is about misclassification from the

classifier.

2) User Satisfaction

We also carry out a satisfaction evaluation based on a 5-

point Likert scale in contexts of circuit teaching and learning,

comparing with a GUI-based commercial circuit simulator

[1], which requires users to drag icons and connect com-

ponents by mouse. The rating results are shown in Fig.8.

Since pen-based interaction is more natural, efficient, and

vivid for students and teachers in class, most rating results

for our prototype concentrate on level 4.5 ∼ 5.0, which are

better than results using mouse-interaction technology. Some

representative comments on prototype based on our approach

are listed below:

- I think the pen-based system has higher practical value

and it covers all points of electricity in middle and high

school. I am satisfied with the accuracy and efficiency of

this recognition and analysis system, and look forward

to more helpful functions in teaching such as highlight-

ing and blackboard-writing (from a physics teacher);

4.5-5
4.0-4.4
3.5-3.9
3.0-3.4

(a) Pen-Interaction.

4.5-5
4.0-4.4
3.5-3.9
3.0-3.4

(b) Mouse-Interaction

FIGURE 8. Rating from all tested users for two kinds of prototypes.
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FIGURE 9. Relationship between running time and loc.

- The most valuable use of this system for me is to check

my homework answers efficiently because it supports

sketch and I can draw circuits freely on it as convenient

as drawing on a scratch paper. It can also help me calcu-

late solutions in real time and develop my understanding

on electrical laws. Thanks to this system, I am no longer

afraid of circuit diagram problems. (from a high school

student).

C. RUNNING TIME EXPERIMENT

In this part, we use different loc values to evaluate the average

per-stroke running time of our LS4D algorithm using a uni-

form standard circuit shown in Fig.4. We sample the setting

of loc from 1 ∼ 6 and 10. The corresponding results are

shown in Fig.9. Under default loc value 1, we get a latency

less than 60µs per stroke on average on a modern workstation

with an Intel-9980HK CPU. To a general trend, the running

time and loc show a linear relationship. The results indicate

that the key steps in our algorithm only take roughly 100µs
even though loc is as high as 10 and users can hardly sense

the system delay. As a result, 100% of users are satisfied with

real-time performance of our system.

VI. CONCLUSION AND FUTURE WORKS

This paper proposes a method to model user’s drawn strokes

with vertices in graphs, and an efficient and reliable locality-

sensitive algorithm to detect and localize symbols that have

closed borders through information of cycles. The algorithm

has solid theoretical foundation. Based on it, the circuit

recognition and analysis system produces 93.04% accuracy

on a user experiment with 158 samples. In this process, we
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publish the source code of our algorithm, model, and data set

used by sketch circuit component classifier, which facilitates

researches in the field of sketch recognition, especially for

circuit sketch recognition.

Since general LS4D algorithm works for all symbols with

a closed border, it can also be applied to other tasks related to

sketches, like recognition of sketches of flow charts and UML

diagrams. In the future, we would also like to extend the

system to a wider range of applications, e.g., to build it as a

real educational software that can be deployed in classrooms,

to apply the algorithm into systems of flow chart and UML

diagram recognition and analysis, and to explore the value of

the algorithm in some CAD tasks like sketch coloring.
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